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ABSTRACT 

Interference effects between the scattered beams in the problem of light scattering by atmospheric ice crystals have been 
studied. Since the crystals are much larger than the wavelength, it is shown that the interference effects can be neglected 
if the crystal sizes are statistically varied more than 5% of the mean size. As a result, any calculations of the optical 
properties of the crystals performing an averaging over crystal sizes can be effectively replaced by the procedure of the 
incoherent addition of the scattered beams. This procedure allows us decrease the execution time up to 100 times. 
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1. INTRODUCTION 
At present, none of the numerical methods is capable to solve effectively the problem of light scattering by ice crystals of 
cirrus clouds. On the one hand, there is the classical approach where a strict solution is obtained starting from the 
Maxwell equations [1]. However, such an approach demands great computer resources where complexity of the 
calculations increases dramatically with particle size. On the other hand, there is the geometric-optics approximation 
[2,3]. Advantages of this approach are its simplicity and calculation speed and the drawback is appearance of 
singularities in its solution. Therefore the physical-optics method developed by the authors for last 5 years [4,5] looks as 
a good choice solving the problem of light scattering by the submillimeter particles. Of course, the physical-optics 
method ranks below the geometric-optics approach concerning the calculation speed. 

In this paper, we discuss the possibilities to add the scattered beams either coherently or incoherently within the 
physical-optics approximation that impact essentially on the calculation speed of the method. 

2. HEXAGONAL PLATE 
At solutions of the problem of light scattering by ice hexagonal plates, the following equation connecting their heights 
(h) and diameters (D) is often used [6-8] 

 0.4492.02h D= , (1) 

that was obtained in 1970 [9] as an approximation of the experimental data (see Fig. 1). 

Let us consider an impact of the coherent and incoherent addition of the scattered beams on optical properties of such 
crystals. The scattered beams are defined and described by us in details in the papers [10]. 

As a test problem, we use a horizontally oriented hexagonal ice plate that is illuminated perpendicularly. The diameter 
was taken as / 0.568D h=  at the wavelength 0.532 μmλ =  and the refractive index 1.3116n = . 
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Figure 1. Dependence of heights of the hexagonal ice plates on their diameters obtained experimentally in [9]. 

It is convenient to consider several cases where either coherent or incoherent additions were applied for the specular 
reflected optical beams (see Fig. 2(a)) in the case of the plate with varying heights. In Fig. 2(b), the solid curves 
represent the differential scattering cross sections obtained by the coherent addition of two hexagonal beams in the 
vicinity of the backward direction θ = 0. The data of the incoherent addition are shown in Fig. 2(b) by dots. 

 
Figure 2. The specular optical beams giving main contributions to backscattering (a); the differential scattering cross section 

obtained at the coherent addition of two hexagonal optical beams in the vicinity of the backward direction θ = 0 for the 
plate with varying height. The data of the incoherent addition are presented by the dots. 

It is obvious that Eq. (1) concerns only the mean values of the height. Therefore we can use the Gaussian distribution to 
take into account the variance of the heights 
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where f is the distribution function for the real heights h% , h – the mean height obeying Eq. (1) and s is the variance. 
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Let us calculate the mean intensity of the backscattered light I( h% ,D) using Eq. (2). For simplicity, the averaging was 
performed in the limits from h-4s to h+4s that provided the accuracy of 99.994% 

 ( )
( ) 4

( ) 4

( ) , ( , , ( ))
h D s

h D s

I D I h D f h s h D dh
+

−

< >= ∫ % % % , (3) 

Fig. 3 shows the initial value of the intensity (red curve) and its mean values for {0.005 , 0.01 , 0.05 }s h h h=  that are the 
green, yellow, and blue curves, respectively. We see that the oscillations disappear if the height variance is more than 
5%. 

The oscillations presented in Fig. 3(a) are the results of the coherent addition of two beams. They are of the same 
origination as the interference fringes at light reflection from a plane-parallel plate. 

The incoherent addition of these beams should give the mean value. As an example, Fig. 3(b) represents the solutions 
obtained by the incoherent addition of two beams (black curve) and the values obtained by the coherent addition with the 
height variance of 0.5% (green curve) and 5% (red curve). 

  
(a)  Height of plate, μm   (b)  Diameter of plate, μm 

Figure 3. Dependence of the backscattered intensity on the plate height for different variances of the heights (а), the 
dependence of the intensity on the plate diameter at the coherent and incoherent additions of the light beams (b). 

