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Introduction 

In the last 10 to 20 years, soil microbial ecology has flourished, in no small part because of the 

development of molecular tools that have revealed the exceptionally large microbial diversity found 

in soils, e.g. [1]. These methodological developments led to a flurry of activity investigating the 

relationship between microbial diversity and many soil functions, such as the decomposition of 

organic matter or transformations in many elemental cycles e.g. [2]. However, Prosser et al. [3] 

cautioned that microbial ecology would not benefit from the accumulation of large amounts of data 

on microbial community diversity and composition unless it was couched in a theoretical ecological 

framework. A number of attempts have been made to understand the relationship between microbial 

communities and decomposition of organic matter using ecological concepts borrowed from other 

branches of ecology. For example, microbial communities have been represented as specialist or 

generalist consumers [4] or r- and K-strategists [5], where it is assumed that there is a trade-off 

between the rate at which decomposers consume substrate and their ability to consume different 

substrates and to produce biomass, i.e. the yield [5–7]. Trait-based approaches, in which trade-offs 

among traits are allowed for, have also been used to provide evidence of links between microbial 

strategies, such as resource acquisition or biomass yield strategies, and organic matter decomposition 

[8,9]. Such analyses provide greater insight into the effects microbial properties can have on 

mailto:naoise.nunan@upmc.fr
https://github.com/xraynaud/DivSpaceFunct


decomposition than simple measurements of microbial composition or diversity. Furthermore, they 

provide direction for future research. However, they all have in common the fact that they are 

organism centred. The effects of heterogeneous local environmental properties on microbial activity 

are conspicuous by their absence. In view of the fact that soil microbial communities are highly 

exposed and intimately linked to variations in their local environment [10,11], we suggest that this is 

a major omission. Heterogeneity is a fundamental property of soil that is often overlooked in 

microbial ecology. Although it is generally accepted that the heterogeneity of soil underpins the 

emergence and maintenance of microbial diversity [12], the profound and far reaching consequences 

that heterogeneity can have on many aspects of microbial ecology and activity have yet to be fully 

apprehended and have not been fully integrated into our understanding of microbial functioning.  

In the following we will first argue that the heterogeneity of the soil microbial environment, 

and the consequent uncertainty associated with acquiring resources, affect how microbial metabolism, 

motility and interactions have evolved and, ultimately, affect the overall microbial activity that is 

represented in ecosystem models, such as heterotrophic decomposition or respiration. We will then 

present an analysis of predicted metabolic pathways for soil bacteria, downloaded from the MetaCyc 

pathway/genome database collection (https://metacyc.org/). The analysis suggests that, while there is 

a relationship between phylogenic affiliation and the catabolic range of soil bacterial taxa, there does 

not appear to be a trade-off between the 16S rRNA gene copy number, taken as a proxy for potential 

growth rate, of bacterial strains and the range of substrates that can be used. Finally, we will present 

a simple, spatially explicit model that can be used to understand how the interactions between 

decomposers and environmental heterogeneity affects bacterial decomposition of organic matter.  

 

Direct effects of physical heterogeneity on microbial interactions and diversity 

Soil is a highly heterogenous medium, consisting of a mixture of solid material, of water-filled 

and of air-filled pores, all of which results in a wide range of micro-habitats, co-existing in close 

proximity [13]. The environmental properties and resource availabilities of the micro-habitats are 

often sufficiently different one from the other, that they constitute different ecological niches and can 

therefore harbour microorganisms, with different competitive abilities or life strategies, in relative 

isolation from one another [12,14,15]. Discontinuities in the water film, which place limitations on 

the extent of substrate diffusive fluxes also reduce the strength of the competitive interactions among 

individuals, as individuals don't compete for all the available substrate but rather use only that within 

their own diffusible domain [16]. The non-competitive diversity patterns that are so characteristic of 

soils [17] are therefore believed to stem from the physical constraints and heterogeneity of the 

microbial environment that limit direct competition among taxa and individuals and therefore reduce 

competitive exclusion [18]. 
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Metabolic costs of resource acquisition and adaptations 
Heterotrophic bacteria satisfy their resource requirement from outside the cell. They generally 

do this by secreting extracellular enzymes into their surroundings, to which significant metabolic 

costs, both energetic and elemental, are associated. Before discussing the effects that heterogeneity 

might have on resource acquisition, we will look at the costs of resource acquisition and how these 

are minimised by bacteria.  

