
PHYSICAL REVIEW E 91, 063302 (2015)

Key role of elastic vortices in the initiation of intersonic shear cracks
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Using the particle-based method of movable cellular automata, we analyze the initiation and propagation of
intersonic mode II cracks along a weak interface. We show that the stress concentration in front of the crack tip,
which is believed to be the mechanism of acceleration of the crack beyond the speed of shear waves, is due to the
formation of an elastic vortex. The vortex develops in front of the crack during the short initial period of crack prop-
agation. It expands and moves away from the crack tip and finally detaches from it. Maximum stress concentration
in the vortex is achieved at the moment of detachment of the vortex. The crack can accelerate towards the longitu-
dinal wave speed if the magnitude of shear stresses in the elastic vortex reaches the material shear strength before
vortex detachment. We have found that for given material parameters, the condition for the unstable accelerated
crack propagation depends only on the ratio of the initial crack length to its width (e.g., due to surface roughness).
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Dynamic propagation of mode II cracks (in-plane shear
cracks) at speeds larger than the shear wave speed but
smaller than the longitudinal wave speed (intersonic crack
propagation) has been studied experimentally, theoretically,
and numerically in the contexts of earthquakes, fracture
of materials, and friction. The reason for intersonic crack
propagation was found to be the stress concentration ahead of
the crack tip [1–3]. The existence of a shear stress peak ahead of
a mode II crack growing in the unstable regime was predicted
analytically by Burridge [1]. In the following decades the
development of such stress peaks was subject to detailed
numerical modeling and laboratory experiments [2,4–8]. It
was found that the stress peak arises during the initial phase
of unstable crack growth and propagates ahead of the rupture
front at the shear wave velocity [2]. Moreover, as the crack
grows the region of stress concentration ahead of the crack tip
grows as well, as does the magnitude of the stress peak. The
stress peak reaches a certain maximum value (in time) that
is uniquely determined by the initial shear stress (ambient
shear stress at the beginning of crack propagation) [2]. If
the initial shear stress exceeds a certain critical value, the
stress peak reaches the shear strength of the material, and
a fracture is nucleated slightly ahead of the main crack tip
(Abraham and Gao [9] called this a daughter crack). The
daughter crack propagates in the intersonic regime [9–12].
The effect of stress-peak-induced acceleration of mode II
cracks towards the longitudinal wave speed is quite general
and was confirmed numerically and experimentally at various
spatial scales from the atomic scale [9,10] to the scale
of tectonic faults [11,13]. Despite this basic understanding
of the mechanisms of intersonic crack propagation, some
fundamental questions concerning the material deformation
in the vicinity of the crack tip are still not fully understood.
In particular, the physical mechanisms of the formation of
a stress concentration region ahead of the crack tip and its
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stability as well as necessary conditions for the intersonic crack
propagation have not yet been completely understood.

In the present paper we will show that the region of concen-
trated shear stress ahead of the tip dynamically propagating in-
plane shear crack is caused by vortexlike elastic displacement
of material near the crack tip. This mechanism explains the fact
that the region of high shear stress concentration ahead of the
crack tip, which propagates faster than the main crack, is spe-
cific only to mode II cracks and is not present in other types of
cracks [14]. It is well known that circular (vortexlike) patterns
of elastic displacement are normally associated with surface
waves (Rayleigh, Love, or Lamb waves) and waves propagat-
ing along a phase boundary (Stoneley wave) and cannot prop-
agate in the volume of homogeneous materials. However, the
formation of a vortexlike structure in homogeneous material
is possible if the far-field displacements in the medium have a
vortexlike structure. This is not possible in a continuous homo-
geneous material (with the exception of the trivial case of rigid
rotation), but can be realized in a medium with a topological de-
fect such as a dislocation or crack. At the surfaces of a mode II
crack, there is a discontinuity of the displacement field, so that
the integral of the distortion over a closed loop is nonzero. Uni-
formly moving vortexlike solutions with this type of topology
always tend to form a dislocation-type stress singularity, which
is driven by the processes in the elastic far field and do not
depend essentially on the details of processes in the immediate
vicinity of the singularity. It is intuitively clear that longitudinal
waves propagating parallel to the surface of the crack but far
away from it will cause circular elastic motion of material
points near the crack tip, similarly to vortices in fluids and
gases, producing high shear stresses in the crack plane in front
of the crack tip. A natural assumption is that this will cause a
vortexlike structure with a stress concentration inside it.

