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Abstract: We report on a systematic replica approach to calculate the subsystem trace

distance for a quantum field theory. This method has been recently introduced in [J. Zhang,

P. Ruggiero and P. Calabrese, Phys. Rev. Lett. 122 (2019) 141602], of which this work

is a completion. The trace distance between two reduced density matrices ρA and σA is

obtained from the moments tr(ρA − σA)n and taking the limit n → 1 of the traces of

the even powers. We focus here on the case of a subsystem consisting of a single interval

of length ` embedded in the low lying eigenstates of a one-dimensional critical system of

length L, a situation that can be studied exploiting the path integral form of the reduced

density matrices of two-dimensional conformal field theories. The trace distance turns

out to be a scale invariant universal function of `/L. Here we complete our previous

work by providing detailed derivations of all results and further new formulas for the

distances between several low-lying states in two-dimensional free massless compact boson

and fermion theories. Remarkably, for one special case in the bosonic theory and for another

in the fermionic one, we obtain the exact trace distance, as well as the Schatten n-distance,

for an interval of arbitrary length, while in generic case we have a general form for the

first term in the expansion in powers of `/L. The analytical predictions in conformal field

theories are tested against exact numerical calculations in XX and Ising spin chains, finding

perfect agreement. As a byproduct, new results in two-dimensional CFT are also obtained

for other entanglement-related quantities, such as the relative entropy and the fidelity.
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1 Introduction

The characterisation of the entanglement content of extended quantum system has become

a crucial theme in modern physics [1–3] at the level that a few experimental protocols to

measure such entanglement have been already set up [4–8]. The reason of this very large and

diversified interest in the entanglement of many body quantum systems is manyfold. On the

one hand, entanglement became a standard and powerful tool to characterise the phases

of matter, especially in connection with criticality [9–17] and topological order [18–21].

Furthermore, entanglement is also a key feature to design new numerical algorithms based

on tensor network states [22–24]. More generically, characterising subsystems is essential

to understand the phenomenon of equilibration and thermalisation of an isolated non-

equilibrium quantum systems [25–38], and the entanglement dynamics is also related to

the black hole information loss paradox [39–42] through gauge/gravity duality [43–45]. For

this reason, the entanglement entropy in holographic theories and its relation to quantum

gravity have also been extensively studied [46–56].

Nonetheless the information that the entanglement provides about a given subsystem

may not be enough for some applications. Specifically, it can be equally important to

develop tools enabling to distinguish between subsystems in different states, i.e. to distin-

guish reduced density matrices (RDMs). The problem of measuring the distance between

density matrices has been intensively considered in quantum information theory, where

several different measures have been introduced and analysed, see e.g. [57, 58] as reviews.

A proper measure of the difference should be a metric in a mathematical sense, meaning it

should be nonnegative, symmetric in its inputs, equal to zero if and only if its two inputs

are exactly the same, and should obey the triangular inequality. Given two normalised

density matrices ρ and σ (i.e. with trρ = trσ = 1), an important family of distances is

given by

Dn(ρ, σ) =
1

21/n
‖ρ− σ‖n, (1.1)

which depends on the real parameter n ≥ 1. These distances are known as (Schatten)

n-distances, and are defined in terms of the (Schatten) n-norm (of a general matrix Λ) [58]

‖Λ‖n =
(∑

i

λni

)1/n
, (1.2)

with λi being the nonvanishing singular values of Λ, i.e. the nonvanishing eigenvalues of√
Λ†Λ. When Λ is Hermitian, λi are just the absolute values of the nonvanishing eigenvalues

of Λ. The normalisation in (1.1) is fixed so that 0 ≤ Dn(ρ, σ) ≤ 1. As long as we are

dealing with finite dimensional Hilbert spaces, all distances (including Dn(ρ, σ) in (1.1))

are equivalent, in the sense that they bound each other

c−1
nmDn(ρ, σ) ≤ Dm(ρ, σ) ≤ cmnDn(ρ, σ), (1.3)

for some constants cnm. However this ceases to be the case for infinite dimensional Hilbert

spaces, because the constants cnm depend on the Hilbert space dimension. For this same

reason, it is not obvious how to compare distances between RDMs associated to subsystems
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of different size, which is one of our main goals in this paper. Given this state of affairs, it

is natural to wonder whether one distance is on a special foot compared to the others. In

this respect, it is well known that the trace distance

D(ρ, σ) =
1

2
‖ρ− σ‖1, (1.4)

(i.e. (1.1) for n = 1) has several properties that made it more effective than the oth-

ers [57–59]. In particular, an important feature of such metric is that it provides an upper

bound for the difference between the expectation values of observables in the two states ρ

and σ, i.e.

|tr(ρ− σ)O| ≤ ‖ρ− σ‖1‖O‖∞ = 2D(ρ, σ)‖O‖∞. (1.5)

It is clear that the bound (1.5) does not depend on the Hilbert space dimension, while it

would not be the case if one uses n 6= 1 in (1.1). This means that if ρ and σ are “close”,

also the expectation values of an arbitrary observable O (of finite norm) are “close”. We

will provide in this paper important examples of how choosing the “wrong distance” could

lead to misleading results.

In an extended quantum system, especially in a quantum field theory (QFT), it is

extremely difficult to evaluate the trace distance (1.4), as, for example, discussed in [59].

This is one of the reason why in the literature there has been an intensive investigation of

the relative entropy [60–70], defined as [71]

S(ρ‖σ) = tr(ρ log ρ)− tr(ρ log σ). (1.6)

S(ρ‖σ) bounds the trace distance according to the Pinsker’s inequality [58]

D(ρ, σ) ≤
√

1

2
S(ρ‖σ). (1.7)

It is definitely a useful tool in quantum information theory, but is not a metric: indeed it

is not symmetric in its inputs, it may be infinite for some density matrices, and does not

satisfy the triangle inequality [58].

Another quantity, already studied in literature, that provides an indication of the

difference of two states is the fidelity [62], defined as [57, 58]

F (ρ, σ) = tr

√√
σρ
√
σ = tr

√√
ρσ
√
ρ. (1.8)

Although not obvious by definition, the fidelity is symmetric in ρ and σ. (Notice that often

in the literature the square of F (ρ, σ) is called fidelity, generating some confusion.) By

definition 0 ≤ F (ρ, σ) ≤ 1: in particular, for two close states F (ρ, σ) approaches 1, and

for two far away states F (ρ, σ) approaches 0. Trace distance and fidelity also satisfy the

inequalities [57]

1− F (ρ, σ) ≤ D(ρ, σ) ≤
√

1− F (ρ, σ)2. (1.9)

Unfortunately, neither the fidelity is a metric, and therefore does not provide a proper

distance for extended quantum systems. However, it can be used to define a metric [57] as

arccos(F (ρ, σ)).
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Recently, we developed a systematic method to calculate the trace distance between

two RDMs in generic QFTs in ref. [72]. The present paper is an extension of the Letter [72].

Here, on top of providing many details of the calculations that were not reported in [72]

for lack of space, we also produced new results for subsystem trace distances in 2D free

massless compact boson and fermion theories. Furthermore, as a byproduct of our analysis,

we provide new results for the relative entropy and fidelity, which, as mentioned above,

have both already been largely studied in literature.

Our approach to compute the trace distance is based on the path integral represen-

tation of the RDMs and an ad hoc replica trick. As detailed in the following, one first

needs to compute Dne(ρ, σ) with ne being an even integer, and then consider its analytical

continuation to arbitrary real values. The trace distance is then given by the following

replica limit

D(ρ, σ) = lim
ne→1

Dne(ρ, σ). (1.10)

This strategy closely resembles the calculation of the entanglement negativity (an entan-

glement measure for generic mixed states) in [73–75]. The method can be applied to many

different situations, but in [72] we focused on one-dimensional (1D) systems described by a

2D Conformal Field Theory (CFT), with the subsystem consisting of an interval of length

` embedded in a circle of length L. In such setting, entanglement measures as the Rényi

and the von Neumann entropy have been considered. In particular, using the twist oper-

ators [12, 13, 76] and their operator product expansion (OPE) [77–85], a universal short

interval expansion has been derived. This expansion also generalises to subsystem trace

distances between the low-lying excited states in 2D CFT.

The remaining part of the paper is arranged as follows. In section 2 we review the path

integral approach to entanglement in QFT and in particular in CFT. In section 3, after

presenting in details the replica trick for the trace distance, we derive the universal formula

of the leading order trace distance of one interval in the short interval expansion and exact

results for a special class of states. In section 4 we consider the 2D free massless compact

boson theory and calculate trace distance and several n-distances. We test our analytic

predictions against exact numerical calculations for the XX spin chain. We also provide

some further results on relative entropy and fidelity. The same quantities for the 2D free

massless fermion theory are investigated in section 5 and tested against exact numerical

calculations in the critical Ising spin chain. We conclude with discussions in section 6. In

appendix A, we review the needed information about the XY spin chain, of which the XX

and Ising models represent special cases. In appendix B and appendix C we give some

identities that are useful to the calculations of relative entropies in the boson and fermion

theory, respectively. In appendix D we provides some details of the analytic continuation.

2 Entanglement in QFT: an overview

In this section we present an overview of the path integral approach to the entanglement

entropy and introduce all concepts that will be used in the following sections to calculate

the trace distances between RDMs of the low-lying eigenstates in CFT.
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Replica tricks. The most useful measure of bipartite entanglement in a pure state is

the entanglement entropy, defined in terms of the RDM of a quantum state. For a generic

state |ψ〉 with density matrix ρ = |ψ〉〈ψ|, the RDM of a subsystem A is ρA = trĀρ (Ā being

the complement of A) and its entanglement entropy is the corresponding von Neumann

entropy SA = −trρA log ρA. In the replica approach, it is obtained from trρnA, computed

at first for n integer and then analytically continued to real values, through the limit

SA = − lim
n→1

∂

∂n
trρnA. (2.1)

When n is an integer, trρnA may be computed in the path integral formalism. In fact, in 1D

systems described by 2D QFTs, this path integral representation is the partition function

on a n-sheeted Riemann surfaces, in which the j-th sheet represents ρA,j , the j-th copy of

the state ρA.

A generalisation of this replica trick has been then introduced in refs. [62, 63] for the

relative entropy, cf. eq. (1.6). It relies on the path integral representation of tr (ρnAσ
m
A ),

with ρA, σA being two RDMs, and reads

S(ρA‖σA) = − lim
n→1

∂

∂n

tr
(
ρAσ

n−1
A

)
trρnA

. (2.2)

Twist fields. Moreover, still in 1D systems, for a subsystem A consisting of m disjoint

intervals, trρnA can be expressed (for integer n) as a 2m-point correlation function of some

special fields T and T̄ known as twist fields [12, 13, 76]. This correlation is evaluated in

the state ρn = ⊗nj=1ρj of the corresponding n-fold theory, denoted as CFTn, as shown in

figure 1 (left). For the simple case of a single interval (m = 1)

trρnA = 〈T (`, `)T̄ (0, 0)〉ρn (2.3)

The above relation and twist fields in general can be defined in any 2D QFT but turn out

to be particularly useful when dealing with a CFT, where twist fields are primary operators

in CFTn, with conformal weights [12]

hn = h̄n =
c(n2 − 1)

24n
, (2.4)

c being the central charge of the single copy CFT. In the case when ρA corresponds to

the ground state (vacuum) of the CFT, the moments of the reduced density matrix for A

being a single interval in an infinite system are fixed by global conformal invariance to be

trρnA = 〈T (`, `)T̄ (0, 0)〉ρn = cn

(
`

ε

)−2(hn+h̄n)

, (2.5)

where cn (with c1 = 1) is the normalisation of the twist operators (related to the boundary

conditions induced by the twist operators at the entangling surface [86–88]) and ε is an

ultraviolet cutoff.