Protein synthesis, including the synthesis of extracellular enzymes, accounts for approximately 

75% of a bacterial cell’s energy expenditure [19]. The energetic burden of a cell’s protein synthesis 

is such that the synthesis of a given protein is not likely to survive selective pressures unless it confers 

an increase in fitness [20] and, indeed, it has been shown that the growth of bacterial cells is hindered 

when they synthesize proteins unnecessarily [21]. Furthermore, once secreted, extracellular enzymes 

are generally lost to the cell because they tend not to be able to retrieve the secreted enzymes (due to 

a lack protein import systems). As a result, extracellular proteins are not recycled by the cell, as is the 

case for intra-cellular proteins. In order to maximise fitness, micro-organisms minimise the metabolic 

costs associated with the secretion of enzymes.  

The cost minimisation strategies are evident in the deployment of a range of phenotypic 

adaptations. The energetic cost of extracellular enzymes is generally lower than that of intra-cellular 

enzymes because they tend to contain fewer amino acids that are metabolically expensive to produce 

[22]. The energy required to synthesise individual amino acids varies quite considerably, spanning 

almost an order of magnitude in E. coli [23]. The substitution of costly amino acids with less costly 

ones in extracellular proteins can reduce the cell’s energetic budget [22]. It has also been shown that 

the elemental composition of enzymes involved in the acquisition of C and S, enzymes that are often 

expressed in response to shortages in C and S, are depleted in these very elements [24], thus reducing 

the metabolic cost to the cell. The expression levels of proteins change to maximise growth in the 

cost:benefit environment (i.e. resource availability) in which microbes find themselves: levels of 

induced expression are higher in environments with higher substrate concentrations and where the 

return on metabolic investment is higher [25].  

There are two types of extracellular enzymes, free and membrane-attached, the production of 

which may also be optimised to suit the cost:benefit environment [26]. Free extracellular enzymes 

tend to catalyse the production of more product than membrane attached enzymes because substrate-

enzyme encounters tend to be more frequent [26]. However, the reactions do not necessarily occur in 

close proximity to the parent cell, due to the diffusion of the enzyme, meaning that much of the 

reaction product may not be of great benefit to the enzyme producer. This means that the cell must 

maintain a high rate of enzyme synthesis and secretion to compensate for diffusive loss. Free 



extracellular enzymes are therefore a cost-efficient resource acquisition strategy in copiotrophic 

environments, where substrates are in the micromolar range, and when the producer cell lives within 

a community, where other cells can benefit from the activity of the enzyme [26]. The production of 

such enzymes may be regulated by quorum sensing, so that production is only initiated when the 

community is likely to benefit [27]. Membrane-attached extracellular enzymes, on the other hand, are 

a more cost-efficient strategy for nutrient acquisition in oligotrophic environments, where substrate 

concentrations are generally in the nanomolar range or lower. Membrane-attached extracellular 

enzymes may also be the strategy of choice for isolated cells. This strategy has the advantage of 

reducing the enzyme synthesis to product acquisition ratio, thus reducing the cost to the cell. As we 

will see below, soil is generally an oligotrophic environment, with concentrations of organic 

molecules in the soil solution in the nanomolar range [28,29]. Furthermore, outside of the rhizosphere, 

soil bacterial cells tend to have relatively few neighbours [30], reducing the likelihood that other cells 

might profit from the products of their enzymatic activities.  

 

Adaptations to heterogeneous environments 
The strategies for minimising the metabolic cost associated with the acquisition of extra-cellular 

resources are likely to be reinforced in heterogeneous environments such as soil, where the return on 

investment is highly uncertain. The uncertainty of the return on enzyme investment stems from the 

combination of the heterogeneous nature of the available resource and a spatially heterogeneous 

physical environment. As we will attempt to show in the following paragraphs, the interaction 

between resource heterogeneity and spatial heterogeneity reduces the probability of other strategies 

of resource acquisition, such as motility or resource use at a community level, being employed. As a 

result, evolution may have pushed soil microbial decomposers towards a cautious approach to 

investment in resource acquisition.  

The resources available to soil microbial communities are very heterogeneous in nature. The 

organic matter dissolved in the soil solution (that which is the most available for microbial use) is 

made up of a variable collection of molecular species, with several thousand different formulae being 

readily detectable [31]. If the environment were homogenous, then the cost of maintaining the 

enzymatic capacity necessary to consume such a heterogeneous substrate, although probably too great 

for a single microorganism [19], could be borne by the whole community. The community might then 

be made up of specialists, each consuming a limited range of substrate, thus reducing competition 

amongst members of the community and increasing complementarity [32].  

