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Abstract — This paper analyzes the problems of management 

processes in socio-economic systems using colored Petri nets. The 

paper offers variants for formation of colored Petri nets. Relying 

on analysis of the properties of colored Petri nets, the paper 

offers net modeling algorithms based on direct and inverse 

language-preserving transformations of colored and classical 

Petri nets. The paper discusses the aspects and advantages 

offered by modeling of individual structures of management 

processes in socio-economic systems. 

Keywords — modeling, dynamic models, colored Petri nets, 

process management, socio-economic systems.  

I. INTRODUCTION 

In the majority of situations, representation of management 

processes in socio-economic systems reduces itself to 

modeling of business processes. Providing a comprehensive 

description of such processes requires a great number of 

models to be built using a variety of professional modeling 

languages. One of the most frequently used variants of a 

dynamic model is Petri nets (PN). Models of management 

processes in socio-economic systems are normally expected to 

be representative not only of their management structures, but 

also of their dynamic properties. Experience shows that 

classical (regular) PNs work well for modeling of simple 

systems. Enhanced modeling capacity is often achieved 

through extensions and modifications of common PN variants, 

for ex-ample, colored [1] Petri nets (CPN) [2, 3], E-nets [4], 

etc. 

The authors propose the use of a CPN variant for 

description of the dynamic properties of structures of socio-

economic process management, which offers a graphic 

representation of important information and have advantage 

over other CPN variants described in [1], where the model’s 

information content is presented in special tables.  

The paper analyzes the methods for CPN transformation 

that allow to preserve their dynamic properties (the modeling 

language). It demonstrates that transformation makes it 

possible to simplify the net structure while preserving the 

information content in CPN models of business processes. 

II.  DEFINITIONS OF COLORED PETRI NETS 

Modeling of business processes [5] in socio-economic 

systems using Petri nets requires the introduction of positions 

[1, 6] that are not images of process elements, but rather serve 

to regulate transition firings in the net. Thus, the formally 

similar elements in the model have different meanings, 

requiring additional verbal description, complicating the 

spatial structure of the model, and making its interpretation 

difficult [7]. Based on the terms [6], we shall define and 

introduce the notion of generalized Petri nets which make it 

possible to simplify the spatial structure of the model.  

Definition 1. A labeled (colored) Petri net (CPN) C is a 

quadruple: 

 ),O,I,T,P(C   

where  Np,,p,pP 21  is a finite set of positions, 

;0N  
 Mt,,t,tT 21  is a finite set of transitions, ;M 0  

;TP    

 PT:I  is the input mapping function for a set of 

transitions to labeled set of positions );I,,I,I(I L21  

 PT:O  is the output mapping function for a set of 

transitions to labeled set of positions; 

DL),O,,O,O(O L  21 ;  

 Ld,,d,dD 21  is a set of labels (colors). 

In 1D  the definition of Petri nets is consistent with [6]. 

The cardinal number of set P is number N, and the cardinal 

number of set T is number M. An arbitrary element of T is 

denoted by symbol ,t j  and an arbitrary element of P, by 

.N,i,pi 1  Position ip  is the input position for transition jt  

if L,l:l 1  is such that ).t(Ip jli   Position ip  is the 

output position for transition ,t j if L,l:l 1  is such that 

).t(Op jli   Inputs and outputs of transitions together are the 

body of labeled positions. 

Ratio of input position )t(Ip jli   from the l-th set of 

positions l)P(   for transition jt  is the number of times the 

position appears in the given transition set, and is denoted as 

 .)t(I,p# j
l

i  Similarly  )t(O,p# j
l

i  denotes the ratio of the 

output position in the l-th set. 
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Labeled Petri nets are best visualized through graphic 

representation. 