Similarly, also tr (ρnAσ
m
A ) can be expressed in terms of correlation functions of twist

fields, this time evaluated in the state ⊗nj=1ρj⊗mk=1σk in CFTn. This is indeed nothing but

the generalisation of (2.3) to the case where the replicas of the CFT are in different states.

– 4 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
1

Short interval expansion. Hereafter we specialise to a 1+1 dimensional CFT in imag-

inary time τ . The two dimensional geometry can be parametrised by a complex coordinate

z = x+iτ , where τ ∈ R, the spatial coordinate x ∈ [0, L] and we consider periodic boundary

conditions (PBC).

The OPE of twist operators [77–80] can be used to write down and asymptotic expan-

sion of the multipoint correlation functions of the twist operators. For example, in terms

of CFTn quasiprimary operators and their derivatives, the OPE of twist operators takes

the form [80]

T (z, z̄)T̄ (0, 0) =
cnε

2(hn+h̄n)

z2hn z̄2h̄n

∑
K

dK
∑
r,s≥0

arK
r!

āsK
s!
zhK+rz̄h̄K+s∂r∂̄sΦK(0, 0). (2.6)

The summation K is over all the orthogonal quasiprimary operators ΦK in CFTn, with

conformal weights (hK , h̄K), and they can be constructed from the orthogonal quasipri-

mary operators in the original one-fold CFT. In eq. (2.6) the following constants have

been defined

arK ≡
CrhK+r−1

Cr2hK+r−1

, āsK ≡
Cs
h̄K+s−1

Cs
2h̄K+s−1

, with Cyx =
Γ(x+ 1)

Γ(y + 1)Γ(x− y + 1)
. (2.7)

The OPE coefficients, moreover, can be calculated as [78]

dK =
1

αK`hK+h̄K
lim
z→∞

z2hK z̄2h̄K 〈ΦK(z, z̄)〉Rn , (2.8)

with αK being the normalisation of ΦK and Rn being the n-fold Riemann surface for one

interval A = [0, `] on the complex plane. The expectation value on Rn can be calculated

by mapping to the complex plane [78].

For a general translationally invariant state ρ, in the OPE of twist operators we only

need to consider CFTn quasiprimary operators that are direct products of the quasiprimary

operators {X} of the original CFT [81, 82]

Φj1,j2,··· ,jk
K = X j11 · · · X

jk
k . (2.9)

From the OPE coefficient of X j11 · · · X
jk
k , which we denote by dj1···jkX1···Xk , one can define the

coefficient [81]

bX1···Xk =
∑

0≤j1,··· ,jk≤n−1

dj1···jkX1···Xk , (2.10)

where the sum is constrained in order to avoid overcounting. For examples, for Xj1Xj2 one

has 0 ≤ j1 < j2 ≤ n − 1, and for Xj1Xj2Yj3 with X 6= Y one has 0 ≤ j1, j2, j3 ≤ n − 1

with constraints j1 < j2, j1 6= j3, j2 6= j3. For the RDM ρA of such states, one finds the

following expansion [81–85]

trρnA = cn

(
`

ε

)−4hn

1 +

n∑
k=1

∑
{X1,··· ,Xk}

`∆X1
+···+∆Xk bX1···Xk〈X1〉ρ · · · 〈X1〉ρ

 , (2.11)

– 5 –
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with the summation being over all the sets of orthogonal nonidentity quasiprimary oper-

ators {X}. This allows to derive the short interval behaviour of the Rényi and entangle-

ment entropies.

Similarly, given two RDMs ρA, σA associated to translationally invariant states, one

can derive the universal leading order of the relative entropy in short interval expansion [64,

65, 84, 85]

S(ρA‖σA) =

√
πΓ(∆φ + 1)`2∆φ

22(∆φ+1)Γ(∆φ + 3
2)

(〈φ〉ρ − 〈φ〉σ)2

i2sφαφ
+ o(`2∆φ). (2.12)

Here φ is one of the quasiprimary operators with the smallest scaling dimension among the

ones that satisfy

〈φ〉ρ 6= 〈φ〉σ. (2.13)

This is strictly true when there is a single operator satisfying (2.13); in the degenerate

case, we need just to sum all the quasiprimary operators φ satisfying the constraint (2.13).

The operator φ has conformal weights (hφ, h̄φ), scaling dimension ∆φ = hφ + h̄φ, and spin

sφ = hφ − h̄φ. We choose φ to be Hermitian and so the normalisation factor is αφ > 0.

Note that φ can only be bosonic, i.e. sφ is an integer, otherwise 〈φ〉ρ = 〈φ〉σ = 0. When

sφ is an even integer 〈φ〉ρ, 〈φ〉σ are real, and when sφ is an odd integer 〈φ〉ρ, 〈φ〉σ are pure

imaginary. Moreover, we only consider unitary CFTs, so that hφ > 0, h̄φ > 0. As required

by definition, S(ρA‖σA) ≥ 0. For later reference, it’s important to note that (2.12) applies

to both the cases with and without degeneracy at scaling dimension ∆φ.

Some exact results for excited states entanglement and relative entropy. We

now consider excited CFT states obtained by acting on the ground state with a field X
(i.e. |X 〉 ≡ X (−i∞)|0〉). Here, once again, A is an interval of length ` in a finite, periodic,

system of length L. The path integral representation of the corresponding density matrix

|X 〉〈X | presents two fields insertions at ±i∞. The RDM ρX relative to the subsystem A

is obtained by closing cyclically |X 〉〈X | along Ā and leaving an open cut along A. Then

trρnX is given by n copies of the RDM ρX sewed cyclically along A. Following this standard

procedure, we end up in a world-sheet which is the n-sheeted Riemann surface Rn, and

the moments of ρX are [89, 90]

trρnX =
Zn(A)

Zn1

〈
∏n
k=1X (zk)X †k (z′k)〉Rn
〈X (z1)X †(z′1)〉nR1

, (2.14)

where Zn(A) ≡ 〈I〉Rn (i.e. the n-th moment of the RDM of the ground state) and zk =

i∞, z′k = −i∞ are points where the operators are inserted in the k-th copy. In (2.14), the

normalisation is properly taken into account.

For convenience, one usually introduces the universal ratio between the moment of the

RDM in the state X and the one of the ground state, i.e.,

F
(n)
X

(
`

L

)
≡

trρnX
trρnI

=
〈
∏n
k=1X (zk)X †k (z′k)〉Rn
〈X (z1)X †(z′1)〉nR1

, (2.15)

in which the factors coming from the partition functions cancel out and so the ratio is a

universal function solely of `/L.
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In the case of A being a single interval, in order to calculate the correlators appear-

ing in (2.15), one could either introduce twist fields (as mentioned above) or consider a

conformal transformation mapping the Riemann surface to the complex plane, where the

correlators themselves can be explicitly evaluated. While the representation in terms of

twist field is a powerful tool to get the short-interval expansion, this second method allows

in some cases to get the full analytic result for an interval of arbitrary length, at least in the

case when X is a primary field and the mapping to the complex plane has no anomalous

terms [89, 90]. The above results have been generalised in the literature to many other

situations, e.g., states generated by descendant fields [91, 92], boundary theories [93, 94],

and systems with disorder [95].

The traces tr
(
ρmY ρ

n
X
)
, for two given fields X ,Y, are obtained by a simple generalisation

of trρnX discussed above. In this case, in fact, instead of n copies of the RDM ρX only,

one considers further m copies of ρY and joins them cyclically as before. The final result

is a path integral on a Riemann surface with (m + n) sheets with the insertion of X ,X †

on n sheets and Y,Y† on the remaining m sheets. Keeping track of the normalization we

get [63]

tr
(
ρmY ρ

n
X
)

=
Zn+m(A)

Zm+n
1

〈
∏m
k=1 Y(wk)Y†(w′k)

∏n+m
i=1+mX (wi)X †(w′i)〉Rn

〈Y(w1)Y†(w′1)〉mR1
〈X (w1)X †(w′1)〉nR1

. (2.16)

Also in this case, a universal ratio is usually introduced

G(n)(ρY‖ρX ) ≡
tr
(
ρYρ

n−1
X
)

tr
(
ρnY
) =

〈Y(w1)Y†(w′1)
∏n
i=2X (wi)X †(w′i)〉Rn〈Y(w1)Y†(w′1)〉n−1

R1

〈
∏n
i=1 Y(wi)Y†(w′i)〉Rn〈X (w1)X †(w′1)〉n−1

R1

.

(2.17)

A similar strategy will be applied to the trace distances in the following sections.

3 Subsystem trace distance in QFT

In this section we report on the construction of the replica trick for the trace distance (1.4)

introduced in our previous Letter [72]. The problem in the calculations of the trace dis-

tance (1.4) resides in the presence of the absolute value of the eigenvalues of ρA − σA.

Because of this absolute value, the only way to directly get the desired quantity would be

by explicitly diagonalising ρA − σA, a problem that is made even more complicated by the

fact that the two RDMs generically do not commute. Absolute values of matrices can be

anyhow tackled with a replica trick, an idea first introduced, to the best of our knowledge,

by Kurchan [96] and later applied to many different situations [73, 74, 97–101], including to

the entanglement negativity [73, 74]. This trick for the trace distance, and more generically

for all the n-distance for arbitrary real n, works as follows. Given two (Hermitian) density

matrices ρ and σ, we have by definition

‖ρ− σ‖nn = tr|ρ− σ|n =
∑
i

|λi|n, (3.1)

with λi being the eigenvalues of (ρ− σ). Note that, for ne being an even integer, it holds

tr|ρ− σ|ne = tr(ρ− σ)ne . (3.2)

– 7 –
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Therefore, if we compute tr(ρ − σ)ne for generic even integer ne = 2, 4, · · · , we can then

consider its analytical continuation to any real number. In case we manage to work out

such an analytic continuation, the trace distance is then simply obtained as

D(ρA, σA) =
1

2
lim
ne→1

tr(ρA − σA)ne . (3.3)

The calculation of tr(ρA − σA)n for general integer n is instead a relatively simple issue.

Indeed, expanding the power of the difference, one just has to compute a sum of the traces

of products of ρA’s and σA’s; and we know how to get each of these products, as explained in

the previous section. For example for n = 2 we have tr(ρA−σA)2 = trρ2
A+trσ2

A−2tr(ρAσA)

and so on for larger n (but keep in mind that ρA and σA do not commute). Incidentally,

this simplicity is the main reason why in the literature the (Schatten) 2-distance has been

largely studied in many applications, instead of the more physical trace norm. We stress

that for odd n = no, tr(ρA−σA)no does not provide the no-distance (because of the absence

of the absolute value). Also, the limit no → 1 gives the trivial result tr(ρA − σA) = 0 (in

full analogy with what happens for the negativity [73, 74]).

Therefore, in the context of a general QFT, the quantity we need to evaluate is

tr(ρA − σA)n, which may be expanded as

tr(ρA − σA)n =
∑
S

(−)|S|tr
(
ρ0S · · · ρ(n−1)S

)
, (3.4)

where the summation S is over all the subsets of S0 = {0, · · · , n− 1}, |S| is the cardinality

of S and ρjS = σA if j ∈ S and ρA otherwise. Crucially, each term in the sum appearing

in the r.h.s. of eq. (3.4), in a 2D QFT, is related to a partition function on an n-sheeted

Riemann surface (see figure 1, right) and may still be seen as a two-point function of twist

fields (cfr., e.g., [102])

tr(ρ0S · · · ρ(n−1)S
) = 〈T (`, `)T̄ (0, 0)〉⊗jρjS . (3.5)

Such objects already appeared in the replica trick for the relative entropy mentioned

above [62, 63], and, in some cases, they have been explicitly computed [62–66]. Still,

performing the sum in eq. (3.4) and obtaining its analytic continuation is not an easy task.

We stress that eqs. (3.4) and (3.5) are very general in the sense they apply to generic

situations for one-dimensional systems, even if in the following we just focus on eigenstates

of CFTs.

