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Using hyperelliptic curves in cryptography requires the computation of the Jacobian
order of a curve. This is equivalent to computing the characteristic polynomial of
Frobenius χ(λ) ∈ Z[λ]. By calculating Cartier — Manin matrix, we can recover the
polynomial χ(λ) modulo the characteristic of the base field. This information can
further be used for recovering full polynomial in combination with other methods.
In this paper, we investigate the hyperelliptic curves of the form C1 : y2 = x2g+1 +
+ axg+1 + bx and C2 : y2 = x2g+2 + axg+1 + b over the finite field Fq, q = pn,
p > 2. We transform these curves to the form C1,ρ : y2 = x2g+1 − 2ρxg+1 + x and
C2,ρ : y2 = x2g+2−2ρxg+1 +1, where ρ = −a/(2

√
b), and prove that the coefficients of

the corresponding Cartier — Manin matrices for the curves in this form are Legendre
polynomials. As a consequence, the matrices are centrosymmetric and therefore, for
finding the matrix, it’s enough to compute a half of coefficients. Cartier — Manin
matrices are determined up to a transformation of the form S(p)WS−1. It is known
that centrosymmetric matrices can be transformed to the block-diagonal form by an
orthogonal transformation. We prove that this transformation can be modified to have
a form S(p)WS−1 and be defined over the base field of the curve. Therefore, Cartier —
Manin matrices of curves C1,ρ and C2,ρ are equivalent to block-diagonal matrices. In
the case of gcd(p, g) = 1, Miller and Lubin proved that the matrices of curves C1

and C2 are monomial. We prove that the polynomial χ(λ) (mod p) can be found in
factored form in terms of Legendre polynomials by using permutation attached to the
monomial matrix. As an application of our results, we list all possible polynomials
χ(λ) (mod p) in the case of gcd(p, g) = 1, g is from 2 to 7 and the curve C1 is over Fp
if
√
b ∈ Fp and over Fp2 if

√
b 6∈ Fp.

Keywords: hyperelliptic curve cryptography, Cartier — Manin matrix, Legendre
polynomials.

Introduction
Let Fq be a finite field, q = pn, p > 2. A hyperelliptic curve of a genus g over Fq is a

nonsingular curve given by an equation

C : y2 = f(x),

where f ∈ Fq[x], f is monic, deg f = 2g + 1 or deg f = 2g + 2.
Hyperelliptic curves were first proposed for use in cryptography by Koblitz [1]. Due to

index-calculus attacks on hyperelliptic curves [2 – 4], only curves with a small genus are now
considered in cryptography. In the more specific area of the cryptography on pairings, we are
only interested in curves over prime and possibly medium or big characteristic fields, since
in this case the security of cryptosystems relies on the discrete logarithm problem in finite
fields, which has quasi-polynomial complexity for finite fields with a small characteristic [5].

The hyperelliptic curve C has an associated group— its Jacobian JC(Fq), where all
computations take place. For applications in cryptography, we need to compute the order
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of JC(Fq). Computing the order of Jacobian is equivalent to computing characteristic
polynomial χq(λ) of the Frobenius endomorphism of JC , which is determined by zeta
function. If Nk = #C(Fqk), then zeta function is a generating function

Z(λ) := exp

(
∞∑
k=1

Nk

k
λk
)

=
L(λ)

(1− λ)(1− qλ)
,

where L(λ) ∈ Z[λ] is the L-polynomial, L(λ) = λ2gχq(1/λ), and we have #JC(Fq) = χq(1) =
= L(1).

Let f(x)(p−1)/2 =
(deg f)(p−1)/2∑

i=0

cix
i. Then Cartier — Manin matrix of the hyperelliptic

curve C is a matrix

W = (wij) =


cp−1 cp−2 . . . cp−g
c2p−1 c2p−2 . . . c2p−g
. . . . . . . . . . . .
cgp−1 cgp−2 . . . cgp−g

 .

Manin [6] showed that the characteristic polynomial of the matrix W is connected
with the polynomial χq(λ) in the following way. Let Wp = W ·W (p) · . . . ·W (pn−1), where
W (pk) = (wp

k

i,j), then
χq(λ) ≡ (−1)gλg|Wp − λIg| (mod p).

Cartier —Manin matrices can in general be computed by optimized algorithms from [7, 8],
which are faster than collecting coefficients after expansion of f(x)(p−1)/2. After computing
the polynomial χq(λ) mod p, we can use Hasse —Weil bound in combination with other
methods to recover full polynomial χq(λ).

In this work, we study hyperelliptic curves of the form

C1 : y2 = x2g+1 + axg+1 + bx

and
C2 : y2 = x2g+2 + axg+1 + b.

