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Abstract. The Jacobi theta-functions admit a definition through the autonomous diffe-
rential equations (dynamical system); not only through the famous Fourier theta-series.
We study this system in the framework of Hamiltonian dynamics and find corresponding
Poisson brackets. Availability of these ingredients allows us to state the problem of a cano-
nical quantization to these equations and disclose some important problems. In a particular
case the problem is completely solvable in the sense that spectrum of the Hamiltonian can
be found. The spectrum is continuous, has a band structure with infinite number of lacunae,
and is determined by the Mathieu equation: the Schrödinger equation with a periodic cos-
type potential.
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Why do we attach importance to a possi-
bility to describe the classicallimit through
theta-functions? . . .
Thus, when quantizing integrable models,
sooner or later we should come to a quan-
tization of theta-functions [15, § 1].

1 Introduction

Presently, the only known definition and introductory motivation to the famous theta-functions
are through the corresponding Fourier series

θ(z|τ) =
∞∑

k
−∞

eπi(k2τ+2kz).

Such series appear in numerous areas of mathematics and physics as building blocks for repre-
sentation of solutions and also have a great interest in their own rights because of rich structural
and applied properties. To be precise, there are some mathematical arguments to the series
structure which come from considering the group and functional properties of Abelian varieties.
The displayed Fourier structure then becomes, in a certain sense, unique and is generalized
to multidimensional cases. In this work we shall deal only with Jacobian, i.e., 1-dimensional
theta-functions.

There is one imperfection of these ‘serial’ ways of introducing the θ-functions however. These
definitions are pure functional, not invariant, and do not even look like a definition for any special
function of mathematical physics. The latter is determined usually by a certain differential
equation whereas the θ-series are not; e.g., they appear (always via theta-ratios) to represent
solutions of many integrable models. On the other hand, we know that property of the model
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to be algebraically integrable [17] is an invariant property (commuting operators) and is of
a radically different kind from those models which are solvable in terms of various special
functions [4].

A further aspect is the fact that θ-functions are the nearest generalization of the elementary
ones – harmonic sine/cosine-functions – which are related to the simplest classical solvable model
and extensively used, through the harmonic quantum prototype

Ψ′′ − x2Ψ = EΨ,

in the quantum field theories. Their low energy limits and excitations are treated as quantum
mechanics with the field boson particles: statements of this elementary model.

Yet another facet is a relation with θ-series quotients. It is known that basic θ-quotients are
proportional to Jacobi’s elliptic sn-, cn-, and dn-functions [1, 11, 18]

θ1

θ4
∼ sn,

θ2

θ4
∼ cn, ∼ θ3

θ4
∼ dn,

and describe dynamics of some famous models in the rigid body theories [9, 11]. In turn, most
popular of them – Eulerian top – may be quantized, thereby determining the space quantization
phenomenon, so called quantum rotator [10].

These and many other aspects give rise a problem towards the direct quantization of theta-
functions themselves [15] if it is possible. Fortunately this is so indeed and we shall exhibit
a particular case that is completely solvable in the quantum sense: spectrum of a quantum
Hamiltonian can be found. The starting point here is the fact that θ-series posses the nice
differential properties like elliptic sn-, cn-, dn-functions mentioned above. In the context above
one can even say that any kind of differential definition to the θ-functions might be considered
as more appropriate way of their introduction at all.

2 Definitions and base dynamical systems

Complete differential properties of Jacobian series were described very recently [5] and we re-
produce them in a nutshell. These four θ-series are defined as [1, 18]

