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MODEL PREDICTIVE CONTROL FOR DISCRETE SYSTEMS
WITH STATE AND INPUT DELAYS

The paper deals with Model Predictive Control synthesis based on the system out-
put tracking with input and state delays. Input and state constraints are taken into
account in MPC problem solving. A prediction is carried out on the base of object
states estimation that is obtained by the Kalman filter. The criteria function is as-
sumed to be convex quadratic.
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One of the modern formalized approaches to the system control synthesis based on
mathematical methods of optimization is control methods using predictive models —
Model Predictive Control (MPC).

his approach began to develop in the early 1960s. It was developed for equipment
and process control in petrochemical and energy industries for which the application of
traditional synthesis methods was extremely complicated according to mathematical
model’s complication. During the last years application was considerably extended cov-
ering technologic fields [1], economic system control [2], inventory control [3] and in-
vestment portfolio control [4].

The results of this paper extend the results of the paper [5].

1. Problem Statement

Suppose the object is described by the following state-space system of linear-
difference equations

X1l :Axt+zAixt—i+B”t—h +W,, X, =%, (k=-7r,0), u;=u;, (i=-h,-1), )
i=1

vy, =Hx, +v,, 2)
v, =Gx,. 3)

Here x, e R" (x,=%,, t=-r,..,—1,0, X, is considered to be given) is the object state,
u, € R™ is the control input (u, =u, , t = —h,~h+1,....~1. u, is given), y, e R” is the
output (which is to be controlled), y, € R is the observation (measured output), 7, &
are the state and input delay values respectively. Further, the state noise w, and meas-
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urement noise v, are assumed to be Gaussian distributed with zero mean and covariances
W and V respectively, i.e.

Mi{wwi }=W3, ., My }=V8,,
where 3, , is the Kronecker delta. This model is used to make predictions about plant

behavior over the prediction horizon, denoted by N, using information (measurements
of inputs and outputs) up to and including the current time .
It is supposed the plant operates under the constrained conditions:

a SS]X,S ay, (4)

O1(xr-1) < Soutr i < @o(x1-p) (5)
Here S| and S, are structural matrices that are composed of zeros and units, identifying
constrained components of vectors x;, and u;; a;, ay, ©1(x;), @(x;) are given constant
vectors and vector-functions.
The problem is to determine an acting strategy on the base of the observation v, ac-
cording to which the output vector of the system y, will be close to the reference taking
into account constraints on the state and input.

2. Prediction

With the Gaussian assumptions on state and measurement noise it is possible to
make optimal (in the minimum variance sense) predictions of state and output using a
Kalman filter, see e.g. [6].

Let fci‘ ; and j}il ; be estimates of the state and output at time / given information up

to and including time j where j < i. Then

B
Xyl = Axt|t—1 + ZAixt—z]t—i—l +Bu,_, +K, (v, - th\t—l) > X1 = X k=-r,0,
i=1

J +e = G)%Hl\t >
T T -l
K,=APH (HEH +V) ,

P

+1 =

W+APA" - APH"(HPH" +V) HPA", B, = P, (6)
where P, is the given initial value of the variance matrix. Equation (6) for P, is known

as the discrete-time Riccati-equation.

MPC usually requires estimates of the state and/or output over the entire prediction
horizon N from time ¢ + 1 until time ¢ + N, and can only make these predictions based
on information up to and including the current time 7. Equations (6) can be used to ob-
tain %, , ., - Optimal state/output estimates from time ¢ + 2 to ¢ + N can be obtained

as follows

B
Xevirle = Axt+i|t + zijHi—j\t—j—l + But—hﬂ]z , i=LN, (7
=

j}t-%—i\t =G )et+i|t , i=LN. (3

In the above the notation u, ., is used to distinguish the actual input at time #+i,
namely u, ,;, from that used for prediction purposes, namely u, ..
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Equation (7) can be expanded in terms of the initial state X, ;, and future control

actions u,_j., as follows

i-1 r i-1
X gidla i—k-1 . i—k-1 .
Sy = A Sy + LAY A g+ AT By i=LN. (9

k=1 =l k=1

Now in terms of predicting the output, equation (8) can be expanded in terms of the

above expression for X,,;,, which results in a series of equations that provide optimal

output predictions. The key point to note is that each output prediction is a function of

the initial state x,,,, and future inputs u only:

t+1)¢ t—h+ilt

i—1 r i—1

n i—1 A i—k—1 A i—k—1 . T AT

Praiy = GA' xHW—i-G;A’ Z;A_jxt+k7_i‘t7_i71+GkZ:‘Al Bu oy » i=LN. (10)
= = -

This series of prediction equations can be stated in an equivalent manner using ma-
trix vector notation. Denote

