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ABSTRACT 

Detailed model study of THz generation by CO2 laser down-conversion in pure and solid solution crystals GaSe1-xSx is 
carried out for the first time. Both forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) 
and original (ee-e, oo-o) types are considered. Possibility of realization, phase matching angles and figure of merits are 
estimated for line mixing within 9 μm and 10 μm emission bands, as well between them. Dispersion properties of o- and 
e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-xSx crystals were preliminary measured 
by THz-TDS, approximated in the equation form and then used in the study. Estimated results are presented in the form 
of 3-D figures that are suitable for rapid analyses of DFG parameters. The most efficient type of interaction is eo-o type. 
Optimally doped (x = 0.09-0.13) GaSe1-xSx crystals are from 4 to 5 times more efficient at limit pump intensity than not 
doped GaSe crystals.   
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1. INTRODUCTION 

Frequency conversion can significantly extend application of wide-distributed high power CO2 lasers. Efficient 
frequency conversion of TEA CO2 lasers into THz range is of special interest due to possible numerous applications. 
Transparency windows of the atmosphere allow operation of remote differential absorption detection & composition 
identification systems. THz transparency windows of the atmosphere are located, for example, at central frequencies of 
0.85 and 1.5 THz1. Existing of well resolved absorption spectra of non-conductive solid matters and non-polar liquids 
within THz atmospheric transparency windows in line with well resolved absorption spectra of gases additionally 
stimulates design of THz remote sensing systems. Low energy THz quants allow carrying out dangerousness remote 
control of matters on the human body (explosives, drugs, toxic gases in containers) candid in clothes, synthetic matters 
and goods made of variety of natural materials due to their transparency. THz range is also attractive for condition 
analyzes of biological objects in vivo. These circumstances further support design of efficient CO2 laser frequency 
converters into THz range as well as THz remote sensing systems.   
Application of asymmetric nonlinear crystals as parametric frequency converters of CO2 lasers is preferable because 
phase matching (PM) of interactive waves can be achieved and frequency conversion efficiency maximized 
consequently. However, there is limited number of asymmetric inorganic nonlinear crystals suitable for THz applications 
that always possess much higher damage threshold to that for organic crystals. Higher pump intensity is resulting in 
higher conversion efficiency. Mostly suitable inorganic acentrosymmetric crystals for THz frequency converters are 
ZnGeP2

2,3,4, ε-GaSe3,5, AgGaSe2
3,6, AgGal-xInxSe2

3,6 and Tl3AsSe3
7 crystals. Among them, GaSe crystal is of extra 

interest due to extreme physical properties.   
The extreme physical properties of GaSe: wide transparency range, large birefringence, damage threshold and thermal 
conductivity  have been successfully employed to generate coherent radiation from the near IR (0.7895 μm) through the 
mid-IR and further through the entire terahertz (THz) range up to the sub-centimeter wavelength 5640 μm8,9,4. Many of 
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the unique properties of GaSe are associated with its layered structure. The basic four-fold layer consists of two 
monoatomic sheets of Ga sandwiched between two monoatomic sheets of Se. The strong covalent interaction within the 
atomic layers and week, Van-der-Waals type bonding between basic layers, renders GaSe as a highly anisotropic 
material. On the other hand, the layer structure results in extreme low hardness (almost zero by Mohs scale) and easy 
cleaving along planes parallel to the atomic layers, and finally in hampering out-of-door large-area crystals applications.  
Fortunately, an original ε-polytype structure of GaSe is strengthening by isovalent element doping as well other physical 
properties responsible for frequency conversion efficiency are modifying that, respectively, allowed easier cut & 
polishing at arbitrary directions and improves in the frequency conversion efficiency. Strengthened structure gives 
opportunity of the application in out-of-door applied systems10. Modified properties and improved efficiencies are 
reported for a number of doped crystals: light (GaSe:S) and heavely S-doped GaSe crystals or so called solid solution 
crystals GaSe1-xSx (GaSe:GaS)11,12,13,14,15, GaSe:In and Ga1-xInxSe16,17,18,19,20, GaSe:Te and GaSe1-xTex

18,21,22, doped 
GaSe:Er23,24 and GaSe:Al25 crystals. Increased frequency conversion efficiency is recorded for frequency conversion into 
both mid-IR12,16,17,19 and THz26,27,28 range.   
Due to a set of modified parameters: increased damage threshold, decreased phase matching angle, lower absorption and 
refraction, short-wavelength shifted transparency and phase matching ranges etc. the highest frequency conversion 
efficiency was recorded for solid solution GaSe1-xSx crystals12,27,28. In particular, for Er3+:YAG laser SHG conversion 
efficiency in optimally composition GaSe1-xSx crystal was of 2.4 times higher to that for pure GaSe crystal, as well as for 
THz generation by Ti:Sapphire laser frequency down-conversion. In contradiction, negative effects of S-doping on the 
optical damage threshold and on frequency conversion efficiency were also reported15,29, that reflect doping-induced 
degradation in optical quality. 
In fact, differences in the state-of-the-art of growth technology, limited distribution of doped GaSe crystals and still 
problematic cut & high optical quality polishing of pure and doped GaSe crystals are reasons of paucity and highly 
scattered data on optical properties of pure and doped GaSe crystals in THz range. Due to limited distribution and 
processing absorption spectra for e-wave in GaSe1-xSx crystals (i.e. absorption anisotropy properties) in the THz range 
have only been studied for two solid solution compositions: GaSe0.71S0.29

