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Effect of viscous dissipation on temperature, viscosity, 
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A non-steady, non-isothermal flow while filling a channel is studied with account for dissipation of mechanical 
energy, dependency of viscosity on temperature, and existence of free surface. Simulation results are presented for 
fields of temperature, viscosity, dynamic and kinematic parameters of flow as a function of key dimensionless 
parameters. 
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Introduction 

Filling of cavities by liquids is often used in industry whenever the production needs 
molding technique. In particular, in producing polymer filling of cavities is a key step in ar-
ticles mold using the injection molding method. The challenges at this stage are possibly form-
ing of air cavities inside the flow and at flow interface, weld lines after merging of folds in free 
surface, etc.: these features may cause faults in the produced items. The proper arrangement of 
production process needs the detailed study of physical and chemical processes in fluid flow 
occurring during processing of polymer compositions. 

In most general case, the polymer fluid during filling is unsteady, non-isothermal flow 
with complex rheology, chemical transitions with different rates. Besides, presence of free sur-
faces and a multitude of possible cavity shapes make the problem more complicated [1]. If we 
take into account all these factors in mathematical model for process quantitative description, 
this makes the problem more complex not only from the point of view of obtaining its solution, 
but also in the formulation of criteria relations of main process parameters. Thus, we have to 
single out a selected factor in a mathematical model for detailed study of impact of this factor 
in the molding process. 

In recent decades, many studies of physical-chemical hydrodynamics occurring during filling 
cavities by injection molding have been carried out. Both physical and mathematical modeling was 
used in these studies. 

Initially, simplified mathematical models without account for free surface were considered: 
this produced approximate solutions in analytical form or numerical solutions with a simple 
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algorithm [2, 3]. In later years, many researchers had applied the finite difference method and 
finite element method for study of isothermal flow while filling of cavities in flat or axisymme-

tric problem statement; the key results have been presented in [4−6]. The modern level of re-
search for isothermal flow was discussed in [7]. 

Polymer compositions are thermoplastic and thermoreactive materials with rheology 
and phase state depending on temperature. Non-isothermal process of cavity filling with po-
lymeric fluid is driven by energy dissipation in the flow, chemical transitions, heat transfer 
boundary conditions, and initial conditions. Viscous dissipation (as a mechanical source of 
heat) changes the medium temperature and, thus, changes the rheology and degree of chemical 
transformation, which, in turn, varies the kinematic and dynamic parameters of the flow. One 
simple case that helps in understanding of viscous dissipation effect is a flow through a chan-
nel. The results of studies for non-isothermal flow of Newtonian and non-Newtonian fluids 

in channels without free surface were outlined in reviews [8−11]. The non-Newtonian flow 

while filling of cavities with account for free interface was studied in [12−15]. 
The goal of this research is studying of the effect of dissipation warming on kinematic 

and dynamic parameters of flow, temperature field, and viscosity (for filling of a channel with 
Newtonian fluid). The research uses a proprietorship simulation method with approximation of 
natural boundary conditions on explicitly distinguished interface. 

1. Problem statement 

Here we consider the process of filling a vertical flat channel with incompressible fluid 
under action of gravity with account for dissipation heating and known dependency of visco-
sity vs. temperature, and existence of free surface. The solution domain is depicted in Fig. 1. 
The flow is described by equations of motion, continuity, and energy which are formulated in 
dimensionless form: 
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dt
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The dependency of viscosity on temperature is given by a ratio which is a dimensionless 
analog of Reynolds equation [16], 

2e .CB θ−=                                                                (4) 

Here V is the velocity vector, p is the pressure, t is time, { }0, ,W=W  0 0( ) /T T Tθ = −  is 

the temperature, where T and 0T  are dimensional temperatures for liquid and for solid wall, 

2 ij jiI e e=  is the second invariant of shear rate tensor E, Re = ρUL /μ is the Reynolds number, 

2 = /W gL Uρ μ  is the parameter describing the ratio of gravitation and viscous forces, 

Pe /c ULρ λ=  is the Peclet number, 2
1 0/C U Tμ λ=  is the parameter for the ratio of dissipa-

tive to conductive heat transfer, 2 0C Tα=  is the dimensionless parameter in exponential for-

mula for viscosity on temperature, ρ is the density, μ is the viscosity at temperature 0 ,T  g is 

the gravity acceleration, α is a constant, c is the heat capacity, and λ is the thermal conductivity 
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coefficient. The dimension scale parameters 
are the following: channel half-width L for 
the length, the mean-flow-rate velocity at the inlet 

cross section U for the velocity, / ,U Lμ vis-

cosity μ. 

