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We analyzed Microtus oeconomus material collected for 25 years (1982–1992, 1994–2005, 
2009, 2010). Directional asymmetry (DA) was demonstrated for teeth morphotypes, adrenal and 
kidney weights, and for length of the hind paw as well. DA may be formed both at early and 
later development stages and is not dependent on environmental factors and population density 
dynamics. Although each trait has its own dynamics DA in ontogeny, usually DA increases in 
the period of sexual maturation. Uncoordinated development of the sides in this period seems 
to associate with an increase in intensity of developmental processes. Our study argues that 
sexual dimorphism of continuous traits appears at the later developmental stages. This finding 
is consistent with Geodakian’s evolutionary theory of sex. Evolutionary significance of the DA 
is to increase both short-term individual fitness and long-term population adaptive capacity. 
Developmental approach to the study of morphological and functional asymmetries in animals 
opens new possibilities for the study of evolutionary processes. 
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Introduction

In recent decades, the study of asymmetry 
in zoology has been reduced to fluctuating 
asymmetry as an indicator of stability of 
individual development and/or quality of the 
natural environment (Zakharov, Graham 1992; 
Parsons 1992; Palmer, Strobeck, 1992, 2003; 
Clarke, 1993; Leung et al., 2000; Zakharov, 2003; 
Van Dongen, 2006). Directional asymmetry (DA) 
and antisymmetry were more often regarded 
as nuisance safer to omit from estimation of 
fluctuating asymmetry (Graham et al., 1998; 
Stige et al., 2006). Nevertheless, DA of bilateral 
traits is widespread in nature, most likely inherent 
in most animal species (Levin, Palmer, 2007; 
Palmer, 2009). 

The impetus for rapid research in the field 
of DA came from the finding of asymmetrically 
expressing genes in early development, such as 
Shh and Nodal in chicken (Levin et al., 1995) and 
Nodal and Lefty1 in mice (Collignon et al., 1996; 
Lowe et al., 1996; Meno et al., 1998). It is known 
that numerous genes are involved in patterning 
left-right visceral asymmetry (Shiratori, 
Hamada, 2006). That DA has a genetic basis is a 
fact beyond question. It is of relevance that early 
ontogeny only, when the primordial structures 
are laid down, have been so far studied (Lopez-
Gracia, Ros, 2007). 

It is known that there are genes and their 
aggregates that are differentially expressed at 
particular developmental stages (DS) (Zahn et 
al., 2007). Therefore, we can assume that it is true 
for DA also, i.e. leading to the DA corresponding 
gene network can work at each late DS. In wild 
populations, such networks must pass through 
natural selection and their effects should be 
manifested at the phenotypic level. Hence, the 
aim of our research is to study both discrete and 
continuous traits bilateral DA depending on sex, 
DS, environmental conditions and population 
density dynamics in wild populations of animals.

Materials and Methods
Data collection  
and morphometric measurements

This study was performed in Gorno-Altai 
region, at the northern shore of the lake Teletskoye, 
in the site where the Institute’s biological station 
is located (51°47′34″ N, 87°16′33″ E). Voles 
were wild-caught in the vicinities of the station, 
in terraces around the lake. Many years of 
observations on the dynamics of a community 
of wild mouselike rodents inhabiting near the 
station showed that the root vole (Microtus 
oeconomus) and the northern red-backed vole 
(Myodes rutilus = Clethrionomys rutilus) prevail 
among vole species (Litvinov et al., 2006).

Here we analyzed the root vole material 
collected for 25 years (1982–1992, 1994–2005, 
2009, 2010). Root vole populations fluctuate in 
cycles with a 3–4 year periodicity (Fig. 1A). In 
addition, there is a long-term trend of population 
density, possibly associated with an increase in 
average annual temperature (Fig. 1B).