15 and GaSe0.74S0.26
14. From data in these studies 

and from measurements at fixed frequencies4,28 it was established that the absorption coefficient αo exceeds αe at THz 
frequencies as it does in the pure GaSe crystal. This difference in absorption loss leads to a higher efficiency of THz e-
wave generation9,28. It was also predicted and confirmed experimentally that the uncommon ee-e type of interaction can 
be realized in pure and S-doped GaSe crystals14,15.   
Successful design of THz sources calls for adequate data on PM possibilities and potential efficiencies for all possible 
three frequency interactions. In turn, it needs in correct data on dispersion properties and absorption spectra over the 
entire transparency range for pure and S-doped GaSe and solid solution GaSe1-xSx crystals as a function of the mixing 
ratio. Correct data are a crucial factor in the selection of the most efficient type of three frequency interactions and in 
maximizing the frequency conversion efficiency. In the present work, we report for the first time to our knowledge 
detailed model study of all types of three frequency interactions in high optical quality GaSe1-xSx, x=0, 0.05, 0.11, 0.22, 
0.29, 0.44 crystals: common (eo-e, oe-e, oe-o, oo-e, ee-o) and as well original (ee-e, oo-o) types. High quality crystals 
were grown by modified syntheses and single crystal growth technologies.  

 
2. CRYSTAL GROWTH AND CHARACTERIZATION 

A modified synthesis of polycrystalline material and the vertical Bridgman single crystal growth method were employed 
to grow single crystals of solid solution GaSe1-xSx. The starting materials for the synthesis were Ga 99.9997, Se 99,99 
and S 99.95. The stoichiometric charge of Ga and Se, and the nominal 0, 1.1, 2.5, 5, 7, 11 mass.% S (x=0, 0.05, 0.11, 
0.22, 0.29, 0.44, 1) was weighed out with an accuracy of ± 0.1 mg. Synthesis ampoules were loaded up to 65% in 
volume to minimize the quantity of residual gases and cosequent interaction so as to improve optical quality. Other 
details on the synthesis process are reported elsewhere30. After several hours of melt homogenization during the 
synthesis process, the temperature was slowly decreased to 40 K below the melting point of 1238 K of the compound at 
the rate of ~10 K/h. Synthesised polycrystaline material GaSe is shown in Fig. 1a.  
For the growth process, the polycrystalline material was loaded into a single wall cylindrical ampoule. The internal 
surface had a layer of pyrolytic carbon which protected the melt from reaction with the ampoule wall material and 
impurities. The unseeded crystal growth was performed by the vertical Bridgman method with heat field symmetry 
change and the symmetry center moving all over the oven space that is described elsewhere31,32. The sealed growth 
ampoule was loaded into a furnace having a temperature gradient of ~15 K/cm at the estimated level of crystallization 
front. After homogenization of the melt at the temperature 30 K above the melting point, the ampoule was mechanically 
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( ) − = ± ( , ), (4) 

where 1 = 1 + 1 , (5) 

sign “+” and “-“ are related, respectively, to forward and backward waves, wavelengths are in μm. 
DFG efficiency is calculated by using relation36: 
 = 2 / 1 + − 2 / cos	(Δ )(Δ ) + Δ2  

 

(6) 

where μ0 = 4π · 10-7 H/m is the magnetic permeability, ε0 = 8.854 · 10-12 F/m is the dielectric susceptibility, P2/A = 50 
MW/cm2 = 5 ⋅ 1011 MW/m2 is pump intensity, Δ   is phase mismatch that is equal to 0 at full phase matching), L is a 
crystal length in mm. Measured mid-IR absorption coefficient spectra α for GaSe are approximated as  

 , = 0.00848 + 0.20264 ( )0.1839 − 0.90666 ( ), [9.09-1.28 μm] (7) 

and THz absorption spectra as  

 = 548.673 + 1.77357 ( )97.914 + 0.21373 ( ) , [0.25-3.5 THz]. (8) 

Here α cm-1 = α · 102 m-1; Δα = |α1 + α2 – α3|; c = 3 · 108 m/s is light speed in vacuum, Ti = 4ni / (ni+1)2, ni are refractive 
indices at interacting wavelengths, ω3 = 2πν = 2π · 300/λ THz = 2π · 300/λ ·1012 Hz is THz frequency, deff pm/V = deff · 
10-12 m/V is second order nonlinear susceptibility coefficient. For o+o → e, o+e → e, e+e → e and o+o → o type of 
interactions relations for deff are, respectively: = − 3  (9) = 3  (10) = 3  (11) = − 3  (12) 
Calculations are carried out for DFG in 5 mm GaSe and GaSe1-xSx under 50 MW/cm2 and limit32,37 pump intensities. CO2 
laser emission lines within from 9.09349 to 9.99177 μm and from 10.01538 to 11.28093 μm and their spectral 
dependences have been considered in the calculations carried out.   
 