θ1(t|τ) = −ie
1
4
πiτ

+∞∑
k

−∞
(−1)ke(k2+k)πiτe(2k+1)πit,

θ2(t|τ) = e
1
4
πiτ

+∞∑
k

−∞
e(k2+k)πiτe(2k+1)πit,

θ3(t|τ) =

+∞∑
k

−∞
ek

2πiτe2kπit, θ4(t|τ) =

+∞∑
k

−∞
(−1)kek

2πiτe2kπit

and satisfy the system of ordinary differential equations

∂θ2

∂t
=
θ′1
θ1
θ2 − πϑ2

2

θ3θ4

θ1
,

∂θ1

∂t
= θ′1,

∂θ3

∂t
=
θ′1
θ1
θ3 − πϑ2

3

θ2θ4

θ1
,

∂θ′1
∂t

=
θ′1

2

θ1
− π2ϑ2

3ϑ
2
4

θ2
2

θ1
−
{

4η +
π2

3

(
ϑ4

3 + ϑ4
4

)}
θ1,

∂θ4

∂t
=
θ′1
θ1
θ4 − πϑ2

4

θ2θ3

θ1
,

(1)
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where θ′1 is an additional (fifth) independent function and (ϑ, η) are so called ϑ-constants. In
standard theory these ‘constants’ are the values of θ(z|τ)-functions at z = 0, i.e., ϑk = θk(0|τ),
but for the differential formulation (1) such a meaning need not be implied; all the (η, θk) are
allowed to be free external parameters [5]. In the abstract context the differential introduction
of functions is much more preferable because we may consider these equations merely as a vector
field and freely change coordinates on a manifold where the field acts.

For a quantization procedure it is desirable to simplify vector fields into the polynomial ones.
It appears that the sought-for transformation (θ1, θ2, θ3, θ4, θ

′
1) � (x, y, z, u, ξ) does exist and

has the form{
x = −πϑ3ϑ4

θ2

θ1
, y = −πϑ2ϑ4

θ3

θ1
, z = −πϑ2ϑ3

θ4

θ1
, u = e

1
2

Λt2
θ1, ξ =

θ′1
θ1

+ Λt

}
under certain value of the parameter Λ(ϑ, η). Let dot above symbol stand for a t-derivative.
Then this substitution brings the θ-system above into a very simple polynomial form

ẋ = yz, ẏ = xz, ż = xy, ξ̇ = −x2, u̇ = ξu (2)

which has an embedded structure like ‘Russian dollies’ (((x, y, z), ξ), u). Moreover it is not
difficult to show that the first three equations in (2) are nothing but the normalized (parameter-
free) model of a free Euler’s rigid body [9, 11]

Ẋ =

(
1

C
− 1

B

)
Y Z, Ẏ =

(
1

A
− 1

C

)
XZ, Ż =

(
1

B
− 1

A

)
XY

with the standard Hamilton and Casimir functions

H =
1

2

(
X2

A
+
Y 2

B
+
Z2

C

)
, K = X2 + Y 2 + Z2

and the well-known Poisson bracketẊẎ
Ż

 =

 0 −Z Y
Z 0 −X
−Y X 0

HX

HY

HZ

 . (3)

The transformation (x, y, z)� (X,Y, Z) has a linear form

X = −
A
√
BC(C −B)√

(C −B)(A− C)(B −A)
x, Y = −

B
√
CA(A− C)√

(C −B)(A− C)(B −A)
y,

Z = −
C
√
AB(B −A)√

(C −B)(A− C)(B −A)
z

and holds only for the full asymmetric top parameters A 6= B 6= C 6= A. Quantization of
this dynamical system is very well known as the quantum rotator [10]. We thus arrive at
a quantization problem related to a 5D-extension of the classical 3D quantized rotator.

As far as we know, no regular algorithm for searching for a Poisson bracket exists. Even
Euler’s top is not an exception since its Lie algebraic SO(3)-bracket is ad hoc; from the Lie
algebra so(3) to the Poisson structure (3). On the other hand, it is naturally to expect that
knowing the solution in full details one could be able to find out all the associated constructions.
Particularly, classical and all the other Poisson structures because they are closely related to
integrals of dynamical systems. We thus need a complete set of these functions.
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3 Integrals of motion

Since equations (2) is an odd dimensional system we restrict ourselves in this work to its 4-di-
mensional subsystem

ẋ = yz, ẏ = xz, ż = xy, ξ̇ = −x2. (4)

The point here is that there are some serious foundations that even the full 5D system (2) may
not be considered as closed and requires further extension [5]. Along with the elliptic functions
and meromorphic elliptic integrals, the logarithmic integral should be involved to the complete
theory [5]. Yet another aspect needs to be kept in mind is that we get in (4) the even dimensional
vector field and may compare it locally with a straightened one having (always and at least)
the canonical symplectic structure [14]. Actually, this program will be realized in this and next
sections.