3.1 The trace distance between primary states in CFT

In this section, we specialise to the case when the RDMs ρA and σA correspond to low lying

eigenstates of a 2D CFT; we focus on periodic systems of total length L and on a subsystem

being an interval of length `. Similarly to the discussion in section 2, analytical results for

an interval of arbitrary length can be obtained by looking to a special class of states in a

2D CFT. We study the distance between RDMs of orthogonal eigenstates associated to

primary operators; as we shall see, while the distance between the entire states is maximal,
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subsystems may be rather close and they distance has different functional form depending

on the considered states.

For a general primary operator X , let (hX , h̄X ) be its conformal weights and ∆X =

hX+h̄X and sX = hX−h̄X its scaling dimension and spin, respectively. We exploit eq. (3.4)

to compute tr (ρX − ρY)n for two RDMs associated to two primary operators X and Y.

For such states, each term of the sum in the r.h.s. corresponds to a correlation function

with insertions of the fields X and Y on the Riemann surface [89, 90], which, as mentioned

above, can be mapped to the complex plane by the map

f(z) =

(
z − e2πi`/L

z − 1

)1/n

. (3.6)

The final result for the entire sum in eq. (3.4) can be then written as a sum of such

correlation functions as follows

tr(ρX − ρY)n = cn

(
L

πε
sin

π`

L

)−4hn

×
∑
S

{
(−)|S|i2(|S̄|sX+|S|sY )

(
2

n
sin

π`

L

)2(|S̄|∆X+|S|∆Y )

×
〈[∏

j∈S̄

(
fhXj,` f̄

h̄X
j,` f

hX
j f̄ h̄Xj X (fj,`, f̄j,`)X †(fj , f̄j)

)]

×
[∏
j∈S

(
f
hY
j,` f̄

h̄Y
j,` f

hY
j f̄

h̄Y
j Y(fj,`, f̄j,`)Y†(fj , f̄j)

)]〉
C

}
. (3.7)

Here S̄ = S0/S, fj = e
2πij
n and fj,` = e

2πi
n

(j+ `
L

). Eq. (3.7) relates the even (Schatten)

n-distances between the RDM of two primary states |X 〉 and |Y〉 to the 2n-point correla-

tion function of the corresponding primary fields on the complex plane. Such correlation

functions may be calculated in some specific cases, as we shall see, but in general it is not

possible to work them out in a closed form as function of n in order to obtain the analytic

continuation for the trace distance. Anyway, even if too complicated to extract direct infor-

mation, from eq. (3.7) we can already draw one very important conclusion. Indeed, in the

limit n → 1 (independently of the parity of n) the dependence on the ultraviolet cutoff ε

washes out. Importantly, this means that the trace distance is a universal, cutoff indepen-

dent (i.e., UV-complete), scale invariant function of `/L (i.e., it does not separately depend

on ` and L). This is another very important property that puts the trace distance on a

special foot compared to the other Schatten distances that instead are cutoff dependent

and not scale invariant (but only scale covariant since they have non zero dimension).

It is clear from the explicit form of eq. (3.7) that the n-distance Dn(ρA, σA) of two

RDMs ρA, σA with n 6= 1 is dependent on the UV cutoff ε. As for other quantities discussed

above (cfr. eqs. (2.15), (2.17)), it is worth and useful to introduce a scale-invariant and

cutoff-independent ratio for the n-distance as

Dn(ρA, σA) =
1

2

tr|ρA − σA|n

trρn0
, (3.8)
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 

CFT in ρ

CFT in ρ

CFT in ρ

CFTn in ρ⊗ρ⊗ρ

 

CFT in ρ0

CFT in ρ1

CFT in ρ2

CFTn in ρ0⊗ρ1⊗ρ2

Figure 1. The replica trick to calculate trAρ
n
A, eq. (2.3), (left) and trA(ρA,0ρA,1 · · · ρA,n−1),

eq. (3.5), (right). Top: path integral in terms of Riemann surfaces. Bottom: equivalent repre-

sentation in terms of the twist operators in CFTn. We show the case n = 3 as an example.

in which ρ0 is the RDM of the subsystem A in the CFT ground state. Within this normal-

isation by trρn0 , the function Dn in eq. (3.8) has the simpler expression in CFT. Note also

that this definition is slightly different compared to the one given in [72]: the present form

gives a quantity between [0, 1], rather than [0, 2] as the one in the Letter and has a normal-

isation that is independent from the inputs of the distance. When there is no ambiguity,

we will also call Dn(ρ, σ) loosely as the n-distance, but the true n-distance is instead

Dn(ρA, σA) = [Dn(ρA, σA) trρn0 ]1/n . (3.9)

The replica limit (3.3) now takes the form

D(ρA, σA) = lim
ne→1

Dne(ρA, σA). (3.10)

Eq. (3.9) also highlights one of the main reasons why the trace distance is better than

all other n-distances. In CFT Dn(ρA, σA) is always a smooth function of `/L in the interval

[0, 1] and so it is its replica limit D(ρA, σA). Conversely, since trρn0 goes to zero as L→∞,

irrespective of the value of `/L, the n-distance always vanishes in the thermodynamic limit.

Consequently, a study of n-distance may artificially signal the closeness of two RDMs that

actually are very different.

3.2 Short interval expansion

Although eq. (3.7) is model dependent and generically complicated to be worked out an-

alytically, it is possible to use the OPE of twist fields (cf. eq. (2.6)) to obtain a general

result in the limit `� L.

Let ρA, σA be the RDMs of two CFT eigenstates ρ, σ, not only primary and quasipri-

mary states, but also descendents or even thermal states. The OPE of twist fields, eq. (2.6),
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leads to

trA (ρA−σA)n = cn

(
`

ε

)−4hn ∑
{X1,··· ,Xn}

`∆X1
+···+∆Xn bX1···Xn

(
〈X1〉ρ−〈X1〉σ

)
· · ·
(
〈Xn〉ρ−〈Xn〉σ

)
.

(3.11)

For two different states ρ, σ, quasiprimary operators φ such that

〈φ〉ρ − 〈φ〉σ 6= 0, (3.12)

should exist (as mentioned in eq. (2.13)). Among these, we select the operator φ with the

smallest scaling dimension ∆φ. In this section, for simplicity, we only consider the case

when only one of such operators exists with the smallest dimension ∆φ (non-degenerate

case). As mentioned in the section for the relative entropy, sφ has to be integer. Hence,

for a general even integer ne, we get

tr(ρA − σA)ne = cne

(
`

ε

)−4hne [
`ne∆φbφne

(
〈φ〉ρ − 〈φ〉σ

)ne + o(`ne∆φ)
]
, (3.13)

with φne denoting the direct product of ne φ’s. Note that bφne = d
0···(ne−1)
φne . Then, we

consider the analytical continuation in ne and get tr|ρA − σA|ne for a general real number.

In particular, for ne → 1, this leads to the desired universal leading order term of the trace

distance in short interval expansion

D(ρA, σA) =
xφ`

∆φ

2

∣∣∣〈φ〉ρ − 〈φ〉σ√
αφ

∣∣∣+ o(`∆φ). (3.14)

Here αφ is the normalisation of the field φ (in most of the cases αφ = 1), and the to-be-

determined coefficient xφ is given by the replica limit (ne = 2p, p = 1, 2, · · · )

xφ = lim
p→1/2

i2psφαpφd
0···(2p−1)
φ2p = lim

p→1/2

i2psφ

αpφ(2p)2p∆φ

〈 2p−1∏
j=0

[
f
hφ
j f̄

h̄φ
j φ(fj , f̄j)

]〉
C
, fj = e

πij
p .

(3.15)

We stress however that, differently from the corresponding result (2.12) for the relative

entropy, eq. (3.14) only applies to the case with no degeneracy at scaling dimension ∆φ.

We will see in the next section how to relax this condition, while applying to the specific

case of the free boson.

Note that in (3.15), we did not keep track of the Schwarzian derivative part in the

conformal transformation of the quasiprimary operator φ because it just cancels out in the

limit ne → 1 (i.e. p→ 1/2), when using (2.8) to calculate the OPE coefficient d
0···(ne−1)
φne .

From eq. (3.15) and for an integer p = 1, 2, · · · , the replica limit can be obtained using

the function F
(p)
φ (`/L) defined in eq. (2.15) and rewritten as

F
(p)
φ

(
`

L

)
=

i2psφ

αpφ

(
2

p
sin

π`

L

)2p∆φ 〈 p−1∏
j=0

[
f
hφ
j,` f̄

h̄φ
j,` f

hφ
j f̄

h̄φ
j φ(fj,`, f̄j,`)φ

†(fj , f̄j)
]〉

C
, (3.16)
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where fj,` = e
2πi
p

(j+ `
L

)
, fj = e

2πij
p . In fact, when φ is Hermitian we have φ† = φ and so

xφ =
F

(1/2)
φ (1/2)

22∆φ
. (3.17)

Furthermore, if φ is a primary operator, F
(p)
φ (`/L) is related to the p-th order Rényi entropy

S
(p)
A,φ(`) for A = [0, `] in the state |φ〉

F
(p)
φ (`/L) = e−(p−1)[S

(p)
A,φ(`)−S(p)

A,0(`)]. (3.18)

In refs. [89, 90], eq. (3.18) has been explicitly evaluated for several operators and in some

cases also the analytic continuation is available [103, 104]. Note that (3.18) only applies

to the case that φ is a primary operator, while (3.16) also applies to the case that φ is a

quasiprimary operator.

Finally we mention that from the inequality (1.7) and from the universal leading order

of the relative entropy (2.12), one can get a universal upper bound to the coefficient xφ,

solely depending on the scaling dimension

xφ ≤ xmax(∆φ) =

√ √
πΓ(∆φ + 1)

22∆φ+1Γ(∆φ + 3
2)
. (3.19)

We will check such bound for various examples in the boson and fermion theories.

3.3 Exact general result for the 2-distance from the ground state

We mention that the second (Schatten) norm can be straightforwardly obtained between

ground state ρ0 and a primary state ρφ. Indeed, we have

D2(ρ0, ρφ) =
1

2

tr(ρ0 − ρφ)2

trρ2
0

=
1

2

(
1 +

trρ2
φ

trρ2
0

−
2trρ0ρφ

trρ2
0

)
, (3.20)

on which the second term is just the universal function F
(2)
φ (`/L) in (3.16) (and calculated

for many φ’s in [89, 90]), while the last term is just a two point function in a two-sheeted

surface given by (see also (C.1))

tr(ρφρ0)

trρ2
0

=

(
sin π`

L

2 sin π`
2L

)2∆φ

, (3.21)

where ∆φ is scaling dimension of φ. Hence, we finally have

D2(ρ0, ρφ) =
1 + F

(2)
φ (`/L)

2
−
(

cos
π`

2L

)2∆φ

. (3.22)

If in (3.20) we replace ρ0 with a primary state, the only difference is that trρφ1ρφ2 is a

four-point function in the 2-sheeted Riemann surface. The latter can be easily calculated

on a case by case basis, but it has not a simple expression as (3.22). Notice that the

property F
(2)
φ (`/L) ≥ 1 [90] ensures that the r.h.s. of (3.22) is non negative, as it should.
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4 Free massless compact boson

In this section, we consider the 2D free massless compact boson theory (i.e. with the target

space being a circle of finite radius) defined on an infinite cylinder of circumference L. The

model is a c = 1 CFT. In condensed matter, such a theory is usually denoted as a Luttinger

liquid and describes the continuum limit of many relevant 1D systems, among which the

XX spin chain that we will explicitly consider. We first compute the trace distance and

more generally the n-distances (with n = 2, 3, 4, 5) between several low-lying excited states

in the CFT, and derive some new results for relative entropies and fidelities. All the CFT

results are then checked against numerical calculations in the XX spin chain (but we stress

that our results apply to a larger class of critical systems even interacting ones like XXZ

spin chains and Bose gases).