Definition 2. Graph G of a labeled Petri net is a directed 

bipartite multigraph: 

 ,A,VG   where  Sv,,v,vV 21  is a set of nodes, 

;VS   

      ra,,a,aA 21  is a set of labeled directed arcs;  

       ,d,v,va,Ar ekji    

where ,Vv,v kj  ,Dde   Ld,,d,dD 21  is a set of 

labels, .DL   

Set V can be split into two non-overlapping subsets P and 

T, with the property that ,TP,TPV    and for each 

directed labeled arc Aai   it is true that: if  ,d,v,va ekji   

then either Pv j   and ,Tvk   or Tv j   and .Pvk   

Marking  means the allocation (belonging) of labeled 

tokens to the Petri net positions. The number, position and 

labeling (color) of tokens change with execution of the Petri 

net. Tokens are used to control the execution of Petri nets. 

Definition 3. Marking  of a labeled Petri net 

)O,I,T,P(C   is a function that maps a set of positions into a 

set of vectors with nonnegative whole components. 

Definition 4. Marking  is a matrix of the following size: 

 ,:LN il  

where PN   and each il  belongs to a set of 

nonnegative whole numbers, .L,l,N,i 11    

Definition 5. A marked labeled Petri net ),C(M   is a 

combination of the structure of the labeled Petri net 

)O,I,T,P(C   and the marking , and can be recorded as 

).,O,I,T,P(M   

A labeled Petri net is executed in accordance with the 

number, labels and distribution of tokens in the net. A Petri 

net is executed by firing of transitions. A transition is fired by 

removing tokens from its input positions and forming new 

tokens which are placed in its output positions. A transition 

can only be fired if it’s enabled. 

Definition 6. Transition Tt j   in a marked labeled 

(colored) Petri net ),O,I,T,P(M   with marking 

 il  is enabled if )t(Ip j
l

i   fulfills the condition: 

  .L,l,)t(I,p# j
L

iil 1  

A transition is fired by removing the enabling tokens from 

its input positions, and then placing one token for each arc in 

each output position. Firing a transition changes marking  of 

the Petri net to a new marking .  If any transition position 

does not have sufficient, appropriately labeled tokens, the 

transition is not enabled and cannot be fired. 

Transition jt  in a marked labeled Petri net with marking 

 il  can be fired whenever it is enabled. Firing of an 

enabled transition jt  creates a new marking  il , 

definable by the following correlation: 

    .L,l,)t(O,p#)t(I,p# j
l

ij
l

iilil 1  

III. APPLICATION OF COLORED PETRI NETS 

Some publications [6, 8], when discussing the notion of 

Petri net languages, rely on the term labeled Petri nets, which 

also applies to transitions. In order to avoid any ambiguous 

interpretation of labeled transitions and labeled tokens, 

hereinafter we shall be discussing the coloring of arcs and 

tokens, which we will use in illustration of colored Petri nets. 

It should be noted that in construction of nets, the arcs that 

come into transitions determine the colors of the 

corresponding enabling tokens in all input positions, and the 

output arcs of a transition serve as colorants for the tokens that 

will appear in output positions of the transition when it is 

fired, if such transition is enabled. A transition is enabled if 

the lineup and colors of tokens in output positions match the 

lineup and colors of arcs that run into the transition [7]. 

Figures 1-4 show an example of colored Petri nets used to 

optimize a model structure where the problem requires the 

introduction of redundant elements.  

Firing of transition 3t  in Fig. 1 is possible if there are two 

tokens in position P, which can appear in position P as a result 

of one of the following sequences of transition firings: ;tt 11  

;tt 22  ;tt 21  .tt 12  

 
Fig. 1. Simulated simple transition firing, disregarding previous transition 

firings (single-position PN model). 

 
Fig. 2. Simulated simple transition firing, with consideration of previous 

transition firings (two-position PN model). 

 
Fig. 3. Simulated simple transition firing, with consideration of previous 

transition firings (three-position PN model) 

 
Fig. 4. Simulated simple transition firing, with consideration of previous 

transition firings (CPN model). 
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Position  P indicates some modeled object. The request for 

transition firing 3t  in variant 21tt  or 12tt  can be represented by 

models in Fig. 2 and 3. In the situation shown in Fig. 2, it is 

impossible to represent the modeled object with a single 

position, and we need to interpret various positions 1P  and 2P  

as attributable to one and the same object. The situation shown 

in Fig. 3 requires the introduction of buffer positions 1P  and 

.2P  in the model. Furthermore, the formally similar elements 

of the model (positions) develop different interpretations.  

