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Abstract—Recently, there has been a proliferation of wireless
communication technologies in unlicensed bands for the Internet
of Things. A key question is whether these networks can coexist
given that they have different power levels, symbol periods,
and access protocols. The main challenge is to characterize
the impact of mutual interference arising from distinct unco-
ordinated networks. It is known that when interferers form
a homogeneous Poisson point process and transmit only on a
single subband, the interference is often well-modeled by the
heavy-tailed α-stable distribution. In this paper, we focus on
the scenario where interferers transmit on multiple subbands.
Under a policy where each interferer independently accesses each
band with probability p, we provide an exact characterization of
the interference random vector. Exploiting this characterization,
we derive optimal linear combining weights and an analytical
approximation for the bit error rate (BER), accurate for large
transmit power. A key observation is that the expression for the
BER admits an interpretation in terms of an array gain and a
fractional diversity gain.

I. INTRODUCTION

As the scale of wireless communication networks for the
Internet of Things (IoT) is increasing, a fundamental challenge
is interference management. Unlike devices in mobile cellular
networks, there is very limited coordination within IoT net-
works. As a consequence, transmissions are only constrained
by guidelines for the duty cycle or the time to listen in carrier-
sense multiple access (CSMA) protocols [1]. As such, it is
desirable for devices to perform their own interference mit-
igation through signal processing tailored to the interference
statistics.

To this end, there has recently been significant work at-
tempting to find appropriate statistical models for the interfer-
ence. From the experimental side, a key observation is that the
interference power on each subband is in fact heavy tailed [1],
with the probability of large interference power significantly
higher than for Gaussian models. This experimental obser-
vation is consistent with theoretical analysis of interference
arising from a Poisson spatial field of interferers [2], [3] and
variations including the Poisson-Poisson clustered interferers
in [4]. In particular, α-stable models have been shown to be
a good approximation of the statistics for the interference
amplitude when guard zones are sufficiently small and the
network radius is sufficiently large [4]–[6].
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Despite this extensive study of the interference on individual
subbands, the random vector arising from interference on
multiple subbands has received significantly less attention.
While the marginal distribution for the interference on each
subband remains α-stable, the key difficulty is to characterize
the statistical dependence between the interference on multiple
subbands. Unlike Gaussian models where this dependence is
completely characterized by the correlation, when the inter-
ference on each subband is α-stable the correlation is infinite
or undefined. As such, it is necessary to develop appropriate
generalizations; e.g., via copulas [7], [8]. While copula models
are very flexible and admit efficient estimation and simulation
procedures, they are not often amenable to performance anal-
ysis. In particular, the impact of the dependence on system
performance—i.e., achievable rates or uncoded bit error rate
(BER)—is not well understood.

In this paper, we study the BER for a single transmitter-
receiver pair exploiting linear combining in the presence of
non-Gaussian interference. In particular, we adopt the same
system model with multiple subbands as in [8]—based on
interferer locations governed by a homogeneous Poisson point
process. In this system model, each device accesses each
subband independently with a given probability p. The extreme
case p → 0 corresponds to independent α-stable interference
on each subband, for which optimal linear combining has been
studied in [9], [10]. The other extreme case (p = 1) studied in
[8] corresponds to sub-Gaussian α-stable interference random
vectors. In this case, we show that the optimal combiner is
maximum ratio combining (MRC), which is well-known to
also arise in Gaussian noise. However, the BER behaves very
differently. In fact, we show that for sufficiently large transmit
power, the BER decays proportionally to P−2/η , where P is
the transmit power and η is the path loss exponent.

We then turn to the general case 0 < p < 1, for which we
previously showed that the interference statistics are often well
approximated by an interference random vector described by
α-stable marginals and dependence governed by a t-copula.
In this paper, we provide an exact characterization of the
interference random vector and show that it is, in fact, α-
stable as a random vector. Using this exact characterization,
we derive the optimal combiner and characterize the BER in
the high transmit power or “low interference” regime. We show
that the BER admits an interpretation in terms of a fractional
diversity order and an array gain dependent on the statistical
dependence between interference on distinct subbands.

