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NON-STATIONARY FINANCIAL MARKET UNDER CONSTRAINTS1

In this work we propose a novel methodology for optimal dynamic allocation of a
portfolio of risky financial assets under hard constraints on trading volume
amounts. Our approach is direct in that it uses directly the observed historical data
to construct an adaptive algorithm for online portfolio selection. The problem of
portfolio optimization is stated as a dynamic problem of tracking a financial
benchmark. We use the model predictive control (MPC) methodology in order to
solve the problem. The main features of our approach are (a) the ability to adapt to
non-stationary market environments by dynamically incorporating new informa-
tion into the decision process; (b) no stochastic assumptions are needed about the
stock prices, and (c) the flexibility of dealing with portfolio constraints. We also
present the numerical modeling results, based on futures traded on the Russian
Stock Exchange FORTS that give evidence of capacity and effectiveness of pro-
posed approach.

Keywords: investment portfolio, non-stationary financial market, adaptive opti-
mization, model predictive control.

The investment portfolio (IP) management is an area of both theoretical interest and
practical importance. The basis of the current classical theory of optimal portfolio allo-
cation problem is the single-period “mean variance” approach suggested by Markowitz
[1] and the Merton dynamic IP model [2] in continuous time. At present, there exists a
variety of models and approaches to the solution of the IP optimization problem, but
most of them are the complications and extensions of the Markowitz and Merton ap-
proaches to various versions of stochastic models of the prices of risky and risk-free se-
curities and utility functions. The review of the main trends existing in the modern the-
ory of stochastic control in finance is given in [3].

Most existing methods need some statistical models of the asset returns (prices). To
implement portfolios based on these models in practice, one needs to estimate the pa-
rameters of these models (typically, the means and covariance of asset returns). The
portfolio optimization is divided into two steps: 1) observed historical data is first used
to compute estimates of the parameters; 2) then a suitable optimization problem is
solved using of the estimated quantities in place of the true ones. Each of these steps in-
volves restrictive assumptions on the return process such as  i.i.d. (independent, identi-
cally distributed) and stationarity hypotheses.  Moreover, one needs an ergodic property
of returns to ensure that the time average of a quantity converges to its expectation. But
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the market statistics shows that the return processes are non-stationary and non-ergodic
[4]. So the result of optimization will be sensitive to errors in the estimation. Due to es-
timation error, the portfolios that rely on the sample estimates typically perform poorly
out of sample. Moreover, the most of the results presented in the literature are limited to
the cases without explicit constraints on the trading volume amounts. However it’s well-
known that realistic investment models must include ones.

In this work, we take an absolutely different route to dynamic portfolio optimization
under constraints. The method developed in this paper that is described below does not
treat estimation and optimization separately. Our route is direct in that it does not rely
on a two stages (estimation/optimization) approach and no stochastic assumptions are
made about the stock prices. Therefore, unlike related models in the literature no statis-
tical characteristics are needed about the stock prices and no statistical estimation tech-
niques are used to compute the parameters of the portfolio model. Instead, parameters
are treated as adjustable variables and directly obtained from the observed historical
data to optimize the objective function. We leverage on the methodology of model pre-
dictive control (also known as receding horizon control) in order to design feedback
portfolio optimization strategy [5].

MPC proved to be an appropriate and effective technique to solve the dynamic con-
trol problems subject to input and state/output constraints. MPC have begun to be used
with success in financial applications such as portfolio optimization and dynamic
hedging. Some of the recent works on this subject can be found, for instance, in [6]-
[10]. In all these papers authors assume the hypothesis of serially independent returns
and consider the explicit form of the model describing the price process of the risky as-
sets (e.g. geometric Brownian motion, e.t.c.). The problem of MPC for discrete-time
systems with dependent random parameters and its application to IP optimization is
considered in [11, 12].

The main contribution of this paper is to propose a framework for the computation of
dynamic trading strategies subject to hard constraints on the trading volume amounts that
are adaptive to input data. Adaptive algorithms have the ability to adapt to the underlying
data by dynamically incorporating new information into the decision process and they are
naturally more suitable for non-stationary environments, such as those in finance. The
method developed in this work based on the idea of moving horizon prediction that is to
predict the portfolio state using a moving and fixed-size window of data. When a new
measurement becomes available, the oldest measurement is discarded and the new meas-
urement is added. The motivation is within the context of algorithmic trading, which de-
mands fast and recursive updates of portfolio allocations, as new data arrives.

We present the numerical modeling results, based on futures, traded on the Russian
Stock Exchange FORTS (Futures & Options on RTS), that give evidence of capacity
and effectiveness of proposed approach. Numerical examples based on real market have
shown that our approach is a theoretically sound and computationally efficient method.