Specimens were analyzed for bilateral 
morphotypic variation in first lower molar M1 
(N=707) and the third upper molar M3 (N=709) 
teeth. To discriminate between different 
morphotypes, we used the number of closed 
triangles on chewing surface and the shape 
complexity of the labial and lingual sides of the 
anterior unpaired loop of M1 and talon of M3 
(Pozdnyakov, 1993; Kovaleva et al., 2002). On 
this basis, morphotype complexity (MC) was 
calculated for each of the morphotypes (Fig. 2). 
In addition, morphotype complexity asymmetry 
dR-L was calculated for each of the specimens as 
follow (Pozdnyakov, 2010): 

dR-L = MC(right) – MC(left)

Measurements of metric traits were taken 
exclusively by one of the authors (VYuK). The 
excised left and right kidneys and adrenals were 
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weighed with a torsion balance to a precision of 
1 mg. It is very important to reduce measurement 
errors in asymmetry studies, since the difference 
between the bilateral traits is usually small 
(Palmer, Strobeck, 1986; Palmer, 1994; Merilä, 
Björklund, 1995). For this reason, the lengths 
of the external morphometric traits, the front 
and hind paw, were measured 2-3 times with a 
caliper 0.1 mm to reduce measurement errors. If 
the difference between the measures was larger 

than 0.3 mm, measurements were repeated. The 
median, i.e. the non-parametric point estimate, 
was chosen.

The relative age of voles was estimated 
according to the degree of physiological 
maturation and the data on body length and mass 
by the standard methods (Bashenina, 1953; Larina, 
Lapshov, 1974). According to this, all voles were 
divided into four age groups: immature, juveniles 
and subadults, and mature, adults and senescents. 

 

 

 

    

Fig. 1. A) Microtus oeconomus relative abundance dynamic (per 100 trap-nights, lg); B) Average annual 
temperature dynamic (Ongudai meteorological station), gray curve – distance weighted least squares fitting

M1

M3

L1 L2 L3 L4 L5 L6 L7 L8
24 24 25 25 26 26 26 27 

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 
11 12 12 12 13 13 13 14 14 14 15 

Fig. 2. Microtus oeconomus morphotypic variation in chewing surface of the first lower (M1) and the third upper 
molar (M3). Morphotype complexity values are given under each morphotype designation. (Outlines are made 
by A.A. Pozdnyakov)
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Males and females were analyzed separately. 
Morphotypes variability showed no particular 
relation to age and sex, therefore we considered 
all sets as a pooled sample containing more than 
700 molar pairs.

Statistical analysis

The correlation coefficient between dR-L for 
M1 and M3 was calculated. Then, we calculated 
contingency tables between right-side and left-
side both M1 and M3 morphotypes. Morphotypes 
observed fewer than 8 times, were excluded from 
further analysis. 

All metric traits were log transformed 
(Graham et al., 2003; Palmer, Strobeck, 2003). 
The significance of the presence of DA in every 
sample was tested using Student’s paired t-test 
(Palmer, 1994).

The following values were assigned to 
each specimen to calculate the correlation with 
DS, environmental conditions and population 
parameters: Year  – trapping year; Trapping 
date – number of calendar days from the 1th May 
of the trapping year to the trapping day; Sexual 
maturity  – 0 for immature voles, 1 for mature 
ones; Abundance dynamic (AD): AD – number 
of captures per 100 trap-nights in trapping year, 
lg; ADdev  – AD deviation from regression line; 
ADabs(dev)  – absolute deviation from regression 
line; TMay, TJun, TJul, TAug  – average monthly 
temperatures in May, June, July and August, 
accordingly. We included the ADdev and ADabs(dev) 

parameters in the calculation in order to take into 
account the possible dependence between AD 
deviations from population norm in the direction 
of higher or lower density and DA. The population 
norm was itself increased during the period of 
our studies (Fig. 1).

DA, although it is an individual property, 
can only be estimated for a group of individuals, 
therefore either age-independent qualitative 
traits or homogeneous samples composed of 

size-age matched individuals were used. In the 
case of quantitative traits, samples collected from 
natural populations are, as a rule, heterogeneous. 
Clearly, then, the difference between left and 
right sides of traits depends on size, which, 
as a rule, increases in the course of individual 
development. It is a convention to reduce size-
age heterogeneity by transformation of metric 
traits to natural logarithms (Graham et al., 1998; 
Graham et al., 2003; Palmer, Strobeck, 2003). A 
Box-Whiskers plot was applied to estimate DA 
variability within each age group for continuous 
traits. Kruskal-Wallis test and ANOVA (F 
test) were used to evaluate significance of DA 
dynamic.