It is seen from Fig. 3 that already at the variance of 5% the light intensity coincides with the result obtained by the 
incoherent addition of the beams. Analyzing the experimental data obtained in [9] we find that the ice crystals occurring 
in nature reveals the height variance larger than 15%. Here, if anybody is finding a strict solution, he has to get the exact 
solutions with the mesh less than 0.02λ and then to make the averaging. Such an approach is very labor-consuming, it is 
necessary to get, at least, 100 additional solutions of the light scattering problem needed to make the averaging over the 
heights. The incoherent addition of these beams essentially shortens the execution time [10-17]. Thus, the specularly 
reflected beams should be added incoherently. 

3. HEXAGONAL COLUMN 
Unlike the case of the hexagonal plates, the hexagonal columns create backscattering by other types of ray trajectories. 
We show below that these types of the trajectories should be added coherently. 

We choose the hexagonal column as the basic shape since it is the typical shape of the crystals in cirrus clouds. Besides, 
it is the hexagonal column that is used in majority of the papers dealing with any test calculations of the optical 
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properties [18-20]. In this paper, we consider the hexagonal column of the typical diameter of 30μmD = . Heights of the 
columns h in cirrus clouds are not statistically independent of the diameters, as seen in Fig. 4. The height is taken from 
the model of [8] as 73.64μmh = . The refractive index is taken as 1.3116 for 0.532μmλ = . The main axis is assumed to 
pass through centers of the hexagonal faces. Orientation of a column is determined by three Euler angles α , β , and γ : 
α  defines rotation of the crystal about the incident direction; β  is the crystal tilt, i.e. the angle between the incident 
direction and the main axis; and γ  describes crystal rotation about the main axis. 

 
Figure 4. Relation between aspect ratio Q=h/D and D for the ice columns according to [8]. 

Our previous numerical calculations performed for randomly oriented regular columns [21-24] proved that predominant 
contribution to both the backward direction 0θ =  and its vicinity 0θ ≠  is obtained from beams shown in Fig. 5. These 
beams are associated with the corner-reflection effect produced by the dihedral angle of 90° between crystal faces [2,25]. 
The beams 1-4 leaving the skew rectangular faces are called the skew ones while the other beams 5-6 are called the 
straight ones. It is important that all the beams reveal a sharp maximum of their contributions to the backscatter if a 
column is orientated as ( 32β ≈ ° , 0γ = ° ). 

 
Figure 5. Skew (1-4) and straight (5-6) plane-parallel beams giving predominant contributions to backscatter. Their ray 

trajectories are shown in Fig. 5(b) and Figs. 5(c), respectively. 

Consider the skew beams at the fixed column orientation of ( 32.22β = ° , 0γ = ° ). Here phases of the beams are the 
same because of similarity of their ray trajectories. Therefore contributions of the beams to the backscatter should be 
summarized coherently. The calculation results obtained for the skew trajectories at their coherent and incoherent 
additions are presented in Figs.  6(a) and 6(b), respectively. The similar results for the straight trajectories are shown in 
Figs. 7(a) and 7(b), respectively. 

As seen in Figs. 6 and 7, the coherent and incoherent additions of the beams lead to different results both qualitatively 
and quantitatively. It is important to mention that the variance of the crystal sizes does not create any oscillations of the 
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differential scattering cross section. Fig. 8 shows the differential scattering cross section averaged over the rotation angle 
γ for the skew and straight trajectories at the size variance of 0.5λ. Contrary to Fig. 2(b), we see that the averaging over 
the sizes does not equalize the differential scattering cross sections for the coherent and incoherent additions. The reason 
of this is that the optical paths of the beams are saved if the particle sizes are changed. Therefore, the incoherent addition 
would be not correct. Moreover, we don't need in the averaging since the strong oscillations aggravating the solutions 
don't appear at all. 

 
Figure 6. The differential scattering cross section of the skew beams 1-4 within the cone of 5° for column with the fixed 

orientation ( 32.22β = ° , 0γ = ° ) at 0.532 μmλ = . The left patterns correspond to the incoherent addition of the beams 
while the patterns for the coherent addition of the beams are shown to the right. 

 

 
Figure 7. The same as Fig. 6 for the straight beams 5-6. 
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Figure 8. The differential scattering cross section averaged over the rotation angle γ for the skew (a) and straight (b) 

trajectories at the size variance of 0.5λ for column with the fixed orientation ( 32.22β = ° ) within the cone of 15°. The 
solid curves correspond to the coherent addition of the beams; the data of the incoherent addition are shown by the 
dashed curves. 

4. CONCLUSIONS 
It is shown that the calculations of the backscattering intensity by means of the beam-tracing algorithm of the physical-
optics approximation can be much shortened if the coherent addition of the beams is replaced by the incoherent addition. 
This statement is true only for the beams whose phase difference essentially depends on particle size. Therefore the 
method of the physical optics includes, as a preliminary step, a study of the phase differences. If the phase differences of 
the given beams don't change with a crystal size variance, such beam should be added coherently. 
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