These curves are isomorphic to curves

C1,ρ : y2 = x2g+1 − 2ρxg+1 + x

and
C2,ρ : y2 = x2g+2 − 2ρxg+1 + 1

over the field K = Fq[
√
b]. Therefore, we can restrict the discussion to the curves C1,ρ

and C2,ρ and our results for polynomials χ(λ) hold over Fq if b is a square and over Fq2 if b
is not a square in Fq. These forms of curves are motivated by Jacobi quartics investigated
by N. Yui [9].

The curves C1 and C2 were first studied by Miller and Lubin [10, 11], who proved that
the Cartier —Manin matrices of these curves are the generalized permutation (monomial)
matrices.

F. Leprevost and F. Morain [12] expressed the number of points of these curves in terms
of certain modular functions, which can be efficiently computed for some special instances
of curves.

For g = 1 these curves are elliptic ones. It is known that the number of points of elliptic
curves in Legendre form for C1 and Jacobi form for C2 is congruent to Legendre polynomials
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(see [9, 13] for details). Here, we show that this can be generalized to g > 1 case and prove
that the number of points in JC1 and JC2 is congruent to an expression in terms of Legendre
polynomials.

The genus 2 case was investigated for use in cryptography in [14 – 16]. It was proved
that the genus 2 curves of the forms C1 and C2 have Jacobian isogenous to direct product
of elliptic curves. Some explicit formulas for zeta function and for χq(λ) were found.

In this paper, we list all the possibilities for the polynomial χq(λ) modulo prime p for
genus g from 2 to 7, p > 2, gcd(p, g) = 1, and the curve C1 over Fp if b ∈ Fp (Table 1)
and over Fp2 if b 6∈ Fp (Table 2). Our methods can also be applied to any genus and finite
field Fpn with gcd(p, g) = 1 and p > 2.

The rest of the paper is organized as follows. In section 1.1, we collect and prove
preliminary results for monomial matrices and their permutations. In section 1.2, we prove
necessary conditions for coefficients of Cartier —Manin matrices of C1 and C2 to be non-
zero. From this, we also obtain conditions for the matrix to be diagonal or anti-diagonal.

In section 2.1, we prove that non-zero elements of Cartier —Manin matrix of the curve C1

are Legendre polynomials and, as consequence, that the matrix is centrosymmetric. Using
this fact, we prove that Cartier —Manin matrix of the curve C1 is equivalent to a block-
diagonal matrix over the finite field Fq. In the case when the matrix is monomial with
an attached permutation σ, we show how the polynomial χq(λ) (mod p) can be found in
factored form by using this permutation and methods from Section 1.1. Section 2.2 contains
analogous results for the curve C2.

Tables 1 and 2 contain all the possible variants of the polynomials χ(λ) (mod p) for the
case of gcd(g, p) = 1, p > 2, and the curve C1 over the fields Fp and Fp2 .

1. Preliminary results
1.1. P e r m u t a t i o n s s p e c i f i e d b y c o n g r u e n c e

A matrix M of size n× n is a generalized permutation (or monomial) matrix if each its
column as well as each its row contains exactly one non-vanishing element. Every such a
matrix can be decomposed into the product of a diagonal matrix and a permutation matrix

M = diag(m1,m2, . . . ,mn)Pσ

for some permutation σ ∈ Sym(n). Consider the case when the permutation σ is defined
by a congruence modulo n.

Theorem 1. Let a, b, n be integers, n > 1, a 6≡ 1 (mod n), gcd(a, n) = 1, M =
= diag(m1,m2, . . . ,mn)Pσ be a monomial matrix, and σ be a permutation such that σ(i) ≡
≡ ai− b (mod n). Then

1) σs(i) ≡ asi− b
(
as − 1

a− 1

)
(mod n);

2) ord(σ) = ordn(a);

3) if dj = gcd(aj − 1, n) and bj = b

(
aj − 1

a− 1

)
, then the number of cycles in the

decomposition of the permutation σ into disjunct cycles equals

m =
1

ordn(a)

(
n+

∑
dj |bj

dj

)
, 1 6 j 6 ordn(a)− 1;
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4) if σ = σ1σ2 . . . σm is the disjunct cycles decomposition of σ, then the characteristic
polynomial χM(λ) of the matrix M factors in the following way:

χM(λ) =
m∏
j=1

(λ|σj | −mσj),

wheremσj is the product of all elements in the matrixM with indexes in the cycle σj.
Proof.

1) Let s = 1. Then σ(i) ≡ ai− b
(
a− 1

a− 1

)
(mod n). Let s+ 1 > 1. Then

σs+1(i) = σ(σs(i)) ≡ a

(
asi− b

(
as − 1

a− 1

))
− b ≡ as+1i− b

(
as+1 − 1

a− 1

)
(mod n).