R £t+1|t R j}tﬂ\t ”t—h+l|t
X, = : , Y= : , U= : R
XNt Yi+Nit Ut e Nie
E, G
4 G4 R )Act+l—i\t—i .
Y=| 4 |, A=| G4 |, X'=| + |, i=Lr,
: )ACHN—ilt—i
AN—I GAN—I
[0 0 0 0 0 0 0 0
4, 0 0 - 0 G4, 0 0 - 0
PO=| A4, 40 0|, A'=| G44 G4 0 - 0],
AV 24, ANP4 4 0 GAN? 4, GANT 4 - G4 0
[0 0 0 .. 0 0 0 0 ... 0
B 0 0 - 0 GB 0 0 - 0
P=| 4B B 0 - 0|, ®=| GA4B GB 0 0. (11)
| AN?B 4AVPB .. B 0 GA" B GAVPB .- GB 0

Here E, is the n-by-n identity matrix. Then the predictive model (9)-(10) can be ex-
pressed as

,
> A 00
X, =Wk, + Y WX +PU,_, ,

i=l

Y, =A%,y +> A X+ DU, . (12)
i=1
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3. Synthesis of Model Predictive Control

In order to solve the posed problem the following criterion is used as the criteria
function

o3

. _» 2
Veske = Ve "c + ||ut—h+k|t Uk " D} > (13)

where C > 0, D > 0 — weighing matrices.

In the case when the reference trajectory y,,; is unknown for £ > 0 it seems reason-
able to assume that y,,, =7¥,, i.e. the same reference point is held throughout the pre-
diction horizon.

The summation terms in (13) can be expanded to offer a quadratic objective function

in terms of %,,;, and U, Let

Y+l

|

Yi+N

Then using (12) there is the following expression

1Y, . I T,
EZ yt+k\t_yt|| :E Y, _Yt"E =
k=1 C
1 - — &0 p -
=EU}_ J@TCOU,_, +UL [®TCA%,,, +D'CY A)X) -DTCY]+¢,  (14)

i=1

where ¢ is a constant term that does not depend on U, or X, and C is given by

c 0 : 0
0o 0 : C
In a similar manner
| 2o
T 5 T
EZ”ut—thk\t U pk—1 " = EUt—hD Uip =t Dy + ¢, (15)
k=l D
where c; is a constant term that does not depend on u, . (k = I,_N ) and D is given by
2D -D 0 : 0
-D 2D -D : 0
o -+ -D 2D -D
o - 0 -D 2D

Combining the above the criteria function can be expressed as

1
J(t) =5U,T7hFU[7h +U f+es. (16)
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Here c; is the combination of previous constant terms ¢; and ¢, and may be safely
ignored. The terms F and fare given by

fctﬂ\t D”x—h
F=0"Co+D, f=T| Y AX) |- ? ,T=[@'CA @'C -o'C].
i=1 !
7 0

t

In the absence of constraints an analytical solution of the posed problem can be ob-

tained from the condition

=0 using vector derivative formulas, see e.g. [7]:

t—h
aoJ o |1
= |:_UtThFUth+UtThf+C:|:
ou,, oU,_,L2
10(urFU,_ UL, oUt 1
LU SO Ay g Jepco. an
2 ou,_, ou,_, 2
As matrix F' is symmetric the equation (17) can be expressed as follows
FU,,;, +f= 0.
So, the criteria function can be expressed as
Du,_,
Ut*—h = _((DTE(D + 5)_1 (CDTéAfCH-ut - (DTGZ) - 0 >
0
and the optimal predictive control has the form:
u;—h+l\t =&, 0 - O)Ut*—h .