1. Portfolio optimization problem

Consider the investment portfolio consisting on the n risky assets and one risk-free
asset (e.g. a bank account or a government bond). Let ui(k) (i = 0, 1,2, ..., n) denote the
amount of money invested in the ith asset at time k; u0(k)≥0 is the amount invested in a
risk-free asset. Then the wealth process V(k) satisfies:
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Notice, that if ui(k)<0  (i = 1, 2, ..., n), then we use short position with the amount of
shorting | ui(k)|.

Let ηi(k+1) denote the return of the ith risky asset per period [k, k + 1]. It is a sto-
chastic unobservable at time k value defined as
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where Pi(k) denotes the market value of the ith risky asset at time k.
By considering the self-finance strategies (self-financing means that we do not allow

wealth to be added to or extracted from the portfolio), the wealth process V( • ) at the
time k+1 is given by:
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where r is a risk-free interest rate of the risk-free asset, here 0
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Using (1) we can rewrite (2) as follows (see [11]):
[ ]( 1) 1 ( ) ( ( 1) ) ( ),nV k r V k k e r u k+ = + + η + − (3)

Where u(k)=[u1(k), …,un(k)]T  is the vector of control inputs, η(k)=[η1(k) η2(k) … ηn(k)]
is the vector of risky asset returns,

 ne is n-dimensional vector with unit elements.
We impose the following constraints on the control actions [11]
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If ui
min(k)<0 (i=1,2,…,n), so we suppose that the amounts of the short-sale are restricted

by |ui
min(k)|; if the short-selling is prohibited then ui

min(k)≥0 (i=1,2,…,n). The amounts
of long-sale are restricted by ui

max(k)  (i=1,2,…,n);  u0
max(k)≥0 defines the amount we

can invest in the risk-free asset; min
0 ( ) 0u k ≤

 
determines the maximum volume of a loan

over the risk-free asset.  Note, that values ui
min(k) (i=0,1,…,n), ui

max(k) (i=0,1,…,n) are
often depend on common wealth of portfolio in practice. So that we can write ui

min(k) =
γi

'V(k), ui
max(k) = γi

''V(k), where γi
', γi

''  are constant parameters.
Our objective is to control the investment portfolio, via dynamics asset allocation

among the n stocks and the bond, as closely as possible tracking the deterministic
benchmark

0 0
0( 1) [1 μ ] ( )V k V k+ = + , (6)

where μ0 is a given parameter representing the growth factor, the initial state is
V0(0)=V(0).

Let the only source of information at instant k be the history of securities and current
values of V (k). Notice that variable 0 ( )V k is known for all time instant k=1,2,… and
may be considered as a pre-chosen parameter. Thereby, the optimal portfolio appears to
be dependent on the current values of the portfolio and the history of securities and
changed by new information. This type of reasoning is standard for the control theory
under uncertainty and gives the basis of feedback type control laws.
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We use the MPC methodology in order to define the optimal control portfolio strat-
egy. The main concept of MPC is to solve an open-loop constrained optimization prob-
lem with receding horizon at each time instant and implement only the initial optimizing
control action of the solution, that leading to the following optimization:

}

20
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where m  is the prediction horizon, u(k+i)=[u1(k+i), …,un(k+i)]T  is the predictive control
vector, R(k,i)>0 is a positive symmetric matrix of control cost coefficients,
V(k+i/k)(i=1,…,m) are the predicted values of portfolio, N is a depth of history taken
into account.  The performance criterion (7) is composed by a quadratic part, repre-
senting the quadratic error between the portfolio value and a benchmark. So our portfo-
lio is minimized against an ideal benchmark portfolio that has positive deterministic re-
turns for each time step and is riskless.

2. Model predictive control strategies design

Criterion (9) can be transformed into equivalence form

}
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where we eliminated the term that is independent of control variables. Define prediction
value of the portfolio by the equation

1 2( / ) ( ) [ ( )] ( ) [ ( )] ( 1) ...
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A=(1+r), [ ] [ ]( ) ( ) nB k k e rθ = θ − ,

1 2( ) ( ) ( 1) ... ( 1),Nk k k k Nθ = α η + α η − + + α η − +   1 2, ,..., Nα α α

are some pre-chosen  parameters. These parameters are determined so as to achieve the
best results when the model (9) is used for the decision making. It must be emphasized
that no assumptions are made about these parameters. In this context is not required that
the sum of parameters be less or equal of unity (as, for example, required about the pa-
rameters of AR models). Moreover, the linearity on parameters is supposed only for the
sake of simplicity. We emphasize that equation (3) determine the evolution of the mate-
rialized portfolio whereas equation (9) define the predicted value of the portfolio. So
unlike related model in the literature we don't forecast future returns but we predict the
future value of the portfolio. Model calibration method is described below in section 3.
If at time instant k we observe an actual value of the portfolio and realization of the re-
turns by looking at a stream of N historical data for the returns then the observed return
sequence becomes deterministic, and (9) would return a deterministic vector V(k+i/k)
(i=1,…,m) (however, before we get to observe returns this vector remain uncertain and
random). So we optimize the future inputs as deterministic variables (i.e., variables de-
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termined by V(k) and ( ), ( 1), ( 2),..., ( )k k k k Nη η − η − η − ) . We can re-express (8) as
follows