On the other hand, if the substrate were homogenous but the environment spatially 

heterogeneous, then the substrate assimilation costs would be comparatively low as decomposers 

would only have to bear the cost of a rather limited number of enzymes. They could then expend 



more energy on strategies, such as motility, for exploring the heterogeneous space. This strategy is 

used by some decomposers in marine environments [33,34]. However, the energetic cost of motility, 

especially in the case of rapid swimming, is also high [33]. As a result, motility and chemotaxis are 

broadly confined to copiotrophs, whereas oligotrophs are mostly non-motile [34]. In soil, surface 

tension, capillary forces and viscous drag in the water-filled porosity [35] increase the energy required 

for motility and these physical constraints, particularly in partially saturated pore networks, are such 

that any potential motility is confined to matric potentials in the wet range [36]. Motility was found 

to cease, virtually completely, when the thickness of the water-film reached 1.5µm. Fungi also have 

the ability to explore the soil pore space, through hyphal spread rather than by swimming in the soil 

solution, and they are more active and have relatively more biomass in soil with high organic matter 

contents [37,38], corroborating the suggestion that there is a high energetic requirement for exploring 

the soil pore space.  

Where both resources and the spatial environment are heterogeneous, the supply of any 

particular resource, in any given location in the pore network, is likely to be low [28,29], due to the 

distribution of the resource throughout heterogeneous pore space. In this scenario, the probability of 

there being a sufficient quantity of substrate within the vicinity of a decomposer to make the 

production of enzymes metabolically worthwhile is likely to be lowered significantly. It has been 

shown that low substrate concentrations constrain decomposition [39], which tends to confirm this 

view. Were this the case, then the idea that microbial decomposers forage for resources through the 

production of extracellular enzymes is improbable. The low substrate concentrations are also likely 

to limit motility as it has a high energy requirement.  

If soil microbial decomposers find themselves in a harsh and unreliable local environment in 

which both resource acquisition and motility are constrained, what strategy should they use? Here, 

we suggest that the selective landscape that emerges from the interaction between resource and 

environmental heterogeneities has pushed microbial decomposers to “play a waiting game”. This 

hypothesis is supported by the fact that many soil bacteria produce extracellular polymeric substances 

[14]. Soil bacteria allocate resources to the production of extracellular polymeric substances (EPS), 

as an insurance against, or buffer for, fluctuating conditions in their environment [14]. For example, 

the production of EPS has been shown to maintain moisture levels of the microbial microenvironment 

[40]. Extracellular enzymes can be located within the EPS matrix in close proximity to cells [41], 

thus reducing diffusional loss of both the enzyme and the product and increasing the likelihood that 

the products of the activity of these enzymes will benefit the cells. EPS may also decrease the 

diffusion rates of substrates towards the cell, but also acts as a trap for nutrients and substrate [42], 

which suggests that EPS producers may accept a lower potential acquisition rate for increased 

probability of resource acquisition. The energetic cost of EPS production to the cell is non-negligible 



[43] however, suggesting that this is a necessary adaptation to the environment in which the cells find 

themselves.  

The overall picture that emerges from these considerations is that soil bacteria have, for the 

most part, relatively passive resource acquisition strategies and that their activity depends on the 

arrival of resources rather than on active foraging for resources. It follows that the constraints imposed 

by the spatially heterogeneous resource landscape should be accounted for if the microbial roles in 

ecosystem fluxes are to be fully understood.  

 

Metabolic traits of soil bacteria 
Microorganisms are characterised by a set of traits, their life history strategy, that will also have 

an impact on how C is processed by microbial communities [9]. As molecular heterogeneity is a 

hallmark of soil organic matter [31], one of the traits most likely influence microbial processing of C 

is the catabolic breadth (the range of organic substrates that can be used) of an individual cell. If a 

decomposer cell does not have the capacity to consume a substrate, then the substrate will persist, 

regardless of its availability to the cell or its chemical properties. The greater the catabolic breadth of 

decomposers, the more likely substrate is to be consumed upon decomposer-substrate encounters. 

The rapidity with which a decomposer cell responds to the presence of a given substrate and the 

physiological allocation of C (to cellular maintenance or growth) of the cell will also affect C cycling. 

The trade-offs among these traits determine the impact that each decomposer can have on the 

dynamics of C in soil. For instance, there may be a trade-off between the rate at which resources are 

acquired and the growth efficiency, or C use efficiency, of a cell: high investments in resource 

acquisition reduce the growth efficiency of the cell [44]. Similarly, in environments with 

heterogeneous resources, adaptations to make use of multiple resources may have a negative impact 

on growth rates [8]. It should be borne in mind however, that the conditions in soil may limit the 

range of life histories strategies that can flourish.  

 

Bacterial catabolic breadth, growth rates and phylogeny 
In order to test whether there were indeed trade-offs between catabolic breadth, growth rate and 

carbon use efficiency, we analysed the predicted metabolic functions of a number of bacterial strains 

found in soils that were stored the MetaCyc database [45]. We determined the relationship between 

the number of degradation/utilisation/assimilation pathways and the 16S rRNA gene copy number for 

each bacterial strain. The 16S rRNA gene copy number was taken as a proxy of potential growth rate 

and carbon use efficiency [46]. We also determined the relationship between the catabolic range and 



the phylogenetic affiliation of the strains in order to determine whether 16S rRNA gene barcoding 

might be a useful proxy for life history strategies relevant to C cycling in soil.  