So the formula is true by induction.
2) Let r = ordn(a). Assume that there exists j < r such that σj(i) = i for all i. Then

for all i, we have

(aj − 1)i ≡ b

(
aj − 1

a− 1

)
(mod n).

This congruence has solutions iff gcd(aj − 1, n) = dj|b
(
aj − 1

a− 1

)
; in this case, the number

of solutions is equal to dj.
Since r is the minimal integer such that ar ≡ 1 (mod n), we have aj 6≡ 1 (mod n).

Then dj < n and there exists integer j0 such that σj(j0) 6≡ j0 (mod n). This contradiction
proves our statement.

3) Cycles in the disjunct decomposition of the permutation σ correspond to orbits in
the action of the group 〈σ〉 on the set S = {1, . . . , n}.

The number of orbits can be calculated by Burnside’s lemma:

m =
1

|〈σ〉|

|〈σ〉|∑
j=1

#{i ∈ S : σj(i) = i} =
1

r

(
n+

r−1∑
j=1

#{i ∈ S : σj(i) = i}

)
.

The number of elements i such that σj(i) = i is equal to the number of solutions of the

congruence aji − b
(
aj − 1

a− 1

)
≡ i (mod n), which is dj = gcd(aj − 1, n) if dj

∣∣b(aj − 1

a− 1

)
and 0 otherwise. Therefore,

m =
1

r

(
n+

∑
dj |bj

dj

)
.

4) See [17, Theorem 3].

1.2. H y p e r e l l i p t i c c u r v e s o f t h e f o r m y2 = xt + axs + bxm

The next lemma gives some necessary conditions for coefficients of the Cartier —Manin
matrix of a named form curve to be zero.

Lemma 1. Let C : y2 = xt + axs + bxm be a genus g hyperelliptic curve over finite
field Fq, q = pn, p > 2, t ∈ {2g+2, 2g+1}, m < s < t, m ∈ {0, 1} and d = gcd(t−m, s−m).
Let W = (wi,j), 1 6 i, j 6 g, be the Cartier —Manin matrix of the curve C. Then wi,j = 0
for all i, j such that ip− j 6≡ m(p− 1)/2 (mod d).
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Proof. We have

wi,j = [xip−j](xt + axs + bxm)(p−1)/2 = [xip−j−m(p−1)/2](xt−m + axs−m + b)(p−1)/2 =

= [xip−j−m(p−1)/2]
∑

k1+k2+k3=(p−1)/2

(
(p− 1)/2

k1, k2, k3

)
ak2bk3x(t−m)k1+(s−m)k2 =

∑
k1,k2,k3

(
(p− 1)/2

k1, k2, k3

)
ak2bk3 ,

where sum goes all k1, k2, k3, which satisfy the system of equations{
k1 + k2 + k3 = (p− 1)/2,

(t−m)k1 + (s−m)k2 = ip− j −m(p− 1)/2.

The second equation has a solution in integers k1, k2 if and only if gcd(t−m, s−m) divides
ip− j −m(p− 1)/2. Otherwise, the system has no solutions and we get wi,j = 0.

From this lemma, we obtain some sufficient conditions for the Cartier —Manin matrix
to be diagonal or anti-diagonal.

Theorem 2. Let C : y2 = x2g+1 + axg+1 + bx be a genus g hyperelliptic curve over
the finite field Fq and W be the Cartier —Manin matrix of this curve. Then

1) W is a diagonal matrix if one of the following conditions holds:
a) g is even and p ≡ 1 (mod 2g);
b) g is odd and p ≡ 1 (mod g).

2) W is a anti-diagonal matrix if one of the following conditions holds:
a) g is even and p ≡ −1 (mod 2g);
b) g is odd and p ≡ −1 (mod g).

Proof.
1) Let g be even and p ≡ 1 (mod 2g). Then p = 1+2gm for some integerm. By Lemma1

elements of matrix W can be non-zero only if g|(ip− j− (p− 1)/2) = i(1 + 2gm)− j− gm,
i.e. should be i ≡ j (mod g). Since 1 6 i, j 6 g, we get i = j.

Let g be odd and p ≡ 1 (mod g). Since gcd(g, 2) = 1, ip− j− (p−1)/2 ≡ i− j (mod g)
and i ≡ j (mod g).

2) The proof is similar to 1.

2. Main results
2.1. C u r v e s o f t h e f o r m y2 = x2g+1 + axg+1 + bx

The genus g hyperelliptic curves of the form C1 : y2 = x2g+1 + axg+1 + bx over the finite
field Fq are isomorphic over Fq[

√
b] to

C1,ρ : y2 = x2g+1 − 2ρxg+1 + x, ρ = − a

2
√
b

via isomorphism
(x, y) 7→

(
b1/(2g)x, b(2g+1)/(4g)y

)
.

