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Abstract. Turbulent natural convection in a square cavity has been numerically studied.
The mathematical model has been formulated in terms of the dimensionless stream function,
vorticity and temperature using two standard turbulence models (k–� and k–�). For an
obtaining of more accurate values of governing parameters close to the walls a special
coordinate transformation has been used. Formulated partial differential equations along
with the corresponding boundary conditions have been solved by the finite difference
method. It has been shown that standard k–� model is more accurate for the considered
problem.

1. Introduction

Convective heat and mass transfer processes play a significant role in nature and many technical
fields. Now these processes are associated with a wide range of problems [1]. Taking into account
an importance of these processes, control of heat and mass transfer is a key problem. Therefore it is
necessary to understand nature of this phenomenon and simulation methods.

An objective of this paper is a mathematical simulation of turbulent natural convection in a square
enclosure having adiabatic horizontal walls and isothermal vertical walls using two standard turbulence
models (k–� and k–�).

2. Governing equations and numerical results

The boundary-value problem of turbulent convective heat transfer in a square enclosure has been
studied. The medium inside the cavity is assumed to be heat-conducting, Newtonian and the Boussinesq
approximation is valid. The vertical walls (x = 0 and x = L) are kept at constant and different
temperatures T1 and T2 (T1 > T2) while the horizontal walls are adiabatic.
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Taking into account this physical description of the problem, the heat transfer inside the domain of
interest is modeled on the basis of unsteady two-dimensional equations of turbulent natural convection
in terms of the dimensionless variables such as stream function, vorticity and temperature [2].

For an obtaining of more accurate values of governing parameters close to the walls a special
coordinate transformation is used for a densening of the computational grid, allowing to pass from
non-uniform grid in physical domain to a uniform grid in computational domain. Such transformation
has the following form:
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As a result, the transfer processes of mass, momentum and energy in dimensionless variables such as
stream function, vorticity and temperature taking into account the abovementioned algebraic coordinate
transformation are described by the following differential equations:
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As a turbulence model we used the standard k–� model [2]:
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) − c2�E
] E

K
· (5)

01057-p.2



Thermophysical Basis of Energy Technologies

and standard k–� model
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Here we have the following parameters:
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Ḡk = − νt

Prt

d�

dY

��

��
, νt = c�K2

/
E.

The standard k–� model parameters are:

�k = 1.0, �� = 1.3, Prt = 1.0, c� = 0.09, c1� = 1.44, c2� = 1.92, �3� = 0.8.

The standard k–� model parameters are:


 = 0.56, 	 = 0.075, 	∗ = 0.09, �k = 0.5, �� = 0.5.

Initial and boundary conditions for the formulated differential Eqs. (1)–(5) or (1)–(3), (6), (7) have been
described in detail previously in [2, 3].

The formulated boundary-value problem has been solved by the finite difference method [2] on
uniform mesh (�, �) of 200 × 200 points. The parabolic equations have been solved using the locally
one-dimensional Samarsky scheme. The obtained system of linear algebraic equations with special
matrix has been solved by Thomas algorithm. Convective terms have been approximated using the
monotone Samarsky scheme and the diffusive terms have been approximated by central differences.
The difference Poisson equation for the stream function has been solved by successive over relaxation
method.

Numerical simulation has been conducted in a wide range of the Rayleigh and Prandtl numbers
(107 ≤ Ra ≤ 1.58 · 109, Pr = 0.7, 7.0, 0.0115). The distributions of isolines of stream function,
temperature, turbulent kinetic energy and dissipation rate of turbulent kinetic energy have been defined.
It has been shown that an increase in the Rayleigh number leads to both a decrease in the thermal
boundary layer thickness and a narrowing of convective core. Three-core convective structure forms in
the central part of the cavity at small Prandtl number values (Pr = 0.0115).
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Figure 1. Profiles of temperature and vertical velocity at middle cross-section of the cavity in comparison with
experimental data [3].

The obtained results allowed to analyze two turbulence models (standard k–� and k–� models) and
to compare them with experimental data [3] (Fig. 1). It has been shown that standard k–� model is more
accurate for the considered problem and has good agreement with data of other authors [3, 4].

This work was conducted as a government task of the Ministry of Education and Science of the Russian Federation,
Project Number 13.1919.2014/K.
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