The Metacyc database contains sequenced genomes that provide information on metabolic 

function from all kingdoms of life. We extracted 843 records of soil bacterial genomes from the 

database. These 843 records contained 439 consolidated pathways for 

degradation/utilisation/assimilation of substrate. These pathways were further consolidated to 313 by 

grouping different pathways having similar roles (e.g. urea degradation I and II; see supplementary 

materials for all methodological details). In order to ensure that the bacterial strains in the database 

were representative of soil bacteria, we first looked at their phylogenetic affiliation and found that the 

relative abundances of the major phylotypes (Fig. S1) were not fundamentally different from those 

of the dominant soil phylotypes from across the globe [47]. Actinobacteria and Proteobacteria were 

the major phylotypes in both datasets; Firmicutes and Bacteriodetes were slightly over-represented 

in the Metacyc database whilst Acidobacteria and Planctomycetes were under-represented. The 

under-representation of Acidobacteria (only 24 Acidobacteria present in Metacyc, compared to more 

than 5000 Proteobacteria) was the main difference between the bacteria in the database and the 

dominant phylotypes from across the globe. This was probably due to the fact that Acidobacteria are 

notoriously difficult to isolate from soil [48].  

Having established that the database was reasonably representative, we determined the 

relationship between degradation/utilisation/assimilation pathways and phyla, using only strains from 

phyla for which there were at least 10 entries in our soil bacteria database. The number of pathways 

varied widely across the strains, ranging from 14 to 139, and there were significant differences in the 

average number of pathways among phyla (between 45 and 70; Fig. 1). We also checked the number 

of pathways in strains from rarer phyla and found that the number of 

degradation/utilisation/assimilation pathways in Acidobacteria, Chloroflexi and Planctomycetes was 

of the same order of magnitude. These data suggest that there are specialists, with few 

degradation/utilisation/assimilation pathways, and generalists, with many pathways, in all phyla and, 

despite the differences among phyla, that phylogenetic affiliation is not likely to be a good proxy for 

identifying generalist or specialist strategies, with respect to resource acquisition and utilisation at 

least. The large variations in the number of pathways within phyla is most likely a reflection of 

differences in evolutionary processes that occur in soil bacteria. In some cases there was less variation 

in the number of pathways within phylogenetic class, particularly within the Proteobacteria, but large 

variation still remained (Fig. S2). We did not analyse the data for differences among classes as many 

of the classes did not have a sufficient number of entries for statistically reliable results. Similarly, 

we did not have a sufficient number of entries to analyse the data at the order level. One should of 

course not lose sight of the fact that the Metacyc database is based on the sequenced genomes of 



isolated bacteria and therefore may give a biased picture, even though the relative abundances of 

phyla in the database appear to be reasonably representative. Furthermore, the pathways in the 

database are limited to those that are known and the true picture may very well be different to the one 

shown here. 

 

 

Figure 1 The number of pathways per strain, as a function of phylum (left panel) and the ordination plot of the 
correspondence analysis based on the presence or absence pathways in strains (right panel). The colours correspond to 
phyla and the shades to classes. In panel a, different letters indicate significant differences between phylum (GLM Poisson 
model). 

 

There were similarities in the types of pathways within phyla (Fig 1). Actinobacteria and 

Proteobacteria in particular had slightly different sets of pathways compared to each other and to the 

other phyla. The fact that the degradation/utilisation/assimilation pathways are not distributed 

randomly across phyla may have consequences for C cycling. A number of studies have indicated 

that the co-occurrence of operational taxonomic units (OTUs) from the same phylum tends to be 

higher than one would expect from random associations [49]. Were OTUs from the same phyla also 

to aggregate at fine scales (the microbial habitat scale for example), then the distribution of 

degradation/utilisation/assimilation pathways would be uneven across microbial habitats. It is 

conceivable therefore, that organic molecules not being co-located with the pathways required to 

decompose them may contribute to their persistence in soil. The extent to which this affects 

persistence would depend on how dynamic the soil structure is and therefore the rate at which 

decomposers and organic molecules are redistributed in space.  