Let K = Fq[
√
b]. If b is a square in Fq, then K = Fq, otherwise K ∼= Fq2 .

First, we proof that the coefficients of the Cartier —Manin matrix W of the curve C1,ρ

correspond to the Legendre polynomials.
Theorem 3. Let C1,ρ : y2 = x2g+1 − 2ρxg+1 + x be a genus g hyperelliptic curve over

the finite field Fq and W = (wi,j) be the Cartier —Manin matrix of C1,ρ. Then
1) wi,j = 0, if ip− j 6≡ (p− 1)/2 (mod g);
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2) wi,j ≡ P(ip−j)/g−(p−1)/(2g)(ρ) (mod p), otherwise.
Proof.
1) The statement follows from Lemma 1.
2) Let ip− j ≡ (p− 1)/2 (mod g) and therefore g|(ip− j − (p− 1)/2). We have

wi,j =
[
xip−j−(p−1)/2

]
(x2g − 2ρxg + 1)(p−1)/2.

Making substitution z = xg, we get

wi,j =
[
z(ip−j)/g−(p−1)/(2g)

]
(z2−2ρz+1)(p−1)/2 ≡

[
z(ip−j)/g−(p−1)/(2g)

] 1√
z2 − 2ρz + 1

(mod p).

Note that the generating function of the Legendre polynomials has the form

∞∑
k=0

Pk(x)zk =
1√

z2 − 2xz + 1
.

From this, it follows that wi,j ≡ P(ip−j)/g−(p−1)/(2g)(ρ).

In many cases, the Cartier —Manin matrix of the curve C1,ρ has some special forms.
We collect and prove these ones in the following theorem.

Theorem 4. Let y2 = x2g+1 − 2ρxg+1 + x be a genus g hyperelliptic curve over the
field Fq and W be the Cartier —Manin matrix of the curve. Then matrix W is

1) centrosymmetric in Fq;
2) monomial, if gcd(p, g) = 1;
3) diagonal, if one of the following conditions holds:

a) g is even and p ≡ 1 (mod 2g);
b) g is odd and p ≡ 1 (mod g);

4) antidiagonal, if one of the following conditions holds:
a) g is even and p ≡ −1 (mod 2g);
а) g is odd and p ≡ −1 (mod g).

Proof.
1) By Theorem3, when g|(ip− j − (p− 1)/2) we have

wi,j ≡ P(ip−j)/g−(p−1)/(2g)(ρ) (mod p).

From congruence properties of the Legendre polynomials [18, (5.9)], we get

Pp−1−m(ρ) ≡ Pm(ρ) (mod p), 0 6 m 6 p− 1.

So

wi,j ≡ P(ip−j)/g−(p−1)/(2g)(ρ) ≡ Pp−1−(ip−j)/g+(p−1)/(2g)(ρ) ≡
≡ P((g−i+1)p−(g−j+1))/g−(p−1)/(2g)(ρ) ≡ wg−i+1,g−j+1 (mod p).

2) If j is fixed and gcd(p, g) = 1, then the congruence ip − j ≡ (p− 1)/2 (mod g) has
only one solution for i and since 1 6 i 6 g, there is only one j. Therefore, in every row,
only one non-zero element is possible. Similarly, we can show that in every column, there
can be only one non-zero element. From this, it follows that W is a monomial matrix.

3,4) See Theorem2.
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It’s known that the set of centrosymmetric matrices and the set of monomial matrices
are closed under multiplication of matrices. Note that ifW is centrosymmetric (monomial),
then W (pk) is also centrosymmetric (monomial). Therefore matrix Wp is centrosymmetric
(monomial), if W is centrosymmetric (monomial).

For centrosymmetric matrices, there is an orthogonal transformation [19], which
transforms such matrices to block-diagonal form. If the size of a centrosymmetric matrix is
even, than this transformation is defined by the non-singular orthogonal matrix

Q =

√
1

2

(
I −J
J I

)
.

And for odd case

Q =

√
1

2

I 0 −J
0
√

2 0
J 0 I

 .

Note that this transformation is defined over Fq[
√

2] and a different transformation is
required for Cartier —Manin matrices. The Cartier —Manin matrix W of any hyperelliptic
curve is determined up to transformation of the form S(p)WS−1, where S is a non-singular
matrix [20, Proposition 2.2]. The following theorem shows that, by modifying transformation
for centrosymmetric matrices, we can choose S in such way that the resulting matrix is
block-diagonal and defined over Fq.