To verify our analysis, we perform Monte Carlo simulations
which demonstrate the accuracy of the approximations for the
BER. Moreover, the MRC outperforms equal gain combining
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(EGC) for all values of p. However, MRC is only optimal for
p = 1 and not in general for 0 < p < 1. These results provide
the first characterization of the impact of statistical dependence
in α-stable interference models. Our initial conclusions show
that such dependence must be carefully accounted for in
estimating the performance of IoT communication networks.

A. Notation
Vectors are denoted by bold lowercase letters and random

vectors by bold uppercase letters, respectively (e.g., x, X). We
denote the distribution of a random vector X by PX. If X,Y
are two random vectors equal in distribution, then we write
X

d
= Y. Let f : R → R and g : R → R. We use the Landau

notation where f(x) = o(g(x)) if limx→∞ f(x)/g(x) = 0.
The family of α-stable random vectors plays a key role in

this paper and for completeness, we have provided relevant
definitions and results in Appendix A.

II. SYSTEM MODEL

A. Signaling Scheme
Consider a single antenna transmitter and single antenna

receiver that communicate over multiple orthogonal frequency
subbands. We suppose that the transmitter-receiver pair oper-
ates in the presence of a large number of other devices, which
are neither coordinated with the transmitter nor the receiver.

The transmitter seeks to send a binary symbol x ∈
{+1,−1}. Given a symbol x, the receiver observes an output
y ∈ RK defined by

y = hx+ z + n, (1)

where h ∈ RK corresponds to channel fading and z ∈ RK is
interference in a set of K orthogonal subbands. The channel
fading is assumed to be perfectly known to the receiver;
e.g., using pilots to estimate channel state information. The
statistical model for the interference z is detailed in the sequel.
The interference z is assumed to be a random vector admitting
a probability density function (PDF). This implies that y also
admits a PDF f(y). We further assume that the thermal noise
has a negligible impact on the distribution of z + n and can
be ignored.

This model is motivated by communication in the IoT,
where low complexity devices typically exploit very simple
communication schemes. The real-valued model arises in the
case where signaling is only performed on either the in-phase
or quadrature components. Another scenario where this model
can arise is when the same symbol is sent over both the in-
phase and quadrature components and the received signal is
viewed as the vector obtained by stacking the in-phase and
quadrature components for each subband.

Given the observation y and equally likely symbols (i.e.,
+1 and −1), the BER is minimized by the likelihood ratio
test

Λ(y) =
f(y|x = 1)

f(y|x = −1)

x=1
≷

x=−1
1. (2)

As will be explained further in Section II-B, the likelihoods
in (2) do not admit tractable closed-form solutions. As such, a

statistic obtained from linear combining is considered instead,
and the resulting linear detection rule is then given by

ỹ = wTy
x=1
≷

x=−1
0. (3)

where the weights w ∈ RK satisfy ‖w‖ = 1.

B. Interference Model
Consider a network of interfering devices located according

to a homogeneous Poisson point process (PPP) Φ with inten-
sity λ. These devices form interferers for a receiver located at
the origin. We assume that the same frequency band is shared
by all devices, and that this band is also the one utilized by
the desired transmitter-receiver pair. For example, this is the
case for the frequency band 863 MHz to 870 MHz used for
low power wide area networks (LPWAN).

The frequency band is divided into K subbands. In a
given time slot for the desired transmitter-receiver pair, each
interfering device transmits on a subset of the subbands. In
particular, each interfering device scans all subbands, selecting
each subband independently with probability p (interpreted
as a function of the quantity of data that interfering devices
seek to transmit to their respective access points). As a
consequence, the probability that a given interfering device
transmits on k subbands is given by

(
K
k

)
pk(1 − p)K−k. As

the interfering devices are also assumed to be uncoordinated,
the subbands selected by a given device l ∈ Φ are independent
of the subbands selected by any other device l′ ∈ Φ, l′ 6= l.
The set of devices in Φ that transmit on the i-th subband are
denoted by Φi.