In order to avoid the above problems and inconsistencies, 

CPN models should be a preferred option. In such case, the 

problem statement is fully resolved by the model itself (by 

adding colors a and b) without the introduction of any 

additional elements (Fig. 4).  

It is evident that using CPNs in system modeling makes it 

possible in some situations to simplify the spatial structure of 

CPN models and reduce the resources required to interpret 

them outside of the model. Accordingly, following the terms 

of [9], CPNs have a higher expressive power and a number of 

properties to be discussed further. 

IV. KEY PROPERTIES OF COLORED PETRI NETS 

Above we have discussed the definition of CPNs based on 

the introduction of multidimensional mapping functions I and 

O of the set of transitions T to 
P  sets of positions. In real 

process modeling, PN models are most often expected to 

demonstrate one of the three properties – safety, restriction, 

persistence – or a combination thereof. Let us examine the 

same properties of CPNs [8]. 

Definition 7. For a colored Petri net )O,I,T,P(C   with 

the initial marking 0  position Pp j   will be safe for color l 

),L,l( 1  if for any marking ,  achievable from ,0  it is true 

that .)p( i
l' 1  

Definition 8. A CPN  0 ,CM  is safe for color  l 

),L,l( 1  if each of its positions .Ppi   is safe for color l. 

Therefore, a CPN can be safe with respect to one of several 

colors, but not necessarily all colors, which opens new 

opportunities for interpretation and implementation of real system 

models. 

Definition 9. For a CPN  0 ,CM  position Ppi   will 

be K-safe for color l, if for any marking  achievable from 

,0  it is true that .K)p( i
l   If in this case ,KK   then 

position Ppi   is also К
’
-safe. 

Definition 10. A CPN  0 ,CM  is K-safe for color l, if 

each of its positions .Ppi   is K-safe for color l. 

We shall say that a CPN that is K-safe for color l is also 

restricted with respect of the same color. 

Definition 11. A Petri net  0 ,CM  is persistent with 

respect to color l, if for any marking  achievable from ,0  it 

is true that .)p()p(
Pp

i
Pp

i
l

ii




  

To fulfill this condition it is necessary and sufficient that 

for ,Tt j   which can be fired at least once, it is true that 

    ,)t(O,p#)t(I,p#
Pp

j
l

i
Pp

j
l

i

ii




           (2) 

i.e. the number of input and output positions from sets 

corresponding to color l for transition jt  should be equal. 

Otherwise, the number of tokens of that color would change 

after transition jt  is fired. 

Definition 12. CPN  0 ,CM  is safe if it is safe with 

respect to all l ( ,DL,l,l 1  D is a set of colors or a 

dimension of functions I and O). CPN  0 ,CM  is 

restricted if it is restricted with respect to all l. CPN 

 0 ,CM  is persistent if it is persistent with respect to all l. 

A CPN can be restricted and persistent not necessarily for 

all colors. Therefore, it makes it possible to create process 

models with the property of persistence, while separating 

process model components from the components that affect 

the progress of the process, but not necessarily pos-sess the 

property of persistence. That improves the models’ 

visualization and accuracy to the real processes, which serves 

to support the importance of study of this class of CPNs. 

Structural simplification (reduction of the number of 

positions) of a PN graph using colors, as demonstrated in this 

paper, is not the only effect of the CPN apparatus. The 

existence of language-equivalent regular PNs suggests that the 

approach is consistent and applicable when using CPNs. 

Moreover, it becomes possible, for the purpose of analysis of a 

specific class of systems, to minimize the effort associated 

with actual execution of the net. In such case, the dynamic 

properties of the system are studied through analysis of its 

structure. It offers the opportunity to give identical 

interpretation to identical elements of the model without any 

additional verbal description, which makes it possible to build 

models that provide a sufficient and accurate description of 

real processes in socio-economic systems. 

