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Abstract—A transformation of a discrete-time martingale with conditionally Gaussian increments into a
sequence of i.i.d. standard Gaussian random variables is proposed as based on a sequence of stopping times
constructed using the quadratic variation. It is shown that sequential estimators for the parameters in AR(1)
and generalized first-order autoregressive models have a nonasymptotic normal distribution.

DOI: 10.1134/S1064562416060235

The role of sequential analysis methods in theoret-
ical and applied studies of stochastic processes has
increased in recent years. For the first time, the useful-
ness of sequential analysis for autoregressive processes
was shown in [1, 2] as applied to the estimation of the
drift coefficient of a diffusion process. Sequential
analysis is also successfully used in statistical inference
for discrete-time processes, thus improving the
asymptotic and nonasymptotic properties of classical
least squares estimators (LSE) and maximum likeli-
hood estimators (MLE) [3, 6, 7, 9, 11]. The goal of this
study is to prove one property of discrete-time martin-
gales with conditionally Gaussian increments, which
is then used to obtain nonasymptotic distributions for
sequential estimators of the parameter in AR(1).

1. TRANSFORMATION OF A MARTINGALE 
WITH CONDITIONALLY GAUSSIAN 

INCREMENTS

Theorem 1. Let  be a square integrable
martingale with a quadratic variation  such
that

(a) P ;

(b)  i.e.,
the -conditional distribution  is
a Gaussian distribution with parameters 0 and

.
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where inf{∅} , and the sequence of random variables
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and  are correcting multipliers, ,
determined by the equations

.

Then, for any ,  is a sequence of inde-
pendent standard Gaussian random variables.

Proof. First, we show that  is a Gaussian ran-
dom variable with parameters (0, 1), i.e., it has the
characteristic function

. (2)
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.

Since  a.s., we have

.

Here,  can be represented as

, (3)
where

;

.

Since  and ,

we have

. (4)

Calculating the repeated conditional expectations
and taking into account that the increments  have
a conditionally Gaussian distribution yields

.
Combining this equality and limit relation (4) with

(3), we derive formula (2), i.e., .
Now let us show that the characteristic function of

the random vector  for all 
has the form
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We have (see [4])

;

moreover,

(6)

.

Introducing the truncated times

and the sequence of random variables

,

we find

. (7)

Combining this relation with (6) yields (5). Theo-
rem 1 is proved.

Remark 1. The Gaussian property of the random
variable  seems to be a discrete analogue of a
well-known property of Ito stochastic integrals
stopped at a special time (see [2, Theorem 17.6]).

2. SEQUENTIAL ESTIMATION 
OF THE PARAMETER IN AR(1)

Consider some applications of Theorem 1 to
sequential estimation problems.

Let an observed process  be a first-order
autoregressive process AR(1)

, (8)

where  is the unknown parameter, , and 
is a sequence of independent standard Gaussian ran-
dom variables. The MLE (LSE) of  from the observa-
tions  has the form

. (9)

− −τ τ ∧
→ ∞

| = |
1 1

( ) ( )E[ ] lim E[ ]l l l l

l l

im h u im h u
n

n
e e^ ^

− −

−

τ ∧ τ =
=

ξ , ,
τ =

=

| = | χ

= | χ ;

∑

∑

1 1

1

( ) ( )
{ }

0

( )
{ }

0

E[ ] E[ ]

E[ ]

l l l l

l l

l

n
im h u im h u

n t t

t

n
h l t

t t

t

e e

e g

^ ^

^

τ

= +

ξ , , = α , Δ∑
1

( ) ( )
l

k k l

k t

ih l t h l M u
h

τ ∧ , = + , + , …1 2l N N t t

τ ∧

= +

ξ , , = α , Δ , = + ,∑ …

1

( ) ( ) 1
l N

N k k l

k t

ih l t h l M u N t
h

−ξ , , ξ , ,

→ ∞
| = | =

2

2( ) ( )E[ ] lim E[ ]
ul

Nh l t h l t
t t

N
e e e^ ^

1( )m h

≥1{ }n nx

−= θ + ε , ≥ , =1 01 0k k kx x k x

θ θ ∈ R ≥ε 1{ }k k

θ
, ,1 nx … x

−
=

−
=

θ =
∑

∑

1

1

2
1

1

ˆ

n

k k

k
n n

k

k

x x

x



678

DOKLADY MATHEMATICS  Vol. 94  No. 3  2016

KONEV

An unbiased sequential estimator for  in (8) with
guaranteed mean-square accuracy was constructed
in [8]. The sequential design is defined by the pair

, where

, (10)

and the estimator  was a modified LSE of the form

, (11)

where

(12)

with  determined by the equation

.

Intending to apply Theorem 1, we define a some-
what different sequential design for the estimation of 
in (8). Let

, (13)

where

,

while the stopping time  and the weighting coeffi-
cients  remain unchanged.

Theorem 2. Let the sequential design  be
defined by formulas (10) and (13). If  is an i.i.d.

, then, for all  and ,

,
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Proof. Substituting  from Eq. (8) into (13) yields
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where . Introducing the

martingale , we represent  in
the form

.

By Theorem 1, .
From this and (14), we obtain the assertion of The-

orem 2.
Corollary 1. For all  and ,

,

This inequality holds, since .

Remark 2. The nonasymptotic estimates for the
moments of estimate (9) are obtained in [3, 5].

3. SEQUENTIAL ESTIMATION 
OF THE PARAMETER IN AR(1): 

THE CASE OF VARIABLE VARIANCE

Let  be an AR(1) process with a variable
noise variance:

, (15)

where  is an i.i.d. , the random variable
 is independent of , ,  is a given

sequence of constant numbers, and .
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.

Theorem 3. Under condition (16), for all  and

.

Proof. Substituting  from Eq. (15) into (17) yields

. (18)

Consider the martingale

.

It is well known (see [4]) that condition (16) is nec-
essary and sufficient for

.

Expressing  in terms of  and applying The-
orem 1, we obtain the claim of Theorem 3.

4. SEQUENTIAL ESTIMATION 
OF THE PARAMETER IN A GENERALIZED 

REGRESSION MODEL

Suppose that an observed process  satisfies
the generalized regression model

, (19)

where  and  are independent sequences
of i.i.d. normal random variables, ,

, ; the random variable  is inde-
pendent of the processes  and , and  is
known. The parameter  is unknown, and the task is to
estimate it from the observations .

Equation (19) is reduced to the form
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The quantity  is determined by solving
the equation

;

.

Theorem 4. For any , , and ,

.

The proof of Theorem 4 is similar to that of Theo-
rem 3.

Corollary 2. Corollary 1 to Theorem 2 holds for the
moments of estimator (20).

5. SEQUENTIAL ESTIMATION 
OF THE PARAMETER IN AR(1): 

THE CASE OF UNKNOWN VARIANCE

Suppose that an observed process AR(1) satisfies
the equation

, (21)

where  is an i.i.d. ,  and the parame-
ters  and  are unknown. To estimate  in the case of
an unknown , the following sequential design
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Let ,  Define

the filtration , ,
, .

Theorem 5. For any  and , estima-
tor (22) has the following properties for all  and

:

,

. (23)

Proof. In view of (21), estimator (22) is trans-
formed into

, (24)

where .

By Theorem 1,

. (25)
Combining this relation with (24) yields the first

claim of the theorem. From (24) and (25), for the con-
ditional moments, we obtain the formula

.

Since ,

. (26)

Applying Anderson’s lemma [10], we obtain

,

where  and  is

the Euler gamma function. Combining this relation
with (21) and taking into account the choice of 
yields inequality (23). Theorem 5 is proved.
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