
ISSN 1028�3358, Doklady Physics, 2015, Vol. 60, No. 3, pp. 135–139. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © V.N. Bakulin, B.V. Boshenyatov, V.V. Popov, 2015, published in Doklady Akademii Nauk, 2015, Vol. 461, No. 3, pp. 281–285.

135

Gas flows in long tubes with a porous wall are wide�
spread in industrial production processes. For exam�
ple, the possibility of applying perforated construc�
tions is considered in the aircraft technology for
improving the aerodynamic characteristics of flying
vehicles by suction of perturbations from the front
wing edge [1] as well as using membrane apparatuses
to obtain nitrogen in order to suppress bursts or firing
of the fuel tanks [2]. Hollow�fiber membranes with a
permeable wall make it possible to increase consider�
ably the operational efficiency of modern gas�separat�
ing and filtration apparatuses due to an increase in the
working surface for the apparatus volume unit. To cal�
culate such types sof facilities and optimize their
designs, we should have reliable and sufficiently simple
models for the description of flows of gases (and their
mixtures) in hollow�fiber membranes. A characteristic

feature of hollow�fiber membranes is the fact that  =

103–104 for them, where L and d are the total mem�
brane length and diameter of its passage section,
respectively. Such high values of this parameter allow
us to attribute the hollow�fiber membranes to the cat�
egory of long tubes with a permeable porous wall.

The isothermal flow of the viscous gas along a long
tube with impermeable walls but allowing for variation
in the gas density along the tube was investigated by

L
d
���

Meyer and Landau [3]. The Poiseuille resistance law
in the Meyer–Landau model is valid only locally in
each tube section. It turns out that the gas flow rate is
proportional to the difference in pressure squared at
the tube input and output rather than to the pressure
difference in the first degree as in the classical variant
of an incompressible fluid.

STATEMENT OF THE PROBLEM

In this study, the isothermal flow of viscous ideal
gas in a tube with a permeable porous wall at large

ratios  is considered using the Meyer–Landau

model.

Let us substantiate the applicability of the Meyer–
Landau model for this class of problems. It is known that
the permeability coefficient of the wall material for gases
in gas�separating hollow�fiber membrane apparatuses
fabricated, for example, based on Graviton domestic
fibers is in the range K = 10–16 to –10–17 m2/(s Pa) [4].
In this case, the ratio of the weight flow rate of gas into
the wall to the flow rate in the tube section is insignif�
icant. Consequently, the gas flow rate on longitudinal
scales in tens calibers is almost invariable. Let us eval�
uate the length of the segment of the initial hydrody�
namic stabilization of the flow by the formula [5]

It follows from this formula that the laminar flow with
a parabolic velocity profile, for example, at Re ≈ 100,
is established at length l of several millimeters from the
input section, while the apparatus length L ≥ 1 m.
Consequently, the influence of the initial hydrody�
namic stabilization segment is negligibly small. Let us
evaluate the local flow rate by the Meyer–Landau for�

L
d
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l � 0.115Red.
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mula [3] for the case of an impermeable tube with
length L and inner radius a:

(1)

Here, G is the mass and Q(z) =  is the volume

gas flow rate along the longitudinal fiber axis (the Poi�
seuille formula) in the section at distance z from its

input, 〈ρ〉 =  is the average gas density, η is the

gas dynamic viscosity coefficient, R is the gas con�
stant, and T is the temperature. Indices 1 and 2 are
referred to the output and input fiber sections, respec�
tively. At p2 – p1 = 106 Pa, a = 5 × 10–5 m, dynamic vis�
cosity η = 10–5 kg/(m s), and L = 1 m, we find u ≈
30 m/s. Thus, despite significant pressure drops at the
tube (tens of atmospheres), the local gas flow in the
tube will be incompressible. Consequently, the Poi�
seuille formula is applicable to hollow�fiber tubes with
a permeable wall locally in each section.

Let us introduce the characteristic length of the
hollow�fiber membrane L0, which is important for fur�
ther description and practical applications. We will
understand the length at which the mass flow rate into
the wall of the hollow�fiber membrane equals 96% of
the total gas mass flow rate inflowing into it as L0. It
will further be shown that

(2)

Here, δ is the thickness of the permeable wall of the
hollow�fiber membrane.

ANALYTICAL SOLUTION

Let us consider the isothermal flow of a viscous
ideal gas in a long tube with a permeable porous wall.
The density of the local mass flux through the wall of
the permeable tube (membrane) is calculated by the
formula [4]

(3)

Here, Δp = p(z) – p0, p(z) is the local gas pressure in
the tube section with coordinate z, p0 is the pressure

outside the tube, and  is a certain characteristic gas
density, as which we accept the density of the gas under
consideration under the standard conditions. The
variation in the gas density should also be taken into
account for the gas flow through a permeable porous
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wall [6]. In this case,  = 〈ρ〉 = , and we

derive at T = const:

We have from the conservation law of mass in the fiber
section with longitudinal coordinate z:

Using the Poiseuille formula, we will derive for the
local mass gas flow rate

while for the pressure distribution along the longitudi�
nal tube axis, we have the differential equation

which will have the following form after the passage to

dimensionless coordinates by formulas p' =  and

z' =  (primes are omitted):