The boson field has holomorphic part φ and anti-holomorphic part φ̄. The states in

which we are interested are those generated by the action of the following operators: the

identity operator I, with conformal weights (0, 0), and its descendent at the second level,

the stress tensors T and T̄ with conformal weights (2, 0), (0, 2); the currents J = i∂φ,

J̄ = i∂̄φ̄ and JJ̄ whose conformal weights are given by (1, 0), (0, 1) and (1, 1), respectively;

the vertex operators Vα,ᾱ = exp(iαφ+ iᾱφ̄) with conformal weights (α2/2, ᾱ2/2). While T

and T̄ are quasiprimary operators, all the others are primary operators. Details of the 2D

free massless compact boson theory can be found in [105, 106].

We denote the ground state as |0〉, and the low energy excited states are constructed

by acting on it with a primary operator, obtaining the following set of states: |Vα,ᾱ〉, |J〉,
|J̄〉, |JJ̄〉. We denote the RDMs of A in these states, respectively, as ρα,ᾱ, ρJ , ρJ̄ , ρJJ̄ and

ρ0 for the ground state. Note that ρ0,0 = ρ0. One should beware to distinguish the density

matrices of the entire system from the RDMs of the subsystem A.

4.1 Short interval results

In this subsection we report the explicit form of the short distance expansion for all the

states we consider for the free boson. The general form is always given by eq. (3.14) with

xφ in (3.15) or equivalently (3.17). Here we identify the leading operator φ contributing to

each distance and explicitly provide the analytic continuation for xφ.

4.1.1 Vertex-vertex distance: non-degenerate case

We first consider the distance between two states generated by the a vertex operators,

namely |Vα,ᾱ〉 and |Vα′,ᾱ′〉. The leading operators entering in the OPE are the primaries J

and J̄ with expectation values

〈J〉α,ᾱ =
2πiα

L
, 〈J̄〉α,ᾱ = −2πiᾱ

L
. (4.1)

They are both operators with minimal dimension ∆J = ∆J̄ = 1 and we use the normali-

sation αJ = 1. The CFT formula (3.14) only applies to the case with no degeneracies in

the sense of eq. (3.12): this implies for the vertex operator that either α = α′ or ᾱ = ᾱ′,

else both J and J̄ would contribute. We first consider the non degenerate case and in a

following subsection the degenerate one.
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At this point, for the non-degenerate case, the only missing factor is xJ (or xJ̄). This

can be read off eqs. (3.17) and (3.18). Indeed the Rényi entropies in the current state

have been derived in the form of a determinant in [89, 90] and analytically continued

in [103, 104]. The final result reads [103, 104]

F
(p)
J (`/L) = F

(p)

J̄
(`/L) =

(
2

p
sin

π`

L

)2p Γ2

(
1+p+p csc π`

L
2

)
Γ2

(
1−p+p csc π`

L
2

) . (4.2)

Using such result and plugging F
(1/2)
J (1/2) in eq. (3.17), we get

xJ = xJ̄ =
1

π
. (4.3)

Notice that they satisfy the bound (3.19) with xmax(1) = 1/
√

6.

Finally, putting all pieces together in eq. (3.14) we get the leading orders of the trace

distances:

D(ρα,ᾱ, ρα′,ᾱ) =
|α− α′|`

L
+ o

(
`

L

)
, D(ρα,ᾱ, ρα,ᾱ′) =

|ᾱ− ᾱ′|`
L

+ o

(
`

L

)
. (4.4)

4.1.2 Vertex-Current distance: non-degenerate case

Then we consider the trace distance between a vertex state |Vα,ᾱ〉 and one of the three

current states |J〉, |J̄〉, |JJ̄〉. The OPE is again dominated by the current operator, so

to apply eq. (3.14) we need the expectation value of the current in the vertex state, as in

eq. (4.1), and also the expectation values of J, J̄ in the current states |J〉, |J̄〉, |JJ̄〉. They

are simply given by

〈J〉J = 〈J〉J̄ = 〈J〉JJ̄ = 〈J̄〉J = 〈J̄〉J̄ = 〈J̄〉JJ̄ = 0. (4.5)

In this case, to apply eq. (3.14), the non degeneracy condition implies either α = 0 or

ᾱ = 0, for which we simply get (using also eq. (4.3))

D(ρJ , ρα,0) = D(ρJ̄ , ρ0,α) =
|α|`
L

+ o

(
`

L

)
,

D(ρJ , ρ0,ᾱ) = D(ρJ̄ , ρᾱ,0) =
|ᾱ|`
L

+ o

(
`

L

)
,

D(ρJJ̄ , ρα,0) = D(ρJJ̄ , ρ0,α) =
|α|`
L

+ o

(
`

L

)
. (4.6)

When both α and ᾱ are non zero, we are in the degenerate case which will be considered

in the following.

Instead, if α = ᾱ = 0 (i.e. for the distance between the current and the ground state),

the leading term vanishes and we have to go to the next operator in the OPE which is the

stress energy tensor. This can be obtained as follows. The expectation values of the stress

tensors in a general primary state |X 〉 with conformal weights (hX , h̄X ) are given by

〈T 〉X =
π2c

6L2
− 4π2hX

L2
, 〈T̄ 〉X =

π2c

6L2
− 4π2h̄X

L2
. (4.7)
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This result together with eq. (3.14), with the minimal dimension quasiprimary being one

of the stress tensors, eventually leads to

D(ρ0, ρJ) = D(ρ0, ρJ̄) = xT
2
√

2π2`2

L2
+ o

(
`2

L2

)
. (4.8)

In this case, obtaining an analytic result for the coefficient xT is much more complicated

because T is not primary and eq. (3.18) does not apply. The general expression for xT may

be written as

xT = lim
p→1/2

(
2

c

)p 〈 2p−1∏
j=0

[f2
j T (fj)]

〉
C
, fj = e

πij
p . (4.9)

This result may seem, at first, quite surprising because in the mapping from the Riemann

surface to the complex plane anomalous terms are present since T is not primary. This

is indeed the case for the OPE coefficient for n 6= 1. However, since for n = 1 the

transformation from the n-sheeted surface to the plane is in SL(2,C), then the Schwarzian

derivative vanishes, and so all the anomaly terms are at least of order (n − 1) [107, 108].

Thus they cancel in the n→ 1 limit, i.e. in the p→ 1/2 limit. Anyhow, getting a general

closed form for eq. (4.9) is rather difficult and hence, an approximate value for this unknown

coefficients xT will be extracted from the numerical results in the XX spin chain later on.

Finally let us notice that from the decoupling of the holomorphic and anti-holomorphic

sectors we simply have
tr(ρJ − ρJJ̄)n

trρn0
=

trρnJ
trρn0

tr(ρ0 − ρJ̄)n

trρn0
. (4.10)

In the limit n→ 1, this decoupling leads to

D(ρJ , ρJJ̄) = D(ρ0, ρJ̄), (4.11)

and, using also eq. (4.8), we get the OPE

D(ρJ̄ , ρJJ̄) = D(ρJ , ρJJ̄) = xT
2
√

2π2`2

L2
+ o

(
`2

L2

)
. (4.12)

4.1.3 Vertex-vertex and vertex-current distances: degenerate case

In the 2D free massless boson theory, we can actually generalise formula (3.14) to the

degenerate case. In fact, consider two states ρ, σ such that both 〈J〉ρ 6= 〈J〉σ and 〈J̄〉ρ 6=
〈J̄〉σ hold. Using eq. (2.8), we get the OPE coefficient of the CFTn operator Jj1 · · · Jj2k

dj1···j2k
J2k =

1

(4ip)2k

 1(
sin πj12

2p · · · sin
πj(2k−1)(2k)

2p

)2 + permutations


(2k−1)!!

, (4.13)

where n = 2p so that p = 1, 2, · · · and we used J2k to denote the direct product of 2k

J ’s from different replicas of the CFT. We also defined the shorthand ji1i2 = ji1 − ji2 .

On the r.h.s. of the above equation we have a sum of the permutations of all possible
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pairwise contractions, and the total number of terms is (2k − 1)!!. Similarly, we get the

OPE coefficient of Jj1 · · · Jj2k1
J̄j′1 · · · J̄j′2k2

d
j1···j2k1

j′1···j′2k2

J2k1 J̄2k2
=

1

(4ip)2(k1+k2)

 1(
sin πj12

2p · · · sin
πj(2k1−1)(2k1)

2p

)2 + permutations


(2k1−1)!!

×

 1(
sin

πj′12
2p · · · sin

πj′
(2k2−1)(2k2)

2p

)2 + permutations


(2k2−1)!!

, (4.14)

which is a sum of (2k1 − 1)!!(2k2 − 1)!! terms. Using the definition (2.10), we find the

coefficient bJ2p = d
0···(2p−1)
J2p , which is a sum of (2p − 1)!! terms. A sum of C2k

2p number of

d
j1···j2(p−k)j

′
1···j′2k

J2(p−k)J̄2k gives bJ2(p−k)J̄2k , which is in turn a sum of totally C2k
2p [2(p−k)−1]!!(2k−1)!!

terms. Since in each sum we add up all the possible permutations, eventually we simply get

bJ2(p−k)J̄2k = C2k
2p [2(p− k)− 1]!!(2k − 1)!!

bJ2p

(2p− 1)!!
= Ckp bJ2p . (4.15)

The operator Jj1 · · · Jj2k1−1
J̄j′1 · · · J̄j′2k2−1

, instead, has a vanishing OPE coefficient

d
j1···j2k1−1j

′
1···j′2k2−1

J2k1−1J̄2k2−1 = 0, (4.16)

and we get the vanishing coefficient

bJ2(p−k)+1J̄2k−1 = 0. (4.17)

Now, by specifying eq. (3.11), which is valid in a general 2D CFT, to the case of the 2D

free massless boson theory, one finds

trA(ρA−σA)2p = c2p

(`
ε

)−4h2p
[
`2p

p∑
k=0

bJ2(p−k)J̄2k

(
〈J〉ρ−〈J〉σ

)2(p−k)(〈J̄〉ρ−〈J̄〉σ)2k+o(`2p)
]

= c2p

(`
ε

)−4h2p
{
`2pbJ2p

[(
〈J〉ρ−〈J〉σ

)2
+
(
〈J̄〉ρ−〈J̄〉σ

)2]p
+o(`2p)

}
. (4.18)

In particular we can apply eq. (4.18) to two generic vertex operators and finally obtain

their trace distance as

D(ρα,ᾱ, ρα′,ᾱ′) =
√

(α− α′)2 + (ᾱ− ᾱ′)2
`

L
+ o

(
`

L

)
, (4.19)

generalising (4.4) to the degenerate cases.

Similarly, from (4.18) we straightforwardly get also the distance between the generic

current and generic vertex states as

D(ρJ , ρα,ᾱ) = D(ρJ̄ , ρᾱ,α) =
√
α2 + ᾱ2

`

L
+ o

(
`

L

)
,

D(ρJJ̄ , ρα,ᾱ) =
√
α2 + ᾱ2

`

L
+ o

(
`

L

)
, (4.20)

which are the generalisations of (4.6) to the degenerate cases.
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4.1.4 Numerical results in the XX spin chain

In this subsection we test the results for the short length expansion of the trace distance

against exact numerical calculations in the XX spin chain at half filling. Actually our results

apply more generically to all models described by a free boson with arbitrary compacti-

fication radius (i.e. a Luttinger liquid with arbitrary Luttinger parameters K), including,

e.g., XXZ spin chains, repulsive Lieb-Liniger model, etc. We focus onto the XY spin chain

in transverse field, of which the XX spin chain is a special case, because it can be mapped

in a free fermionic model for which the RDM can be written in terms of the two-point

correlation function exploiting of the Wick theorem [10, 11, 109–112] and the construction

of the excited states is discussed [89, 90, 113]. The required details of this approach based

on correlation functions are briefly reviewed in appendix A, with particular emphasis to

the CFT-XX states correspondence.

