
HAL Id: hal-02000339
https://hal.archives-ouvertes.fr/hal-02000339v4

Preprint submitted on 31 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Distance Transformation for Path-based
Metrics

David Coeurjolly, Isabelle Sivignon

To cite this version:
David Coeurjolly, Isabelle Sivignon. Efficient Distance Transformation for Path-based Metrics. 2020.
�hal-02000339v4�

https://hal.archives-ouvertes.fr/hal-02000339v4
https://hal.archives-ouvertes.fr


Efficient Distance Transformation for Path-based Metrics

David Coeurjollya, Isabelle Sivignonb
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Abstract

In many applications, separable algorithms have demonstrated their efficiency to perform high performance volumetric
processing of shape, such as distance transformation or medial axis extraction. In the literature, several authors have
discussed about conditions on the metric to be considered in a separable approach. In this article, we present generic
separable algorithms to efficiently compute Voronoi maps and distance transformations for a large class of metrics.
Focusing on path-based norms (chamfer masks, neighborhood sequences), we propose efficient algorithms to compute
such volumetric transformation in dimension n. We describe a new O(n ·Nn · logN ·(n+ log f )) algorithm for shapes in
a Nn domain for chamfer norms with a rational ball of f facets (compared to O( f b

n
2 c ·Nn) with previous approaches).

Last we further investigate a more elaborate algorithm with the same worst-case complexity, but reaching a complexity
of O(n ·Nn · log f · (n+ log f )) experimentally, under assumption of regularity distribution of the mask vectors.

1. Introduction

Volumetric analysis of digital shapes is crucial in many
geometry processing applications, for instance to measure
distances between two points in Zn, or to measure the
width of a shape or the proximity between two shapes.
Since early works on digital geometry, distance transfor-
mation has been widely investigated (e.g. Rosenfeld and
Pfaltz (1968)). Given a finite input shape X ⊂ Zn, the dis-
tance transformation labels each point in X with the dis-
tance to its closest point in Zn \X . Labeling each point by
the closest background point leads to Voronoi maps (e.g.
the restriction to Zn of Voronoi diagrams from computa-
tional geometry (de Berg et al., 2000)). Distance transfor-
mation (or distance field) is a key tool in many applica-
tions such as shape modeling, shape matching, geometry
processing, motion planing, object tracking. . . (see Fabbri
et al. (2008) or Jones et al. (2006) for surveys of tech-
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niques and applications). In this article, we propose a the-
oretical analysis to speed up the distance transformation
computation for a large class of metric, allowing efficient
and parallel implementations.

As the distance transform is parametrized by a dis-
tance function, many authors have addressed this distance
transformation problem with trade-offs between algorith-
mic performances and the accuracy of the digital distance
function with respect to the Euclidean one. Hence, au-
thors have considered: distances based on chamfer masks
(Rosenfeld and Pfaltz, 1968; Borgefors, 1986; Fouard
and Malandain, 2005) or sequences of chamfer masks
(Rosenfeld and Pfaltz, 1966; Mukherjee et al., 2000;
Strand, 2008; Normand et al., 2013a); vector displace-
ment based Euclidean distance (Danielsson, 1980; Ragne-
malm, 1993); Voronoi diagram based Euclidean distance
(Breu et al., 1995; Maurer et al., 2003) or square of the
Euclidean distance (Hirata, 1996; Meijster et al., 2000).
For the Euclidean metric, separable volumetric computa-
tions have demonstrated to be very efficient with the de-
sign of optimal O(n ·Nn) time algorithms for shapes in
[1,N]n domains, optimal multithread/GPU implementa-
tion or extensions to toric domains (please refer to Coeur-
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jolly (2012) for a discussion).
Path-based approaches (e.g. chamfer mask or –

weighted– neighborhood sequences) approximate the Eu-
clidean distance as the length of shortest paths defined
from sequences of displacement vectors on the grid (from
a finite set of possible moves). Aside distance infor-
mation, path-based approaches provide an explicit notion
of discrete path that is not accessible for the Euclidean
norm. Furthermore, the discrete and combinatorial nature
of the distance function has been used to define efficient
algorithms to extract discrete medial axis (Borgefors and
Nyström, 1997; Remy and Thiel, 2002; Saha et al., 2016)
as local maxima of the distance map. Normand et al.
(2013b, 2014) further exploits the combinatorial structure
of path-based distances to compute distance transforma-
tion in on-the-fly streaming context. In terms of distance
transform computation, two main techniques exist. The
first one considers a weighted graph formulation of the
problem and Dijkstra-like algorithms on weighted graphs
to compute distances. If m denotes the size of the cham-
fer mask, computational cost could be in O(m ·Nn) us-
ing a cyclic bucket data structure as suggested by Ver-
wer et al. (1989). Another approach consists in a raster
scan of the domain: first the chamfer mask is decomposed
into disjoint sub-masks; then the domain grid points are
scanned in a given order (consistent with the sub-mask
construction) and a local computation is performed before
being propagated (Rosenfeld and Pfaltz, 1966; Borgefors,
1986). Scanning the domain several times (one per sub-
mask) leads to the distance transformation values. Again,
we end up with a O(m ·Nn) computational cost. Besides
specific applications which use the anisotropic nature of
the chamfer mask, rotational dependency is usually en-
forced by increasing the mask size m (its number of vec-
tors, see below) leading to expensive computational costs.

Contributions The goal of this work is to demonstrate
that the linear factor in the mask size can be lowered down
to a logarithmic one in any dimension for path-based met-
rics. This is achieved by first detailing and analyzing the
separable distance transformation algorithm and briefly
recalling the preliminary analysis of Coeurjolly (2014) for
the 2D case, before extending it to higher dimensional
distance transformation problems. More precisely, we
describe efficient and parallel algorithms in arbitrary di-
mension n to compute error-free distance transformation
and Voronoi map for chamfer norms and other path-based

metrics. Overall computational costs are summarized in
Table 1 (see 3.1 for the predicate definitions).

The article is organized as follows: First, we re-
call basic definitions and properties of path-based norms
(Section 2). In Section 3 we clarify the separable n-
dimensional Voronoi map extraction. Section 4 is a short
discussion about the complexity of this algorithm for Lp
metrics. Then Section 5 is dedicated to the design of a fast
implementation of the separable algorithm for path-based
metrics. In Section 6, we present and analyse the pro-
posed n−dimensional algorithm for path-based metrics.