Results

First, we investigated the bilateral asymmetry 
of discrete traits. Asymmetry of shape of M1 and 
M3 was the most obvious among discrete traits. 
No correlation between dR-L for M1 and M3 was 
found (r=0.0253; n=711). 

 As expected, most of morphotype pairs 
turned out to be symmetrical, with asymmetrical 
pairs accounting for 29 % and 25 % of the total 
number of pairs of M1 and M3, respectively 
(Table 1, 2). Absolute value of dR-L, |dR-L|, did not 
usually exceed 1, sometimes reaching 2 (n=10 for 
M1 and n=13 for M3) (Fig. 3A, B).

The morphotypes in the contingency tables 
are ordered according to their complexity. 
More complex morphotypes of the M1 and M3 
significantly developed more often on the right 
side (Fig. 3A, B). Consequently, there was a DA 
in morphotype complexity. 

Three of the four investigated continuous 
traits showed a DA (Table 3), which did not depend 
on environmental temperatures, population 
dynamics and trapping seasons for both sexes 
unlike an individual size (Table 4). Nevertheless, 
asymmetry can depend not only on trait size as 
such, but also on the DS of an individual. 
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Table 1. Contingency table between right- and left-sides morphotypes M1 of Microtus oeconomus voles in 
Teletskaya population. The morphotypes (1–8) are ordered according to morphotype complexity (MC). 
Frequencies of symmetrical morphotype pairs are along the diagonal (n=502)

MC (M1) 24 24 25 25 26 26 26 27

L1 L2 L3 L4 L5 L6 L7 L8 Total
R1 190 0 3 33 0 0 1 0 227
R2 0 3 0 0 0 0 0 0 3
R3 12 0 18 2 3 0 0 0 35
R4 85 2 1 244 1 0 4 0 337
R5 4 0 9 17 25 0 3 1 59
R6 2 0 0 5 0 4 0 0 11
R7 2 0 0 11 1 0 16 0 30
R8 0 0 0 1 1 0 1 2 5

Total 295 5 31 313 31 4 25 3 707

Table 2. Contingency table between right- and left-sides morphotypes M3 of Microtus oeconomus voles in 
Teletskaya population. The morphotypes (1–11) are ordered according to morphotype complexity (MC) (11–15). 
Frequencies of symmetrical morphotype pairs are along the diagonal (n=530)

MC 
(M3) 11 12 12 12 13 13 13 14 14 14 15  

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 Total
R1 14 1 2 5 0 0 0 0 0 0 0 22
R2 0 4 0 0 0 1 1 0 0 0 0 6
R3 1 0 4 1 1 0 0 0 0 0 0 7
R4 7 0 0 312 0 8 24 4 1 1 0 357
R5 0 1 0 0 4 0 0 1 0 0 0 6
R6 0 1 0 16 0 38 2 11 0 0 0 68
R7 1 0 0 48 1 3 98 4 2 0 0 157
R8 0 0 0 5 0 10 8 45 0 0 2 70
R9 0 0 0 0 0 1 1 0 6 0 0 8
R10 0 0 0 0 0 0 1 0 0 3 0 4
R11 0 0 0 0 0 0 1 1 0 0 2 4
Total 23 7 6 387 6 61 136 66 9 4 4 709

Asymmetry for adrenal weight steadily 
increased in the course of development both 
in males and females. The average adrenal 
weight and maximum difference between 
the left and right sides of this trait reached 
greater values in females compared to males 
(Fig. 4). 