(4)

Let us denote w(z) = p2(z); then we will derive the sec�
ond�order linear differential equation for function w(z)

the general solution of which is as follows:

(5)

We find integration constants C1 and C2 from boundary
conditions w(0) = w2, w(L) = w1:

Substituting the values found for C1 and C2 into (5), we
will find the following exact solution for the distribu�
tion of dimensional pressure p(z) along the tube axis
with the permeable porous wall:
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(6)

When designing apparatuses of the types listed, the
important parameters are the mass flow rates. Using
the Poiseuille formula in the input and output tube
sections, we will derive the following relationships for
the mass flow rates: and for the integral mass gas flow rate through the

wall of the porous tube we have relationship G0 =
G2 – G1. Passing to relative mass flow rates, we will
derive

(7)

APPLICATION OF THE SOLUTION FOUND 
TO ANALYZE THE GAS FLOW AT VARIOUS 

COMBINATIONS OF PRESSURES p0, p1, AND p2

We note that solution (6) is valid for arbitrary com�
binations of pressures p2 = p(0), p1 = p(L), and p0;
including the main cases used in practice:

(i) p2 > p1 = p0 corresponds to the porous tube hav�
ing one open end and immersed into the surrounding
medium with pressure p0 [9];

(ii) p2 = p1 ≠ p0 corresponds to the U�like tube (p0 >
p2 = p1 corresponds to gas inflow and p0 < p2 = p1 cor�
responds to gas outflow through a porous wall) [10].

For case (i), Eqs. (6) and (7) will have the form

(8)

(9)

It should be noted that dependence (9) for this case is
universal and valid for any gases and parameters of
tubes with a porous wall. Dependence (9) is a mono�

tonically ascending function and gives  = 0.96

at L = L0. Thus, the relative gas flux into a wall at fiber
length L = L0 is close to maximally possible being
independent of the pressure drop between the input
and output tube sections. This allows us to consider

that length L0 =  is optimal for practical applica�

tions.

The authors of [7, 8] derived the dimensionless
equation for the pressure distribution in the hollow�
fiber permeable membrane with a nonporous wall (the
diffusion permeability mechanism), which in the
notations used in this article has the form

(10)

Equation (10) was numerically investigated in the

statement of a two�point boundary problem p(0) = ,

p(L) =  = 1. In particular, the plot for the relative
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mass flow into the membrane wall  = 

depending on dimensionless fiber length  for vari�

ous input pressures p2 is presented in Fig. 1. Here, 

was calculated from the condition  = 0.96 for

G2 G1–
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�����

L0*

G0 L0*( )
G2
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input pressures  = [2.0, 5.0, 10.0, 15.0] and was

= 1 + 0.0858 . The dashed line in Fig. 1 shows

analytical dependence (9). It is seen that the calcu�
lated points are described by analytical dependence (9)
with good accuracy. Based on our description, we can
recommend to producers of hollow�fiber permeable
membranes to use the notion of the characteristic fiber

length L =  that we introduced above as one of its
important fabrication characteristics.

Let us consider the second case when gas is simul�
taneously supplied (or withdrawn) from two ends of a
long porous tube—the case of the so�called U�like
tube. Now p2 = p1 ≠ p0 and formulas (6) and (7) will
take the form
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Fig. 1. Relative mass gas flow  into the wall of a long

porous tube depending on its reduced length .  =

(1) 2, (2) 5, (3) 10, and (4) 15 atm.
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Fig. 2. Gas pressure distribution in a porous U�like tube
depending on p0 = (1) 10, (2) 20, (3) 30, (4) 40, and
(5) 50 atm. L = 2L0, p2 = p1 = 1 atm.
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and (5) L = 2.5L0. p2 = p1 = 1 atm, p0 = 50 atm.
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Figure 2 shows the pressure distribution plots inside
such a U�like porous tube for the case of gas inflow
through its wall.

Figure 3 shows the pressure distribution plots
inside the U�like porous tube for the case of gas inflow

through its wall depending on its reduced length .

The mass flow of gas flowing into the tube in the case
under consideration is directly proportional to the
derivative

It is seen from Fig. 3 that an increase in the tube
working length above introduced characteristic length L0

does not lead to a substantial rise of this derivative. The
importance of the introduced notion of characteristic
length L0 here manifests itself from the mathematical
viewpoint as well. Point z = 0 becomes singular at tube
length L � L0 since there is a finite limiting value of

derivative . Therefore, the numerical

solution of the Cauchy problem and the two�point
boundary problem of differential equation (10)
becomes complicated (the problem is stated incor�
rectly since integral curves degenerate into one limit�
ing curve, which characterize the pressure distribution
in an infinitely long porous tube).

Thus, we present the derivation of the analytical
solution of the problem on gas flow in a long tube with
a permeable porous wall. The formula for the calcula�
tion of the optimal fiber length at which the relative gas
flow into the wall is 96% of the maximally possible
length and does not depend on the pressure drop
between the input and output tube sections is derived.
The application of the found solution for studying the

gas flow is analyzed at various combinations of pres�
sure p0, p1, and p2. Concrete examples of using the
derived formulas, which have important practical
applications, are considered. These results can be used
when designing production apparatuses of various
indentations.
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