Within this approach, the RDM is a 2` × 2` matrix whose 2` eigenvalues are related

the 2` eigenvalues (for the generic XY chain) of the correlation function. In this way, the

entanglement entropy, as well as many entanglement related quantities are easily extracted

just by diagonalising a matrix which is linear and not exponential in `. Clearly this ap-

proach cannot be used for the trace distance because this requires the diagonalisation of

the difference ρA − σA and, usually, the two RDMs do not commute. For this reason,

we rely on a brute-force approach that consists in explicitly constructing ρA and σA as

2` × 2` matrices as a Gaussian matrix (see the appendix A for details). Since RDMs are

exponentially large in ` we can only access relatively small subsystem sizes (up to ` ∼ 7).

Anyhow, compared to exact diagonalisation methods, we can consider arbitrarily large

systems sizes L.

We will also consider the (Schatten) n-distances. When n is even, this amounts just

to consider products of RDM that can be manipulated with standard correlation matrix

techniques (cf. ref. [114]). Consequently, in this case we can very easily access subsystem

of very large lengths. See appendix A for details. We stress that this methods cannot be

applied to the (Schatten) n-distances with n odd.

In the remaining of this section we present our results for the trace distances among the

RDMs of several low-lying excited states and discuss their behaviour for `� L, comparing

with the universal CFT prediction just obtained. Our results for several representative

states are reported in figure 2. The various numerical data for the XX chain (symbols in

the figure) perfectly match the leading order CFT results obtained above (and full lines in

the figure) for ` � L. Such agreement is highlighted in the fourth panel where the data

are reported in log-log plots to make more evident the power law behaviour at small `.

Notice that in some (few) cases the first term in the short length expansion are equal, but

the numerics surely rule out the possibility that the entire scaling functions are the same.

This for example happens for the distances D(ρJJ̄ , ρ1,0) and D(ρJ , ρ1,0).

The numerical data reported in figure 2 can be used to complement the analytic CFT

results obtained above. Indeed for a few distances we have not been able to perform

the analytic continuation to calculate exactly the amplitude xφ appearing in the short

length expansion (3.14). In such cases, matching eq. (3.14) with the numerical results,
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Figure 2. Trace distance D(ρ, σ) between the RDMs in several low-lying states as a function

of the ratio between the subsystem ` and the system size L in the XX spin chain. The solid

lines denote the leading order CFT prediction in the limit of short interval, eqs. (4.19), (4.20)

and (4.21). The symbols joined by dashed lines represent numerical data, obtained with the method

in appendix A. Different symbols correspond to different L and different colours correspond to

different pairs of states.

we get approximately

D(ρ0, ρJ) = D(ρ0, ρJ̄) = D(ρJ , ρJJ̄) = D(ρJ̄ , ρJJ̄) ≈ 0.107
2
√

2π2`2

L2
+ o

(
`2

L2

)
,

D(ρ0, ρJJ̄) ≈ 0.166
2
√

2π2`2

L2
+ o

(
`2

L2

)
,

D(ρJ , ρJ̄) ≈ 0.141
2
√

2π2`2

L2
+ o

(
`2

L2

)
. (4.21)

Some of these results are also shown in figure 2. Comparison with (4.8) leads to xT ≈ 0.107

(which satisfies the bound (3.19) with xmax(2) = 1/
√

30 ≈ 0.183).

4.2 n-distances for arbitrary subsystem size and analytic continuation

In this subsection, we consider the calculation of the n-distances for arbitrary n and for

arbitrary values of the ratio `/L, specialising the general approach in section 3.1 to a few

primary operators in the 2D free massless boson theory. In a specific case we have also

been able to obtain the analytic continuation in n and find the exact expression of the

trace distance for an interval of arbitrary length.
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4.2.1 Distances between vertex states

We first consider the distances between two states generated by vertex operators for which

we can obtain many analytical results. Specialising eq. (3.7) to vertex operators and using

the explicit form of the multipoint correlation functions of the vertices (see e.g. [105]), we

straightforwardly obtain the general form for the n-distance with n even

Dn[∆α] ≡ Dn(ρα,ᾱ, ρα′,ᾱ′) =
1

2

n∑
k=0

(−)k
∑

0≤j1<···<jk≤n−1

hn({j1, · · · , jk})∆α, (4.22)

where we defined

∆α ≡ (α− α′)2 + (ᾱ− ᾱ′)2, (4.23)

and the function hn({j1, · · · , jk}) of the set {j1, · · · , jk} as

hn (S) =

(
sin π`

L

n sin π`
nL

)|S| j1<j2∏
j1,j2∈S

sin2 π(j1−j2)
n

sin π(j1−j2+`/L)
n sin π(j1−j2−`/L)

n

. (4.24)

We stress that for an odd integer, n = no, eq. (4.22) does not provide the no-distance.

Indeed, when n = no is an odd integer, using the identity (B.2) in appendix B, we imme-

diately have the r.h.s. of eq. (4.22) vanishes identically. For even integer n = ne, (4.22)

is the (Schatten) ne-distance Dne . Anyhow, the expression (4.22) as a sum of products of

terms is not in the right form to be manipulated for the analytic continuation, but it can be

considerably simplified for the smallest even integers, leading to the compact expressions

D2[∆α] = 1−
(

cos
π`

2L

)∆α

,

D4 [∆α] = 1 +

(
cos2 π`

2L

)∆α

+ 2

(
cos2 π`

4L
cos

π`

2L

)∆α

, (4.25)

where we defined Dn[∆α] ≡ Dn(ρα,ᾱ, ρα′,ᾱ′). These two expressions are consistent with the

leading order results in short interval expansion obtained from (3.11) and (4.18)

D2[∆α] = ∆α
π2`2

8L2
+ o

(
`2

L2

)
, D4[∆α] = (∆α)2 9π4`4

512L4
+ o

(
`4

L4

)
. (4.26)

To get the above leading order results we used the coefficients bJJ = bJ̄ J̄ = − 1
16 for n = 2,

and bJJJJ = bJ̄ J̄ J̄ J̄ = 9
4096 , bJJJ̄J̄ = 9

2048 for n = 4, which are easily read off from the

results in [115]. The predictions (4.25) can be tested against numerical computation in

the XX spin chain for very large ` and L, using the method of composition of Gaussian

operators [114] (see appendix A). The results are reported in figure 3: the agreement is

excellent, although some oscillating subleading corrections to the scaling affect the data,

but the presence of such deviations is not unexpected since their presence is well known

for entanglement related quantities [116–121]. We checked carefully, by considering several

values of L and performing extrapolations, that indeed such pronounced oscillations go to

zero in the thermodynamic limit.
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Figure 3. Even n-distance Dn[∆α] for n = 2, 4 as a function of the ratio between the subsystem

` and the system size L in the free compact boson theory. The solid lines are the exact CFT

predictions in (4.25). The symbols are the numerical data for a system of size L = 1024 and

arbitrary `. Different colours correspond to different pairs of vertex states ρ and σ (several values

of ∆α are considered).

The (Schatten) n-distance Dn[∆α] for general n (also odd or non-integer) is obtained

from the analytic continuation of Dne [∆α] from ne ∈ 2N to an arbitrary real number. To

obtain this analytic continuation, we need to rewrite (4.22) in such a way to remove the

sum over the permutations. We managed to do this only for the special case ∆α = 1.

Indeed, for ∆α = 1, the scaling function (4.22) for an even integer ne may be rewritten

(after some work) as

Dne [1] = 2ne−1

ne/2∏
j=1

[
sin

π(2j − 1)x

2ne

]2

, (4.27)

where x = `/L. This product formula is of the right form to obtain the analytic continua-

tion. Indeed, using the identity

log sin(πs) = log π −
∫ ∞

0
dt

e−t

t

[
est + e(1−s)t − 2

1− e−t
− 1

]
, (4.28)

we get the analytic continuation to arbitrary n

log2Dn[1] =n log(2π)−2

∫ ∞
0

dt
e−t

t


1

1−e−t


(

e
tx
2 −1

)[
e
tx
2n +e

(
1− (n−1)x

2n

)
t
]

e
tx
n −1

−n

−n2
 .

(4.29)

In particular, for n = 1, eq. (4.29) simplifies dramatically to (see appendix D)

D[∆α = 1] =
`

L
. (4.30)

Such simple expression tells us that the trace distance in this case is entirely determined

by the leading OPE in eq. (4.4). Then all the contributions from operators different from J

have OPEs with amplitudes that must vanish in the limit ne → 1. It is rather natural to

wonder whether there is a deeper and general explanation of this fact and if there are other

non trivial implications of this property (not only for trace distances, but also for other
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Figure 4. Odd n-distance Dn(ρ, σ) for n = 3 (blue) and n = 5 (yellow) as a function of the ratio

between the subsystem ` and the system size L in the free compact boson theory. The solid lines

are the analytic continuation (4.29) of the CFT prediction. The symbols (joined by dashed lines)

are numerical data, with different symbols corresponding to different L. The two panels show two

different pairs of vertex states ρ and σ, but both with ∆α = 1. Insets: Zoom in log-log scale of the

region `� L.

quantities determined by the same OPE coefficients). Other OPE amplitudes in fact vanish

in the limit n → 1 [78] and this has important consequences, e.g., for the entanglement

negativity [73, 74]. Finally notice that the data for the trace distance D[∆α = 1] in figure 2

are perfectly compatible with the simple linear behaviour of eq. (4.30).

The analytic continuation (4.29) provides also non-trivial predictions for the n-distance

Dn[1], for arbitrary n. We can test this prediction against the XX results which we obtained

from the full RDMs as in eq. (A.21). In figure 4, we report the results we obtained for

n = 3, 5. The spin chain calculations and the analytic continuation (4.29) match rather

well, in spite of the presence of the oscillating correction to the scaling [116–121]. They can

appear larger than those reported for even n in figure 3, but this is only due to the smaller

values of ` we can access from the diagonalisation of the entire density matrix, compared

to the correlation matrix technique used for even n.

Finally, another limit in which (4.29) simplifies is for n → ∞ when we get (see ap-

pendix D, eq. (D.6))

lim
n→∞

logDn[1]

n
=

2
(
ζ ′
(
−1, 1− x

2

)
− ζ ′

(
−1, x2

))
x

, (4.31)

where ζ ′(z, y) ≡ ∂zζ(z, y) denotes the derivative of the generalised ζ function with respect

to the first argument and x = `/L. We plot (Dn[1]1/n) as function of x for various n

in figure 5. It is clear that the various curves are very close to each other, but always

different. Furthermore they are monotonous functions of n, i.e. (Dn′ [1]1/n
′
) > (Dn[1]1/n)

if n′ > n and x. By no means this implies that the various n-distances are equivalent:

the true n norm, cf. eq. (3.9), is obtained by multiplying (Dn[1])1/n by (trρn0 )1/n that in

the thermodynamic limit L → ∞ goes to zero for any n > 1. Hence all these n-distances

are zero unless n = 1. Once again this fact shows that the trace distance is the most

appropriate distance when one needs to compared subsystems of different sizes.
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Figure 5. The scaling functions of the n-distances (Dn[1])1/n as function of `/L for n = 1, 2, 3,∞
for two vertex operator states with ∆α = 1. Notice the monotonicity of the curves in both n

and `/L.

When ∆α 6= 1, we are not able to simplify the general expression (4.22) to a form useful

for the analytic continuation without the sum over the permutation. We only obtained few

specific formulas. For example, for ∆α = 2 and n = 6, the general expression can be

simplified to (x = `/L)

D6[∆α= 2] =
4

9

(
sin
(πx

6

))6(
1+2cos

(πx
3

))2
(4.32)

×

(
4

(
sin
(πx

3

)
+2sin

(
2πx

3

))2

+9

(
1+2cos

(πx
3

)
+2cos

(
2πx

3

))2
)
,

and a more cumbersome expression can be found for n = 8, but the general structure (if it

exists) is not understood yet.