A CPN can be restricted and persistent not necessarily for 

all colors. Therefore, it makes it possible to create process 

models with the property of persistence, while separating 

process model components from the components that affect 

the progress of the process, but not necessarily possess the 

property of persistence. That improves the models’ visualization 

and accuracy to the real processes, which serves to support the 

importance of study of this class of CPNs. 

It must be emphasized that the properties of safety, 

restriction and persistence of a CPN are significantly 

determined by the initial marking ,0 i.e. with a certain initial 

marking 01  the properties of one and the same CPN 

model can show significant variation. For this reason, above, 

in discussion of the property of persistence with respect to any 

color, it is stipulated that condition (2) must be fulfilled for 
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such transitions t that can be fired at least once with the initial 

marking .0  At the same time, there can exist transitions t 

that do not satisfy condition (2) and cannot be fired even once 

with such initial marking .0  Nevertheless, such marked CPN 

will possess the property of persistence with respect to the color 

in question. Therefore, unless the activity of transition t is 

restricted, (2) shall be a sufficient yet not necessary condition 

of persistence. 

The property of transition activity can be another 

valuable aspect in the analysis of CPN models. Five levels of 

transition activity (0–4) are identified for PN models, based on 

the possible number of transition firings: whether the 

transition can be fired at all (level 0); whether the transition 

can be fired at least once (level 1), whether the transition can 

be fired a specified number of times (level 2), whether the 

transition can be fired an infinite number of times (level 3), 

whether the transition can be fired an infinite number of times 

at any moment (level 4). The authors do not offer specific 

definitions of the levels of CPN transition activity, since, as is 

shown below in paragraph 5, any CPN model can be put in 

correspondence with only one PN model, possessing a more 

complex spatial structure of elements than the CPN model, but 

an equivalent set of transitions (it should be noted, that an 

reverse assumption of a sole corresponding CPN model is false 

(see paragraph 6)). Therefore, the definitions will differ only 

in the dimensions of the  function. Due to the same reason this 

paper does not address the matters relating to the CPN 

languages (a language for PNs and CPNs is defined as a set of 

enabled sequences of transition firings), since mutually 

corresponding CPN model and PN model will be equivalent in 

terms of their language, resulting, specifically, from the 

equivalence of their sets of transitions. All PN language 

matters are equally applicable to CPN languages. The 

properties of CPN transition activity and language are too 

significantly determined by the initial marking .0  

Proceeding from the above, it follows that the problems 

of CPN analysis can be solved in the following order: 

1) development of a CPN model of a real process (the 

assumption is that in a number of situations such model offers 

better visualization and accuracy than a PN model); 

2) unambiguous transformation of the CPN model into a 

PN model following the algorithm described in paragraph 5; 

3) analysis of the resulting PN model utilizing the 

conventional methods applicable to Petri nets.  

It is possible, however, to restrict the class of CPN models 

used in order to attempt to solve the analysis problems directly 

using the CPN terms. 

V. METHOD OF COLORED PETRI NET TO REGULAR NET 

TRANSITION 

Let a colored Petri net be represented by a quadruple 

)O,I,T,P(C   (see formula (1)). 

The method for CPN to regular PN transition, as described 

below, is an iteration process, applied consecutively to each of 

positions ,Pp  and consists in step-by-step formation of set 

P and description of input I and output 
O functions of 

the corresponding PN, which we shall define as 

 ,O,I,T,PC    

where T

 is a set of transitions for C


, which coincide with 

the set of transitions for C, meaning that T

 = T. The state of 

set P

 at the i-th step will be P


[i]. The description of input 

function I

 for transition t shall be designated as I


[i](t), the 

description of input function O

 for transition t shall be 

designated as O

[i](t). The process can be described as a 

sequence of steps. 

Step 0. Let i = 0; P

[i] = ; I


 [i](t) = , O


[i](t) = , t 

 T

. 

Step 1. Let i := i + 1, if i > N, then skip to step 4. 