There is a metabolic cost associated with maintaining a high number of metabolic pathways 

and one might expect there to be trade-offs that affect maximal growth rates (i.e. the maximal growth 

rate under nutrient replete conditions and without extrinsic constraints). This idea is often included in 

ecological models of microbial decomposition of substrate [6,8]. In order to check whether bacteria 



exhibited trade-offs between maximal growth and degradation/utilisation/assimilation pathways, we 

analysed the relationship between the number of pathways and the 16S rRNA gene copy numbers of 

strains. It has been shown that the 16S rRNA gene copy number is related to both maximal growth 

rate and carbon use efficiency [46]. The 16S rRNA gene copy number for 228 of the soil bacteria 

present in the Metacyc database were retrieved from the rrnDB database [50] (see supplementary 

methods for methodological information). No clear relationship was apparent between the number of 

pathways harboured by strains and the number of copies of the 16S rRNA gene across strains from 

all phyla (Fig 2). However, positive relationships were found within Proteobacteria and Firmicutes 

(Fig 2), also suggesting a lack of trade-off between catabolic breadth and maximal growth rate.  

For a trade-off to be apparent in the genome signature of an organism, the organism must have 

evolved in an environment that is favourable for the emergence of the trade-off. In environments that 

are characterised by trophic heterogeneity (as is the case for soil), one might expect to see a trade-off 

between catabolic breadth and growth. However, the conditions required for such a trade-off to 

emerge may not be constant enough in soil and, indeed, environmental fluctuations themselves may 

be a significant evolutionary driver. It has been suggested that the 16S rRNA gene copy number in E. 

coli is optimised to maximise fitness under the fluctuating conditions rather than growth in constant 

environments [51]. Furthermore, other constraints on growth (lack of resources, external stressors) 

imposed by the environment may also affect the relationships among traits and the relationship 

between traits and fitness. It has recently been shown that there is no relationship between the 16S 

rRNA gene copy number and growth in soil under natural conditions [52]. However, a relationship 

between growth and the 16S rRNA gene copy number became apparent after the addition of abundant 

substrate, thus removing the resource constraint.   

We cannot completely discount the possibility that a culture bias may have affected the results. 

For instance, if there were more representatives of the generally slow growing Acidobacteria a 

different relationship might have become apparent.  

 



 

Figure 2 Number of degradation/assimilation pathways versus 16S rRNA gene copy number for 228 strains that were in 
both the Biocyc and rrnDB databases. Colours represent different phyla (see Fig 1 for legend). Solid lines show significant 
relationships and dashed lines the non-significant ones. 

 

Spatial model to account for the interaction between heterogeneous resource availability 

and decomposer metabolic traits 

In view of the likely relative immobility of soil bacteria, especially in relation to substrate 

diffusion rates [36,53], it is reasonable to treat bacterial decomposers as spatial point processes. The 

intrinsic properties of the individual decomposers, such as catabolic breadth or growth rates, can be 

assigned to individual points of the point process, as can local habitat constraints, such as resource 

availability. We suggest that the role of microbial communities in C cycling can only be apprehended 

if the interaction between resource availability and decomposer metabolic traits is accounted for. 

Resource availability is a product of the interaction between the physical heterogeneity of soil and 

the molecular heterogeneity of soil organic matter and so is itself highly heterogeneous. The next 

section will explore how these interactions can affect C cycling. The aim of the analysis is not to 

provide a model of soil C dynamics – this is well beyond the scope of this study as it would require 

upscaling and extensive parameterisation. The aim is rather to determine how heterogeneities in 

resource availability and distributions of bacterial resource acquisition strategies might affect 

decomposition.  

We chose to use a simple, spatial modelling approach. The spatial model consisted of a 100 x 

100 pixel grid onto which were distributed n different resources and 120 decomposer cells belonging 

to s distinct taxa. Assuming a pixel side of 2µm, the cell density was equivalent to 3000 cells/mm2, 



which is approximately equivalent to 109 bacterial cells g-1 soil [30], depending on the specific surface 

area of the soil. The parameters n and s both varied between 1 and 10. Each of the n resource types 

were randomly distributed on the grid as discs of radius R. The total number of resource discs 

distributed on the grid was such that 50% of the grid cells contained resources. When the disc radius 

R was small, resources were evenly, but randomly, distributed and when R was large, the distribution 

of resources was more aggregated.  

Bacterial communities where represented in the model as planar marked point processes. Each 

cell was able to use from one to ten resources. Each decomposer cell, represented in the model as a 

single point, acquired resources within a disc of radius r pixels. The parameter r represents the access 

decomposers have to the resources and it depends on both the heterogeneity of the environment and 

the ability of the decomposers to acquire the resources. The more heterogeneous the environment and 

the more disconnected the water films in the pore space, the smaller the radius of the disc, as the 

diffusion of resources to the decomposer cells is restricted. The radius of the disc also increases as a 

function of the rate at which resources are consumed by a decomposer. The faster a resource is 

consumed the steeper the concentration gradient around the decomposer and the greater the diffusion. 