The right-side DA for kidney weight was 
significant in males and in females, and it 
also depended on DS. There was a maximum 
for dextral kidney asymmetry before sexual 
maturation. The end stages of population 
ontogeny were characterized by symmetry of 
these paired organs (Fig. 5). 
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Fig. 3. Histogram of the distribution of morphotypes complexity asymmetry dR-L among Microtus oeconomus 
specimens in Teletskaya population; A) M1; B) M3. Zero value of dR-L (the biggest columns) can appear n for 
specimens with symmetrical morphotypes, and also for ones with asymmetric morphotypes, but with the same 
complexity (n=7 for each tooth). Specimens with nonzero values of dR-L anytime have asymmetric morphotypes. 
Mean of morphotypes complexity asymmetry dR-L is significantly greater than zero for both teeth (M1: t=7.874; 
p<0.001; M3: t=2.419; p=0.015). Abscissa – dR-L, ordinate – the number of specimens

Table 3. Statistical parameters of DA of morphological traits in samples of Microtus oeconomus voles in Teletskaya 
population

Trait Sex N Student’s paired 
t-test p-value

Adrenal weight
Males 623 12.08 <1*10-29

Females 471 9.71 <1*10-21

Kidney weight
Males 524 9.81 <1*10-8

Females 384 4.84 <1*10-5

Hind paw length
Males 228 6.40 <1*10-9

Females 182 5.76 <1*10-7

Front paw length
Males 227 1.93 >0.05

Females 182 0.98 >0.05

Dextral DA for the length of the hind paw 
was significant only in males. The right hind paw 
was longer than the left in young and adult voles 
(Fig. 6). 

Discussion

It is believed that the progressive evolution 
of the animal kingdom is accompanied by a 

natural loss of symmetry (Beklemishev, 1969; 
Geodakian, 1991; Palmer, 2009). MCA of voles is 
an example of trait with incomplete evolutionary 
transition from symmetric to asymmetric state. 
The existence of asymmetry is well known 
and has repeatedly been observed in different 
rodent species (Angermann, 1973; Kovaleva 
et al., 2002; Vasil’ev et al., 2004; Pozdnyakov, 



Table 4. Correlation coefficients of DA (R-L) and trait size ((L+R)/2) of Microtus oeconomus voles in Teletskaya 
population with environmental temperatures, population dynamics and trapping date (*p<0.05; **p<0.01; 
***p<0.001; with Bonferroni correction), see text (Statistical analysis) for details

Adrenal weight 
Females (N=485) Males (N=632)

DA Size DA Size
Trapping date -0.08 -0.28***  0.05 -0.38***

Sexual maturity -0.21***  0.80*** -0.18***  0.77***

AD -0.11  0.06  0.04 -0.14*

ADdev -0.08  0.13  0.01 -0.01
ADabs(dev)  0.02  0.15  0.03  0.00
Year -0.09 -0.13  0.08 -0.29***

TMay  0.01 -0.07  0.07 -0.15*

TJun -0.07 -0.10 -0.04 -0.10
TJul  0.03 -0.02 -0.05 -0.02
TAug  0.01 -0.13  0.12 -0.08

Kidney weight
Females (N=402) Males (N=552)

DA Size DA Size
Trapping date  0.01 -0.22***  0.05 -0.33***

Sexual maturity -0.12  0.82*** -0.17**  0.88***

AD -0.05  0.17**  0.01 -0.12
ADdev -0.03  0.21***  0.01 -0.01
ADabs(dev) -0.01  0.20***  0.05  0.02
Year -0.04 -0.03  0.00 -0.27***

TMay -0.04  0.01 -0.02 -0.13
TJun -0.08 -0.10 -0.03 -0.22***

TJul  0.03 -0.07  0.02  0.01
TAug -0.02 -0.13 -0.08 -0.08

Hind paw length
Females (N=205) Males (N=257)

DA Size DA Size
Trapping date  0.03 -0.01 -0.04 -0.12
Sexual maturity  0.05  0.44***  0.22  0.41***

AD  0.15  0.12  0.11  0.08
ADdev  0.10  0.09  0.05  0.11
ADabs(dev) -0.08 -0.14 -0.16 -0.28**