4.2.2 Distances involving current states

The replicated distances involving current states have a much more complicated structure

compared to the vertex states. For this reason, we briefly focus here on the distance

D(ρJ , ρ1,0) because the numerical data in figure 2 strongly suggest that this distance is

exactly equal to `/L, as the distance between vertex operator with ∆α = 1.

Using the correlation functions between current and vertex states, after long but

straightforward algebra one arrives to

tr(ρJ − ρ1,0)n

trρn0
=
∑
S⊆S0

∑
R⊆S̃

(−)|S̄|
( 1
n sin π`

L )2n−|S̄|

(sin π`
nL)|S̄|−|R̄|

(
∼

det
r1,r2∈R

1

sin π(r1−r2)
n

)

×

 s̄1<s̄2∏
s̄1,s̄2∈S̄

sin2 π(s̄1−s̄2)
n

sin π(s̄1−s̄2+`/L)
n sin π(s̄1−s̄2−`/L)

n


×

∏
r̄∈R̄

∑
s̄∈S̄

1

sin π(r̄−s̄)
n sin π(r̄−s̄−`/L)

n

 . (4.33)
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Note that the sum of the set S is over all the subsets of S0 = {0, 1, · · · , n − 1}, and the

complement set is S̄ = S0/S. The sum of R is over all the subsets of S̃ = S ∪ (S + `
L), and

the complement set is R̄ = S̃/R. The determinant
∼

det is for the matrix whose diagonal

entries are vanishing.

Unfortunately, further simplifications appear very difficult. However, this general form

is enough to rule out that the Schatten n-distances Dn(ρJ , ρ1,0) and Dn(ρ0, ρ1,0) are equal:

it is enough to calculate the two distances for some even integer n. For example, for ne = 2

we have (x = `/L)

D2[J, V1,0] =
1

2

(
1− sin3

(πx
2

)
sin(πx)− 2 cos3

(πx
2

)
+

1

64
(cos(2πx) + 7)2

)
, (4.34)

which is different from (4.25) with ∆α = 1. However, the differences between these dis-

tances are rather small and of higher order in x (e.g. D2[J, V1,0] − D2[V0,0, V1,0] = O(x6)).

The same seems true for higher n. Given the present state of affairs we are not able

to distinguish whether D(ρJ , ρ1,0) is equal to `/L or just very close to it: the analytic

continuation of eq. (4.33) seems too complicated to solve this issue.

4.3 Application of the OPEs to relative entropies and fidelities

The OPEs of twist fields that we employed for the trace distances can be used also to

derive some new results for the relative entropies and fidelities that can be tested against

exact computations in the XX spin chain (generalising the results in [66, 69]).

4.3.1 Relative entropy

The relative entropies between different CFT states have been already considered in the

literature. In particular the relative entropy between vertex operators is [62, 63]

S(ρα,ᾱ‖ρα′,ᾱ′) = [(α− α′)2 + (ᾱ− ᾱ′)2]

(
1− π`

L
cot

π`

L

)
, (4.35)

while the one between current and vertex is [66]

S(ρJ‖ρα,ᾱ) = S(ρJ̄‖ρα,ᾱ) = (2 + α2 + ᾱ2)

(
1− π`

L
cot

π`

L

)
+ 2

[
sin

π`

L
+ log

(
2 sin

π`

L

)
+ ψ

(
1

2
csc

π`

L

)]
, (4.36)

with ψ denoting the digamma function. Actually the same correlation functions already

derived in [66] also determine the relative entropy between JJ̄ and the vertex as

S (ρJJ̄‖ρα,ᾱ) =
(
4+α2+ᾱ2

)(
1−π`

L
cot

π`

L

)
+4

[
sin

π`

L
+log

(
2sin

π`

L

)
+ψ

(
1

2
csc

π`

L

)]
.

(4.37)

We also obtain

S(ρJJ̄‖ρJ) =S(ρJJ̄‖ρJ̄) = 2

(
1−π`

L
cot

π`

L

)
+2

[
sin

π`

L
+log

(
2sin

π`

L

)
+ψ

(
1

2
csc

π`

L

)]
.

(4.38)
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Figure 6. Relative entropy S(ρ‖σ) as a function of the ratio between the subsystem ` and the

system size L in the free compact boson. Solid lines are the CFT prediction for short distance,

eqs. (4.39), (4.40) and (4.42). The symbols joined by dashed lines represent numerical data (obtained

using eq. (A.21)), with different symbols corresponding to different L. Different colours correspond

to different pairs of states ρ and σ.

The leading order of the relative entropies (4.35), (4.36), (4.37) and (4.38) are

S
(
ρα,ᾱ‖ρα′,ᾱ′

)
=
[(
α− α′

)2
+
(
ᾱ− ᾱ′

)2] π2`2

3L2
+ o

(
`2

L2

)
, (4.39)

S (ρJ‖ρ0) = S (ρJ̄‖ρ0) = S (ρJJ̄‖ρJ) = S (ρJJ̄‖ρJ̄) =
8π4`4

15L4
+ o

(
`4

L4

)
, (4.40)

S (ρJJ̄‖ρ0) =
16π4`4

15L4
+ o

(
`4

L4

)
, (4.41)

S (ρJ‖ρα,ᾱ) = S (ρJ̄‖ρα,ᾱ) =
(
α2 + ᾱ2

) π2`2

3L2
+ o

(
`2

L2

)
, (4.42)

S (ρJJ̄‖ρα,ᾱ) =
(
α2 + ᾱ2

) π2`2

3L2
+ o

(
`2

L2

)
(4.43)

and they coincide with the general prediction in (2.12). There are other cases in which we

do not know the exact form of the relative entropies, but nevertheless we can use (2.12) to

get leading order results in short interval expansion

S (ρ0‖ρJ) =S (ρ0‖ρJ̄) =S (ρJ‖ρJJ̄) =S (ρJ̄‖ρJJ̄) =
8π4`4

15L4
+o

(
`4

L4

)
,

S (ρ0‖ρJJ̄) =
16π4`4

15L4
+o

(
`4

L4

)
,

S (ρα,ᾱ‖ρJ) =S (ρᾱ,α‖ρJ̄) =
(
α2+ᾱ2

) π2`2

3L2
+o

(
`2

L2

)
,

S (ρα,ᾱ‖ρJJ̄) =
(
α2+ᾱ2

) π2`2

3L2
+o

(
`2

L2

)
,

S (ρJ‖ρJ̄) =S (ρJ̄‖ρJ) =
16π4`4

15L4
+o

(
`4

L4

)
. (4.44)

On the spin chain side, we calculate the relative entropies directly from the RDMs

using eq. (A.21). The obtained results are reported in figure 6 and they perfectly match

the CFT predictions.
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4.3.2 Fidelity

The fidelity F (ρ, σ) between RDMs of low-lying states in 2D CFT has been already inves-

tigated in [62] where it has been shown that it can be rewritten as

F (ρ, σ) = e−
1
2
S1/2(ρ‖σ), (4.45)

in terms of the Rényi relative entropy [122, 123]

Sp(ρ‖σ) =
1

p− 1
log tr

[(
σ

1−p
2p ρσ

1−p
2p

)p]
. (4.46)

The Rényi relative entropy between a generic primary operator φ and the ground

state [62] can be rewritten in terms of the function F
(p)
φ (x) in eq. (3.16) as

Sp (ρφ‖ρ0) =
1

p− 1
log

(p sin π`
L

sin pπ`
L

)2p∆φ

F
(p)
φ (p`)

 . (4.47)

Combing the last equation with (4.45) we can get the various fidelities in terms of the

function F
(1/2)
φ (1/2). For example, by using F

(p)
Vα,ᾱ

(`/L) = 1 [90] in (4.47), we recover the

result in [62]

F (ρ0, ρα,ᾱ) =

(
cos

π`

2L

)α2+ᾱ2

2

. (4.48)

However, we can get many more new results without making any calculation. Using

eq. (4.2), in fact, we immediately get

F (ρ0, ρJ) = F (ρ0, ρJ̄) =

Γ2

(
3+csc π`

2L
4

)
Γ2

(
1+csc π`

2L
4

)2 sin
π`

L
,

F (ρ0, ρJJ̄) =

Γ4

(
3+csc π`

2L
4

)
Γ4

(
1+csc π`

2L
4

)4 sin2 π`

L
. (4.49)

Note that the short interval expansion of (4.48) and (4.49) gives

F (ρ0, ρα,ᾱ) = 1−∆α
π2`2

16L2
+ o

(
`2

L2

)
, F (ρ0, ρJ) = 1−∆α

3π4`4

32L4
+ o

(
`4

L4

)
, (4.50)

and consequently

F (ρJ , ρα,ᾱ) = F (ρJ̄ , ρᾱ,α) ≈ F (ρJJ̄ , ρα,ᾱ) = 1−∆α
π2`2

16L2
+ o

(
`2

L2

)
. (4.51)

Several examples of the leading order results just derived are checked against spin

chains in figure 7. Furthermore, from the numerical results, we conjecture the more gen-

eral result

F (ρα,ᾱ, ρα′,ᾱ′) =
(

cos
π`

2L

) (α−α′)2+(ᾱ−ᾱ′)2
2

, (4.52)
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Figure 7. Fidelity F (ρ, σ) as a function of the ratio between the subsystem ` and the system size

L in the free compact boson. Solid lines are the CFT predictions for short distance, eqs. (4.48)

to (4.53). The symbols joined by dashed lines represent numerical data, with different symbols

corresponding to different L. Different colours correspond to different pairs of states ρ and σ.

as well as

F (ρJ , ρJ̄) =

Γ4

(
3+csc π`

2L
4

)
Γ4

(
1+csc π`

2L
4

)4 sin2 π`

L
,

F (ρJ , ρJJ̄) = F (ρJ̄ , ρJJ̄) =

Γ2

(
3+csc π`

2L
4

)
Γ2

(
1+csc π`

2L
4

)2 sin
π`

L
, (4.53)

which perfectly match the numerics.

5 Free massless fermion

In this section, we consider the 2D free massless fermion theory. It is a c = 1
2 CFT and

the continuous limit of the critical Ising spin chain (which is a special case of the XY

spin chain with transverse field reviewed in appendix A). We will calculate various trace

distances, relative entropies, and fidelities in the fermion theory and Ising spin chain. The

calculations in the 2D free massless fermion theory and Ising spin chain parallel those in
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the 2D free massless boson theory and XX spin chain. Therefore, our discussion will be

very brief.

In the 2D free massless fermion theory, besides the ground state |0〉, we consider the

excited states generated by the primary operators σ, µ with conformal weights ( 1
16 ,

1
16),

ψ and ψ̄ with conformal weights ( 1
2 , 0) and (0, 1

2), respectively, and ε whose conformal

weights are instead given by ( 1
2 ,

1
2). We work in units such that all the primary operators

are normalised to 1.

5.1 Trace distance

Here we first focus on the short interval expansion. Using the known scaling function

for the Rényi entropies in the state σ and µ F
(p)
σ (`) = F

(p)
µ (`) = 1 [90], and exploiting

eq. (3.17), we immediately get

xσ = xµ =
1

21/4
≈ 0.841. (5.1)

For the ε state, we instead have [103, 104]

F (p)
ε (`) =

(
2

p
sin

π`

L

)2p Γ2

(
1+p+p csc π`

L
2

)
Γ2

(
1−p+p csc π`

L
2

) , (5.2)

which, using (3.16), leads to

xε =
1

π
≈ 0.318. (5.3)

As a consistency check, the bound (3.19) is satisfied with

xmax(1/8) =
π1/4

25/8

√
Γ(9/8)

Γ(13/8)
≈ 0.885, (5.4)

for xσ, xµ, and

xmax(1) =
1√
6
≈ 0.408 . . . , (5.5)

for xε.