2. Preliminaries

2.1. Metric space and distance transformation

A metric space (E,F,d) is a set E together with a metric
d : E ×E → F on the set. When E is equal to Zn and d
is an integer-valued metric, also called digital metric, i.e.
d : Zn×Zn→ Z, we say that (Zn,Z,d) is a digital metric
space. A digital shape is a finite subset of Zn.

Definition 1 (Voronoi Map and Distance Transformation)
For a digital shape X ⊂ Zn, the Voronoi map VX asso-
ciated with a digital metric space (Zn,Z,d) is the map
X→P(Zn\X) such that VX (a) = argminb∈Zn\X{d(a,b)}.
The distance transformation DTX is a map X → Z such
that DTX (a) = d(a,b) for b ∈Vx(a).

The Voronoi map VX corresponds to the intersection be-
tween the continuous Voronoi diagram for the metric d of
the pointset Zn\X and the lattice Zn. Note that VX (a) may
contain several equidistant points to a in Zn \X . In the
following, we consider a restricted Voronoi map, denoted
ΠX , such that ΠX (a) = b with b ∈ VX (a) choosen arbi-
trarily. ΠX are not unique but provide the same distance
map DTX . In the following, we focus on the restricted
Voronoi map computation and we may omit the word re-
stricted for the sake of clarity. Interested readers may re-
fer to (Couprie et al., 2007; Hesselink, 2007) for separable
algorithms to compute the complete Voronoi map of Def-
inition 1.

Defining digital metrics spaces, notably in the context
of digital image processing, has been the object of many
works for the past fourty years. Note that (weighted, with
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Table 1: Computational cost summary for separable Voronoi map computation on Nn domains (m being the size of the chamfer norm and f the
number of row in a H-representation of the mask, see below).

Metric CLOSEST HIDDENBY Sep. Voronoi Map Reference
L2 O(n) O(n) Θ(n ·Nn) Hirata (1996)
L∞ O(n) O(n) Θ(n ·Nn) Meijster et al. (2000)
L1 O(n) O(n) Θ(n ·Nn) Meijster et al. (2000)

Lp (exact pred.) O(n · log p) O(n · log p · logN) O(n2 ·Nn · log p · logN) Lemma 1
Lp (inexact pred.) O(n) O(n · logN) O(n2 ·Nn · logN) Lemma 1
2D Chamfer norm O(logm) O(log2 m) O(log2 m ·N2) Coeurjolly (2014)

2D Neig. seq. norm O(logm) O(log2 m) O(log2 m ·N2) Normand et al. (2013a) with
Coeurjolly (2014)

nD Chamfer norm O(n+ log f ) O((n+ log f ) · logN) O(n ·Nn · logN · (n+ log f )) Lemma 4

wi ≥ 0) Lp metrics

dLp(a,b) =

(
n

∑
k=1

wk|ak−bk|p
) 1

p

, (1)

define metric spaces (Zn,R,dLp) which are not dig-
ital. However, rounding up the distance function,
(Zn,Z,ddLpe) is a digital metric space (Klette and Rosen-
feld, 2004). However, it is not precise enough in many
situations, and other approaches have been designed.
Among them, the family of path-based metrics (cham-
fer norms, -weighted- neighbourhood sequences) aim at
defining digital metrics induced by norms. In the follow-
ing and for the sake of simplicity, we focus on chamfer
norms but similar results can be obtained for more generic
path-based metrics such as neighborhood sequences. El-
ements to support this claim are provided further in the
following section.

2.2. Chamfer norms

Definition 2 (Chamfer Mask) A weighted vector is a
pair (~v,w) with ~v ∈ Zn and w ∈ N\{0}. A chamfer mask
M is a central-symmetric set of weighted vectors with no
null vectors and containing at least a basis of Zn.

In most situations, vectors of a chamfer mask exhibit
axial symmetries. As examples, see Figure 1(a) and (c),
where a subset of vectors (together with their weights)

defining chamfer masks by symmetries (called genera-
tors) are depicted.

From a chamfer mask, we can define a path between
two points a and b as a sequence of k points {ci} such that
c0 = a, ck−1 = b and ~cici+1 =~vi ∈M for i ∈ {0 . . .k−2}.
The length of this path is thus the sum of all weights as-
sociated with the vectors ~vi (i.e. ∑wi). AsM contains a
basis of Zn, such path between a and b always exists and
we can define the chamfer distance between two points
a and b in Zn as the length of the shortest path between
a and b. Since weights are positive integers (see Def. 2),
distance values are scaled by the weight of the first vec-
tor ((1,0 . . . ,0)T by convention). Hence, using masks de-
fined in Fig. 1, 1

3 · dM3−4(a,b) and 1
5 · dM5−7−11(a,b) are

approximations of dL2(a,b).
For all positive weights, a chamfer mask defines a met-

ric. In many shape processing applications, we usually
consider a subset of chamfer masks, the chamfer norms,
with weights such that the induced metrics have con-
vex unit balls, and thus leading to homogeneous distance
functions. Chamfer norms can be characterized by a set of
linear constraints on the mask weights Borgefors (1986);
Strand (2008). In the following, we define the size of a
chamfer norm simply by the number of vectors of its as-
sociated chamfer mask.

Many authors have proposed algorithmic and/or ana-
lytic approaches to construct chamfer norms approximat-
ing the Euclidean metric. Following Thiel (2001) and
Fouard and Malandain (2005), we briefly recall here the
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classical construction of chamfer norms from Farey set
since it will be the base of the study proposed in Section
6.

The Farey sequenceF n
m of dimension n and order m

is defined as follows :F n
m = {( x2

x1
, . . . , xn

x1
),gcdi∈1..n(xi) =

1,0≤ xn ≤ xn−1 ≤ ·· · ≤ x1 ≤m}. Then a Farey sequence
F n

m is in bijection with all the points (x1, . . . ,xn) in Zn,
0 ≤ xn ≤ ·· · ≤ x1 ≤ m visible from the origin1. The vec-
tors ~vk of a chamfer norm in dimension n can be defined
using a subset of a particularF n

m: the weights wk are set
so that the rational ball BR (see Definition 3 below) is con-
vex. By construction, such chamfer masks have axis sym-
metric unit balls and thus define chamfer norms.