The free surface 1Γ  (Fig. 1) has boundary 

conditions as zero tangential shear stress, equality 
between the normal and external pressures 
(which is zero without additional restrictions), 
and zero heat flux. Besides, the free interface 
follows the kinematic condition. The inlet boun-

dary 2Γ  has the distribution of velocity and 

temperature (according to actual physical prob-

lem statement). The solid wall 3Γ  has a non-slip 

condition, and the temperature coincides with 
the wall temperature. This kind of wall conditions is quite common in study of nonisothermal 

fluids, including the case of polymer molding process [10]. The symmetry line 4Γ  expresses 

the symmetry conditions. The surface tension is considered to be much lower than viscosity 
forces and can be discarded [5, 7]. 

Thus, the boundary conditions are the following: 
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where ,n sv v  are the normal and tangential components of velocity on the free surface, ( )f x  

and ( )xϕ are assigned functions. 

Conditions (5) are written in a local Cartesian coordinate system which is linked normally 

to the free surface. The motion of free surface 1Γ  occurs with kinematic condition written 

in the form 

,x
dx

v
dt

=   .y
dy

v
dt

=                                                     (9) 

At the initial time moment, the channel is filled partly, and the free surface is far 

enough from the inlet boundary 2Γ  (this was made to eliminate the impact of free surface 

on the flow near the inlet zone). The physical problem statement gives us the initial fields 
of velocity and temperature. 

 

Fig. 1. Solution domain.
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2. Solution method 

Simulation of the stated problem was accomplished with a finite-difference scheme [17], 
which is based on invariants method for simulation of flow on free surface [18] and the algo-
rithm SIMPLE for computation of searched variables in the inner nodes of staggered grid [19]. 
The values for velocities are calculated with the exponential scheme; the temperature field is 
calculated with upstream approximation of convective components. According to [18], the first 
condition from (5) is written together with continuity equation; this enables us for using 
the running calculation method in computation of velocity components for marker particles at 
free surface. The values of pressure and temperature are calculated from the difference analogs of 
the second and third conditions from (5), correspondingly. Evolution of free surface is found 
from difference analogs of equations (9) with the use of Euler scheme. Computation methods 
were tested with a test problem of fluid flow through a flat channel with a given flow rate (with 
account for dissipative warming and known experimental dependency of viscosity on tempera-
ture (4)). A parabolic velocity profile and zero temperature were assigned at the channel inlet; 
soft boundary conditions were assigned at the channel outlet. Conditions (7) are fulfilled 
at the solid wall. The channel length is taken long enough for establishing a steady flow 
at the outlet cross section. The simulation results are compared with semi-analytical solution 
of equivalent 1D problem [20]. Figure 2 presents comparison of velocity and temperature dis-
tributions at the channel outlet obtained using our numerical method and the solution of 1D 
problem. A good compliance confirms the validity of method. Besides, while testing of 
the solution algorithm for the case of flow with free surface, we carried out parametric 
computations of isothermal filling of the channel. As known from [5−7], at the isothermal 
filling flow at a constant flow rate, a free surface shape is steady, and the key characteristic for 
this shape is parameter / ,y Lχ = Δ  indicating the position of point B in the symmetry line 

relative the point C in the three-phase contact line (Fig. 1). The dependency of χ on W at 
low Reynolds numbers is plotted in Fig. 3. The results obtained (curve 1) are compared with data 
from [7] (curve 2), where the finite element method was used in flow simulation. Good 
compliance of results was observed. The approximation convergence was tested on different 
rectangular grids; this allowed us to use the grid mesh equal to 1/40. The time step was limited 
by the Courant condition [21]. The discrepancy in mass conservation law in all simulations 
was less than 1 %. 

 
 

Fig. 2. Profiles of velocity (а) and temperature (b) at the outlet cross section. 