The interference observed by the desired receiver (corre-
sponding to the transmitter-receiver pair in Section II-A) on
i-th subband is given by

zi =
∑
j∈Φi

r
−η/2
j xj,i, i ∈ {1, · · · ,K} (4)

where rj is the distance from device j in Φi to the desired
receiver, η is the path loss exponent, and xj,i ∈ R ∼ N (0, σ2

I )
corresponds to the combination of baseband emission and
small-scale fading. Under Rayleigh fading, a Gaussian approx-
imation for xj,i can well approximate the true statistics [3].

After stacking the interference on each subband, the result-
ing interference random vector is given by

z = (z1, . . . , zK)T , (5)

corresponding to the interference term in (1). By the in-
dependent thinning theorem for homogeneous Poisson point
processes, it follows that each Φi also form homogeneous
Poisson point processes. As a consequence, the interference
on each subband in our model is non-Gaussian; namely, α-
stable distributed for which relevant definitions and results are
provided in Appendix A. This is detailed in the following
theorem given, for example, in [7].

Theorem 1. Consider the interference on subband i, denoted
by zi in (4). Suppose that the baseband emissions xj,i ∼
N (0, σ2

I ) are also i.i.d. Then, zi in (4) converges almost surely
to a symmetric 4/η-stable random variable with the scale
parameters given by



γzi =
(
πλpC−1

4
η

E[|xj,i|
4
η ]
) η

4

, (6)

where

Cα =

{
1−α

Γ(2−α) cos(πα/2) , if α 6= 1

2/π, if α = 1.
. (7)

III. OPTIMAL LINEAR RECEIVER FOR SUB-GAUSSIAN
α-STABLE INTERFERENCE

Our focus in the remainder of the paper is to obtain optimal
linear combiners and to characterize the BER. While this
problem has been widely studied in the case of Gaussian
noise and for i.i.d. symmetric α-stable noise [9], [10], little
is presently known about the case of non-trivial probabilistic
dependence. Preliminary definitions and characterizations of
α-stable random vectors are presented in Appendix A.

An important special case of the model detailed in Section II
is when each interferer selects each subband with probability
one; that is, Φi = Φ, i = 1, . . . ,K almost surely. It is known
from Theorem 3 in [7] that the resulting interference random
vector z is sub-Gaussian α-stable, defined as follows.

Definition 1. Any vector X distributed as X =
[A1/2G1, . . . , A

1/2Gd]
T is called a sub-Gaussian α-stable

random vector in Rd with underlying Gaussian vector G if
it satisfies

A ∼ Sα/2
((

cos
π

4
α
)2/α

, 1, 0

)
, (8)

where A and G are independent. If G = [G1, . . . , Gd]
T ∼

N (0, σ2I), then Xi ∼ Sα(γ, 0, 0) where γ = σ/
√

2 and σ is
called the parameter of X.

A. Optimal Linear Combiner
We now derive the optimal linear combiner when the

interference random vector z is sub-Gaussian α-stable. The
BER can be expressed by

Pe(w)=
1

2

[
P(wTy > 0|x=−1)+P(wTy ≤ 0|x=1)

]
. (9)

Using the detection rule in (3), it follows that

P(wTy > 0|x = −1) = P(−wTh + wT z > 0)

= P(wT z > wTh), (10)
and

P(wTy ≤ 0|x = 1) = P(wTh + wT z ≤ 0)

= P(wT z ≥ wTh), (11)

since z is a sub-Gaussian α-stable, a special case of a sym-
metric α-stable random vector, wT z is symmetric α-stable.