Optimization of the constrained model (1)-(5) can be realized numerically using
Matlab’s function named as «quadprogy.
4. Economic system control modelling

Consider the economic system control intended for goods production, storage and
delivery to consumers

,
9,0 = Ag, +2Aiqt—t Qe 4 =G, k=-1,0,
i=1

Zm =z +tBo_,—¢,_,+C,, zy=1%, (18)
where ¢, € R*, g;, is the i—typed consumer’s goods amount at the moment ¢ (¢ :L_T,

i=l,s ), zi, is the i-typed goods amount in the producer’s store, ®;, is the production of
the i-typed goods, @;, is the delivery volume of the i-typed goods. Vector Gaussian se-
quences &,, {, have the following characteristics: M{E,} =0, M{(,} =0,
M{EE ) = DX ML= B84 » M{E,C, 1 =0. The last vectors take into account

errors arisen from the model definition inaccuracy. Matrices 4 and B define the pro-
duction and consumption dynamics. It is supposed the time delays » and / are integer.
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The following constraints expressed as linear inequalities should be satisfied at each

moment:
Zimin <2t < Zmaxs 0 @), < Opax, 05 @, <z, (19)

The variables ®, and @, are considered to be the controlling inputs. The problem is to
determine an optimal control strategy for goods production, storage and delivery on the
base of the observation according to which the consumer’s goods amount g, will be
close to given one taking into account constraints (19).

The model of the economic system (18) with constraints (19) can be transformed
and expressed in terms of the model (1) with constraints (4) — (5) assuming n=2s. Let

A A E 0
el o 2ol el 8
t t—h s s

z 0
W, :[Et:|, W=|:O ,::|, A1 = Zmin, A2 = Zmax, Sl :[0 ES], (Pl(xt):()’
t =

Sz=[%v£}a¢ﬂ%)=[w4 }

max

The optimization problem is solved at each time interval. In order to solve the prob-
lem of criterion (16) minimization numerically in the Matlab code it is necessary to ex-
press constraints in terms of matrixes and vectors. Then the constraint on the production

O S Oy for the expanded system is the following one

RU, , <Ewg,, . (20)
The constraint on the delivery volume ¢,_;,,;, < 2, is expressed as

-
. 0 %0
o SRV g + 2T XD) + RPU @n

i=1

RU

t

As ®,_y,y 20and ¢, ., =0, then

Uy 20. (22)
The constraints Z,,;, <z, 5 2,y = Zy, can be expressed in the form:
r
RlPUt—h < Ezmax _Rl (\P)%tﬂ\t + Z\P?Xlo) ’ (23)
i=1
p
z - 050
—RPU,_ ), < —Ez; +R (X, + Z\Pi X)) (24)

i=1

Matrices R, R,, E are assumed to be as follows

>

0 E 00 00
AVl S e S S
00 0 - 0E 00 0 - E 0 E,
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The simulation is based on the following initial data:

- 1075 0] - 0 0] 5 [03 0,1 0,1 L5

A — ) A — B — ) ) = P — N
{—0,25 0,9}’ ! {—0,1 0} [0,2 0,8}’ Zimin [O,J’ Zmax L,s}

0,8 0,2 o _ |1
(Dmax =|:0’7:|’ Z() =|:0,2:|’ q() =|:0:|7 q =|:2:|’r=1:h=l,N=87H=E4’ WZO’

V = diag{0,0005; 0,0005; 0,0005; 0,0005}.
The simulation results are shown in Figures 1 — 3 as the plots of processes.

q, q,
2

1,5
1

0,5

0 5 10 15 20 25 ¢ 0 5 10 15 20 25 ¢

Fig. 1. The consumer’s amount of the good.

L, — 1 22,2

0 5 10 15 20 25 ¢ 0 5 10 15 20 25 ¢

Fig. 2. The goods amount in the producer’s store and the delivery volume of the goods.

(OF] (O]
08 Ti v i i i il F—F—————— A
0 A 0.6 o
0.4 0.4 §
02 ®minl 0.2 ®min2
= —7——= == ]
0 5 10 15 20 25 ¢ 0 5 10 15 20 25 ¢

Fig.3. The goods production.

Economic system modelling proved algorithm efficiency. It is shown the goal is
achieved; state and input constraints are satisfied under time delay condition.
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5. Conclusion

The Model Predictive Control of the system with state and input delays has been
developed, guaranteeing constraints satisfaction and feasibility. The solution of the
MPC synthesis problem is obtained. The extrapolator is offered to use in order to obtain
predicted values of the system output.
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