2.3. Distance computation for chamfer norms
To evaluate distances between two digital points for a

given chamfer norm, direct formulations have been pro-
posed with a simple geometrical interpretation (Thiel,
2001; Normand and Évenou, 2009), using the so-called
rational ball.
Definition 3 (Rational ball, minimal H-representation)
Given a Chamfer norm M, the rational ball associated
withM is the polytope

BR = conv
{
~vk

wk
; (~vk,wk) ∈M

}
. (2)

where conv denotes the convex hull of a set of points.

Rational balls for some 2D and 3D chamfer norms are
illustrated in Figure 1. As any convex polytope, the ratio-
nal ball BR can also be described as the intersection of f
linear constraints in dimension n, f being the number of
(n−1)−facets of BR. This is the H-representation of the
polytope which can be written in a matrix form:

BR =

{
x ∈ Rn; x =

m

∑
k=1

αk

(
~vk

wk

)
, αk ≥ 0 ,

m

∑
1

αk = 1

}
= {x ∈ Rn; Ax≤ y} ,

where A is a f × n matrix and y a vector of n val-
ues, so-called the H-coefficients (Ziegler, 2012). The H-
representation of a polytope P is with minimal param-
eter if P = {x ∈ Zn;Ax ≤ y } with A being such that

1A point p ∈ Zn is visible from the origin in Zn if there is no point
of Zn on (Op) between O and p.

∀k ∈ [1 . . . f ], ∃x ∈ P Akx = yk (Normand and Évenou,
2009).2 In other words, A is the minimal H-representation
of BR if each linear hyperplane of the H-representation of
BR contains at least one point in BR∩Zn.

From Normand and Évenou (2009), an important result
for distance computation can be summarized as follows:

Proposition 1 (Direct Distance Computation) Given a
chamfer norm M and (A,y) its minimal parameter H-
representation, then for any a ∈ Zn, the chamfer distance
of the point a from the origin is

dM(O,a) = max
1≤k≤ f

{AkaT} . (3)

Coming back to general path-based digital metrics,
(weighted) neighborhood sequences have been proposed
to have a better approximation of the Euclidean met-
ric (Rosenfeld and Pfaltz, 1966; Mukherjee et al., 2000;
Strand, 2008; Normand et al., 2013a). The main idea is to
combine sequences of elementary chamfer norms. A key
result has been demonstrated by Normand et al. (2013a)
stating that for such distance functions, a minimal param-
eter polytope representation exists and that distances can
be obtained from an expression similar to (3):

d(O,a) = max
1≤k≤ f

{γk(AkaT )} , (4)

γk : N→ N being some integer sequence characterizing
the neighborhood sequence metric. As we will see in the
next sections, direct distance computation is key to design
an efficient distance transformation algorithm. Similarity
of Equations 3 and 4 makes the algorithms presented in
the following sections for chamfer norms easily general-
izable to neighborhood sequences.

To conclude this preliminary section, algorithms effi-
ciency is characterized by their asymptotic behavior using
the O(·) and Θ(·) notations3 as a function of the dimen-
sion, the number of vectors defining the chamfer norm
and the domain size.

2Ak being the kth row of A.
3In a computational model where arithmetic operations and scalar

comparisons are constant time with: f (x) = O(g(x)) ⇔ ∃C,x0 ∈
R+ ,∀x > x0 , | f (x)| ≤ C · g(x), and f (x) = Θ(g(x)) ⇔ ∃C,C′,x0 ∈
R+ ,∀x > x0 ,C ·g(x)≤ | f (x)| ≤C′ ·g(x).
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3
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(a) (b)

5

7
11

(c) (d) (e)

Figure 1: Chamfer masks and rational balls: in dimension 2, generator vectors for the mask M3−4 (a), its rational ball (b). Generator vectors for
M5−7−11 (c) and its rational ball (d). In dimension 3, rational ball of a chamfer mask obtained using generator vectors (x,y,z) ∈ [[−3,3]]3 and
weights computed following Fouard and Malandain (2005).

3. Separable distance transformation

3.1. Voronoi map from separable approach and metric
conditions

Several authors have described optimal in time and
separable techniques to compute error-free Voronoi maps
or distance transformations for L2 and Lp metrics (Breu
et al., 1995; Hirata, 1996; Meijster et al., 2000; Maurer
et al., 2003). Separability means that computations are
performed dimension by dimension. In the following, we
consider the Voronoi Map approach as defined by Breu
et al. (1995). Given a digital set X defined on an hyper-
rectangular domain [1..N1]× . . .× [1..Nn], let us first de-
fine the image IX : [1..N1]×. . .×[1..Nn]→{0,1} such that
IX (a)= 1 for a∈ [1..N1]× . . .× [1..Nn] iff a∈X (IX (a)= 0
otherwise). The separable algorithm that computes the
Voronoi Map for IX is defined in Algorithm 1 and works
on the image spans for each dimension. An image span
S along dimension q is a vector of Nq points with same
coordinates except at their qth one. The qth coordinate of
a point a ∈ Zn is denoted by aq. A given span S in di-
mension q is denoted by {si}i=1...Nq . In Algorithm 1 the
Voronoi map is first initialized by processing each span of
the input image along the first dimension in order to create
independent 1D Voronoi maps for the metric (lines 5−6).
Then, for each further dimension q, the partial Voronoi
map ΠX is updated using one dimensional independent
processes on each span along the qth dimension (line 8).
Algorithm 2 describes the function VORONOIMAPSPAN.
This function is the core of the separable algorithm as it
defines the 1D processes to perform on each row, column

and higher dimensional image span. In this process, met-
ric information are embedded in the following key predi-
cates (see Fig. 2):

1. CLOSEST(a,b,c): given three points a,b,c ∈ Zn this
predicate returns true if d(a,b)< d(a,c);

2. HIDDENBY(a,b,c,S): given a 1D image span S
parallel to the qth coordinate axis, and three points
a,b,c ∈ Zn such that aq < bq < cq, this predicates
returns true if there is no s ∈ S such that

d(b,s)< d(a,s) and d(b,s)< d(c,s) . (5)

Algorithm 1: VORONOIMAP(BINARY MAP IX )

1 ΠX = empty image, same size as IX ;
2 for q in {1 . . .n} do
3 for (x1, ..xq−1,xq+1, ..xn) in

[1..N1]× ..[1..Nq−1]× [1..Nq+1]..× [1..Nn] do
4 S = {si}i∈[1..Nq ] where si = (x1..xq−1, i,xq+1..xn);

// all the coordinates are fixed in S
except the qth one

5 if q == 1 then
// ΠX is initialized span by span

6 ΠX = ΠX ∪ VORONOIMAPSPAN(IX , q, S);

7 else
// ΠX is updated along span S

8 ΠX = VORONOIMAPSPAN(ΠX , q, S);

9 return ΠX

In other words, HIDDENBY returns true if and only if
the Voronoi cells of sites a and c hide the Voronoi cell of
b along S.
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Algorithm 2: VORONOIMAPSPAN(MAP MX , DIMEN-
SION q , 1D SPAN S)

Data: q is an integer in {1 . . .n};
S is a 1D span along dimension q, with points {s1, . . . ,sNq}
sorted by their qth coordinate;
MX is either a binary map if q = 1 or a partial Voronoi Map.
Result: Partial Voronoi map ΠX updated along S.