Theorem 2. Let z be a symmetric α-stable random vector with
underlying Gaussian vector G ∼ N (0, σzI) and parameter
σz > 0. Then, the optimal weight vector w minimizing the
BER in (9) is given by

w = h/‖h‖. (12)

where ‖h‖ is the Euclidean norm of h. That is, the optimal
linear combiner is maximal ratio combining.

Proof. We first establish that

Pe(w) = P
(
z̃ > wTh/‖w‖

)
, (13)

where
z̃ = wTz/‖w‖ ∼ Sα (γz, 0, 0) , γz = σz/

√
2. (14)

Since z is sub-Gaussian α-stable with parameter σz, it
admits the scale-mixture representation

z = A
1
2 (G1, G2, . . . , GK)T , (15)

where A ∼ Sα/2

((
cosπ4α

)2/α
, 1, 0

)
and Gk ∼

N (0, σz), k = 1, . . . ,K, all independent. As such,

wT z = A
1
2

K∑
k=1

wkGk
d
= A

1
2 G̃, (16)

where G̃ ∼ N (0, σ2
z

∑K
k=1 w

2
k), which after dividing by ‖w‖

yields (14).
By the fact that z̃ ∼ Sα (γz, 0, 0)—i.e., the parameters are

independent of w—in (13) and the cumulative distribution
of z̃ is non-decreasing, it follows that minimizing Pe(w) is
equivalent to maximizing wTh/‖w‖.

Applying the Cauchy-Schwarz inequality then yields
|wTh|2 ≤ ‖w‖2‖h‖2 (17)

Then, equality holds if and only if w and h are linearly
dependent; i.e., w = ch, for some c > 0. Setting c = 1/‖h‖
to satisfy the constraint ‖w‖ = 1, the equality (12) is
obtained.

B. Bit Error Rate
We now characterize the BER in the case the interference

random vector is sub-Gaussian α-stable. The basis of the anal-
ysis is the following property of symmetric α-stable random
variables, which can be found in [11].

Lemma 1. Let X ∼ Sα(γ, 0, 0). Then as b→∞,

P(X > b) =
1

2
Cαγ

αb−α + o(b−α), (18)

where Cα is given in (7).
It is now straightforward to characterize the BER when z

is sub-Gaussian α-stable.

Theorem 3. Let z be a K-dimensional sub-Gaussian α-stable
random vector with parameter σz and the linear combining
weights be w ∈ RK . Then, as ‖h‖ → ∞,

Pe(w)=
1

2
Cαγ

α
z

(
wTh/‖w‖

)−α
+o
((
wTh/‖w‖

)−α)
. (19)

where γz = σz/
√

2. Moreover, the optimal linear weights
admit a BER

Pe(h) =
1

2
Cαγ

α
z ‖h‖−α + o(‖h‖−α). (20)

Proof. Use Lemma 1 in (13).

One observation is that the form of the BER in (19)
bears striking similarities to the BER of linear combining
in Rayleigh fading with Gaussian noise. In particular, the
exponent α plays a role similar to a fractional diversity gain
with the key difference from the Rayleigh fading scenario that
it lies in 0 < α < 2. Similarly, the factor 1

2Cαγ
α
z plays the

role of an array gain.



IV. GENERAL INTERFERENCE MODEL

We now turn to the general interference model detailed in
Section II, focusing on the case K = 2 due to space constraints
(similar analysis applies for K > 2.) We first establish that the
interference random vector remains symmetric α-stable. This
is non-trivial as, unlike the Gaussian noise case, a random
vector with symmetric α-stable marginals is not necessarily
symmetric α-stable as a random vector, which is formally
defined in Appendix A. We then develop new bounds on the
error probability.

A. Interference Statistics
A general exact characterization of the interference random

vector z in (5) is given in the following theorem.