The functional form of solution to (4) follows from the widely known elliptic solutions of
the Euler top followed by supplementing the meromorphic Legendre integral E (see [1, 18] and
appendix for notation and details):

x = −kα sn(αt+ ε; k), y = iα dn(αt+ ε; k), z = ikα cn(αt+ ε; k),

ξ = −k2α2

∫ t

sn2(αs+ ε; k)ds = K + αZ(αt+ ε; k)− α2t, (5)

where (k, α,K; ε) are free constants. However, we are about to get some invariant constructions
(Poisson bracket etc) and therefore one should transform this solution into the integrals of motion
form.

Let (I, J,K) denote the three independent functions of (x, y, z, ξ) being constant on solutions
of (4) and let N be a function of the same variable set evolving linearly in time. Then the
locally equivalent form to the system under consideration is

Ṅ = 1, İ = 0, J̇ = 0, K̇ = 0. (6)

We shall informally name the (N ; I, J,K)-set as ‘straightened’ variables (π1, . . . , π4). Clearly,
the pair (I, J) is an equivalent of (α, k) and N is defined up to a function of (I, J,K), that is
the constant ε. To put the scheme differently we are seeking for a formal point transformation
(x, y, z, ξ) � (π1, . . . , π4) between the original and straightened variable set in both directions.
Then some routine computations with elliptic integrals yield the sought-for change:

x = −I sn

(
JN ;

I

J

)
, y = iJ dn

(
JN ;

I

J

)
, z = iI cn

(
JN ;

I

J

)
,

ξ = K + JZ

(
JN ;

I

J

)
− J2N ,

N =
1√

x2 − y2
F

(
x√

x2 − z2
;

√
x2 − z2√
x2 − y2

)
, I2 = x2 − z2, J2 = x2 − y2,

K = ξ +
√
x2 − y2

{
F

(
x√

x2 − z2
;

√
x2 − z2√
x2 − y2

)
−E

(
x√

x2 − z2
;

√
x2 − z2√
x2 − y2

)}
.

Hence the system (4) has only two independent single-valued (rational) integrals I and J and
the Hamilton function H may be chosen only as their combination: H = H(I, J). Differential
computations with all the functions (sn, cn, dn, Z, F , E) have been completely developed; see
the well-known Jacobi calculus [1, 18] accompanied with formulas (12)–(14).
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4 Poisson bracket(s)

The Hamilton function and Poisson bracket Ω appear always in a pair and the former is subjected
to our free assignment. On the other hand, every vector field is locally equivalent to the simplest
one, like (6), and its Poisson structure may be assigned among the constant symplectic ones.
For comparison with the standard Lie algebraic case (3) let us consider the linear in I2, J2 case
aI2 + bJ2:

H = a
(
x2 − z2

)
+ b
(
x2 − y2

)
with some constants a, b.

The method

The scheme of finding the bracket is based on the fact that under fixed dimension any bracket
for any hamiltonian system is locally equivalent to any other bracket. Hence we may take as
an ansatz some ‘known and good, straightened’ bracket Kjk (π) for known ‘simple’ vector field
π̇k = vk(π) and seek for its transformation to the initial field coordinates (xk). The x-coordina-
tes Ωjk (x) of the bracket tensor is then recalculated by the standard transformation law

Ωjk (x) =
∂xj

∂πn
∂xk

∂πm
Knm(π). (7)

It should be noted here that ansatz for K(π) may contain some freedom which is not restricted by
the constant parameters (canonical constant bracket K) because the only condition for a bracket,
apart from antisymmetry, is the Jacobi identity. In terms of inverse matrix-tensor K = K−1 the
condition turns out to be a Maxwell (linear) equations first half dK = 0 which, clearly, has
infinitely many solutions.