Year  0.16  0.11  0.14 -0.03
TMay -0.05 -0.12 -0.20 -0.26*

TJun -0.02  0.06  0.07  0.20
TJul -0.02  0.00 -0.01 -0.13
TAug  0.09 -0.11 0.00 -0.01
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Fig 4. Age-depended dynamics of adrenal weight asymmetry of Microtus oeconomus voles in Teletskaya 
population. Developmental stages: juv – juveniles, sad – subadults, adu – adults, sen – senescents. The numbers 
under the developmental stages are age group numbers. ■ – median; ‪ – 25 %–75 %;  – non-outlier range; ○ – 
outliers. F – Fisher F-test. KW-H – Kruskal-Wallis H-test

Fig 5. Age-depended dynamics of kidney weight asymmetry of Microtus oeconomus voles in Teletskaya 
population. For other designations, see Fig 4

2010). It is known that dental traits are highly 
heritable (Bader, 1965; Berry, 1975; Hlusko 
et al., 2011; Polly et al., 2011). In addition, the 
different species of the voles have a common 
set of morphotypes which are distinct only in 
frequency of occurrence (Angermann, 1973; 
Pozdnyakov, 2005; Pozdnyakov, 2011).

The development paths of these traits 
which are formed in the ancestral lines of living 

Arvicolinae, are highly conservative. This is 
apparently based on the evolutionary stability 
of the trait’s basic mechanisms of development 
which canalize all deviations (Waddington, 
1942; Vasil’eva, 1999; Siegal, Bergman, 2002; 
Vasil’ev, 2009). Perhaps, this suggestion explains 
the fact that the dR-L in our study was small, its 
absolute value did not exceed 2, and it had no 
developmental dynamics.
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According to our data, the left adrenal 
weighed more than the right in both sexes. The 
occurrence of this phenomenon among wild 
populations has been, to our knowledge, first 
described for the water vole Arvicola amphibius 
from Western Siberia (Galaktionov, Efimov 
2003). There is a large body of laboratory data 
supporting this observation for other mammalian 
species (Idelman, 1978; Abramov et al., 1996; 
Coleman et al., 1998; Droste et al., 2003; Trut et 
al., 2002). 

The founded prevalence of right asymmetry 
of kidney weight for the root vole is consistent 
with the previous reports. For instance, 7 natural 
populations of the house mouse caught in Great 
Britain, the Pacific Ocean islands, and the 
Subantarctica showed a statistically significant 
greater weight of the right kidney compared to the 
left one, with difference decreasing with increasing 
kidney size and age (Berry, 1978; Mittwoch, 1979, 
2008). In our view, the evolutionary implications 
for population ontogeny are clear: the organism 
strives to minimize energy expenditures under 
peak loads. For the growing organism, it is more 
advantageous to partition over time the same 
phases of organ growth and development at the 

right and the left than to go through the phases 
synchronously.

Asymmetry study of human limbs takes 
back to the nineteenth century (Arnold, 1844; 
Gennadis, 1858; Tarkhanov, 1879). Nonetheless, 
the issue of the effects of environmental and 
genetic factors remains very unclear. It is 
known that handedness is strongly correlated 
with hemispheric brain asymmetry, which has 
a considerable genetic component (Geschwind 
et al., 2002). The handedness–brain asymmetry 
relationship has been extended to primates, 
mammals and to some extent vertebrates as 
a whole (Singh, 1971; Pande, Singh 1971; 
Bianki, 1993). Postnatal measurements on 
foxes demonstrated that the DA of limb bones 
increases after birth and continues to change 
(increasing or decreasing) during postnatal 
growth (Kharlamova et al., 2010). Our current 
study revealed that most voles of the examined 
population have the hind version (“footedness”) 
of this trait, rather than the front one 
(“handedness”). Perhaps this is due to the spatial 
and motor asymmetry which has been shown 
for many species of vertebrates (Bianki, 1993, 
Agulova et al., 2010; Agulova et al., 2012). 