1( / ) ( 1) ( 1) ( 1) ( 1) ( ) ( ) ( ),T TJ k m k W k W k k W k U k k U k+ = + + − ∆ + + + ∆ (10)

with ( 1) ( ) [ ( )] ( ),W k V k k U k+ = Ψ + Φ θ (11)
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Using (11) we can write (10) as follows
2
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Denote the following matrices
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Thus we have that the problem of minimizing the criterion (12) subject to (4), (5) is
equivalent to the quadratic program problem with criterion
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( )S k  is the block matrix of the form 1 1( ) diag( ( ),0 ,...,0 )n n n nS k S k + × + ×=
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The MPC policy with receding horizon m for each instant k is defined by the equa-
tion:

[ ]( ) 0 0 ( ),n n nu k I U k=

where nI is n-dimensional identity matrix; 0n is n-dimensional zero matrix. Therefore
we obtain the desired result.

3. Numerical examples

This section tests the proposed approach. We want to assess the performance of our
model under real market conditions by computing the portfolio wealth over a long pe-
riod of time. To this end, we consider the real security returns in the period from July
2007 to May 2013 and conduct a backtest. We consider the situation of an investor who
has to allocate his wealth among five risky assets and one risk-free asset. The updating
of the portfolio is executed once every trading day. We used five futures traded on the
Russian Stock Exchange FORTS (Futures & Options on RTS): RTS, Gazprom,
LUKOIL, Sberbank, GOLD. We tested the results on daily actual closing prices over a
period of time from July 20, 2007 to May 22, 2013. The risk-free asset considered here
as bank account with risk-free rate r = 0 per annum. We set the tracking target to return
0.3% per day (μ0=0.003). For our portfolio, we assumed an initial wealth of
V(0)=V0(0)=1.The weight coefficients are set as R = diag(10−4, …,10−4). We impose
hard constraints on the tracking portfolio problem with parameters γi

' = 4/5, γi
'' = 4 (i = 1,

…,5), γ0' = 4. For the on-line finite horizon problems MPC we used a prediction horizon
of m = 10, and numerically solved it in MATLAB by using the quadprog.m function.

First we need to tune the required model parameters. Lacking an analytical solution,
we tune the parameters and the value data window length N based on an initial training
data period to minimize the objective function. Our method includes the recalculation of
the MPC trading strategies with different parameters.  All these different versions of the
parameters become the input of the MPC algorithm. We compute the portfolio wealth
over the training period for each of the set of parameters and select the one that gener-
ates the best results of tracking. To reduce the number of tuning parameters we will
simplify the model. Let

1

(1)
1 2 ... ;Nα = α = = α = α  

1 1 1 2

(2)
1 2 1 2... ;N N N N N N N+ + +α = α = = α = α + = .

Then
1 2

1

(1) (2)
1

1 1
( ) ( 1) ( 1).

N N

t t N
k k t N t

= = +
θ = α η − + + α η − +∑ ∑

Thus the simplified model include only two parameters (1)α , (2)α  and two values of
data lengths windows 1N , 2.N  The number of observations for training and test da-
tasets are 200 and 1200 , respectively. The following values of parameters were se-
lected: (1) 0,7α = ; (2) 0,3α =  and length 1 15N = , 2 10N = . These parameters are as-
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sumed to be stationary over the investment horizon and equal to the initial empirical
values, based on backwards data. The results are summarized in three figures. Figure 1
plots portfolio (bold line) and benchmark values (dotted line). In figure 2 we have in-
vestments in the RTS futures. Figure 3 illustrates the evolution of daily RTS futures re-
turns.
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Fig. 1. Performance of benchmark tracking
(V – bold line, V0 – dotted line)
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Fig. 2.  Invested amount in RTS futures

We find that on actual data the proposed approach is reasonable. The value of the
portfolio is effectively tracked the benchmark and respected the constraints. It is im-
portant to acknowledge that, even in this example, where we use simple unsophisticated
approach to tune the parameters, the tracking performance appears to be rather efficient.
The obvious appeal of our approach is its simplicity and the fact that it is not oriented to
a special class of forecasting schemes.
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Fig. 3. Daily returns of RTS Stock Exchange Index futures

Conclusion

In this paper we studied a discrete-time portfolio selection problem subject to con-
straints on trading volume amounts. The optimal open-loop adaptive portfolio control
strategy with using MPC methodology is derived. We also present the numerical mod-
eling results, based on stocks (futures) traded on the Russian Stock Exchange FORTS
that give evidence of capacity and effectiveness of proposed approach.