Theorem 4. The interference random vector z ∈ R2 in (5)
has characteristic function

Φz(θ) = E[ei(θ1z1+θ2z2)]

= exp
(
iγα1 |θ2

1 + θ2
2|
α
2 + iγα2 |θ1|α + iγα2 |θ2|α

)
(21)

where
γ1 = σI

(
πλp2C−1

4/ηE[|Z0|4/η]
)η/4

γ2 = σI

(
πλp(1− p)C−1

4/ηE[|Z0|4/η]
)η/4

(22)

with Z0 ∼ N (0, 1). That is, z is a symmetric α-stable random
vector with spectral measure on S1 given by Γ = Γ1+Γ2, with
Γ1 uniform on S1 and Γ2 concentrated on (±1, 0), (0,±1).

Proof. Let Φ be a homogeneous Poisson point process with
intensity λ. Under the model in Section II-B, the interference
on each subband is given by

z1 =
∑
j∈Φ1

r
−η/2
j xj,1, (23)

z2 =
∑
j∈Φ2

r
−η/2
j xj,2. (24)

where xj,i, i = 1, 2 is defined in (4). Since each device
independently chooses to access each subband Bi, i = 1, 2
with probability p, it follows that the processes Φ1∪Φ2, Φ1\Φ2

and Φ2 \ Φ1 are independent Poisson point processes with
intensities, respectively,

λ1 = p2λ

λ2 = λ3 = p(1− p)λ (25)

The characteristic function Φz(θ) is then given by

Φz(θ) = E[ei(θ1z1+θ2z2)]

= exp

(
i

( ∑
k1∈Φ1∪Φ2

r
−η/2
k1

(θ1xk1,1 + θ2xk1,2)

+
∑

k2∈Φ1\Φ2

r
−η/2
k2

θ1xk2,1 +
∑

k3∈Φ2\Φ1

r
−η/2
k3

θ2xk3,2

 (26)

Noting that (r2
kj

) are one-dimensional Poisson point processes
with parameters πλj [2] and using the LePage series represen-
tation of symmetric α-stable random variables [11, Corollary
1.4.3], it follows that

V1 =
∑

k1∈Φ1∪Φ2

r
−η/2
k1

(θ1xk1,1 + θ2xk1,2)

V2 =
∑

k2∈Φ1\Φ2

r
−η/2
k2

θ1xk2,1

V3 =
∑

k3∈Φ2\Φ1

r
−η/2
k3

θ2xk3,2 (27)

are each independent symmetric α-stable random variables.
As such, V1 + V2 + V3 = θ1z1 + θ2z2 is also a symmetric
α-stable random variable, irrespective of the choice θ ∈ R2.
In particular, let Z0 ∼ N (0, 1), then

V1 ∼ S4/η

(
σI

√
θ2

1 + θ2
2

(
πλp2C−1

4/ηE
[
|Z0|4/η

])η/4
, 0, 0

)
V2 ∼ S4/η

(
σI |θ1|

(
πλp(1− p)C−1

4/ηE
[
|Z0|4/η

])η/4
, 0, 0

)
V3 ∼ S4/η

(
σI |θ2|

(
πλp(1− p)C−1

4/ηE
[
|Z0|4/η

])
η/4, 0, 0

)
.

(28)

By Theorem 2.1.5 in [11], it then follows that z is a symmetric
α-stable random vector with characteristic function given by
(21).

As expected, when p → 1, we recover the sub-Gaussian
α-stable characteristic function studied in Section III.

B. Optimal Linear Combining
We now study the BER for the general interference statistics

in Theorem 4.