To continue further quantization we have to produce at least one nontrivial solution. Some
experimental computations show that there exists an unusual bracket

ẋ
ẏ
ż
ξ̇

 =


0 0 y −x
0 0 x −y
−y −x 0 0
x y 0 0


︸ ︷︷ ︸


Hx

Hy

Hz

Hξ

 , H =
1

2

(
z2 − x2

)
(8)

Ω

and its determinant is not a zero in the generic case: det Ω = (x2 − y2)2. Interestingly enough,
the upper-left (3×3)-submatrix of Ω (boxed) is also a bracket and provides yet another, rather
nonstandard, bracket for Euler’s top; it is related to the e(1, 1)-algebra. For reference we display
also the commuting vector field corresponding to the integral I2 = y2 − x2:

ẋ = 0, ẏ = 0, ż = 0, ξ̇ = 2
(
y2 − x2

)
, {H, I} = 0.

Remark 1. Informally, we may conclude that knowing the bracket tensor is an equivalent
to knowing the differential computation rules for the functions realizing complete system of
integrals for the dynamics. Appearance/introduction of a specific form to the functions may be
thought of as a reduction of the full system dimension to a smaller number of functions; the
absence of integrals means thus just a generic – nonintegrable or not yet integrated – case. If we

have differential function calculus in one direction, say, (x)
∂
99K (π), then calculus in a reverse

direction (π)
∂
99K (x) is automatically induced.
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Example 1. Consider the planar vector fields

ẋ = A(x, y), ẏ = B(x, y),

where A and B are some polynomials in (x, y) over C. Recently there was developed and
implemented an effective algorithm [3] for computing the rational integral H = R(x, y) to these
equations. In this connection P. Olver put a question (October 2014): what about Hamiltonian
structure for these systems? As we have seen from scheme (7), this question has a constructive
answer.

First, let us straighten the field under question. One of the (π1, π2) = (N , H)-variables
we’ve already had; this is the rational H-Hamiltonian R(x, y) coming from the algorithm men-
tioned above. The second variable – momentum conjugated to H – is derived from equations
determining trajectory of the system. Indeed,

t =

∫
dx

A(x, y)
, R(x, y) = const

and, hence, variable N is an integral

N =

∫ x dz

A(z, w)
=: ℵ(x;R(x, y))

and this integral is an Abelian one with respect to algebraic irrationality

R(z, w) = const. (9)

Here ℵ(x; const) is a function representation to the integral as function of the x-variable and
a constant being a modulus of the algebraic curve (9). Differential computations for this Abelian
integral should be developed independently; including, which is an important and nontrivial
point (see Remark 1), differentiation with respect to ‘const’ of the curve (9). Since ℵ is an
Abelian integral its differential calculus will possibly involve Abelian integrals of other kinds
as well as rational functions of the pair (x, y) [2]. Anyway, development of the calculus is
a technical and solvable problem because derivative of the Abelian integral in a parameter is
again an integral belonging to the same algebraic curve.

Now, we assign the function R(x, y) as a Hamiltonian H = R(x, y) and take the simplest
canonical local (2×2)-bracket K =

(
0 1
−1 0

)
for the straightened vector field

Ṅ = 1, Ḣ = 0.

Then the sought-for (x, y)-coordinates Ω(x, y) of the bracket is calculated explicitly by (7).
Suffice it to display only the Ω12-component:(

ẋ
ẏ

)
= Ω∇R,

(
Ω12
)−1

= ∇yR · ∇xℵ −∇xR · ∇yℵ. (10)

Rationality or the global single-valuedness of the found bracket tensor is established (if any) on
the base of differentiation rules for the Abelian integrals that arise. Then it remains only to
reassign the Hamiltonian H → f(H) for a simplification of the final answer.