To investigate the question of whether the development of
the stress peak ahead of the tip of a dynamically growing
mode II crack may be caused by vortex-shaped motion of ma-
terial, we have performed numerical simulations of the wave
propagation and cracking process. A specimen containing a
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FIG. 1. Schematic representation of the two-dimensional model
and the loading conditions. Horizontal solid bold lines delineate
the upper and lower external boundaries. Vertical dashed bold lines
delineate the vertical faces to which periodic boundary conditions
in the horizontal direction are applied. Longitudinal shear loading
is introduced by horizontal displacement of the upper and lower
external boundaries in opposite directions at a constant velocity Vload.
The vertical positions of the upper and lower boundaries are fixed.

crack was modeled using the particle-based method of movable
cellular automata (MCA). The MCA method is a representative
of the group of particle-based numerical discrete element
methods (DEM). The DEM were shown to be an effective
tool for simulating fractures (including multiple fractures) in
the presence of contact interaction of the surfaces [15,16]. The
MCA method belongs to the subgroup of simply deformable
DEM, in which linear approximation of distribution of dis-
placements in the volume of discrete element is chosen. A
specific feature of the MCA, as compared with other represen-
tatives of this subgroup of DEM, is its multibody formulation
of element interaction forces and potentials [17], which allows
for problems of elastic anisotropy, the influence of packaging
and the implementation of various models of material response
to be dealt with accurately [18]. In the present work the Hubert-
Mises criterion (equivalent stress criterion) was used as a local
fracture criterion [17]. Plasticity was not taken into account,
thus the results are applicable to elastic-brittle materials. An
in-depth description of this model and its verification is also
to be found in the above-mentioned work [17].

We modeled a two-dimensional slab consisting of two
bonded parts (Fig. 1) in the plane-strain-state approximation.
Both parts were assumed to be made from the same isotropic,
linear-elastic material with Young’s modulus E = 200 GPa,
Poisson’s ratio ν = 0.3, and density ρ = 5.7 × 103 kg/m3.
The interface strength (critical equivalent stress σ is

eq =
250 MPa) was much smaller than the volume strength of σ

ps
eq =

2000 MPa. A small initial crack was introduced by means of
breaking some bonds between elements at the interface as
shown in Fig. 1. Shear loading of the interface was simulated
by moving the uppermost and lowermost layers of elements in
opposite directions parallel to the interface line with a small
constant velocity Vload. Periodic boundary conditions were
applied in the horizontal direction to avoid the influence of
distortions at the boundaries of the slab. In all simulations the
horizontal size of the slab was chosen such that elastic waves,
which are produced during the dynamic propagation of the

FIG. 2. Velocity field near the tip of the propagating shear crack
(a) 0.75 μs, (b) 3.75 μs, and (c) 7.5 μs after the beginning of
propagation. Velocity vectors are shown for every third particle in
the ensemble. The horizontal arrows mark the position of the plane
of the crack and of its right tip. The dashed lines mark intact part of
the interface (ahead of the crack tip). In this example the initial crack
length was 0.6 mm, the height of the slab was 15 mm, the size of
a movable cellular automaton was 0.1 mm, the shear strain rate was
10−2 c−1.

crack tip, do not have time to traverse the entire sample and
reach the opposite end of the crack during the simulation.

The deformation of the slab with initial crack proceeds
in two stages. In the first stage (before dynamic crack
propagation) the system accumulates elastic strain energy.
Upon reaching the threshold value of shear stress (shear
strength τ0, which depends on the length of the initial crack) the
crack starts to propagate at the interface in the dynamic regime.
Figure 2 shows several snapshots of the distribution of particle
velocities in the area surrounding the tip of the propagating
shear crack. It can be clearly seen that a vortex-shaped motion
pattern of material particles (hereafter referred to as elastic
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vortex) is formed in the vicinity of the crack from the very
beginning of crack propagation.