Therefore, in a given environment, a more competitive decomposer would have a larger disc than a 

less competitive decomposer. For simplicity’s sake, the cells consumed all resources available to them 

within the disc immediately, if they had the capacity to consume them.  

Depending on the simulation, decomposer cells of a single taxon were either randomly 

distributed across the grid or aggregated. The total area from which all decomposers of a single 

acquired resources (i.e. the union of all discs of radius r surrounding the cells of the taxon) is a Germ-

Grain model [54]. In the case of random distributions this area is a Boolean model [55], and is given 

by its coverage function.𝑐𝑐(𝑠𝑠, 𝑟𝑟) = 0.5 ∗ 1 − 𝑒𝑒−𝜆𝜆𝑠𝑠𝜋𝜋𝑟𝑟2 where λs is the intensity of the point process for 

taxon s (i.e. the number of cells of taxon s per unit area). Therefore, as the 50% of the grid cells 

always contained resources, the expected proportion of resources acquired by taxon s is  

 𝑝𝑝𝑠𝑠 = 0.5 × 𝑐𝑐(𝑠𝑠, 𝑟𝑟) = 0.5 ∗ 1 − 𝑒𝑒−𝜆𝜆𝑠𝑠𝜋𝜋𝑟𝑟2  (1) 

In order to determine how the spatial distribution of decomposer cells might affect resource use, we 

also simulated decomposer cells with aggregated distributions using a clustered Matèrn distribution 

[56]. Cell were grouped into 10 clusters, themselves distributed randomly across the grid. Within each 

cluster of radius rc, cells were randomly distributed. The value of rc determined the extent of 

aggregation (10px: highly aggregated, 25px: slightly aggregated). In order to allow for comparison 

between random and aggregated distributions, we forced the aggregated distributions to have the 

same number of cells (120) as the random distributions of cells, by drawing distributions until we 

obtained the desired number of points. Cells were then randomly attributed to taxa. In contrast to the 

Boolean model, the coverage function of a Matèrn distribution is not known.  



The effects of sets of parameters describing the spatial distribution of both resources and decomposers 

on resource use was tested by running 100 simulations in each case. The results are presented as 

boxplots in the different figures. 

 

Effects of environmental heterogeneity 
Figure 3 shows how the proportion of total resource consumed varies as a function of the 

resource patch size and as a function of the access that decomposers have to resources (the area of 

the environment that decomposers can explore, which is related to the heterogeneity of the 

environment and represented by the disc of radius r). In these simulations there were 10 different 

resources and 10 different bacterial taxa, each of which could consume only one resource. The 

proportion of resource consumed increased significantly as the access to resources increased. This 

means that the more homogenous and the more connected the environment, the more resource will 

be consumed. This is easily translated to the situation in soil: it is well known that organic matter is 

decomposed more rapidly in sandy soils, where organic matter and decomposers are less segregated, 

than in soils with higher clay contents [57]. In sandy soils the total surface area is lower than in clay 

soils, meaning that the probability of contact between substrate and decomposer is higher. The size 

of the resource patches did not affect the average amount of resource consumed when the area within 

which decomposers acquire resources remained constant, but the variance increased as the resource 

patches increased in size (Fig 3). It should be noted that when the size of the resource patches were 

smaller than the area explored by individual decomposers, the variance was quite small; when the 

resource patch sizes were larger than the area explored by individual decomposers, the variance 

increased quite abruptly. This can be explained as follows: if resources are available as many of small 

patches, then these will be widely distributed and the probability of cells being in contact with 

resource patches is high. In contrast, if resources are aggregated in larger patches, then the likelihood 

of cells having access to either large amounts of resources or to none will be high (Fig S3). 

 

 

 



 

Figure 3 Proportion of resource consumed by a community as a function of the radius of the disc within which cells 
acquire resources and the spatial distribution of resources. The area of the discs ranged from 20 to 320 px2. Horizontal 
lines correspond to the theoretical values for the proportion of resource consumed (Eq. 1). Vertical dotted lines indicate 
the size of the area within which cells acquire resources. Note that the scales of both axes are logarithmic. 

 

Effects of decomposer community properties 
In Figure 4 we show how changes in decomposer diversity can affect decomposition. Here, the 

total number of decomposer cells (120) and the area within which they acquired resources (r = 40 px) 

remained constant across the 100 x 100 px grid. In these simulations, each taxon could consume only 

one resource type. The resources were distributed in patches as described above, with resource 

patches varying in size between 4 and 625 px2. The simulations were carried out with 1, 2, 4, 8 or 10 

taxa, meaning that the community could consume 1, 2, 4 8 or 10 types of resource. The number of 

cells per taxon was calculated as 120/(number of taxa), i.e. the total biomass was constant. Resource 

use increased with increasing diversity, i.e. more taxa with fewer individuals consumed more resource 

than fewer taxa with more individuals. This is in accordance with non-spatial modelling results [4]. 