1 if q == 1 ; // Special case for the first dimension

2 then
3 ΠX = empty image, same size as MX ;
4 k = 0;
5 foreach point s in S do
6 if MX (s) == 0 then // if s ∈ Zn\X
7 LS[k] = s;

// LS =list of the sites visible on S
8 k++;

9 else
10 ΠX =MX ;
11 LS[0] =MX (s1);
12 LS[1] =MX (s2);
13 k = 2 , l = 3;

// Update the list LS
14 while l ≤ Nq do
15 w =MX (sl);
16 while k ≥ 2 and HIDDENBY(LS[k−1],LS[k],w,S) do

// LS[k] is no longer visible, unstack

17 k−− ;

18 k++ ; l ++;
19 LS[k] = w;

20 foreach point s in S by increasing qth coordinate do
21 while (k < |LS|) and CLOSEST(s, LS[k+1], LS[k]) do

// s is closer to LS[k+1], look further

22 k++ ;

23 ΠX [s] = LS[k];

24 return ΠX

Remark. Note that by construction, for a given span S
along dimension q, points a, b, c given as parameters to
the HIDDENBY predicate necessarily verify aq , bq , cq.
Indeed, these points are defined as the (partial) Voronoi
map images of three points si, s j, sk (i , j , k) of S, there-
fore having their qth coordinate equal to i, j, and k respec-
tively (see lines 11,12,15 of Algorithm 2, and Figure 3
for an illustration).

For L1, L2 and L∞ metrics, CLOSEST and HIDDENBY
predicates can be computed in O(n) in dimension n (Breu
et al., 1995; Maurer et al., 2003). Hence, Algorithm 2 is
in O(n ·Nq) for the dimension q, leading to an overall

a

b

c

S(a)

a

b

c

S(b)

b

c

a

S(c)

Figure 2: Geometrical predicates for Voronoi map construction
Coeurjolly (2014): HIDDENBY(a,b,c,S) returns true in (a) and
false in (b) (straight segments correspond to Voronoi diagram
edges). (c) illustrates the CLOSEST(a,b,c) predicate for a ∈ S.

computational time for the Voronoi Map (Algorihtm 1)
and Distance Transformation computations in Θ(n2 ·Nn)
(if we assume that ∀q∈ [1 . . .n],Nq = N). Note that for Lp
metrics, we can derive a Θ(n ·Nn) algorithm as suggested
in Hirata (1996); Meijster et al. (2000) using the following
observation: when evaluating the CLOSEST predicates in
line 21 of Algorithm 2, we compare distances along the
1-D span of dimension q. If we store the partial power p
of the distance to the closest site a for each grid point y
for previous dimensions (i.e the sum ∑

q−1
i=1 (ai− yi)

p), such
distance comparisons can be obtained in O(1). Similar
argments can be used for the HIDDENBY predicates of
line 16, leading to the overall computational cost in Θ(n ·
Nn).

sjMX(s
j)

si

MX(s
i)

S

Figure 3: For two points si and s j (in purple) on a span S along dimen-
sion q (in red), the partial Voronoi map images MX (si) and MX (s j) (in
black) respectively have i and j as qth coordinate.

Hirata (1996) or Maurer et al. (2003) discussed about
conditions on the metric d to ensure that Algorithm 2 is
correct. The key property can be informally described as
follows: given two points a,b∈Zn such that aq < bq and a
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straight line l along the qth direction and if we denote by
vl(a) (resp. vl(b)) the intersection between the Voronoi
cell of a (resp. b) and l, then vl(a) and vl(b) are sim-
ply connected Euclidean segments and vl(a) appears be-
fore vl(b) on l (so called monotonicity property by Mau-
rer et al. (2003) and is related to quadrangle inequality
by Hirata 1996). These contributions are summed up in
Definition 4 and Proposition 2.

Definition 4 (Axis symmetric ball norm) A metric d in-
duced by a norm whose unit ball is symmetric with respect
to grid axes is called axis symmetric ball norm.

Proposition 2 (Metric conditions (Hirata, 1996))
Algorithm 1 exactly computes the Voronoi Map ΠX of a
binary input image IX for any axis symmetric ball norm.

Proposition 2 implies that most chamfer norms and
neighborhood sequence based norms can also be consid-
ered in separable Algorithm 1 (see Fig. 4). However, note
that Algorithm 2, and as a by-product Algorithm 1, are
exact only if the distance comparison predicate is exact,
i.e. if we can compare distances, through the CLOSEST
and HIDDENBY predicates, without error.

Furthermore, computational efficiency of the algorithm
requires the design of efficient algorithmic tools to im-
plement these predicates, and this the purpose of the next
sections.

3.2. Generic predicates and complexity analysis for axis
symmetric ball norms

We first detail the overall computational cost of Algo-
rithms 2 and 1. We assume in the following that ∀q ∈
[1 . . .n], Nq = N.

Lemma 1 (Maurer et al. 2003; Coeurjolly 2014)
Let (Zn,F,d) be a metric space induced by a norm
with axis symmetric unit ball. If C denotes the com-
putational cost of CLOSEST predicate and H is the
computational cost of the HIDDENBY predicate, then
Algorithm 2 is in O(N · (C+H)), leading to a complexity
of O(n ·Nn · (C+H)) for Algorithm 1.

For a given axis symmetric ball norm d, generic Algo-
rithms 3, 4 and 5 were defined in Coeurjolly (2014). Note
that these algorithms are valid for any dimension n. The

Figure 4: Distance transformation from a single source for different met-
rics satisfying Definition 4 and thus Proposition 2: (from left to right) L1,
L2, L4, L80, M3−4 and M5−7−11.

computational cost of the CLOSEST predicate is simply
the one of a distance evaluation. As a first approach, Al-
gorithms 4 and 5 show that the HIDDENBY predicate can
be obtained by a binary search on the 1D image span S to
localize the abscissa of Voronoi edges of sites {a,b} and
{b,c}.