Step 2. Let jmjkjj t,,t,,t,t 21  be a set of transitions for 

which )t(Ip ik
l

i   or ),t(Op ik
l

i   i.e. for which position pi 

is an input or output position, where 

.m,l,m,k,Mm 11   

Let 



L

l
ili ),p(k

1

 

where 




 


otherwise.

assuch  if

 ,0

),( ,,1
)(

jk

l

i

il

tIpl
p  

In other words, ik is a number of colors of the arcs 

incoming to and outgoing from position .pi  Then 

 ],i[Pp]i[P
ik

j
ij 1

1















 



  where position ijp is added to 

set P at the i-th iteration. There is a total of ik  of such 

added positions. Index j corresponds to a certain color, but 

does not coincide with it if .1ik  If ip  contains a certain 

number of tokens of any color, i.e. ,0 nl then in the 

corresponding position ijp  an equal number of regular tokens 

is placed, which can be designated as follows:   

;n)p( ij   

  );t(]i[I)t(I)t(iI ij

L

l
ij

l
j  1

1















 



  

  ).t(]i[O)t(O)t(iO ij

L

l
ij

l
j  1

1















 




 

This procedure is applied to all transitions ,t jl  for which 

)t(Ip ijl
l

i   or ).t(Op ijl
l

i   

Step 3. Skip to step 1. 

Step 4. As a result, 

    ,CO,I,T,P]N[O],N[I,T],N[P    

where C  is a regular PN, ,MT,kP
N

i
i  






1
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 Tt,)t(I)t(I j

L

l
j

l
j 





1

and  

.Tt,)t(O)t(O j

L

l
j

l
j





 
1

 

This method is applicable to both marked and unmarked 

CPNs. A simplified example of application of the method is 

demonstrated on CPNs shown in Fig. 2 and Fig. 3. 

The next step is to demonstrate the language equivalence of 

CPN С and PN ,C  as it makes it possible to study the dynamic 

properties of 
C and extend the findings of such study to С.  

Definition 13. An elementary subnet 

  O,I,)p(Ot)p(It/t,pC i
l

ji
l

jjii   

of Petri net )O,I,T,P(C   is the collection of any 

position Ppi  of the net, all of its input and output 

transitions, i.e. transitions that satisfy )p(It i
l

j   and 

),p(Ot i
l

j   and the input I and output O functions of such 

transitions. 

The whole net is made of elementary subnets, which are such 

that  ,Ppi   .pi   

The decoloration algorithm is applied consecutively to each 

position, i.e. to each elementary subnet .Ci  An elementary 

subnet iC  has its own language ).C( i  It is evident that, if after 

decoloration an elementary subnet retains its language, the 

language of the whole net is retained as well. 

Theorem 1. Decoloration (decomposition) of an 

elementary subnet of CPN iC  does not change the language 

of the subnet. 

Proof of theorem 1  

Let iC be an elementary subnet with language ).C( i  

Application of the decoloration algorithm results in an 

elementary subnet 
iC  with language ).C( i

  It is necessary 

to demonstrate that ).C()C( ii
   

A set of allowed sequences of transition firings (a 

language) is determined by the trigger conditions for each 

transition and enabling conditions for transition firing. 

Decoloration preserves the set of transitions of the elementary 

subnet. Decoloration does not affect the activity of input 

transitions )p(It i
l

j  of position ip  of the elementary 

subnet, since their enabled status is determined by external 

factors. Thus, it only remains to be demonstrated that 

decoloration of an elementary subnet does not affect the 

enabled status of output transitions )p(Ot i
l

j   of 

position ip .  

The enabled status of a transition is determined by its 

input function. As prescribed by the second step of the 

decoloration algorithm, the input function of any transition it  

of an elementary subnet is defined as  

.)t(I)t(I
L

l
j

l
j 

















 
1

 

The total number of tokens required for the transition to 

fire and arcs incoming to the transition remains the same: 

;)p(Ot,)t(I)t(I
L

l
j

l
jj

l
j 



 
1

 

,)p()p(
L

l
i

l
i 



 
1

 

i.e. the conditions for firing of transition it  do not change 

with application of the decoloration algorithms, i. e. there is 

no change in language   of the Petri net: ).C()C( ii
  

The expression can be written for the whole net as 

 ,)C(f)C(   where  is the Petri net language, C is the 

colored Petri net, f is the decoloration algorithm. 