Theorem 5. Let z have the characteristic function given in
Theorem 4, corresponding to the general interference model
in Section II-B. Then, the optimal combining weights are the
solution of

max
w∈R2:‖w‖=1

wTh

(γα1 + γα2 |w1|α + γα2 |w2|α)1/α
. (29)

Proof. The BER is given by

Pe = P (w1z1 + w2z2 > w1h1 + w2h2) . (30)

Now,

w1z1 + w2z2 =
∑

k∈Φ1∩Φ2

r
−η/2
k (w1Xk,1 + w2Xk,2)

+
∑

k∈Φ1\Φ2

w1r
−η/2
k Xk,1 +

∑
k∈Φ2\Φ1

w2r
−η/2
k Xk,1. (31)

Suppose that Xk,j ∼ N (0, σ2
I ) and call the three terms above

V1, V2, V3, respectively. Then,

V1 ∼ Sα(γ1

√
w2

1 + w2
2, 0, 0)

V2 ∼ Sα(γ2|w1|, 0, 0)

V3 ∼ Sα(γ2|w2|, 0, 0), (32)



As such,
w1z1 + w2z2

∼ Sα((γα1 (w2
1+w

2
2)α/2+γα2 |w1|α+γα2 |w2|α)1/α, 0, 0). (33)

Hence,

Pe=P
(
N>

wTh

(γα1 (w2
1 + w2

2)α/2+γα2 |w1|α+γα2 |w2|α)1/α

)
,

(34)

where N ∼ Sα(1, 0, 0). An examination of (34), reveals that
scaling w does not affect the BER. Without loss of generality,
we therefore set ‖w‖ = 1. Under this condition w2

1 +w2
2 = 1

and the optimal weights are given by (29).
Using the definitions of γ1, γ2 in Theorem 4, observe that

for p → 1 we recover the result in Theorem 2. A similar
argument as in Theorem 3 then also gives a characterization
of the BER for large ‖h‖.

Theorem 6. Let z be a symmetric α-stable random vector with
characteristic function in Theorem 4, and linear combining
weights be w ∈ RK . Then, as ‖h‖ → ∞,

Pe(w)=
1

2
Cαγ

α
w

(
wTh/‖w‖

)−α
+o
((
wTh/‖w‖

)−α)
. (35)

where γw = (γα1 (w2
1 + w2

2)α/2 + γα2 |w1|α + γα2 |w2|α)1/α.

V. NUMERICAL RESULTS

In this section, we validate our analysis by studying the
Monte Carlo simulations of the BER. To study the BER in the
presence of sub-Gaussian α-stable interference, as considered
in Section III, we set γz = 1, α = 4/5 and x = ±1. The
channel vector is

h =
√
ρ× [0.0949, 0.3237, 0.3988, 0.1522, 0.0563, 0.2308

0.0765, 0.0605, 0.6317, 0.4889] , (36)

where ‖h‖2 = ρ. The system behavior under this choice of
channel vector is representative, validated through an extensive
simulation study for other choices of h. While it is also
possible to study the average behavior under, for example,
Rayleigh fading, the choice of a fixed h enables a direct
comparison with the analysis in the previous sections.

Fig. 1 plots BER for varying ‖h‖2 = ρ and both the
optimal combiner, i.e., MRC (by Theorem 2) and EGC. As
expected from Theorem 2, the MRC combiner outperforms
EGC. Moreover, the asymptotic approximation for the BER
in Theorem 3 is in good agreement with the Monte Carlo
simulation for sufficiently large ‖h‖.

To validate the model is consistent with Theorem 4, we
plot the samples simulated from the system model and samples
generated from (21) in Fig. 2 and the corresponding joint PDFs
in Fig. 3. The channel is fixed again to be (36). Observe that
the samples and the joint PDF from the model in Theorem 4
are consistent with the samples and the joint PDF from the
system model detailed in Section II.

Fig. 4 plots the BER for varying p. Optimal linear com-
bining (OLC) based on Theorem 5, MRC and EGC are
considered. The BER for p ≈ 1 under OLC and MRC
approximately equal, which further validates Theorem 2 that

-10 -5 0 5 10 15

||h||(dB)

10-2

10-1

0.5

B
E

R

Asymptotic

MRC

EGC

Fig. 1: Bit error rates comparison of MRC and EGC for sub-
Gaussian α-stable interference under different ‖h‖ with K =
10 channels, γz = 1, α = 4/5 and x = ±1
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Fig. 2: Scatter Plots of the interference random vector with
p = 0.5, λ = 0.001 m−2, η = 5, and σI = 1.

the optimal combiner for sub-Gaussian α-stable interference
is MRC.