Let us consider a further specific subexample: the vector field

ẋ = y, ẏ = 6x2

defining the equianharmonic elliptic Weierstrass function x = ℘(t; 0, a) and its derivative y =
℘′(t; 0, a) [18]. According to the scheme above, we have

H =
1

2

(
y2 − 4x3

)
, N =

∫ x ds√
4s3 − const

⇒ N = A
(
x; 0, 4x3 − y2

)
,
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where A(x; g2, g3) is a notation for a holomorphic integral in the Weierstrass elliptic theory [18].
Although differential calculus with Weierstrassian integrals is also absent in standard literature,
it can be developed in the same manner as Legendrian formulas (12), (13). Computation (10)
with rational function R(x, y) and transcendental one A(x; 0, 4x3 − y2) yields: Ω12 = 1. This
(global) unity corresponds exactly to the standard canonical bracket Ω =

(
0 1
−1 0

)
. It should be

emphasized here that the seed ‘straightened’ bracket K is not well-defined but is just a ‘local
unity’ since N = A(x; 0, 4x3−y2) is a multivalued function. Meanwhile the (x, y)-coordinates of
the bracket are the global well-defined ‘object unity’. Clearly, the (2×2)-case under consideration
has an additional convenience. Reassignment of the Hamilton function exhausts all the possible
brackets and there is no need to investigate nonconstant ‘straightened’ brackets K(N , H).

Example 2. In a slightly different but equivalent manner the Hamilton τ -dynamics was found
in work [6] for the elliptic θ(0|τ)-constants; the very ϑ, η-coefficients of system (1).

Example 3 (exercise). Extend the method into odd dimensional cases and reproduce the stan-
dard Poisson SO(3)-description (3).

5 Quantization: operators and spectrum

In this section we propose a complete canonical quantization procedure for the model (8) de-
scribed above. As a byproduct, we get also some nonstandard quantization for the classical
Euler equations (3).

As usual, we should, according to the correspondence principle

{x, y} 99K [x̂, ŷ],

find representations for the phase observable operators (x, y, z, ξ) 99K (x̂, ŷ, ẑ, ξ̂), where bracket
{x, y} is given by the Ω-matrix (8). Taking into account that Euler’s (3×3)-subsystem (3) is
realized by the 1st order differential operators with linear coefficients (the classical momentum
operators [10]), we can try the same structure ansatz for our (4×4)-extension

(phase variable operator) = (linear function)× ∂variable + (linear function).

Note, the standard generators ∂x, ∂y, x∂y + y∂x of the aforementioned e(1, 1)-algebra are also
nicely fit this ansatz. Such a solution – combination of dilatations, rotations, and ∂-operators –
does exist and we find

x̂ := x, ŷ := y, ẑ := −x∂y − y∂x, ξ̂ := x∂x + y∂y (11)

(first pointed out to the author by P. Kazinsky). Commuting relations

[x̂, ẑ] = ŷ, [ŷ, ẑ] = x̂, [ξ̂, x̂] = x̂, [ξ̂, ŷ] = ŷ

are the same as the bracket ones for base variables (x, y, z, ξ), i.e., (8):

{x, z} = y, {y, z} = x, {ξ, x} = x, {ξ, y} = y

(all the absent pairs are zeroes). For simplicity we omit here the physical multipliers like i~ in
front of commutators. From (11) it follows immediately that quantum Hamiltonian is repre-
sented by the operator

Ĥ :=
1

2

(
ẑ2 − x̂2

)
=

1

2

{
(x∂y + y∂x)2 − x2

}
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and we readily check that quantum equations of motion (Heisenberg’s dynamics) also holds with
respect to the canonical Weyl ordering

̂̇x =
1

2
(ŷẑ + ẑŷ) = [x̂, Ĥ ],

̂̇y =
1

2
(x̂ẑ + ẑx̂) = [ŷ, Ĥ ],

̂̇z =
1

2
(x̂ŷ + ŷx̂) = [ẑ, Ĥ ],

̂̇
ξ = −1

2
(x̂x̂+ x̂x̂) = [ξ̂, Ĥ ].