Therefore, application of transformation f to the CPN 

makes it possible, abstracting from particular interpretations of 

the CPN, to analyze the PN )C(f  relying on conventional 

methods. However, if С possesses the properties of partial 

safety, restriction, persistence with respect to a certain set of 

colors, )C(f  may not possess the same properties for the PN. 

VI. METHOD FOR REGULAR NET TO COLORED PETRI NET 

TRANSITION 

For the convenience of presentation, below is a discussion 

of the input and output functions of positions, rather than the 

input and output functions of transitions. 

Let a Petri net be represented by a quadruple 

)O,I,T,P(C   (see formula (1)). 

CPN 
C shall be defined as   O,I,T,P , where 

 .I,,I,II N21   

Function 
jI is defined only for position ,Ppi   

 ,,,,)( 21 jmjji
j tttpI   ;Mm   .,,, 21 NOOOO 

  

Function 
iO is defined only for position :Ppi    

  ;,,,,)( 21 MktttpO ikiii
i    

;;;),()( LDMTNPpp iii 
 D is a set of 

colors. 

CPN 
C  shall be defined as  ,,,,  OITP  where 

.1},{   PpP  A graph of this CPN consists of a set of 

transitions T, which coincides with the set of transitions of the 

original PN (Fig. 5.1), and one position p, with colored arcs 

incoming to and outgoing from it, linking position p to 

transitions (Fig. 5.2). Since each position ip in the original PN 

is put in correspondence with a unique color, then there are no 

multiple colored arcs in 
C  if there were no multiple arcs in 

the original PN. The equivalence problem of such CPN can be 

regarded as the equivalence problem (up to the symbols) of 
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input and output functions, which can also be useful for PN 

comparison. 

Following the reasoning presented in paragraph 5, in this 

case the language of Petri nets is also preserved: 

).()()(   CCC  

 
Fig. 5. Equivalence of PNs and CPNs1) original Petri net; 

2) CPN with a single position, equivalent to the original Petri net; 

3) CPN with three positions, equivalent to the original Petri net; 

4) PN non-equivalent to the CPNs; 
5) CPN with two positions, equivalent to the original Petri net. 

If the definition of 
C does not place the requirement that 

functions )( i
l pI  и )( i

l pO  should be defined only for 

,ppi   then graph 
C can have multiple colored arcs (Fig. 

5.3) when color b coincides with color c. Then, upon 

application of the method for CPN to PN transition (paragraph 

5), the CPN shown in Fig. 5.2 will correspond to the PN 

shown in Fig. 5.4. In order to avoid that, it is necessary to put 

identical colors in correspondence with the positions that have 

no intersecting sets of input transitions and intersecting sets of 

output positions. An alternative methods consists in such 

redefinition of P for C , that 1P  and, if ip and 

)ij(p j   belong to ,P
 then their output (input) sets of 

transitions corresponding to one color do not intersect (Fig. 

5.5). It should be noted, however, that input and output sets 

can intersect among themselves.  

Therefore, it follows from the above that different CPNs 

can have the same structure at the lower level. Specific colors, 

their combinations of the CPN structure convey the 

information in models of specific real systems or processes. 

These methods can be applied to CPNs and PNs with 

restricting arcs without any adjustments or additions. An 

interesting factor that should be noted is that the ratio of a 

restricting arc in Petri nets cannot exceed 1, while in colored 

Petri nets the number of restricting arcs linking the position to 

the transition can be more than 2, but their colors will not 

coincide. 

VII. ELEMENTS OF CPN-BASED CONTROL  

STRUCTURE MODELS 

PN-based modeling is discussed, among others, in [10, 11]. 