4. Results and discussion 

Calculed data are presented in the figures below. DFG PM and related frequency conversion efficiencies are plotted in 
Fig. 2, 4. 
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Fig. 2. Curves of DFG (a, c, e, g) PM and (b, d, f, h) frequency conversion efficiency PTHz/P1 in GaSe crystal under the pumping by 
two-frequency CO2 laser lines operating at:  9 μm (red points), 10 μm (blue points) and 9 μm (first line) and 10 μm (second line). 
Interaction types are identified in the figure insets. 	
In Fig. 2 it is seen that original ee-e type of DFG PM can be realized but with very low efficiency due to dominant 
absorption for e-wave over that for o-wave and also due to large (about 90°) phase matching angle that minimizing deff. It 
can be proposed that this type of PM is preferable for short-wavelength pumping because much smaller PM angles. 
Besides, in Fig. 2 it is seen that oe-e type of interaction is the most efficient interaction for GaSe due to minimal phase 
mating angles and minimal absorption for e-wave in THz range. We found that original oo-o type of interaction is not 
possible to realize.  

For clearness, two types of 3-d FDG PM curves and scaled figure of merit = ∙ ⋅
 are shown in Fig. 3; np1,p2,THz 

are refractive indices for interacting waves. 
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Fig. 3. Three-dimension (a) PM and (b) figure of merit M for CO2 laser line DFG in GaSe. Color M-scale and band of mixed emission 
lines are identified in the figure insets.    
 
Figure of merit is proportional to frequency conversion efficiency. Fig. 3 allows rapid analyses of CO2 laser lines DFG 
into THz range by visual inspection.   
For the first time such calculations are carried out for solid solution GaSe1-xSx crystals. In these calculations a decrease in 
d22 magnitude with S-doping as weighted average value for GaSe and GaS is accounted. Some calculation results for 
GaSe0.6S0.4 crystal are presented in Fig. 4.  
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Fig. 4. Curves of DFG (a, c, e, g, i, k) PM and (b, d, f, h, j, l) frequency conversion efficiency PTHz/P1 in GaSe0.6Se0.4 crystal under the 
pumping by two-frequency CO2 laser lines operating at:  9 μm (red points), 10 μm (blue points) and 9 μm (first line) and 10 μm 
(second line). Interaction types are identified in the figure insets.	
 
Three-dimension PM curves and scaled figure of merits were calculated for solid solution crystals (Fig. 5) similar to that 
for GaSe.  

a b	
Fig. 5. Three-dimension (a) PM and (b) figure of merit M for CO2 laser line DFG in GaSe0.6S0.4. Color M-scale and band of mixed 
emission lines are identified in the figure insets.    
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From the comparison it can be concluded that optimally doped (x = 0.09-0.13) solid solution crystals GaSe1-xSx are from 
4 to 5 times higher efficiency in THz generation in spite of lower nonlinearity if account higher damage threshold32. 
Backward DFG covers longer wavelength range to that by forward DFG that is attractive for practice due to absence of 
water vapor absorption lines.  	

CONCLUSION 
For the first time detailed model study of THz generation in pure and solid solution GaSe1-xSx crystals by CO2 laser 
down-conversion is carried out. Mixing of 9-μm and 10-μm band lines, as well cross band mixing is considered.  Both 
forward and backward collinear interactions of common (eo-e, oe-e, oe-o, oo-e, ee-o) and original (ee-e, oo-o) types are 
analyzed. Dispersion properties of o- and e-wave refractive indices and absorption coefficients for GaSe, GaS and GaSe1-

xSx crystals were preliminary measured by THz-TDS, approximated in the equation form and then used in the study. 
Improved quality crystals were grown by modified technology and used in these measurements. It was found that THz 
generation is possible up to mixing ratio x=0.5; ee-e type of PM can be realized in difference to that for oo-o type but 
possesses low efficiency due to large PM angles that minimizes efficient nonlinearity and dominant absorption for  pump 
e-wavelengths.  eo-e type of interaction is the most efficient due to small PM angles and minimal absorption for THz e-
waves. Estimated results are presented in the form of 3-D figures that are suitable for rapid analyses of DFG parameters.  
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