Re = 0.001, Pe = 1000, С1 = 2, С2 = 1.33; the mesh size 1/10 (1), 1/20 (2); analytical solution (3). 
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3. Simulation results 

Two physical problem statements were 
considered for estimating the effect of viscous 
dissipation on medium temperature and flow 
characteristics. Firstly, the constant-rate liquid 
flows into a channel; the temperature is a tem-
perature of steady non-isothermal liquid flow 
in infinite channel (with account for mechanical 
energy dissipation and viscosity vs. temperature 
dependency). The boundary conditions for velocity at the inlet and initial distributions for ve-
locity and temperature correspond to this kind of flow. Meanwhile, the values for key parame-
ters have to ensure existence of stationary solution which eliminates the phenomenon of hy-
drodynamic heat explosion [22]. A typical distribution for longitudinal velocity and tempera-
ture for steady flow is plotted in Fig. 2. 

The rate of viscous dissipation in a flow is determined by parameter 1.C  Figure 4 demon-

strates the impact of this parameter on flow characteristics (under other conditions equal). The picture 
shows the distributions for temperature, viscosity, pressure, and velocity at time moment t = 5. 

 

Fig. 3. Dependency of parameter χ on W for 
               isothermal flow at Re = 0.01. 

1 ⎯ simulation, 2 ⎯ results from paper [7]. 

 
 

Fig. 4. Isolines for temperature, viscosity, pressure, and velocity. 
Re = 0.01, W = 2, Pe = 100, C2 = 1.33; C1 = 1 (1, 3, 5, 7), 2 (2, 4, 6, 8). 
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Known studies of isothermal filling flow at constant rate and low Reynolds number have 
demonstrated formation of a quasi-steady flow mode with steady free interface [4−7]. Two 
zones can be distinguished in this flow: 1D flow zone far away from free interface and 2D 
fountain flow in vicinity of interface. The pattern of isolines distribution in Fig. 4 demonstrates 
that the flow can be divided into two zones of flow (similar to isothermal approximation). 
The size of 2D flow zone increases with increase in parameter 1.C  A small increase in temper-

ature is observed in the vicinity of free surface. With decline in viscosity, the intensity of flow 
spreading on solid walls near the free surface becomes stronger, therefore, the value of χ de-
creases with growing 1.C  The pressure gradient in the flow also decreases with growing 1C  

due to decline in viscosity. 
The ratio of convective to conductive heat transfer in a flow is described by the Peclet 

number. Figure 5 presents distributions of temperature, viscosity, pressure, and velocity at Pe = 
= 1000, but the rest of parameters are the same as for the case of Fig. 4. Comparison of data 
in Figs. 4 and 5 demonstrates a smaller zone of 1D flow at a higher Peclet number and qualita-
tive changes in temperature and viscosity distribution. The temperature and velocity profiles 
in cross sections y = const at time t = 6 for different values of Pe are shown in Figs. 6 and 7, cor-
respondently. For both tested levels of Peclet number, the liquid layer in vicinity of symmetry 
line has almost the same temperatures along the entire channel, and this is due to low values 
of invariant for shear rate tensor in this area and due to low contribution of conductive heat transfer 
at high Pe. However, we observe a qualitative change in temperature profile for the near-wall 
part of flow. The decrease of the one-dimensional flow zone and higher convective heat transfer 

 
 

Fig. 5. Isolines for temperature, viscosity, pressure and velocity . 
Re = 0.01, W = 2, Pe = 1000, C2 = 1.33, C1 = 1 (1, 3, 5, 7), 2 (2, 4, 6, 8). 
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at higher Peclet numbers makes higher the influence of free surface on temperature distribution. 
As consequence, the temperature profile deviates from the profile for 1D flow in the infinite 
channel (Fig. 2). With a higher Peclet number, the distributions of isotherms become more sim-
ilar to the case of kinematics of fountain flow [20]. The profile of longitudinal velocity 
in Fig. 7 demonstrates qualitative similarity of curves behavior at both values of Pe and minor 
qualitative differences. 

The increase in number Re up to 1 and parameter W up to 10 does not bring any qualita-
tive changes in flow behavior and the observed quantitative changes are insignificant. 

Along with the problem statement considered above, we also developed a mathematical 
model with a parabolic profile for the inlet velocity (which corresponds to 1D isothermal flow), 
and the temperature is assigned equal to the wall temperature. The initial conditions were zero 
distributions for velocity and temperature. The fields of temperature, viscosity, pressure, and 
velocity for this case at time moment t = 5 for two values of parameters 1,C (with other condi-

tions identical) are plotted in Fig. 8. The liquid supplied into the channel is heated due to viscous 

 
 

Fig. 6. Temperature distribution in cross sections y = const. 
Re = 0.01, W = 2, C1 = 2, C2 = 1.33, t = 6; Pe = 100 (a), 1000 (b); y = 0 (1), 3 (2), 4.5 (3), 6 (4). 