However, it should be noted that as the resource patch sizes increased, the resource use variance also 

increased. The interaction between functional diversity (number of resources a community can use) 

and resource distribution could result in less diverse communities using more resource than more 

diverse communities, despite lacking the capacity to use part of the resources. 

The analysis of the Metacyc data showed that there were wide variations in number of 

degradation/utilisation/assimilation pathways among strains, indicating that both specialists and 

generalists are widespread, regardless of phylogenetic affiliation (Fig. 1 & Fig. S2). We explored  the 

effect that the different resource acquisition strategies might have on resource use in heterogeneous 

environments by running simulations in which 120 cells belonging to 1, 2, 5 and 10 different taxa, 

were able to use, respectively, 10 (full generalist), 5, 2 or 1 (full specialist)  different types of resource. 



Although the analysis of the Metacyc data suggests that there is little or no trade-off between the 

degree of generalism (catabolic breadth) and potential growth, we also looked at how such a trade-

off (were it to exist) might affect resource use. As the model does not explicitly represent growth or 

resource use efficiency, this was achieved by varying the radius of the disc within which decomposer 

cells acquired resources as an inverse function of the catabolic breadth. This was felt to be an 

appropriate way to represent specialists and generalists as one would expect specialists to consume 

resources more rapidly than generalists, through the deployment of more or more efficient 

transporters for example, thus creating steeper resource gradients around the decomposer and 

extending the diffusion lengths. The radius (r) of the disc within which cells acquired resources was 

therefore reduced as a function of the number of resources a taxon could use. This was termed the 

trade-off value. Three trade-off values were considered: no trade-off (r = constant), moderate trade-

off (r =constant √# of resource used⁄ ) and high trade-off (r =constant # of resource used⁄ ). 

 

 

Figure 4 Proportion of resource consumed by a community as a function of microbial diversity and the spatial 
distribution of the resources. All decomposers acquired resources from within a disc with a radius of 40px and 
decomposer biomass was constant (120 cells in the 100x100 grid). There were 10 resources available and each 
decomposer could use only one resource. Note that the scales of both axes are logarithmic. 

 

In the absence of trade-offs, all else being equal, generalists use the available resources more 

completely, conferring them a competitive advantage over specialists (Fig 5, left panel). This is 

because the probability that a generalist encounters a resource it is capable of using is higher than the 

probability of a specialist encountering the specific resource that it can use. However, the picture 

changed when the potential trade-offs were accounted for (Fig. 5, centre and right panels). Depending 

on how large the trade-off is, generalists may even be less competitive than specialists. As with 

previous simulations, increases in patch size resulted in higher variance in the proportion of resource 

consumed, regardless of the resource acquisition strategy.  



It should be noted that the 10 species communities in Figures 4 & 5 are the same (i.e. 

communities of specialists) and the proportion of resource consumed is identical. However, the single 

species communities in Figure 4 are also specialists whilst they are generalists in Figure 5. The 

patterns in Figure 4 show the effect of an increase of functional diversity (increase in the number of 

resources that can be used) within a community, whilst the patterns in Figure 5 (left panel) show the 

effect of an increase in the spatial coverage of the functional diversity, but without any changes to the 

functional diversity itself.  

 

 

Figure 5 Proportion of resource consumed by a community as a function of the number of resources a decomposer can 
use and the spatial distribution of the resources (within each panel). The effect of the trade-off related to the cost of 
multiple resource use is shown in the different panels (from left to right: no trade-off, moderate trade-off and large 
trade-off). There were 10 different resources. When there were 10 taxa, each could only use a single resource 
(specialists) and when there was only one taxon, it could use all 10 resources (generalist). In the no trade-off panel, all 
bacteria acquire resources from within a disc with a radius of 42 px. In the moderate trade-off panel, cells acquired 
resources from a disc with a radius of 42 √#𝑟𝑟𝑒𝑒𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑟𝑟⁄ . In the high trade-off panel, cells acquired resources from 
a disc with a radius of 42 / #resources used. Note that the scales of both axes are logarithmic. The slight deviations from 
the expected proportions (dashed lines) that were sometimes observed are due to discretization in the model. 