Algorithm 3: Generic CLOSEST(a,b,c ∈ Zn).

1 return d(a,b)< d(a,c);

The complexity H of Algorithm 5 can be expressed as
a function of the complexity C of Algorithm 3, leading to
the general result below:

Lemma 2 (Coeurjolly 2014) LetM be a chamfer norm
with axis symmetric unit ball in dimension n whose ra-
tional ball has f facets, Algorithm 1 can be implemented
with a computational complexity of O(n ·Nn ·C · logN),
where Nn is the size of the image.

4. Distance transformation for Lp metrics

As a direct consequence of Lemma 1, we briefly derive
computational costs for Lp metrics. For such metrics, as
discussed in Section 3.1, the CLOSEST and HIDDENBY
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Algorithm 4: Generic VORONOIEDGE(a,b,si,s j ∈ Zn)
with i < j, aq < bq.

1 if ( j− i = 1) then
2 if i = 1 and CLOSEST(si,b,a) then
3 return −∞;

4 if i = Nq and CLOSEST(si,a,b) then
5 return ∞;

6 return i;

7 mid = i+( j− i)/2;
8 if CLOSEST(smid ,a,b) then

// smid closer to a
9 return VORONOIEDGE(a,b,smid ,s j)

10 else
// smid closer to b

11 return VORONOIEDGE(a,b,si,smid )

Algorithm 5: Generic HIDDENBY(a,b,c ∈ Zn;S in the qth

direction) with aq < bq < cq.

1 vab = VORONOIEDGE (a,b,s1,sNq );
2 vbc = VORONOIEDGE (b,c,s1,sNq );
3 return (vab > vbc);

predicates are in O(n) for p = {1,2,∞} with exact integer
only computations (Maurer et al., 2003; Meijster et al.,
2000). We thus have distance transformation algorithms
in Θ(n2 ·Nn). Let us now show that Algorithm 3 and 5
lead to a faster algorithm for any p≥ 1.

For p ∈ R, p ≥ 1, we can use approximations of the
evaluation of distances on IEEE 754 double and then con-
sider the Generic HIDDENBY predicate in O(n · logN)
(Alg. 5). As predicates being based on floating point com-
putations, numerical issues may occur but we have an
O(n2 ·Nn · logN) distance transformation algorithm (Lp
inexact predicates in Table 1). If p ∈ Z, p≥ 3, we use ex-
act integer number based computations of distances stor-
ing sum of power p quantities (which can be computed
in O(n · log p) thanks to exponentiation by squaring). The
HIDDENBY predicate is also based on Algorithm 5, lead-
ing to an O(n2 ·Nn · log p · logN) distance transformation
algorithm (Lp exact predicates in Table 1).

5. Distance transformation in higher dimension for
chamfer norms

In this section, we consider digital metrics given by
chamfer norms and propose an efficient algorithm to com-
pute the separable distance transformation for such met-
rics in nD. In Coeurjolly (2014), the structure of the ra-
tional ball of a chamfer mask in dimension 2 was used to
obtain an O(logm) algorithm for the CLOSEST predicate,
and an O(log2 m) one for the HIDDENBY predicate, lead-
ing to an overall O(log2 m ·N2) algorithm for the separa-
ble distance transformation (see Table 1). The following
sections extend these results to higher dimensions.

5.1. Definitions and general principle

Let us consider a general chamfer norm in arbitrary
dimension n with m weighted chamfer vectors. As ex-
plained in Section 2, these vectors define a rational ball
BR (see Definition 3), the center of which can be any point
p. We define a wedge (p, fk) as the conical hull of p
(called the apex) and the vertices of a given facet fk of
BR (k ∈ {1.. f} if BR has f facets). Thus, to each wedge
is associated a row Ak of the matrix of the minimal H-
representation of BR. Note that Ak can also be seen as a -
non-unitary - normal vector to the facet fk, as quoted by
Normand and Évenou (2009). In the following, given a
point a and a point p, we denote by (a,Fa(p)) the wedge
of apex a containing point p, Fa(p) being one facet of BR
(see Figure 5).

Using similar notations, Thiel (2001) and Strand (2008)
demonstrated that distance evaluation between a point a
and a point p can be obtained in two steps: first, compute
the wedge (a,Fa(p) = fk); then

dM(a, p) = Ak.(p−a)T . (6)

Thus, implementing the CLOSEST predicate comes down
to computing the wedge a given point belongs to. In 2D, it
was shown in Coeurjolly (2014) that a binary search over
the chamfer vectors was enough. The nD case is discussed
in section 5.2.

Let us now see how to optimize the HIDDENBY
predicate, which comes down to optimizing the
VORONOIEDGE function. Given two points a and b
(aq < bq) and a 1D image span S along the qth dimension,
we have to find the point e of S (e ∈ Zn) with abscissa eq
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such that all the points of S of abscissa lower than eq are
in the Voronoi cell of a while all the points with a greater
abscissa are in the Voronoi cell of b. To compute eq let
us define l(S) as the one-dimensional flat that contains all
the points of S and consider the Euclidean point ξ ∈ l(S)
satisfying:

dM(a,ξ ) = dM(b,ξ ) . (7)

In other words, we are looking for the point in l(S) which
is equidistant to a and b. To compute ξ , we first sup-
pose that we know the two wedges (a,Fa(ξ ) = fk) and
(b,Fb(ξ ) = fl) (see Fig. 6−(b)). In this situation, ξ is
the solution of

Ak · (ξ −a)T = Al · (ξ −b)T . (8)

Note that since ξ ∈ l(S), we have one linear equation with
only one unknown, ξq. As a consequence, if we know the
two wedges point ξ belongs to, we have its qth coordi-
nate ξq in O(1). As A is the minimal representation of
BR, it has rational components and thus ξ has integer co-
ordinates execpt ξq which is rational. Finally, the integer
point e ∈ S is given such that eq = bξqc.

The next section is dedicated to the CLOSEST predicate
while in section 5.3 we detail how to efficiently compute
the wedges (a,Fa(ξ ) = fk) and (b,Fb(ξ ) = fl), summa-
rized in Algorithm 7 (see also Fig. 6−(b)).