In Fig. 4, low values of p imply that each device trans-
mits with a low probability, consistent with the low BER
observed in the figure. Increasing p changes the statistics of
interference vector in two ways. First, it increases the scale
parameter of each marginals leading to a higher BER. Second,
the interference vector becomes increasingly dependent and
approximately sub-Gaussian when p ≈ 1, which—for equal
scale parameters—reduces the BER. In particular, for the sub-
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Fig. 3: Probability density functions of the interference random
vector with settings as in Fig. 2.
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Fig. 4: Bit error rates of OC, MRC and EGC under different
p with λ = 0.001 m−2, ‖h‖ = 10−3, η = 5, and σI = 1.

Gaussian α-stable and independent α-stable vector with same
marginal distributions, the scale parameter γw of the weighted
sum of the interference on each subband is different. Observe
that γw for sub-Gaussian is less than γw for independent case.
That is, w1z1 + w2z2, w1 = w2 = 1 and zi ∼ Sα(1, 0, 0),
γw =

√
2 for sub-Gaussian and γw = 21/α for independent

subbands. We conclude from Fig. 4 that the impact on the BER
of the scale parameter dominates the impact of dependence as
p increases.

VI. CONCLUSION

Both experiments and theory have recently suggested that
interference in the IoT is non-Gaussian and often heavy tailed
for a single subband. In this paper, we have studied an
interference model with multiple subbands which accounts
for probabilistic dependence between the interference on each
subband. For a general access model, we established an exact
characterization of the interference random vector and an
asymptotic approximation of the BER. This provides a basis
for further investigation into the impact of statistical depen-
dence of the interference random vector, including optimal
receiver design and extending recent information theoretic
results for α-stable models [12].

APPENDIX A
THE α-STABLE MODEL

The heavy-tailed probability density functions of the α-
stable model have been widely used to model impulsive
signals [11], [13]. The PDF of an α-stable random variable
is described by four parameters: the characteristic exponent
0 < α ≤ 2; the scale parameter γ ∈ R+; the skew parameter
β ∈ [−1, 1]; and the shift parameter δ ∈ R. As such,
a common notation for an α-stable random variable X is
X ∼ Sα(γ, β, δ). In the case β = δ = 0, X is said to be
a symmetric α-stable (SαS) random variable.

In general, α-stable random variables do not have closed-
form PDFs, but are usually represented by their characteristic

function, given by [11, Eq. 1.1.6]

E[eiθX ]=

{
exp
{
−γα|θ|α(1−iβ(signθ) tan πα

2 )+iδθ
}
, α 6=1

exp
{
−γ|θ|(1+iβ 2

π (signθ) log |θ|)+iδθ
}
, α=1

(37)

Multivariate symmetric α-stable variables can be defined as

Definition 2. A random vector X in Rd is symmetric α stable
if for every A,B > 0 there exists a C > 0 such that

AX(1) +BX(2) d
= CX, (38)

where X(1),X(2) are independent copies of X.

Symmetric α-stable random vectors can be represented via
their characteristic function, given by [11, Theorem 2.4.3]

E[eiθ·X] = exp

(
−
∫
Sd−1

∣∣∣∣∣
d∑
k=1

θksk

∣∣∣∣∣
α

Γ(ds)

)
, (39)

where Γ is the unique symmetric spectral measure on the sur-
face of the d-dimensional unit sphere Sd−1. Unlike Gaussian
models, each element in X is an α-stable random variable if
X is an α-stable vector, but not all random vectors with sym-
metric α-stable marginals form symmetric α-stable random
vectors [11].
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