A detailed analysis of the initial phase of dynamic crack
growth has shown that the rotational (vortex) mode of elastic
deformation of material ahead of the crack tip arises when a
certain critical value of propagation velocity is reached. This
critical value is related to the critical velocity introduced in
Refs. [19,20] that signifies a change in the character of material
deformation in the vicinity of the crack tip. With progressing
growth of the crack the elastic vortex involves more and more
of the medium ahead of the crack tip [Figs. 2(b)–2(c)].

Note that development of the vortex is inseparably linked
to the development of the crack. During the short initial period
of crack propagation the crack velocity rapidly increases to a
value comparable with the Rayleigh wave speed (this period
depends on material and geometrical parameters of the sample
and the crack and takes several microseconds in the example
shown in Fig. 2) and only changes slightly from then on.
These results are in agreement with the findings of other
authors [3,4,9,10].

The rotational character of elastic displacements ahead of
the crack tip, as seen in our numerical simulations, is also
supported by the shape of the asymptotic elastic solution
obtained by Mello et al. [13]. This solution also exhibits
an equal sign of the crack-normal component of velocities
on both sides of the crack line and an opposite sign of the
crack parallel component. During this initial period the elastic
vortex is formed and becomes a self-maintained dynamic
object. The propagation velocity of the elastic vortex quickly
approaches the shear wave speed VS . At the same time the
crack advances at a velocity lower than the Rayleigh wave
speed VR . Therefore, during the course of propagation the
vortex gradually moves away from (and ahead of) the crack tip.

Note that the formation of an elastic vortex at the beginning
of dynamic crack propagation is not surprising. Previous stud-
ies by the authors have shown that dynamic loading or dynamic
change of the stress state of the solid can lead to the formation
of elastic vortices near grain or interphase boundaries as well
as near free surfaces [21]. In the case of unstable propagation
of in-plane shear crack, elastic energy passes to the tip of the
crack from fracturing layers of material behind it. Obviously,
an influx of mechanical energy sustains the growth of the
elastic vortex in the vicinity of the mode II crack.

The spatial confinement of the region of rotational motion
ahead of the crack tip and the fact that in this regime the
translational velocity of the elastic vortex is equal to the trans-
verse speed of sound VS led to the conclusion that the region
of concentrated shear stress is connected with the elastic
vortex. This hypothesis is confirmed by the combined analysis
of velocity fields and stress distributions near the tip of a
dynamically growing mode II crack. Figure 3(a) shows typical
equivalent stress distributions near the tip of a growing crack at
different stages of vortex development. A localized region of
high shear stresses (compared to the background value far from
the crack) accompanies the vortexlike bulk motion of material
ahead of the crack tip. This approximately elliptical region
is situated in the frontal part of the vortex. The coordinate
of the maximum of equivalent stress distribution coincides
with the maximum value of the crack-normal component of
particle velocities in the frontal part of the vortex. Note that

FIG. 3. (Color) Snapshots of the distribution of equivalent stress
near the right tip of a growing shear crack (a) 3.75 μs and (b) 7.5 μs
after growth start. The system parameters are the same as in Fig. 2.
The stress distributions correspond to the time moments shown in
Figs. 2(b) and 2(c). The images demonstrate stress patterns before
(a) and after (b) detachment of the elastic vortex from the crack. The
white lines depict particle velocities.