5.2. CLOSEST predicate and first results

To begin with, let us discuss about the combinatorics
of the chamfer norm rational ball. If m denotes the num-
ber of weighted vectors of M, its rational ball BR has
O(mb

n
2 c) i−facets (for all 0≤ i≤ n) (de Berg et al., 2000).

If f denotes the number of (n−1)−facets of BR, then we
have:

Lemma 3 LetM be a chamfer norm whose rational ball
BR has f (n− 1)−facets in dimension n, then distance
computation and thus CLOSEST predicate are in (amor-

tized) O(n+ log f ) with O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space and pre-

processing time4.

4δ is an arbitrarily small positive constant.

The proof is given in Appendix A.
Algorithm 4 being valid in any dimension, we can

merge this result with Lemma 2 to straightforwardly ob-
tain the result below:

Lemma 4 LetM be a chamfer norm whose rational ball
BR has f (n−1)−facets in dimension n, separable exact
Voronoi Map ΠX can be obtained in O(n ·Nn · logN · (n+
log f )), thanks to a preprocessing in O

(
f b

n
2 c

(log f )b
n
2 c−δ

)
.

However, we show below that we can still expect faster
VORONOIEDGE function even in higher dimension.

5.3. Improved HIDDENBY predicate
In dimension 2, it was shown in Coeurjolly (2014) that

it was possible to reduce the complexity from a loga-
rithmic factor on the size N of the image to a logarith-
mic factor on the size m of the mask using binary search
over chamfer vectors. This process cannot be extended
straighforwardly in higher dimensions since chamfer vec-
tors cannot be ordered to perform a binary search any-
more. However, it is interesting to notice that, whatever
the dimension n, vectors from a given point a to any point
of a span S lie in the smallest affine subspace containing
a and the one-dimensional flat l(S).

l(S)
s1

sN

a

(a,Fa(sN))

Fa(s1)

Figure 5: Vectors si − a lie in a 2-flat defined by l(S) and a, in light
green. The distance dM between a point on S and a is computed via a
ray shooting that returns the n−1-facet of BR traversed by the ray si−a :
wedge (a,Fa(sN)) and facet Fa(s1) are depicted in light red.

In the general case where a does not lie on S, this is
actually always a 2-flat, denoted by P , and the intersec-
tion of this 2-flat with the rational ball BR is a polygon
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(see Fig. 5). The vertices of this polygon could be used to
define a set of vectors on which a binary search could be
performed as in the 2D case Coeurjolly (2014). However,
since a 2-flat is actually the intersection of n− 2 hyper-
planes, computing this polygon comes down to intersect-
ing a n-polytope with n−2 hyperplanes. By duality, each
of these operations is equivalent to a convex hull compu-
tation, with a complexity of O( f bn/2c) (Chazelle, 1993;
Bajaj and Pascucci, 1996). As a consequence, in order to
make the approach efficient, we must avoid to compute
explicitly this intersection.

This is achieved by rewriting the
VORONOIEDGEWEDGE function as presented in
Algorithm 6. As before, let e ∈ Zn be the point on S such
that all the points of S of abscissa lower than eq are in the
Voronoi of a while all the points with a greater abscissa
are in the Voronoi cell of b. Given a, the goal of this
function is to find the wedge of BR (of apex a) e belongs
to.

The algorithm computes two points si and s j such that
si belongs to the Voronoi cell of a (if aq < bq, b other-
wise), s j to the Voronoi cell of b (if aq < bq, a other-
wise) and either j− i = 1 or Fa(si) =Fa(s j). Similarly to
generic Algorithm 4, this is done by performing a binary
search over the points of S, with a key difference on exit
conditions: now, the algorithm does not wait until point e
is found, but exits as soon as the two points si and s j be-
long to the same wedge (line 1). Indeed, by convexity of a
wedge, this implies that any point on S between si and s j -
and in particular e - also belongs to the same wedge. Cor-
rectness of the algorithm is ensured by maintaining two
invariants : (i) si is lower than s j on span S (si

q < s j
q) ;

(ii) if aq < bq, si is in a’s Voronoi cell, s j in b’s Voronoi
cell, and conversely if bq < aq.

Figure 6 illustrates the first step of the binary search
in (a), and the situation at the end of the search in (b)
(projection in plane P).

It remains now to use Algorithm 6 to compute point
e. Algorithm 7 implements the VORONOIEDGEND func-
tion as the nD counterpart of the VORONOIEDGE function
of Coeurjolly (2014). First, lines 1 to 11 are dedicated to
checking whether the bisector of a and b crosses span S or
not. If it does not, algorithm exits with an error code (lines
5 or 11). Otherwise, wedges (a,Fa(e)) (b,Fb(e)) are
computed lines 12-13 calling the VORONOIEDGEWED-
GEND function (see Figure 6(b) for an illustration).

Algorithm 6: VORONOIEDGEWEDGEND(a,b ∈ Zn; i, j ∈
Z, i < j; span S along the qth direction; faces fki = Fa(si),
fk j = Fa(s j) )

1 if fki = fk j or j− i = 1 then
2 return fki ;
3 else
4 mid = i+( j− i)/2;

// Check whether smid is closest to a or to b
// O(n+ log f ) evaluation of distances w.r.t.

a and b
5 Compute fk = Fa(smid); d(a,smid) = Ak · (smid −a)T ;
6 Compute fl = Fb(smid); d(b,smid) = Al · (smid −b)T ;
7 if d(a,smid)< d(b,smid) then
8 if aq < bq then
9 return VORONOIEDGEWED-

GEND(a,b,mid, j,S, fk, fk j )

10 else
11 return VORONOIEDGEWED-

GEND(a,b, i,mid,S, fki , fk)

12 else
13 if aq < bq then
14 return VORONOIEDGEWED-

GEND(a,b, i,mid,S, fki , fk)

15 else
16 return VORONOIEDGEWED-

GEND(a,b,mid, j,S, fk, fk j )

Proposition 3 Let M be a chamfer norm in dimen-
sion n whose rational ball BR has f (n − 1)−facets.
Let W be the computational time complexity of the
VORONOIEDGEWEDGEND function. Then, the separa-
ble exact Voronoi Map can be obtained in (amortized)

O(n ·Nn · (n+ log f +W )) with a O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space

and preprocessing time. More precisely, the worst-case
complexity W being O((n+ log f ) · logN), this leads to
a global (amortized) complexity of O(n ·Nn · logN · (n+
log f )) (same preprocessing).