Theorem 5. Let C1,ρ be a genus g hyperelliptic curve, defined by equation y2 =
= x2g+1 − 2ρxg+1 + x over the finite field Fq, charFq = p > 2. Then the Cartier —Manin
matrix W of C1,ρ is equivalent to a block-diagonal matrix.

Proof. Let W =

(
W1 W3

W2 W4

)
if g is even, and W =

W1 a W3

b c d
W2 e W4

 if g is odd. Since,

by Theorem4, the matrix W is centrosymmetric in Fq, then W can be written in the form

W =

(
W1 JW2J
W2 JW1J

)
for even g and W =

W1 a JW2J
b c bJ
W3 Ja JW1J

 if g is odd.

Consider the transformation of the form S(p)WS−1.
1. If
√

2 ∈ Fq, then we choose S = Q and have S(p)WS−1 = Q(p)WQT. We need to show
that this transformation transforms matrix to the block-diagonal form.

If genus g is even, then Q(p) =

(
1

2

)(p−1)/2

Q and

Q(p)WQT =

(
1

2

)(p−1)/2(
W1 − JW2 0

0 J(W1 + JW2)J

)
.

If genus g is odd, thenQ(p)WQT =

(
1

2

)(p−1)/2
W1 − JW2 0 0

0 2(p−1)/2c
√

2
p
b

0
√

2Ja J(W1 + JW2)J

 .

2. Let
√

2 6∈ Fq, choose S =

I 0 −J
0 1 0
J 0 I

 for odd g and S =

(
I −J
J I

)
for even g.

Then we have S(p) = S, since p > 2, and S−1 =
1

2

 I 0 J
0 2 0
−J 0 I

 or S−1 =
1

2

(
I J
−J I

)
.
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Now, we have

S(p)WS−1 =

W1 − JW2 0 0
0 c bJ
0 2Ja J(W1 + JW2)J


for odd case and

S(p)WS−1 =

(
W1 − JW2 0

0 J(W1 + JW2)J

)
for even case.

Note that in this case the matrix S is not orthogonal. If the orthogonality of S is not
required, this transformation can also be applied to the case

√
2 ∈ Fq.

Applying this transformation to Wp, we get a formula for the characteristic polynomial
of the matrix Wp and therefore for χq(λ).

Corollary 1. Let C1,ρ : y2 = x2g+1 − 2ρxg+1 + x be a genus g hyperelliptic curve over
the field Fq, q = pn, p > 2 and the matrix W be written in the above form. Then

1) if g is even,

χq(λ) ≡ (−1)gλg|(W1 + JW2)p − λI||(W1 − JW2)p − λI| (mod p);

2) if g is odd and p|g,

χq(λ) ≡ (−1)gλg

∣∣∣∣∣
(
P(p−1)/2(ρ) bJ

2Ja J(W1 + JW2)J

)
p

− λI

∣∣∣∣∣ |(W1−JW2)p−λI| (mod p);

3) if g is odd and p 6 | g,

χq(λ) ≡ (−1)gλg(NFq/Fp(P(p−1)/2(ρ))−λ)|(W1+JW2)p−λI||(W1−JW2)p−λI| (mod p).

If the matrix W is monomial, we can go further.
Theorem 6. Let W be the Cartier —Manin matrix of the curve C1,ρ over the finite

field Fq, gcd(p, g) = 1; σ be a permutation such that σ(i) ≡ ip − (p− 1)/2 (mod g), and
P (σ) be the permutation matrix for σ. Then

1) if g is even,

W= diag(w1,σ(1), . . . , wg/2,σ(g/2), wg/2+1,g/2+1−σ(g/2), wg/2+2,g/2+1−σ(g/2−1), . . . , wg,g+1−σ(1))P (σ);

2) if g is odd,

W = diag(w1,σ(1), . . . , w(g−1)/2,σ((g−1)/2), w(g+1)/2,(g+1)/2,

w(g+1)/2+1,g+1−σ((g+1)/2−1), . . . , wg,g+1−σ(1))P (σ).

Proof. If gcd(p, g) = 1, then W is a monomial matrix, which can be factored
in the product of diagonal and permutation matrix: W = diag(w1,σ(1), . . . , wg,σ(g))P (σ).
By Lemma1, for non-zero elements of W , we have ip − j ≡ (p− 1)/2 (mod g). So the
permutation σ is defined as σ(i) ≡ ip − (p− 1)/2 (mod g). Since the matrix P (σ) is also
centrosymmetric, every i such that σ(i) ≡ ip− (p− 1)/2 (mod g) uniquely determines the
value of σ(g + 1− i), as σ(g + 1− i) ≡ g + 1− σ(i) (mod g).