this coordinate also corresponds to the position of the stress
peak ahead of the crack tip as described by Burridge [1] and
Andrews [2]. The sustained influx of elastic strain energy
enables the expansion of the region ahead of the crack tip that is
involved in the elastic vortex motion and in the concentration
of shear stress. It was mentioned above, that in the course
of propagation the vortex gradually moves away from the
crack tip. In the process of evolution of the elastic vortex the
concentration of shear stress in it quickly reaches its maximum
value and slowly diminishes after that. Combined analysis of
the velocity and stress fields have shown that the reduction of
the magnitude of the stress peak is related to the detachment
of the elastic vortex from the crack and, therefore, loss of an
energy source. The snapshots in Fig. 3 show the equivalent
stress distributions before [Fig. 3(a)] and after [Fig. 3(b)] the
vortex has detached from the crack. The elastic strain energy
in the vortex increases until the moment of its separation from
the crack (i.e., while the vortex has an energy supply). After
separation the elastic vortex becomes a self-contained dynamic
object, which propagates independently from its source of
origin. During the course of subsequent (independent) vortex
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FIG. 4. (Color) (a) Snapshots of the velocity field and (b) the
distribution of equivalent stress near the tip of a growing shear crack
15 μs after growth start. The system and initial crack parameters
are the same as in Fig. 2. In Fig. 4(a) velocity vectors of automata
belonging to the top and bottom halves of the slab are marked
by purple and blue colors respectively. In Fig. 4(b) black arrows
indicate the first (1) and the second (2) elastic vortices. The images
demonstrate velocity and stress patterns just after detachment of the
second elastic vortex from the crack.

propagation the concentration of shear stresses gradually
decreases since the influx of elastic energy is interrupted.

Because of continuous influx of elastic strain energy to the
tip of a dynamically propagating crack from fracturing layers
of material behind it, a new vortex starts to form at the crack
tip after the previous one detaches. The development of the
new vortex and its direction of rotation are analogous to the
previous vortex. The second vortex also propagates at shear
wave velocity (faster than the crack) and gradually moves away
from the crack tip. The maximum concentration of equivalent
stress in the second vortex is achieved at the moment of its
separation from the crack (this moment is shown in Fig. 4).
After that the second vortex travels independently on the crack
(it follows the first one) and gradually attenuates since the
influx of elastic energy is interrupted. Then the third elastic
vortex begins to develop and so on. Hence, a mode II crack
propagating in conventional sub-Raleigh regime generates a
chain of elastic vortices moving ahead of the crack tip at the
shear wave speed Vs . An important feature of these vortices is
the shear stress concentration in their frontal parts. It should
be noted that, although consecutive vortices are similar in
shape and evolution, there are quantitative differences in some
parameters. One of these parameters is the concentration of
equivalent stresses in the elastic vortex, in particular, the

FIG. 5. Velocity field near the tip of the propagating shear crack
(a) 0.1 μs and (b) 0.75 μs after the moment of nucleation of the
secondary crack at a small distance ahead of the main crack. In this
example the initial crack length was 0.5 mm. Other parameters of
the model and the value of shear strain rate are the same as in the
example shown in Figs. 2–4.

maximum equivalent stress σ max
eq that is reached in the center

of the elliptical region of high shear stress at the moment
of vortex detachment from the crack. Analysis of simulation
results shows that the highest value of σ max

eq is reached in the
first elastic vortex (that is formed at the beginning of dynamic
crack growth), while subsequent vortices have slightly lower
values of σ max

eq (up to 10%) than its predecessor. The reduction
of stress concentration in subsequent vortices can be seen by
comparing Figs. 3 and 4.

The magnitude of shear stress concentration in the elastic
vortex determines the possibility of acceleration of a mode II
crack to intersonic regime. Such acceleration becomes possible
if the magnitude of shear stresses in the frontal part of the
first, strongest elastic vortex reaches the shear strength of the
interface before the moment of detachment (σ max

eq > σ is
eq). In

this case a short secondary crack nucleates at a small distance
ahead of the main crack, at the center of the region of high shear
stresses [Fig. 5(a)]. This secondary crack then merges with the
main crack and the entire rupture propagates at a velocity
comparable with the longitudinal wave speed [Fig. 5(b)]. Note
that nucleation of the secondary crack leads to destruction of
the elastic vortex that produced it. As can be seen in Fig. 5(b),
the crack propagating in the intersonic regime radiates a strong
longitudinal wave [4,6,9,13] and cannot nucleate new elastic
vortices, because it propagates faster than the shear wave
speed. Hence, depending on the magnitude of σ max

eq (which
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is a function of initial conditions), the mode II crack stably
propagates in the conventional sub-Raleigh regime, generating
a series of elastic vortices (at σ max

eq < σ is
eq), or accelerates

towards the longitudinal wave speed shortly after the start of
dynamic propagation (before separation from the first elastic
vortex, at σ max

eq > σ is
eq).