The proof is given in Appendix B.

Note that in the worst-case, this approach does not im-
prove the result presented in Lemma 4 (using the generic
VORONOIEDGE of Algorithm 4). However, in Section 6,
we give some experimental insights on a finer analysis of
the complexity W under distribution hypothesis.
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S

a

Fa(s1)

sN

s1

Fa(sN)

smid

(a)

S

a

Fa(si) = Fa(sj) = fk

sj

si

b

si
′

sj
′

F b(si
′
) = F b(sj

′
) = fl}

e ?

(b)

Figure 6: View of the 2-flat P: (a) Binary search initialization to com-
pute the wedge (a,Fa(e)). (b) After completion of two binary searches,
both wedges (a, fk = Fa(e)) and (a, fl = Fb(e)) are known.

6. Experimental analysis

6.1. Insights on the complexity in dimension n
The complexity W of Algorithm 7 depends on the num-

ber of recursion steps done until points si and s j are in the
same wedge. Wedges being defined by the n− 1 dimen-
sional faces of BR, this complexity depends on the distri-
bution of the chamfer vectors defining BR.

Let us denote by P the intersection between the (n−
1)-faces of BR and the 2-flat P (see the red polygon on
Fig. 5). Note that P goes through the center of BR. If
we assume that the vectors defining BR are uniformely
distributed on the unit sphere Sn and that the faces of P
are also uniformely distributed on BR ∩P , then we can
expect that W =O((n+ log f ) · log |P|). Even if studying
precisely these questions is out of scope of this work, in
the following we give insights on both the relevance of
these assumptions and the behaviour of |P| in the context
of chamfer norms.

Algorithm 7: VORONOIEDGEND(a,b ∈ Zn, span S).

// Check that the bisector of a and b crosses

span S
1 Compute fk1 = Fa(s1), fl1 = Fb(s1);
2 d(a,s1) = Ak1 · (s1−a)T ; d(b,s1) = Al1 · (s1−b)T ;
3 if (aq < bq and d(b,s1)< d(a,s1)) ; // or (bq < aq and

d(a,s1)< d(b,s1))
4 then
5 Bisector does not cross S. return −1.
6 else
7 Compute fkN = Fa(sN), flN = Fb(sN);
8 d(a,sN) = AkN · (sN −a)T ; d(b,sN) = AlN · (sN −b)T ;
9 if (aq < bq and d(a,sN)< d(b,sN)) ; // or (bq < aq

and d(b,sN)< d(a,sN))
10 then
11 Bisector does not cross S. return −1.

// Compute e
12 fk =VORONOIEDGEWEDGEND(a,b,1,N,S, fk1 , fkN );
13 fl =VORONOIEDGEWEDGEND(b,a,1,N,S, fl1 , flN );
14 Compute abscissa ξq of the point ξ ∈ S such that

Ak · (ξ −a)T = Al · (ξ −b)T ;
15 returnbξqc;

6.1.1. Some observations on the distribution hypothesis
To study the distribution of chamfer vectors, we con-

sider chamfer masks where vectors are defined from a
subset of Farey sequences, as presented in Section 2 (see
also Thiel (2001) and Fouard and Malandain (2005)).
Studying the distribution of such sets of vectors is a field
of research in itself, and we simply mention below several
results relevant to our context.

First, it is well-known from Marklof (2013); Marklof
and Strömbergsson (2015) that n-dimensional lattice
points visible from the origin have a constant density in
Rn. Moreover, Boca et al. (2000) studied in the 2D case
the distribution of the angles of straight lines from the
origin through visible points. More precisely, they study
the proportion of differences between consecutive angles
which are larger than the average: they show that this pro-
portion is smaller than what is expected for a random dis-
tribution, and give an explicit formulation of the reparti-
tion function. Similar results in higher dimension remain
an open question.

These results tend to support the hypothesis of a uni-
form distribution of the vectors of BR, but the question of
the distribution of the faces of the polygon P has not been
investigated to our knowledge.
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6.1.2. Experimental behaviour of |P|
In this part, we investigate the number of faces of P

when BR is a rational ball defined from Farey Sequences.
The results are presented in Figure 7 and we detail below
how the rational balls are generated, how the 2-flats P are
selected, and how the intersection between BR and P is
performed.

In the four subfigures of Figure 7, rational balls are de-
fined from Farey sequences:

• In (b-d), the vectors of BR are all normalized vectors
of a Farey sequence of order m (the higher the order,
the greater the number of vertices - and (n−1)-faces
- of BR). The order of the Farey sequences ranges
from 1 to 10 in (b-c), from 1 to 6 in (d);

• in (a), BR is computed thanks to the algorithm pre-
sented by Fouard and Malandain (2005).5 Given a
(odd) mask size m, and a maximal error ε , the al-
gorithm computes a subset of vectors of Fm−1

2
and

weights such that the rational ball BR is convex and
the error with respect to the optimal theoretical error
expected (wrt the Euclidean distance) for this mask
size is below ε .

Once the sets of vectors defined, we use Qhull (Barber
et al., 1996) to compute both the rational ball itself and its
intersection with a 2-flat P that goes through the center
of BR. This intersection is performed by randomly pick-
ing the coefficients of n−2 (n−1)-hyperplanes contain-
ing the center of BR, and iteratively adding each (n− 1)-
hyperplane. The vertices of P are the points lying on all
(n−1)-hyperplanes.6

For each rational ball, a certain number of cuts is per-
formed: from 1000 in dimension 3 to only 6 in dimension
5 for rational balls obtained from Farey sequences of or-
der 5 and 6 (due to precision issues in Qhull). 95% con-
fidence intervals are depicted for each point (i.e. for each
rational ball) as error bars, but most of the time too small
to be visible on the graphs. Note that this remark sug-
gests that the size of |P| does not depend on the position

5Code is available on the TC18 website www.tc18.org/code_

data_set/code.php
6Python code used to generate Farey sequences and to compute these

graphs is available on http://www.gipsa-lab.fr/~isabelle.

sivignon/recherches_en.html.

of P , thus supporting the uniform distribution hypothesis
discussed in the previous section.