If we know the decomposition of σn into disjoint cycles, we can factor the polynomial
χq(λ) in the following way.
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Theorem 7. Let C1,ρ : y2 = x2g+1−2ρxg+1 +x be a hyperelliptic curve over the finite
field Fq, q = pn, gcd(p, g) = 1 and W be the Cartier —Manin matrix of this curve. Then W
is the monomial matrix with the permutation σ such that σ(i) ≡ ip − (p− 1)/2 (mod g)
and Wp is a monomial matrix with the permutation σn such that σn(i) ≡ ipn(pn − 1)/2
(mod g). IfWp = (w′i,j) and σn = σ1σ2 . . . σm is the decomposition of σn into disjoint cycles,
then

χq(λ) ≡ λg
m∏
j=1

(λ|σj | −
|σj |∏
k=1

w′σj,k,σj,k+1
) (mod p),

where σj,k = jk for σj = (j1, . . . , j|σj |).
Proof. If W is the monomial matrix with the permutation σ, then, by multiplying

matrices, we obtain

Wp = (w′i,j) =

(
wp

n−1

σn−1(i),j

n−2∏
k=0

wp
k

σk(i),σk+1(i)

)
,

where σk are permutations with σk(i) ≡ ipk − (pk − 1)/2 (mod g) and w′i,j = 0 for all j 6=
6= σn(i). Therefore,Wp is a monomial matrix with the permutation σn(i) ≡ ipn−(pn − 1)/2
(mod g) and the result follows from the Theorem1.

In the case of the diagonal matrix, the formula can be made simpler.
Theorem 8. Let C1,ρ : y2 = x2g+1 − 2ρxg+1 + x be a genus g hyperelliptic curve over

the finite field Fq, q = pn, p > 2. Then
1) if g is even and p ≡ 1 (mod 2g),

χq(λ) ≡ λg
g/2∏
i=1

(λ−NFq/Fp(P(2i−1)(p−1)/(2g)(ρ)))2 (mod p);

2) if g is odd and p ≡ 1 (mod g),

χq(λ) ≡ λg(λ−NFq/Fp(P(p−1)/2(ρ)))
(g−1)/2∏
i=1

(λ−NFq/Fp(P(2i−1)(p−1)/(2g)(ρ)))2 (mod p).

2.2. C u r v e s o f t h e f o r m y2 = x2g+2 + axg+1 + b

The following curves of this form

C2 : y2 = x2g+2 + axg+1 + b,

C2,ρ : y2 = x2g+2 − 2ρxg+1 + 1

have the properties similar to the curves C1 and C1,ρ. We collect them in the following
theorem.

Theorem 9. Let C2,ρ be a hyperelliptic curve defined by the equation y2 = x2g+2 −
− 2ρxg+1 + 1 over finite field Fq and W = (wi,j) be the Cartier —Manin matrix of C2,ρ.
Then

1) wi,j = 0 if ip 6≡ j (mod g + 1);
2) wi,j ≡ P(ip−j)/(g+1)(ρ) (mod g + 1);
3) W is a centrosymmetric matrix in Fq;
4) W is a monomial matrix if p 6 | (g + 1);
5) W is a diagonal matrix if p 6 | (g + 1) and p ≡ 1 (mod g + 1);
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6) W is an anti-diagonal matrix if p 6 | (g + 1) and p ≡ −1 (mod g + 1);
7) there is a transformation of the form S(p)WS−1 where S is non-singular, which

transforms W to a block-diagonal form;
8) if g is even,

χq(λ) ≡ (−1)gλg|(W1 + JW2)p − λI||(W1 − JW2)p − λI| (mod p);

9) if g is odd and p|g,

χq(λ) ≡ (−1)gλg

∣∣∣∣∣
(
P(p−1)/2(ρ) bJ

2Ja J(W1 + JW2)J

)
p

− λI

∣∣∣∣∣ |(W1−JW2)p−λI| (mod p);

10) if g is odd and p 6 | g,

χq(λ) ≡ (−1)gλg(NFq/Fp(P(p−1)/2(ρ))−λ)|(W1+JW2)p−λI||(W1−JW2)p−λI| (mod p).

Proof.
1) It follows from Lemma1.
2) Let (g + 1)|(ip− j) and t = xg+1. Then

wi,j=[xip−j](x2g+2−2ρxg+1+1)(p−1)/2=[t(ip−j)/(g+1)](t2−2ρt+1)(p−1)/2≡P(ip−j)/(g+1)(ρ) (mod p).