Note that within the considered elastic-brittle material
model the possibility of irreversible deformation and localized
dissipation of elastic strain energy is not considered. In such a
model the main condition for crack acceleration to intersonic
regime is that the initial shear stress τ0 (ambient shear stress at
the beginning of crack propagation) exceeds a certain critical
value. In other words, the shear strength of the material in
the frontal part of the elastic vortex must be reached. The
magnitude of the critical value is determined by the elastic
material parameters and the strength of the interface. At the
same time, in real materials, intense localized dissipation
of energy may take place in the vicinity of the crack tip. In
models of brittle materials this can be taken into account, e.g.,
through the decohesion-weakening effect [2,4]. Obviously,
in this case, the critical value of initial shear stress will be a
function of the parameters of decohesion-weakening model
and friction law. Note also that in materials in which ductility
is determined by the evolution of an ensemble of defects in
the crystal lattice, the elastic vortices can initiate rotational
inelastic displacements ahead of the crack tip.

Finally, we would like to discuss the initial conditions under
which the acceleration of a crack in a brittle solid to an inter-
sonic speed takes place. Analytical models of dynamic growth
of mode II cracks regard the steady-state regime of this process
as self-similar [1,22]. This means that the elastic vortices
propagating ahead of the crack tip must be scale invariant. This
suggestion was confirmed by special numerical experiments,
with different slabs obtained by scaling the sample in Fig. 1
within several orders of magnitude. The scaling was performed
by changing the size of the movable cellular automata and
proportional scaling of the sample and the initial crack
while preserving its ratios. Simulation results have shown
that the extensive parameters of elastic vortices (including
the time from the nucleation of the vortex to detachment
from the crack, the geometrical characteristics of the vortex at
different stages of its development, as well as the stress and
strain gradients) scale in proportion to spatial scaling, while
intensive parameters (stresses and velocities in corresponding
areas) remain the same in all cases. This confirms the scale-
invariant character of elastic vortices ahead of the tip of mode
II cracks propagating in the sub-Rayleigh regime.

Moreover, the scale-invariant character of the elastic vortex
shows that the criterion determining the possibility of accel-
eration of a mode II crack to supershear velocity must be an
intensive parameter of the system state. The traditionally used
criterion is the initial shear stress, in other words the shear
strength τ0 of the material with a preexisting structural defect
(which is a fraction of the shear strength of intact material) [2].
This relation is fairly obvious because the liberation and
redistribution of elastic strain energy during dynamic crack
propagation is driven by previously accumulated energy, which
only depends on τ0 (our results have shown a linear dependency
between σ max

eq and τ0). Given the utilized loading scheme, τ0

is uniquely determined by the geometric characteristics of the

FIG. 6. Dependence of shear strength of the interface with initial
crack τ0 on dimensionless geometrical crack parameter P . Shear
strength τ0 is normalized to the value of strength of the intact
interface τis . Points show numerically determined values of shear
strength for the interface with different kinds of cracks (section and
two notches with doubly different thicknesses). Solid line shows
empirically determined approximation (1).

initial defect (in the considered problem—the length L0 and
thickness D of the initial crack). Therefore the geometrical
characteristics of the initial crack can be used as criteria for
the propagation of a crack in intersonic regime along with τ0.
Additionally, due to the scale invariance of the elastic vortex,
the geometrical criterion must take the form of a dimensionless
combination of the dimensional geometrical crack parameters.