Analysing these results, we see that |P| seems to behave
as f α , with α < 0 and decreasing when the dimension in-
creases. This suggests that, in practice, the complexity W
of Algorithm 7 is expected to be O((n + log f ) · log f ).
Similarly to dimension 2 (Coeurjolly, 2014), this ap-
proach is expected to lower down the worst case complex-
ity of the computation of the distance transformation for
chamfer norms in dimension n from a logarithmic factor
on the size N of the image, to a logarithmic factor on the
size f of the rational ball.

6.2. Distance transformation in dimension 2
We evaluate the performance of the separable ap-

proach to compute restricted Voronoi diagrams and dis-
tance transformation for chamfer norms in dimension 2.
First, we observe that using Algorithm 1 with the nD
VORONOIEDGE (Alg. 7), we obtain an overall complexity
in O(logm · logN ·N2) which is close to the O(log2 m ·N2)
complexity of the ad-hoc 2D version of the problem
(Coeurjolly, 2014). These complexities have to be com-
pared with the O(m ·N2) complexity of the classical raster
scan approach for chamfer norms (Borgefors, 1986). In
Fig. 8-(a), we first illustrate some restricted Voronoi map
results on small domains.

In Fig.8-(b− c), we have considered a 2D domain
20482 with 2048 random sites. First, we observe that
fixing N, the log2 m term is clearly visible in the com-
putational cost of the Voronoi map (single thread curve).
Bumps in the single thread curve may be due to mem-
ory cache issues. Please note that if we consider classi-
cal chamfer norm DT from raster scan (and sub-masks),
the computational cost is in O(m ·N2) and thus has a lin-
ear behavior (green curves in Fig. 8-(b− c)). Since we
have a separable algorithm, we can trivially implement
it in a multi-thread environment (here using OpenMP).
Hence, on a bi-processor and quad-core (hyper-threading)
Intel(R) Xeon(R) cpu (16 threads can run in parallel),
we observe a speed-up by a factor 10 (orange curves in
Fig. 8-(b− c)). In Fig. 9, we present a shape process-
ing experiment: when considering a chamfer norm mask
with m = 100, both the raster scan and our separable ap-
proaches produce the same distance transformation (Fig.
9−(c)) but the raster scan approach has been obtained
in 520ms whereas our separable approach only requires
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25ms (note that since the domain is small –128× 127–,
the OpenMP scheduler has only considered a single core
for the separable Voronoi map computation).

Implementation of all separable algorithms are publicly
available in the DGtal library ( dgt ).

7. Conclusion and Discussion

In this article, we have proposed generic algorithms to
efficiently solve the restricted Voronoi map and distance
transformation problems for a large class of metrics in any
dimension. Focusing on chamfer norms, geometrical in-
terpretation of this generic approach allows us to design
an algorithm with logarithmic factors in the chamfer mask
size compared to a linear one for previous approaches.
Thanks to separability, parallel implementation of the dis-
tance transformation leads to efficient distance computa-
tion for path based metrics.

For the L2 metric, (additively) weighted Voronoi maps,
also known as power maps, can be used to solve the re-
verse distance transformation and medial axis extraction
problem using similar separable techniques (Coeurjolly
and Montanvert, 2007). A challenging future work would
be to extend these results for path-based norms such as
chamfer norms.
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Appendix A. Proof of Lemma 3

Similarly to the 2D case, the distance dM(O,a) for
a ∈ Zn is given by first solving a ray-shooting problem
on convex polytopes which consists in first computing the
(n− 1)-facet of BR pierced by the ray (O,a) (see Fig.
5). Once the facet is obtained, the associated Ak row is
used to evaluate dM(O,a) = Ak · aT in O(n). Following
Matousek and Schwarzkopf (1993) Theorem 10, such a
ray-shooting query on convex polytopes can be solved in

O(log f ) thanks to a preprocessing in O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
. In

the case when the ray hits a facet of dimension strictly
lower than n− 1, the algorithm returns one of the adja-
cents (n−1)-facets. Propositions 3 and 4 from Normand
and Évenou (2009) ensure that the choice of any (n−1)-
facet leads to the same distance evaluation. Please note
also that the preprocessing time is roughly equivalent to
the convex hull computation in higher dimension which is
in O( f b

n
2 c). Hence, preprocessing for ray-shooting can be

done while computing the rational ball BR using Eq. (2).�

Appendix B. Proof of Proposition 3

Following Lemma 1, the generic separable algorithms
computes the Voronoi map in O(n ·Nn · (C+H). Lemma

3 states that C = O(n + log f ) with a O
(

f b
n
2 c

(log f )b
n
2 c−δ

)
space and preprocessing time. Remains to evaluate H,
i.e. the complexity of the VORONOIEDGEND function.
In Algorithm 7, the first eleven lines are in O(C) since

only distance computations are involved. Lines 12 and
13 are calls to the VORONOIEDGEWEDGEND function,
with a complexity in O(W ). In the worst case, we have
W = O((n+ log f ) · logN) thanks to the test j− i = 1 on
line 1 of Algorithm 6. Last, the system to solve in line
14 has only one unkwown ξq since ξ belongs to the one-
dimensional span S, with a complexity of O(1).�
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Figure 7: Number of faces of P with respect to the number of (n−1)-faces of BR in different settings. In (a), BR is a rational ball as computed by
Fouard and Malandain (2005) in dimension 3. In (b-c), BR is defined from a Farey sequence of given order and dimension, taking all the fractions :
(b) dimension 3, for orders between 1 and 10, (c) dimension 4 for order between 1 and 10, (d) dimension 5 for orders between 1 and 6. Each point
is the mean of a certain number of random cuts (1000 in dimension 3, 500 in dimension 4, 400 in dimension 5 for orders up to 4, and 6 in dimension
5 for orders 5 and 6.).
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Figure 8: (a) Voronoi map (first and third columns) and distance transformation (second and fourth columns) for the chamfer norm of mask
M5−7−11, and the Lp metrics L2 and L80. The digital shape X considered is the whole [0,256]2 domain except two random points in the first two
columns, and 10 random points in the last two ones.(b) Experimental evaluation of the subquadratic algorithm when increasing the mask size on
a [0,2048]2 image and following the chamfer norm construction of Fouard and Malandain (2005) (zoom in (c)). We compare the efficiency of
Algorithm 1 in single thread and multi-thread settings, with the classical raster scan approach of Borgefors (1986) (only single thread).
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(a) (b) (c)

Figure 9: Example of distance transformation based shape processing: (a) initial shape (128×127 domain), (b) its Voronoi map using a chamfer
norm mask with 100 vectors, (c) its associated distance map.
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