 

 

 

    

Fig 6. Age-depended dynamics of hind paw length asymmetry of Microtus oeconomus voles in Teletskaya 
population. For other designations, see Fig 4
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The prevalent view of most contemporary 
papers is that the asymmetries in the early 
development stages are largely due to the 
contribution of internal cytogenetic factors. This 
is supported by the finding of specific genes 
responsible for establishing the body left-right 
axes of the vertebrate embryo. They are key 
components of the signaling cascade which is 
responsible for the formation of this axis, and 
also the morphological asymmetry of visceral 
organs (Fujunaga, 1996; Wood, 1997; Burdine, 
Schier, 2000). A. Palmer (1996) has suggested 
that the asymmetries appeared in the later 
stages of ontogeny are mostly due to external 
environmental factors.

Our studies do not support this hypothesis. 
Developmental dynamics of the DA of three 
bilateral traits did not depend on external or 
intrapopulation factors, despite the fact that the 
absolute sizes of traits are affected by a number 
of factors (Table 4). Similar results were obtained 
early (Kovaleva, Faleev, 1994).

The DA trajectories for all the set of traits 
before sexual maturation start are similar in 
males and females. This similarity allowed us 
to put forward the hypothesis that the two sexes 
have a common genetic program during its 
establishment in ontogeny. In the period of sexual 
maturation asymmetry increases and then DA 
trajectories of these organs are different in males 
and females. 

Reasons for the divergence of developmental 
trajectories of the investigated traits are not 
accidental, and they are in good agreement with 
the Geodakian’s evolutionary theory of sex 
(Geodakian, 1991). A trait changes only in males 
over many generations for diclinous forms due to 
replacement from stabilizing selection to moving 
one. Females keep the old value of trait. The trait 

evolution trajectory bifurcates into male and 
female branches. This is a divergent phase of trait 
evolution. Genetic sexual dimorphism arises in 
such a way.

Conclusion

DA of morphological traits is perhaps more 
widespread than it is generally thought. It may be 
formed both at the early and later development 
stages and, contrary to the Palmer’ hypothesis 
may be not dependent on environmental factors. 

Developmental approach to the study of 
the DA formation reveals its dynamic character. 
Although each trait has its own dynamics DA in 
ontogeny, usually DA increases in the period of 
sexual maturation. Uncoordinated development 
of the sides in this period seems to be associated 
with an increase in intensity of developmental 
processes. Our study argues that sexual 
dimorphism appears at the later developmental 
stages. Its manifestation is consistent with 
Geodakian’s evolutionary theory of sex.

Evolutionary significance of the DA is 
to increase both short-term individual fitness 
and long-term population adaptive capacity. 
Developmental approach to the study of 
morphological and functional asymmetries in 
animals opens new possibilities for the study of 
evolutionary processes.
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Направленная асимметрия  
морфологических признаков  
в течение постнатального онтогенеза  
у полевки-экономки Microtus oeconomus Pall.  
(Rodentia, Cricetidae)
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Проанализирован материал по изменчивости билатеральных морфологических признаков 
полевки-экономки Microtus oeconomus, собранный в течение 25 лет (1982–1992, 1994–2005, 
2009, 2010). Выявлена направленная асимметрия (НА) морфотипов коренных зубов, веса 
надпочечников и почек, а также длины задней лапы. Показано, что НА может формироваться 
как на ранних, так и на поздних стадиях онтогенеза и, по-видимому, имеет четкую 
генетическую детерминацию. Кроме того, НА каждого метрического признака имеет свою 
собственную онтогенетическую траекторию, которая не зависит от факторов среды и 
динамики численности популяции. В период полового созревания происходит нарастание НА 
всех метрических признаков, предположительно связанное с нарастанием напряженности 
процессов развития. Показано, что половой диморфизм НА формируется на поздних 
стадиях онтогенеза, что хорошо согласуется с эволюционной теорией пола В.А. Геодакяна. 
Эволюционное значение НА заключается в повышении адаптивных возможностей как 
отдельного организма, так и всей популяции. Онтогенетический подход к исследованию морфо-
функциональных асимметрий у животных открывает новые возможности для исследования 
эволюционных процессов.

Ключевые слова: Microtus oeconomus, направленная асимметрия, морфотипы зубов, вес почек 
и надпочечников, длина лап, условия среды, динамика численности.