 

Distribution of decomposer communities 
The analysis of the decomposition/utilisation/assimilation pathways showed that some phyla 

(Proteobacteria and Actinobacteria) tended to have more pathways than other phyla, suggesting a 

broader resource use capacity (Fig. 1). These phyla also tended to have a slightly different resource 

use profile. We therefore gave decomposers different resource use capacities and resource use profiles 

in order to mimic the resource use capacities and profiles shown in Figure 1: two decomposer taxa 

could use three resources (i.e. Proteobacteria and Actinobacteria), two could use two resources 

(Firmicutes and Deinococcus-Thermus) and one could use only one resource (Bacteriodetes). As with 

the other simulations, there were 10 different resources available to the decomposers on the grid. All 

the decomposers that could use three resources used one common resource; the other two resources 

they could use were assigned randomly. All other decomposers were assigned resource uses at 

random. Figure 6 shows that when resource use was distributed in this way across the decomposer 



community and the decomposers were distributed randomly in space, the proportion of total resource 

used was greater than when each decomposer could only use one resource (Fig. 4), but smaller than 

when decomposers were generalists without trade-offs (i.e. could use all 10 resources; Fig. 5, left 

panel). The picture may be different if there were trade-offs related to the cost of multiple resource 

use (Fig. 5, centre and right panels). Resource use decreased and became far more variable as the 

distribution of decomposers became more aggregated (Fig. 6). The dramatic increase in resource use 

variability with higher decomposer aggregation is reminiscent of the hotspots of microbial activity 

that are believed to be prevalent in soils [58].  

 

 

Figure 6 Proportion of resource consumed as a function of decomposer and resource spatial distribution in the case of 
decomposers acquiring resources within a disc with a radius r = 40px and constant biomass (120 cells in the 100x100 
grid). Decomposers had different resource use profiles were as described in the body of the text. The cluster sizes were 
created using a clustered Matèrn distribution where the radius of the decomposer clusters (rc) was either 10px (highly 
clustered) or 25px (slightly clustered). Note that the scales of both axes are logarithmic. 

 

Conclusions 
A number of points emerge from this study. The first is that the access decomposers have to 

resources has a significant effect on resource use. In this model, decomposer access to resources, 

represented here by the size of the decomposer discs, is the primary regulator of resource use (see 

differences in Fig 3 relative to differences in Figs 4-6). Whilst the conclusion seems to be a reasonable 

one – contact between decomposer or decomposer enzymes and resource is necessary for the resource 

to be used [59] – the extent to which access regulates the activity of decomposition would need to be 

tested. To do so requires that the properties of the system that affect decomposer access to resources 

be better parametrised. The access is a function of a number of abiotic soil properties, including, but 

not limited to, pore structure, specific surface area, connectivity of the aqueous phase and the relative 

distributions of decomposers and resources. A better understanding of how these properties vary at 



scales relevant to microbial activity would further our capacity to identify more clearly where the 

relationship between bacterial communities and soil organic matter transformations lies [60]. 

Decomposer traits, such as substrate use rates (which affect the diffusional gradient of a substrate and 

the length of diffusion pathways) or carbon use efficiency (which would affect biomass production 

and subsequent substrate use), may also affect decomposer access to resources. Whilst we expect the 

effects of microbial traits to be smaller than those of the local environmental properties, this remains 

to be quantified. However, the incorporation of carbon use efficiency into C dynamics models [61] 

may be a simple way of representing this access. Decomposer access to substrate in soil depends not 

only on bacterial decomposers but also on fungi. As already stated, fungi are primarily found in 

copiotrophic environments (litter layers and rhizosphere – [38]). In these environments, and others 

where there are sufficient resources to facilitate hyphal spread, fungi would be expected to have a 

homogenising or spatial averaging effect. This would occur because of their ability to overcome the 

spatial separation between resources that might arise in spatially heterogeneous environments. It has 

also been suggested that fungi can transport bacterial cells (known as the “fungal highway” - [62]), 

which would clearly affect the potential of bacterial decomposers to explore heterogeneous space. 

However, the extent to which this occurs in natural soils is unclear and we have not included this 

aspect in the simulations. Fungal carbon use efficiency is also believed to be different from that of 

bacteria (e.g. [63]), which would also affect decomposition rates and resource use, but this aspect is 

beyond the scope of this particular study. 

The second point is that the interaction between the spatial distribution of resources and that of 

decomposers can result in completely different resource uses, even though the resource availabilities 

and decomposer capacities are the same. This point may help explain why organic matter can persist 

in soil despite the wealth of decomposer communities.  

The third point is that there was no apparent trade-off between growth, assumed here to be 

related to the number of 16S rRNA gene copies per cell, and the range of 

degradation/utilisation/assimilation pathways. If anything, the relationship between 16S rRNA gene 

copies and the number of pathways was positive, suggesting that maintaining a relatively high number 

of degradation/utilisation/assimilation pathways increases fitness in a heterogeneous environment 

like soil. Indeed, the spatial simulations confirmed this: in the absence of significant trade-offs, 

resource use by the community of generalists was far greater than that of the community of specialists.  
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