The main features of our approach are (a) the ability to adapt to non-stationary mar-
ket environments by dynamically incorporating new information into the decision proc-
ess; (b) no stochastic assumptions are needed about the stock prices; (c) it is not ori-
ented to a special class of forecasting schemes, and (d) the flexibility of dealing with
portfolio constraints.

REFERENCES

 1. Marcowitz H.M. Portfolio selection // J. Finance. 1952. V. 7. Nо. 1. P. 77−91.
 2. Merton R.C. Continuous-time finance. Cambridge: Blackwell, 1990.
 3. Runggaldier W.J. On stochastic control in finance, in Mathematical systems Theory in Biol-
ogy, Communication, Computation and Finance, D. Gilliam and J. Rosental, Eds., New-
York: Springer, 2002.

 4. Cont R. Empirical properties of asset returns: stylized facts and statistical issues // Quantita-
tive Finance. 2001. V. 1. P. 223−236.

 5. Rawlings J. Tutorial: model predictive control technology // Proc. Amer. Control Conf. San
Diego. California. June 1999. P. 662−676.

 6. Dombrovskii V.V., Dombrovskii D.V., and Lyashenko E.A. Predictive control of random-
parameter systems with multiplicative noise. Application to investment portfolio optimization
// Automation and Remote Control. 2005. V. 66. Nо. 4. P. 583−595.

 7. Dombrovskii V.V., Ob’edko T.Yu. Predictive control of systems with Markovian jumps under
constraints and its application to the investment portfolio optimization //Automation and Re-
mote Control. 2011. V. 72. Nо. 5. P. 989−1003.

 8. Herzog F., Dondi G, Geering H.P. Stochastic model predictive control and portfolio optimi-
zation // Int. J. Theoretical and Applied Finance. 2007. V. 10. Nо. 2. P. 203−233.

 9. Primbs J.A., Sung C.H. A stochastic receding horizon control approach to constrained index
tracking // Asia-Pacific Finan Markets. 2008. V. 15. P. 3−24.



Adaptive data-driven portfolio optimization in the non-stationary financial market 13

 10. Bemporad A., Puglia T., Gabriellini T. A Stochastic model predictive control approach to dy-
namic option hedging with transaction costs // Proc. American Control Conference, San
Francisco, CA,USA, June 29 – July 01, 2011. P. 3862−3867.

 11. Dombrovskii V.V., Dombrovskii D.V., Lyashenko E.A. Model predictive control of systems
with random dependent parameter under constraints and It’s application to the investment
portfolio optimization // Automation and Remote Control. 2006. V. 67. Nо. 12. P. 1927−1939.

 12. Dombrovskii V.V., Ob’edko T.Yu. Portfolio optimization in the financial market with serially
dependent returns under constraints //Вестник Томского государственного университета.
Управление, вычислительная техника и информатика. (Tomsk State University Journal of
Control and Computer Science). 2012. № 2 (19). С. 5−13.

Dombrovskii Vladimir V.
Tomsk State University
E-mail: dombrovs@ef.tsu.ru Поступила в редакцию 12 марта 2013 г.

Домбровский В.В. (Томский государственный университет). Адаптивная управляемая
данными оптимизация инвестиционного портфеля на нестационарном финансовом
рынке при ограничениях.

Ключевые слова: инвестиционный портфель, нестационарный финансовый рынок, адап-
тивная оптимизация, управление с прогнозирующей моделью.

В работе предлагается новая методология динамического управления инвестиционным
портфелем с учетом ограничений на объемы торговых операций. Разработан адаптивный
алгоритм, основанный на прямом  использовании исторических данных в процессе управ-
ления без статистического оценивания параметров модели. Задача оптимизации портфеля
формулируется как динамическая задача слежения за некоторым эталонным портфелем,
которая решена с использованием метода прогнозирующего управления. Приведены ре-
зультаты численного моделирования с использованием реальных данных российского фи-
нансового рынка. Основными преимуществами предложенного подхода являются: а) воз-
можность адаптироваться к изменяющимся рыночным условиям путем введения новой
информации в процесс управления; б) не требуется каких-либо предположений относи-
тельно вероятностных свойств цен финансовых активов; в) алгоритм управления не ис-
пользует статистических методов оценивания параметров модели; г) возможность учета
ограничений.