The simplest analytical model linking τ0 with the geomet-
rical characteristics of the initial crack is the Griffith crack the-
ory [23]. Within the Griffith model this dependence takes the
following form: τ0 ∝ τis

√
r0/L0, where r0 is the interatomic

distance (it was supposed that the roughness of the crack is
determined by the packing of atoms and is proportional to r0).
This equation does determine the dimensionless geometrical
parameter of the initial crack (L0/r0), but is only applicable for
cracks of atomic thickness in a region L0 > r0. We have ob-
tained a more general relation of this kind for mode II cracks of
arbitrary effective thickness D. We considered two types of ini-
tial cracks at the interface: section (realized by removing con-
nections between adjacent automata from different slabs of the
specimen) and notch (realized by removing layers of elements
on both sides of the interface line). In both cases the parameter
D is determined as the distance between the centers of the ele-
ments of the opposing surfaces. The length of the initial crack
L0 was varied in a wide range from 0 (intact interface) to L0 =
100D. Our numerical experiments have shown that the shear
strength of the interface with initial crack τ0 depends only on
the dimensionless geometrical parameter P = L0/D (Fig. 6).

The numerically determined dependence τ0(P ) is approxi-
mated well by the empirical equation

τ0 = τis

√
1

1 + αP

[
1 −

(
τ∞
τis

)2]
+

(
τ∞
τis

)2

(1)

where τis = σ is
eq/

√
3 is the shear strength of the intact interface,

τ∞ ≈ 0.1τis is the shear strength of semi-infinite crack, α

is a constant depending on material properties (α ≈ 0.45 for
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the considered material parameters). The empirically derived
expression (1) can be considered as a generalization of the
conventional Griffith expression for cracks with arbitrary
lengths and effective thicknesses. The value of τ0 is equal to the
shear strength of intact material τis at P = 0 (no initial crack)
and converges to the shear strength of a semi-infinite crack τ∞
at P → ∞ (i.e., at L0 → ∞, because the effective thickness D

cannot be infinitely small), while in the characteristic interval
1 < P < (τis/τ∞) the character of change of τ0 is very close
to Griffith’s analytical prediction (remember that L0 > D is
the range of definition of Griffith’s expression).

The dependence (1) has fundamental significance for
understanding of the geometrical conditions necessary for
in-plane shear (mode II) crack acceleration towards the speed
of longitudinal wave. As was shown directly or indirectly by
other authors, this acceleration takes place when the initial
crack length is less than some threshold value [2,5,9]. The
simulation results presented above show that the possibility of
reaching the critical magnitude of the stress peak is determined
by the quantity of normalized length parameter P . If the initial
crack is characterized by the magnitude of the dimensionless
parameter P > Pcrit (where Pcrit is the value, at which the peak
stress at the interface ahead of the crack reaches the interface
strength), the crack can only propagate in the conventional sub-
Rayleigh regime. If P < Pcrit, then the crack can, in principle,
overcome the Rayleigh wave velocity barrier. This means that
only cracks whose initial length is L0 < Lcrit = DPcrit are

capable of propagating in the intersonic regime. Our simulation
results have shown the quantity Pcrit is material dependent. For
elastic-brittle materials it varies from 1–10. For elastic-plastic
materials Pcrit is significantly smaller.

The present paper complements numerous numerical and
laboratory studies of dynamic mode II fracture. It shows that an
elastic vortex developing ahead of a dynamically propagating
mode II crack serves as a physical mechanism of formation of a
confined region of high shear stresses at some distance from the
crack tip and hence is responsible for shear crack acceleration
towards longitudinal wave speed. The elastic vortex is a scale-
invariant dynamic object, which explains the generality of the
dependencies governing the propagation of longitudinal shear
cracks at different scales and, in particular, the well-known
fact that the supershear regime of shear crack propagation
is observed at all scales. The relationship between the
dimensionless geometrical parameter of the initial crack P and
the maximum magnitude of the stress peak ahead of the mode
II crack tip makes it possible to predict the potential of existing
cracks in brittle materials to propagate in the supershear
regime.
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