 
 

Fig. 7. Distribution of longitudinal velocity for cross sections y = const. 
Re = 0.01, W = 2, C1 = 2, C2 = 1.33, t = 6; Pe = 100 (a), 1000 (b); y = 0 (1), 3 (2), 4.5 (3), 6 (4). 
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dissipation; the high temperature zone is formed at a distance from the wall, where the dis-
sipation function reaches the highest values. The corresponding distribution of viscosity pro-

duces 2D flow in the entire zone. For 1C = 10 the (dimensional) temperature increases almost 

twice as compared with the initial temperature (with appropriate decline in viscosity). The pro-
files of temperature and velocity for cross sections y = const at time moment t = 5 for different 

 
 

Fig. 8. Isolines for temperature, viscosity, pressure, and velocity. 
Re = 0.01, W = 2, Pe = 100, C2 = 1.33, C1 = 1 (1, 3, 5, 7), 10 (2, 4, 6, 8). 

 
 

Fig. 9. Temperature distribution in cross sections y = const. 
Re = 0.01, W = 2, Pe = 100, C2 = 1.33, t = 5; C1 = 1 (a), C1 = 10 (b); y = 0 (1), 1.5 (2), 3 (3), 4.5 (4). 
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values 1C (with other conditions identical) are plotted in Figs. 9 and 10. For both chosen 

values of 1,C  we observe qualitative similarity of temperature profiles for different cross sections 

(although quantitative differences are significant). Meanwhile the velocity profiles in different 
cross sections at given time moment exhibit a minor change only. The impact of Peclet 
number on temperature and viscosity distributions is shown in Fig. 11 for time moment t = 5. 
The growth in the convective component of 
heat transfer is also exhibited in changes of 
temperature and viscosity. Therefore, for 
this problem statement and for chosen set of 
parameters, the simulated flow pattern is 
different from the pattern produced by the 
first mathematical model. However, if we 
assume existence of quasi-steady filling 
flow for key parameters, for the high times 
and for the front portion of flow we would 
observe the flow described in the first prob-
lem statement. 

At least, simulation of flow in a chan-
nel without account for free surface with 
a trend to a steady solution (Fig. 2) and 
the study within the framework of the first 
problem statement gives grounds for this 
assumption. Indeed, simulation supports this 
assumption. Figure 12 presents the distribution 

 
 

Fig. 10. Longitudinal velocity distribution in cross sections y = const. 

Re = 0.01, W = 2, Pe = 100, C2 = 1.33, t = 5, C1 = 1 (a), 10 (b); y = 0 (1), 1.5 (2), 4.5 (4). 

 
 

 

Fig. 11. Isolines for temperature and viscosity. 

Re = 0.01, W = 2, C1 = 1, C2 = 1.33, Pe = 100 (1, 3), 
                                  1000 (2, 4). 



E.I. Borzenko and G.R. Shrager  

 220 

of temperature calculated in the frames of the first 
(Fig. 12а) and second (Fig. 12b) problem statement. 
The upper part of flow for the case of second problem 
statement demonstrates for the length of several length 
units a temperature distribution identical to the distri-
bution for the first case (thus, regularities in viscosity 
distributions and flow patterns are the same). 

                   Conclusion 

The performed study demonstrated the impact of 
viscous dissipation on temperature, viscosity, kinemat-
ic and dynamic parameters of flow that fills a flat 
channel. The simulated flow can be divided into 
the zone of 2D fountain flow in the vicinity of free 
surface and the zone of 1D flow away from the in-
terface with nonisothermal flow: these results were 
obtained when the initial temperature and velocity 
distributions were taken in the form of a steady 
flow. The flow characteristics were considered as 
functions of different parameters: intensity of me-
chanical energy dissipation, viscosity vs. temperature, 
Reynolds and Peclet numbers, and parameters describ-
ing ratio of gravitational and viscous forces. For dif-
ferent initial and inlet boundary conditions, the pe-
culiarities of flow development were considered. 

In general, the considered fluid flow demon-
strates complicated relations between the viscosity 
decline due to dissipative warming and, this, decrease 
in dissipation rate that controls the decrease in viscosity. 
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