3) wi,j ≡ P(ip−j)/(g+1) ≡ Pp−1−(ip−j)/(g+1) ≡ wg+1−i,g+1−j.
4) If gcd(p, g + 1) = 1, then the congruence ip ≡ j (mod g + 1) has only one solution

for each i, j, and since 1 6 i, j 6 g it uniquely determines i, j.
5, 6) These follow from congruences i ≡ j (mod g + 1) and i ≡ −j (mod g + 1) for

1 6 i, j 6 g.
7–10) The needed transformations are taken from the Theorem5.

Conclusion
We have proved that the Cartier —Manin matrices W for the curves C1,ρ and C2,ρ have

a very special form, namely, the coefficients of W are the Legendre polynomials, W is
centrosymmetric and is equivalent to a block-diagonal matrix. In the case gcd(p, g) = 1,
the matrices of C1 and C2 are monomial. Using this fact, we have proved (Theorem7)
that the polynomial χq(λ) modulo p can be computed in a factored form in terms of the
Legendre polynomials. The matrix symmetry can be used to speed up the algorithms for
computing the Cartier —Manin matrices, because it is enough to compute half of coefficients
to completely determine a matrix itself. As an application, we have listed all the possible
variants of the polynomial χp(λ) modulo p for the curve C1 over prime field (Table 1) and
over Fp2 (Table 2).

T a b l e 1

Hyperelliptic curves of the form C1,ρ : y2 = x2g+1 + axg+1 + bx
over the prime field Fp, p > 2, p 6 | g, Pm := Pm(ρ)

and b is a square
g Conditions χp(λ) (mod p)
2 p ≡ 1 (mod 4) λ2(λ− P(p−1)/4)2

2 p ≡ 3 (mod 4) λ2(λ2 − P 2
(p−3)/4)

3 p ≡ 1 (mod 3) λ3(λ− P(p−1)/2)(λ− P(p−1)/6)2

3 p ≡ 2 (mod 3) λ3(λ− P(p−1)/2)(λ2 − P 2
(p−5)/6)

4 p ≡ 1 (mod 8) λ4(λ− P(p−1)/8)2(λ− P(3p−3)/8)2

4 p ≡ 3 (mod 8) λ4(λ2 − P(p−3)/8P(3p−1)/8)2
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E n d of T a b l e 1
g Conditions χp(λ) (mod p)
4 p ≡ 5 (mod 8) λ4(λ2 − P(p−5)/8P(3p−7)/8)2

4 p ≡ 7 (mod 8) λ4(λ2 − P 2
(p−7)/8)(λ2 − P 2

(3p−5)/8)

5 p ≡ 1 (mod 5) λ5(λ− P(p−1)/2)(λ− P(p−1)/10)2(λ− P(3p−3)/10)2

5 p ≡ 2 (mod 5) λ5(λ− P(p−1)/2)(λ4 − P 2
(p−7)/10P

2
(3p−1)/10)

5 p ≡ 3 (mod 5) λ5(λ− P(p−1)/2)(λ4 − P 2
(p−3)/10P

2
(3p−9)/10)

5 p ≡ 4 (mod 5) λ5(λ− P(p−1)/2)(λ2 − P 2
(p−9)/10)(λ2 − P 2

(3p−7)/10)

6 p ≡ 1 (mod 12) λ6(λ− P(p−1)/12)2(λ− P(p−1)/4)2(λ− P(5p−5)/12)2

6 p ≡ 5 (mod 12) λ6(λ− P(p−1)/4)2(λ2 − P(p−5)/12P(5p−1)/12)2

6 p ≡ 7 (mod 12) λ6(λ2 − P(p−7)/12P(5p−11)/12)2(λ2 − P 2
(p−3)/4)

6 p ≡ 11 (mod 12) λ6(λ2 − P 2
(p−11)/12)(λ2 − P 2

(p−3)/4)(λ2 − P 2
(5p−7)/12)

7 p ≡ 1 (mod 7) λ7(λ− P(p−1)/2)(λ− P(p−1)/14)2(λ− P(3p−3)/14)2(λ− P(5p−5)/14)2

7 p ≡ 2 (mod 7) λ7(λ− P(p−1)/2)(λ3 − P(p−9)/14P(3p−13)/14P(5p−3)/14)2

7 p ≡ 3 (mod 7) λ7(λ− P(p−1)/2)(λ6 − P 2
(p−3)/14P

2
(3p−9)/14P

2
(5p−1)/14)

7 p ≡ 4 (mod 7) λ7(λ− P(p−1)/2)(λ3 − P(p−11)/14P(3p−5)/14P(5p−13)/14)2

7 p ≡ 5 (mod 7) λ7(λ− P(p−1)/2)(λ6 − P 2
(5p−11)/14P

2
(3p−1)/14P

2
(p−5)/14)