Plugging the coefficient (5.3) and the expectation values

〈ε〉0 = 〈ε〉ψ = 〈ε〉ψ̄ = 〈ε〉ε = 0, 〈ε〉σ = −〈ε〉µ =
π

L
, (5.6)

into the general formula (3.14), we obtain the leading order behaviour of the following

trace distances

D(ρ0, ρσ) = D(ρ0, ρµ) =
`

2L
+ o

(
`

L

)
,

D(ρσ, ρψ) = D(ρσ, ρψ̄) = D(ρµ, ρψ) = D(ρµ, ρψ̄) =
`

2L
+ o

(
`

L

)
,

D(ρσ, ρε) = D(ρµ, ρε) =
`

2L
+ o

(
`

L

)
, (5.7)
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Figure 8. Trace distance D(ρ, σ) among the RDMs in different low-lying states as a function of

the ratio between the subsystem ` and the system size L in the free fermion theory. The solid

lines denote the leading order CFT prediction in the limit of short interval, eqs. (5.7) and (5.8).

The symbols joined by dashed lines represent numerical data, with different symbols corresponding

to different L. Different colours correspond to different pairs of states with “gs” denoting the

ground state.

and

D(ρσ, ρµ) =
`

L
+ o

(
`

L

)
. (5.8)

Moreover, still from eq. (3.14) and from the expectation values (5.6), (4.7), we also get

D(ρ0, ρψ) = D(ρ0, ρψ̄) = D(ρψ, ρε) = D(ρψ̄, ρε) = xT
2π2`2

L2
+ o

(
`2

L2

)
, (5.9)

with the unknown coefficients xT = xT̄ .

We checked several of the CFT results (5.7) and (5.8) against Ising spin chain numerics

in figure 8. From numerical spin chain results, we also get approximately (see again figure 8)

D(ρ0, ρψ) = D(ρ0, ρψ̄) = D(ρψ, ρε) = D(ρψ̄, ρε) ≈ 0.0916
2π2`2

L2
+ o

(
`2

L2

)
,

D(ρ0, ρε) ≈ 0.153
2π2`2

L2
+ o

(
`2

L2

)
, D(ρψ, ρψ̄) ≈ 0.115

2π2`2

L2
+ o

(
`2

L2

)
. (5.10)

Comparison with (5.9) leads to xT = xT̄ ≈ 0.0916, which satisfies the bound (3.19) with

xmax(2) = 1/
√

30 = 0.183 . . .

5.2 An exact result

The data in figure 8 strongly suggest that the distance D(ρσ, ρµ) is exactly `/L, i.e. com-

pletely fixed by the first term in the OPE expansion. It is natural to wonder whether

we can show this. By replica trick, the stating point is always tr(ρσ − ρµ)n that for free

massless fermion theory can be computed by bosonisation (see e.g. [105]). Using standard

bosonisation rules (σ2 =
√

2 cos(ϕ/2) and µ2 =
√

2(sinϕ/2)) and then the known corre-

lation functions of the vertex operators in the bosonic theory, after some long but easy
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algebra we get

tr(ρσ − ρµ)n

trρn0
=

(
1

4n
sin

π`

L

)n/4 ∑
S⊆S0

{
(−)|S|

{
(−)|S|

∑
i ri+

∑
j sj=0∑

{ri=±1,sj=±1}

[(∏
j∈S̃

sj

)

×
( i<i′∏
i,i′∈ ˜̄S

∣∣∣ sin π(i− i′)
n

∣∣∣riri′/2)( j<j′∏
j,j′∈S̃

∣∣∣ sin π(j − j′)
n

∣∣∣sjsj′/2)
×
( ∏
i∈ ˜̄S,j∈S̃

∣∣∣ sin π(i− j)
n

∣∣∣risj/2)]}1/2
}
. (5.11)

Note that the sum of the set S is over all the subsets of S0 = {0, 1, · · · , n − 1}, and the

complement set is S̄ = S0/S. We also have S̃ = S ∪ (S + `
L), ˜̄S = S̄ ∪ (S̄ + `

L).

Further simplifications of this formula appear very difficult. However it is straightfor-

ward to check numerically even for a quite large even integer n that

tr(ρσ − ρµ)ne

trρne0

= 2ne
ne/2∏
j=1

[
sin

π(2j − 1)`/L

2ne

]2

. (5.12)

This is exactly the same as the quantity in free massless boson theory in eq. (4.27). Then,

using the result for the analytic continuation in the previous section, we get the exact

trace distance

D(ρσ, ρµ) =
`

L
, (5.13)

which in fact is exactly what the data in figure 8 were suggesting.

5.3 Relative entropy

Some relative entropies in 2D free massless fermion theory have been calculated and checked

against the numerical spin chain results in [69], using bosonisation and results for the free

massless boson in [62, 63, 66]. Here, similarly, we use bosonisation, as well as the methods

and results in [62, 63, 66, 69], in order to get further results. We obtain the following

relative entropies

S(ρ0‖ρσ) =S(ρσ‖ρ0) =S(ρ0‖ρµ) =S(ρµ‖ρ0) =
1

4

(
1−π`

L
cot

π`

L

)
,

S (ρσ‖ρµ) =S (ρµ‖ρσ) = 1−π`
L

cot
π`

L
, (5.14)

S (ρψ‖ρ0) =S
(
ρψ̄‖ρ0

)
=S (ρε‖ρψ) =S

(
ρε‖ρψ̄

)
= 1−π`

L
cot

π`

L
+sin

π`

L
+log

(
2sin

π`

L

)
+ψ

(
1

2
csc

π`

L

)
, (5.15)

S (ρε‖ρ0) = 2

(
1−π`

L
cot

π`

L

)
+2

[
sin

π`

L
+log

(
2sin

π`

L

)
+ψ

(
1

2
csc

π`

L

)]
, (5.16)
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Figure 9. Relative entropy S(ρ‖σ) as a function of the ratio between the subsystem ` and the

system size L in the free fermion theory. Solid lines are the CFT short distance prediction, eqs. (5.14)

to (5.18). The symbols joined by dashed lines represent numerical data, with different symbols

corresponding to different L. Different colours correspond to different pairs of states ρ and σ.

S (ρψ‖ρσ) =S (ρψ‖ρµ) =S
(
ρψ̄‖ρσ

)
=S

(
ρψ̄‖ρµ

)
=

5

4

(
1−π`

L
cot

π`

L

)
+sin

π`

L
+log

(
2sin

π`

L

)
+ψ

(
1

2
csc

π`

L

)
, (5.17)

S (ρε‖ρσ) =S (ρε‖ρµ) =
9

4

(
1−π`

L
cot

π`

L

)
+2

[
sin

π`

L
+log

(
2sin

π`

L

)
+ψ

(
1

2
csc

π`

L

)]
.

In particular for the relative entropies S(ρσ‖ρ0), S(ρε‖ρ0), S(ρε‖ρσ), we recover known

results in [69]. Some identities that are useful for the calculations of above relative entropies

are collected in appendix C.

In other cases, we were not able to obtain exact results. Nonetheless, using (2.12) and

the expectation values (5.6), (4.7), we can derive relative entropies at the leading order as

S(ρ0‖ρψ) = S(ρ0‖ρψ̄) = S(ρψ‖ρε) = S(ρψ̄‖ρε) =
4π4`4

15L4
+ o

(
`4

L4

)
.S(ρσ‖ρψ) = S(ρσ‖ρψ̄) = S(ρµ‖ρψ) = S(ρµ‖ρψ̄) =

π2`2

12L2
+ o

(
`2

L2

)
,

S(ρσ‖ρε) = S(ρµ‖ρε) =
π2`2

12L2
+ o

(
`2

L2

)
,

S(ρ0‖ρε) ≈ S(ρψ‖ρψ̄) = S(ρψ̄‖ρψ) =
8π4`4

15L4
+ o

(
`4

L4

)
. (5.18)

We check some of the leading order relative entropies numerically in figure 9.

5.4 Fidelity

As for the free boson, the fidelities in the fermion theory may be obtained plugging into

eq. (4.47) the results F
(p)
σ (`) = F

(p)
µ (`) = 1 for the Rényi entropies of ref. [90], obtaining

F (ρ0, ρσ) = F (ρ0, ρµ) =

(
cos

π`

2L

) 1
8

. (5.19)
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Similarly, using F
(p)
ψ (`) = F

(p)

ψ̄
(`) =

√
F

(p)
ε (`) [90] and (5.2) we get the fidelities

F (ρ0, ρψ) = F
(
ρ0, ρψ̄

)
=

Γ

(
3+csc π`

2L
4

)
Γ

(
1+csc π`

2L
4

)√2 sin
π`

L
, F (ρ0, ρε) =

Γ2

(
3+csc π`

2L
4

)
Γ2

(
1+csc π`

2L
4

)2 sin
π`

L
.

(5.20)

For other pairs of states, instead, we only get the leading order fidelities in short inter-

val expansion

F (ρψ, ρσ) = F (ρψ, ρµ) = F (ρψ̄, ρσ) = F (ρψ̄, ρµ) = 1− π2`2

64L2
+ o

(
`2

L2

)
,

F (ρε, ρσ) = F (ρε, ρµ) = 1− π2`2

64L2
+ o

(
`2

L2

)
. (5.21)

We test these CFT predictions in figure 10. Indeed, the numerical data allows us to

conjecture the following forms

F (ρσ, ρµ) =

√
cos

π`

2L
, (5.22)

and

F (ρψ, ρψ̄) =

Γ2

(
3+csc π`

2L
4

)
Γ2

(
1+csc π`

2L
4

)2 sin
π`

L
,

F (ρψ, ρε) = F
(
ρψ̄, ρε

)
=

Γ

(
3+csc π`

2L
4

)
Γ

(
1+csc π`

2L
4

)√2 sin
π`

L
, (5.23)

that perfectly match the data, as shown in figure 10.

6 Conclusion and discussion

We developed a systematic approach based on a replica trick to calculate the subsystem

trace distance in one dimensional quantum systems and in particular 2D QFT. We applied

this method to the analytic computation of trace distances between the RDMs of one

interval embedded in various low-lying energy eigenstates of a CFT, especially for free

massless boson and fermion theories. We obtained a full analytic result for the analytic

continuation for arbitrary values of `/L only in one case for the free bosonic theory and

another for the fermionic one. For all other pairs of states, we have an analytic prediction

only for the first term in the expansion in `/L. We mention that, if needed, one might use

known techniques for numerical analytic continuations (as e.g. in refs. [124, 125]) to obtain

the trace distances from the analytically known n-distances for n even. We also calculated

numerically the trace distances in XX and critical Ising spin chains, obtaining perfect
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Figure 10. Fidelity F (σ, ρ) as a function of the ratio between the subsystem ` and the system

size L in the free fermion theory. Solid lines are the CFT predictions, eqs. (5.19) to (5.23). The

symbols joined by dashed lines represent numerical data, with different symbols corresponding to

different L. Different colours correspond to different pairs of states ρ and σ.

matches with the analytical CFT results. We further check various analytical subsystem

relative entropies and fidelities in the boson and fermion theories with the numerical spin

chains results.

There is at least one aspect of our specific computations that can have important

consequences also for different applications. In fact, we have seen that there are RDMs of

CFT eigenstates that have finite trace distances (and so local operators are not guaranteed

to be the same in the two states), but their (Schatten) n-distances, instead, vanish in the

thermodynamic limit for all n > 1. In CFT, by means of scaling arguments, we are able to

build from the n-norms some indicators that remain finite in the thermodynamic limit (see

e.g. eq. (3.8)), but in a more general case (e.g. in the absence of scale invariance) it is not

clear whether this is possible. It is then natural to wonder whether some of the conclusions

based on the analysis of other distances (as e.g. in refs. [59, 126]) could change if one uses

a more appropriate indicator such as the trace distance.