Availability of a (complex) rotation operator x∂y + y∂x in Ĥ prompts us to make a variable
change to the radius-angle (r, γ)-variables

x = 2r cos
(

1
2γ
)
, y = 2ir sin

(
1
2γ
)
,

whereupon we get ẑ = −2∂γ and the following equivalent of the eigen-value problem

Ĥ Ψ = EΨ ⇒ Ψγγ +
1

2
r2 cos(γ) Ψ = −1

2

(
E + r2

)
Ψ.

Variable r (commuting observable I) has been separated, i.e., became a parameter, and we
may finally normalize the spectral problem into the Schrödinger equation with a trigonometric
cos-type potential

Ψ′′ = (A cosγ − E)Ψ

and two extra parameters E and A. This is the very well-known equation – Mathieu equa-
tion [1, 18] – and excellent book on its theory has hitherto remained the MacLachlan treatise [12].

Until now, we were dealing with integrable but complex equations. Their general integrability
is related essentially to the complex phase space C4 but for physical motivation we need a real
reduction of the space as long as the reduction was a non-contradictory one; see also some
arguments on reality and complexification at the end of § 1 in [15]. A rational question at this
point is: Whether this model is realistic? In other words, is it possible to ‘adjust’ our formal
(yet complexified) quantities in system (4) to be real physical observables and their operators
to be (real) self-adjoining ones? The question has a positive answer. Indeed, we want to have
real H and, hence, x2, z2, γ, r2 ∈ R under y2 − x2 6= 0 (det Ω 6= 0). These requirements can be
satisfied if we put x, ξ ∈ R, y ∈ iR, z ∈ iR and γ, r ∈ R. So, changing z → iz, y → iy we keep
the system (4) to be pure real and Hamiltonian

Ĥ 99K
1

2

(
ẑ2 + x̂2

)
then becomes not only the real operator but also a lower bounded one. It immediately follows
that background state and quantum mechanics do exist and therefore this Hamiltonian may be
‘not a bad’ candidate for the realistic one with a physical spectrum.

Mention should be made of relations between proposed scheme and some closely related
models. On the one hand, the Mathieu equation can be treated as a quantum physical 1-di-
mensional pendulum and its limit A cos γ = A

(
1 − 1

2γ
2 + · · ·

)
reproduces locally a quadratic

oscillator with an infinite discrete spectrum. Parameter A may play here a role of the potential
well depth. The model (4) does thus inherit properties of these limit cases (a dimension reduction
499K2 and approximation cos γ99Kγ2) and, on the other hand, is an alternative to the standard
SO(3)-quantization of a rotator [10]. It is interesting to observe that quantum statements
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A = const

A

E = const

0 1 4 9 16 E

1

Figure 1. The gap structure spectrum for the Mathieu equation Ψ′′ = (A cosγ−E)Ψ. Shaded domains

are the spectral lacunae (‘forbidden’ zones).

in both this quantization scheme and proposed new one are determined by the complete set
of compatible/commuting observables which are classically evolving as meromorphic functions
of t; not as meromorphic/logarithmic elliptic integrals. Recall, meromorphic (elliptic) functions
are the single-valued (well-defined) functions on torus, whereas integrals, in general, are not.
Indeed, the standard momentum square L2 and Lz for the rigid Euler’s body are combinations
of sn-, cn-, and dn-functions [10]. In the model under consideration the variable ξ, which is
a meromorphic elliptic integral (5), does not get to the commuting pair of observables and
all the other phase variables are also the meromorphic functions on a torus. We observe in
passing that integral structure of the classical solutions to this new model is much simpler
than the standard one. One of the Euler classical position (ψ, θ, ϕ)-angles of a body – the
angle ϕ(t) – is a cumbersome combination of meromorphic and logarithmic elliptic integrals;
see [9, Chapter VI, § 37, equations (37.17)–(37.20)] and [11, p. 139]. Meanwhile the only variable
of an integral type in the model (4) – variable ξ – is just a simple Z-function or, which is the
same, some θ′1/θ-combination. One may be noted in this connection that complete quantization
procedure of theta functions will perhaps inevitably involve, the holomorphic integrals excepted,
the full set of Abelian objects on Abelian variety: meromorphic functions, meromorphic and
logarithmic integrals, and, which is the most nontrivial point, the θ itself as integral of an
Abelian meromorphic integral. Such a nature of the theta-function is explained in [5].