7 p ≡ 6 (mod 7) λ7(λ− P(p−1)/2)(λ2 − P 2
(p−13)/14)(λ2 − P 2

(3p−11)/14)(λ2 − P 2
(5p−9)/14)

T a b l e 2

Hyperelliptic curves of the form C1,ρ : y2 = x2g+1 + axg+1 + bx
over the field Fp2 , p > 2, p 6 | g, Pm := Pm(ρ), b is a square in Fp2

g Conditions χp2(λ) (mod p)

2 p ≡ 1 (mod 4) λ2(λ− P p+1
(p−1)/4)2

2 p ≡ 3 (mod 4) λ2(λ− P p+1
(p−3)/4)2

3 p ≡ 1 (mod 3) λ3(λ− P p+1
(p−1)/2)(λ− P p+1

(p−1)/6)2

3 p ≡ 2 (mod 3) λ3(λ− P p+1
(p−1)/2)(λ− P p+1

(p−5)/6)2

4 p ≡ 1 (mod 8) λ4(λ− P p+1
(p−1)/8)2(λ− P p+1

(3p−3)/8)2

4 p ≡ 3 (mod 8) λ4(λ− P p(p−3)/8P(3p−1)/8)2(λ− P p(3p−1)/8P(p−3)/8)2

4 p ≡ 5 (mod 8) λ4(λ− P p(p−5)/8P(3p−7)/8)2(λ− P p(3p−7)/8P(p−5)/8)2

4 p ≡ 7 (mod 8) λ4(λ− P p+1
(p−7)/8)2(λ− P p+1

(3p−5)/8)2

5 p ≡ 1 (mod 5) λ5(λ− P p+1
(p−1)/2)(λ− P p+1

(p−1)/10)2(λ− P p+1
(3p−3)/10)2

5 p ≡ 2 (mod 5) λ5(λ2 − P 2p
(p−7)/10P

2
(3p−1)/10)(λ2 − P 2p

(3p−1)/10P
2
(p−7)/10)(λ− P p+1

(p−1)/2)

5 p ≡ 3 (mod 5) λ5(λ2 − P 2p
(p−3)/10P

2
(3p−9)/10)(λ2 − P 2p

(3p−9)/10P
2
(p−3)/10)(λ− P p+1

(p−1)/2)

5 p ≡ 4 (mod 5) λ5(λ− P p+1
(p−1)/2)(λ− P p+1

(p−9)/10)2(λ− P p+1
(3p−7)/10)2

6 p ≡ 1 (mod 12) λ6(λ− P p+1
(p−1)/4)2(λ− P p+1

(p−1)/12)2(λ− P p+1
(5p−5)/12)2

6 p ≡ 5 (mod 12) λ6(λ− P p(p−5)/12P(5p−1)/12)2(λ− P p(5p−1)/12P(p−5)/12)2(λ− P p+1
(p−1)/4)2

6 p ≡ 7 (mod 12) λ6(λ− P p(p−7)/12P(5p−11)/12)2(λ− P p(5p−11)/12P(p−7)/12)2(λ− P p+1
(p−3)/4)2

6 p ≡ 11 (mod 12) λ6(λ− P p+1
(p−3)/4)2(λ− P p+1

(p−11)/12)2(λ− P p+1
(5p−7)/12)2

7 p ≡ 1 (mod 7) λ7(λ− P p+1
(p−1)/2)(λ− P p+1

(p−1)/14)2(λ− P p+1
(5p−5)/14)2(λ− P p+1

(3p−3)/14)2

7 p ≡ 2 (mod 7) λ7(λ− P p+1
(p−1)/2)(λ3 − P p+1

(p−9)/14P
p+1
(5p−3)/14P

p+1
(3p−13)/14)2

7 p ≡ 3 (mod 7) λ7(λ− P p+1
(p−1)/2)(λ3 − P p+1

(p−3)/14P
p+1
(3p−9)/14P

p+1
(5p−1)/14)2

7 p ≡ 4 (mod 7) λ7(λ− P p+1
(p−1)/2)(λ3 − P p+1

(p−11)/14P
p+1
(3p−5)/14P

p+1
(5p−13)/14)2

7 p ≡ 5 (mod 7) λ7(λ3 − P p+1
(p−5)/14P

p+1
(3p−1)/14P

p+1
(5p−11)/14)2(λ− P p+1

(p−1)/2)

7 p ≡ 6 (mod 7) λ7(λ− P p+1
(p−1)/2)(λ− P p+1

(p−13)/14)2(λ− P p+1
(3p−11)/14)2(λ− P p+1

(5p−9)/14)2

Our results were checked in Pari/GP and Sage.
A short information about these results were presented by the author on the conference

Sibecrypt’17 [21].
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