Томский государственный университет Механико-математический факультет

Молодежная научная конференция «Все грани математики и механики»

24–30 апреля 2015 г.

Сборник тезисов

Prediction with guaranteed accuracy for Ornstein-Uhlenbeck process

Rozhkova A.V.

Advisor: professor, Dr. Vasiliev

Tomsk State University E-mail: svetlana-rozh@mail.ru

The process x(t) is supposed to be stable and the parameter $a \in [-\Delta; -\delta]$ with known Δ and δ :

$$dx(t) = a \cdot x(t)dt + dw(t) \tag{1}$$

The problem is to construct the predictions of the process x(t) with the given mean square accuracy by discrete-time observations $y_n = x_{nh}$, $n = \overline{0,T/h}$; h is a discretisation step.

Using the solution of the process (1) we obtain the autoregressive-type equation for observations y_n : $y_n = \lambda y_{n-1} + \eta_n$, where $\lambda = e^{ah}$ and η_n are i.i.d. Gaussian noises with finite variance.

According to the condition on the minimal value of the variance

equals to:
$$\sigma^2 = \frac{\left(1 - e^{-2\Delta(t - nh)}\right)^2}{2\Delta}, nh \le t < (n+1)h$$
.

If the parameter a is known, the optimal predictor $x^0(t)$ of x(t) is defined: $x^0(t) = e^{a(t-nh)}y_n, nh \le t < (n+1)h$.

For the definition of adaptive predictor (the case of unknown a) the parameter a should be replaced on some estimator. We use the truncated estimator $(a_n)_{n\geq 1}$, $a_0=0$, constructed in [1] by observations $(y_k)_{k=\overline{0,nh}}$,

and having the property:
$$M(a_n - a)^2 \le \frac{C}{n}, n = \overline{1, T/h}$$
.

It is proved that adaptive predictor $\hat{x}(t) = e^{a_n(t-nh)}y_n$, $nh \le t < (n+1)h$ is closed to the optimal one in the following non-asymptotic sense:

$$M\left(\hat{x}(t)-x^0(t)\right)^2 \leq \frac{C}{t}, t=\overline{0,T}$$
.

References

1 Vasiliev\,V.\,A. A truncated estimation method with guaranteed accuracy // Annals of the Institute of Statistical Mathematics. 2013 . Vol. 66, Iss. 1. P. 141-163