Finally, Fig. 1 exhibits the typical spectra structure for the Mathieu equation [13] in both
the quantum numbers E and A. The number of lacunae (colored in red) is infinite and bold
green dots on the horizontal E-axis is the sequence 02, 12, 22, . . . . It is a gap boundary set
of the limit case A → 0 following from the fact that the zero/constant potential has pure 2π-
periodic solutions when spectral parameter is an integer perfect square E = n2. Exhaustive
theory, numerous applications, and wealth of numeric information to the Fig. 1 can be found
in [8, 12, 19]. Note that number of gaps in A-direction is also infinite as in the E-axis; for proof
see [19, Chapter 7, § 3.5].
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A Appendix. Differential calculus of Legendre integrals

The standard Legendrian elliptic integrals [1] are the holomorphic and meromorphic integrals

F (x; k) :=

∫ x

0

ds√
(1− s2)(1− k2s2)

, E(x; k) :=

∫ x

0

(
1− k2s2

)
ds√

(1− s2)(1− k2s2)

(1st and 2nd kind respectively) and the logarithmic integral (3rd kind)

Πα(x; k) :=

∫ x

0

1

1− αs2

ds√
(1− s2)(1− k2s2)

.

The latter has a parameter α.
The triple (F ,E,Πα) forms a linear vector space and the theory above requires complete set

of its partial differentiations ∂x, ∂k, and ∂α. Somewhat surprising facet is the fact that no self-
contained differential calculus of these objects with respect to all the arguments (x, k, α) seems
to have hitherto been tabulated in handbooks; see, e.g., [1, 7, 16]. Bearing in mind a remark
about logarithmic integral at the beginning of Section 3, we make up this deficiency.

Denote y2 := (1− x2)(1− k2x2). Then one can show that the three objects (F ,E,Πα) have
the following closed rules of differential computations

∂F

∂x
=

1

y
,

∂F

∂k
= −F

k
− E

k(k2 − 1)
+

k

k2 − 1

xy

1− k2x2
,

∂E

∂x
=
(
1− k2x2

)1

y
,

∂E

∂k
= −F

k
+
E

k
,

(12)

∂Πα

∂x
=

1

1− αx2

1

y
,

∂Πα

∂k
=

−k
(k2 − α)(k2 − 1)

(
E +

(
k2 − 1

)
Πα −

k2xy

1− k2x2

)
,

∂Πα

∂α
=

1

2α(α− 1)(k2 − α)

((
k2 − α

)
F + αE − (k2 − α2)Πα −

α2xy

1− αx2

)
.

(13)

Note that these equations are compatible; the cross derivatives like

∂

∂x

∂E

∂k
=

∂

∂k

∂E

∂x
,

∂

∂α

∂Πα

∂k
=

∂

∂k

∂Πα

∂α
, . . .

turn out to be identities. If we introduce also a Jacobi analog of Weierstrassian ζ-function, i.e.,
u-representation

Z(u; k) := E
(
sn(u; k); k

)
of the E-integral, then it is differentiated as follows

∂Z

∂u
= 1− k2 sn2,

∂Z

∂k
=

k

k2 − 1

(
Z cn2 −

(
k2 − 1

)
u sn2 − sn cn dn

)
. (14)

If required, partial k-derivatives of functions sn, cn, dn(u; k) are calculated by formulae which
are known [11, pp. 82–83]; we do not display them here.
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