Structural simplification (reduction of the number of positions) 

of a PN graph using colors (CPN), as discussed in paragraph 

6, is not the only effect of the CPN apparatus. The existence of 

language-equivalent regular PNs suggests that the approach is 

consistent when using CPNs. Moreover, it becomes possible, 

for the purpose of analysis of a specific class of systems, to 

move away from actual execution of the net, which is a 

requirement in development of the accessibility tree or in 

recording of matrix equations. In this case, the dynamic 

properties of the system are studied through analysis of this 

structure. It offers the opportunity to give identical 

interpretation to identical elements of the model without any 

additional verbal description, which makes it possible to build 

models that provide a fuller and more accurate description of 

real processes. 

Models of business processes are often developed using the 

terms of the PN and CPN apparatus. Such models make it 

possible to describe not only the structure of the process, but 

its dynamics as well. A natural requirement is that formally 

identical elements of the model should correspond to the 

identical elements of the real system. In our interpretation, 

positions correspond to the conditions, the fulfillment of 

which results in selection of certain actions which will then be 

performed.  

In case of complex interaction between elements, 

additional positions need to be introduced in the PN model in 

order to reflect the subtle aspects that have to be taken into 

account in process management. Apart from hindering 

interpretation of the model, it complicates its spatial structure, 

negatively affecting the very process of model development, 

as the developers will need to solve the problems associated 

with graphical representation of the model. In order to 

eliminate these shortcomings, we have developed and studied 

one of PN expansions – CPNs. Here models are developed 

using the terms of CPNs from the start. A model of a business 

process developed in this way allows the developer to select 

abstract types of sub-processes which are then specified. A 

combination of such types is a specific implementation of the 

process execution rules, and together with the content of work 

stages is the model of the business process. 

It should be kept in mind, however, that we only deal with 

a model of the process. If we wish to discuss the activity of the 

net modeled, then in order to simplify its graphic 

representation, constructions that are similar with respect to 

the process structure can be represented in the model only 

once. If a CPN model of a business process structure is 

completed as a whole, it is possible to define transitions within 

the model, which will fire automatically as the net is executed, 

and transitions that must be fired from outside. As a general 

rule, the latter situations make it possible to resolve any 

contentions in the net. Such contentions are resolved through 

management of net execution, which ultimately is model 

management. 

Let us consider the most frequently used models of 
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substructures used to build general models of systems. A 

simplest example is a degenerated structure (Fig. 6).  

 
Fig. 6. Models of some management substructures 

Transition t  is the only output transition of position P and is 

fired upon fulfillment of the condition modeled by position P. 

The transition t  firing event is registered in position .P1  If 

further progress of the process requires a decision to be made, 

then the firing of transition t  can be interpreted as the 

decision-making procedure. 

Fig. 6 also shows some more complex structures where 

transition enabling conditions can change dynamically in the 

process of net execution. 

The PN and CPN apparatus makes it possible to develop 

models describing the system with a varying degree of detail. 

Every position and/or transition can be decompiled and 

represented as a subnet modeling the subprocess. 

VIII. CONCLUSION 
 

Analysis of models of socio-economic systems involves a 

broad spectrum of analysts having a variety of mathematical 

backgrounds. That is why one of the important criteria 

considered in selection of a business process model is its 

illustrative power. And that makes the Petri net apparatus 

particularly compelling for presentation of management 

processes in socio-economic systems.  

Structural simplification (reduction of the number of 

positions) of a PN graph using colors, as demonstrated in this 

paper, is not the only effect of the CPN apparatus. The 

existence of language-equivalent regular PNs suggests that the 

approach is consistent and applicable when using CPNs. 

Moreover, it becomes possible, for the purpose of analysis of a 

specific class of systems, to minimize the effort associated with 

actual execution of the net. In such case, the dynamic properties 

of the system are studied through analysis of its structure. It 

offers the opportunity to give identical interpretation to 

identical elements of the model without any additional verbal 

description, which makes it possible to build models that 

provide a sufficient and accurate description of real processes 

in socio-economic systems. 

This article is designed as part of the national project of the 

Ministry of Education and Science of the Russian Federation 

№ 3653 “Models, algorithms and software to support 

decision-making in risk management in the socioeconomic 

and industrial-technological system”. 
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