There are several immediate possible generalisations to the present work. First of all

one can consider other states in CFT: open systems [93, 94], disjoint intervals [127], finite

temperature, inhomogeneous systems [70, 128], etc. Secondly, one can consider subsystem

trace distances in 2D massive theories [76]. Another interesting application is related

to the study of lattice entanglement Hamiltonians and their relation to the Bisognano-

Wichmann ones [126, 129–137]. Besides, one can consider higher dimensional boson and
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fermion theories, trying to adapt the techniques of refs. [138–142], at least in the small

subsystem limit.
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A Review of XY spin chain

The XY model with transverse field is defined by the Hamiltonian

H = −
L∑
l=1

(
1 + γ

4
σxl σ

x
l+1 +

1− γ
4

σyl σ
y
l+1 +

λ

2
σzl

)
, (A.1)

with σx,y,zl denoting the Pauli matrices and L the total number of sites in the spin chain.

One can impose either periodic boundary conditions (PBC) as σx,y,zL+1 = σx,y,z1 , or anti-

periodic boundary conditions (APBC) as σx,yL+1 = −σx,y1 , σzL+1 = σz1 . When γ = 0 it defines

the XX spin chain, while for γ = 1 the Ising spin chain which is critical for λ = 1.

The Hamiltonian (A.1) can be mapped to free fermions and exactly diago-

nalised [143, 144], as we will briefly review. For further details, especially for the aspects

of interest for this paper, see, e.g., [90, 145] and references therein. We will also review the

calculations of the entanglement entropies, Rényi entropies, and RDMs in the ground and

low-lying excited states in [10, 11, 89, 90, 109–113].

The Hamiltonian (A.1) is mapped to free fermions by the Jordan-Wigner transforma-

tion

al =
( l−1∏
j=1

σzj

)
σ+
l , a†l =

( l−1∏
j=1

σzj

)
σ−l , (A.2)

where σ±l = 1
2(σxl ± iσyl ). By Fourier transforming, we get

bk =
1√
L

L∑
l=1

eilϕkal, b†k =
1√
L

L∑
l=1

e−ilϕka†l , (A.3)

with ϕk = 2πk
L . We also consider two different boundary conditions for al, a

†
l : the APBC

aL+1 = −a1, a†L+1 = −a†1, corresponding to the Neveu-Schwarz (NS) sector, and the PBC

aL+1 = a1, a†L+1 = a†1, giving rise instead to the Ramond (R) sector. The momenta k’s are

half integers in the NS sector

odd integer L : k = 1− L

2
, · · · ,−1

2
,

1

2
, · · · , L

2
− 1,

L

2
,

even integer L : k =
1− L

2
, · · · ,−1

2
,

1

2
, · · · , L− 1

2
, (A.4)
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and integers in the R sector

odd integer L : k =
1− L

2
, · · · ,−1, 0, 1, · · · , L− 1

2
,

even integer L : k = 1− L

2
, · · · ,−1, 0, 1, · · · , L

2
− 1,

L

2
. (A.5)

Hence, one has totally four sectors. It is useful to define the parity operator

P = exp
(
πi

L∑
l=1

a†l al

)
= exp

(
πi
∑
k

b†kbk

)
, (A.6)

so that the four sectors are parametrised as

PNS sector with P = 1,

APNS sector with P = −1,

PR sector with P = −1,

APR sector with P = 1. (A.7)

For each of the four sectors, one can write the Hamiltonian as

H =
∑
k

[
(λ− cosϕk)

(
b†kbk −

1

2

)
+

iγ

2

(
b†kb
†
−k + bkb−k

)]
. (A.8)

In the PNS sector, one selects the states with P = 1, and similarly in the other three sectors.

To diagonalise (A.8), a further Bogoliubov transformation is needed. For k 6= 0 and

k 6= L/2, the Bogoliubov transformation is

ck = bk cos
θk
2

+ ib†−k sin
θk
2
, c†k = b†k cos

θk
2
− ib−k sin

θk
2
. (A.9)

The parameter θk ∈ (−π, π] is determined by

sin θk =
γ sinϕk
εk

, cos θk =
λ− cosϕk

εk
,

εk =

√
(λ− cosϕk)2 + γ2 sin2 ϕk. (A.10)

For k = 0 and k = L/2 one also has

c0 = b0, c†0 = b†0, ε0 = λ− 1,

cL/2 = bL/2, c†L/2 = b†L/2, εL/2 = λ+ 1. (A.11)

After the Bogoliubov transformation, the Hamiltonian is diagonal

H =
∑
k

εk

(
c†kck −

1

2

)
. (A.12)

Note that for γ = 0, the Hamiltonian (A.8) is already diagonal and the Bogoliubov trans-

formation is not needed.

– 34 –



J
H
E
P
1
0
(
2
0
1
9
)
1
8
1

The calculation of entanglement entropy in the ground state of the spin chain was

developed in [10, 11, 109–112], and was later generalised to the excited state in [89, 90, 113].

In the NS or R sector of the spin chain, one can define an empty state |∅,NS〉 or |∅,R〉 that

is annihilated by all the modes ck

ck|∅,NS〉 = 0, k ∈ half integers,

ck|∅,R〉 = 0, k ∈ integers. (A.13)

Other energy eigenstates in the spin chain can be denoted by the set of the modes c†k
that are excited above the empty state |∅,NS〉 or |∅,R〉. For examples, the set K =

{−1
2 ,

1
2 ,

3
2} denotes the state c†−1/2c

†
1/2c

†
3/2|∅,NS〉, and the set K = {−1, 0} denotes the

state c†−1c
†
0|∅,R〉. From the complex modes al, a

†
l , one can define the Majorana modes

d2l−1 = al + a†l , d2l = i(al − a†l ). (A.14)

These Majorana modes dm, m = 1, 2, · · · , 2` are Hermitian d†m = dm and satisfy the algebra

{dm, dm′} = 2δmm′ . (A.15)

For an interval with ` sites on the spin chain in a state K, one defines the correlation matrix

〈dmdm′〉K = δmm′ + ΓKmm′ , (A.16)

with the 2`× 2` matrix written as

ΓK =


ΓK0 ΓK1 · · · ΓK`−1

ΓK−1 ΓK0 · · · ΓK`−2
...

...
. . .

...

ΓK1−` ΓK2−` · · · ΓK0

 , ΓKj =

(
fKj gKj
−gK−j fKj

)
, (A.17)

and

fKj = −2i

L

∑
k∈K

sin(jϕk),

gKj = − i

L

∑
k/∈K

ei(jϕk−θk) +
i

L

∑
k∈K

e−i(jϕk−θk). (A.18)

In terms of the 2` eigenvalues γKm , m = 1, 2, · · · , 2` of ΓK , the entanglement entropy of the

length ` interval in state K is [10, 11, 109–112],

SK(`) = −
2∑̀
m=1

1 + γKm
2

log
1 + γKm

2
. (A.19)

The entire 2` × 2` RDM in the state K is instead given by

ρK(`) =
1

2`

∑
s1,··· ,s2`∈{0,1}

〈ds2`2` · · · d
s1
1 〉Kd

s1
1 · · · d

s2`
2` , (A.20)
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and the multi-point correlation functions 〈ds2`2` · · · d
s1
1 〉K can be calculated from the corre-

lation function matrix (A.16) by the Wick theorem. From the RDMs of various states we

calculate the trace distances and other quantities. The size of the RDMs grows exponen-

tially, therefore we cannot reach very large ` and in this paper, in particular, we get up to

` = 7. Conversely, L can be taken arbitarily large, so that we can probe a large region of

the parameter `/L. In particular for the trace distance, for two given RDMs ρA, σA, the

trace distance is computed from the definition (1.4)

D(ρA, σA) =
1

2

2`∑
i=1

|λi|, (A.21)

with λi being the eigenvalues of ρA − σA. Similarly the n-distances are given by

Dn(ρA, σA) = (1
2

∑2`

i=1 |λi|n)1/n.

Hence, we have that by the use of Wick theorem, the correlation matrix ΓK com-

pletely determines the 2` × 2` RDM ρK . For a correlation matrix Γ, we can denote the

corresponding RDM as ρΓ. The algebra of the RDMs studied in [114, 146], obtaining

ρΓρΓ′ = tr(ρΓρΓ′)ρΓ×Γ′ , (A.22)

where the trace of two RDMs is

tr(ρΓρΓ′) =
∏

λ∈[spectrum(ΓΓ′)]/2

1 + λ

2
, (A.23)

and one defines

Γ× Γ′ = 1− (1− Γ′)(1 + ΓΓ′)−1(1− Γ). (A.24)

The relation (A.22) can be used recursively to calculate the trace of the product of several

RDMs, and therefore the even n-distances.

Finally we need to identify the low-lying energy eigenstates in the spin chain with

the corresponding ones in CFT. For XX spin chain and for critical Ising spin chain, this

identification has been discussed, for example, in [90]. In this paper, for simplicity, we

choose L to be an even integer and multiple of 4. In the XX spin chain, we only consider

states in the NS sector. Several examples of the identification of states in the spin chain

and CFT are as follows

|0〉 =

L
4
− 1

2∏
k=−L

4
+ 1

2

c†k|∅,NS〉 in PNS sector ↔ |0〉 with (0, 0),

c†L
4

+ 1
2

|0〉 in APNS sector ↔ |V1,0〉 with (1/2, 0),

cL
4
− 3

2
cL

4
− 1

2
|0〉 in PNS sector ↔ |V−2,0〉 with (2, 0),

c†−L
4
− 3

2

c†−L
4
− 1

2

|0〉 in PNS sector ↔ |V0,2〉 with (0, 2),

c−L
4

+ 1
2
|0〉 in APNS sector ↔ |V0,−1〉 with (0, 1/2),
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c†−L
4
− 3

2

c†−L
4
− 1

2

c†L
4

+ 1
2

|0〉 in APNS sector ↔ |V1,2〉 with (1/2, 2),

c−L
4

+ 1
2
c†L

4
+ 1

2

c†L
4

+ 3
2

|0〉 in APNS sector ↔ |V2,−1〉 with (2, 1/2),

c−L
4

+ 1
2
c−L

4
+ 3

2
c†L

4
+ 1

2

c†L
4

+ 3
2

|0〉 in PNS sector ↔ |V2,−2〉 with (2, 2),

c†−L
4
− 1

2

cL
4
− 1

2
|0〉 in PNS sector ↔ |V−1,1〉 with (1/2, 1/2),

c†−L
4
− 1

2

cL
4
− 3

2
cL

4
− 1

2
|0〉 in APNS sector ↔ |V−2,1〉 with (2, 1/2),

cL
4
− 1

2
c†L

4
+ 1

2

|0〉 in PNS sector ↔ |J〉 with (1, 0),

c†−L
4
− 1

2

c−L
4

+ 1
2
|0〉 in PNS sector ↔ |J̄〉 with (0, 1),

c†−L
4
− 1

2

c−L
4

+ 1
2
cL

4
− 1

2
c†L

4
+ 1

2

|0〉 in PNS sector ↔ |JJ̄〉 with (1, 1), (A.25)

where the notation “with (h, h̄)” stands for the conformal weights on the CFT side.

In the critical Ising spin chain, we consider several states both in the NS and R sectors.

They include

|∅,NS〉 in PNS sector ↔ |0〉 with (0, 0),

c†1
2

|∅,NS〉 in APNS sector ↔ |ψ〉 with (1/2, 0),

c†− 1
2

|∅,NS〉 in APNS sector ↔ |ψ̄〉 with (0, 1/2),

c†− 1
2

c†1
2

|∅,NS〉 in PNS sector ↔ |ε〉 with (1/2, 1/2),

c†0|∅,R〉 in PR sector ↔ |σ〉 with (1/16, 1/16),

|∅,R〉 in APR sector ↔ |µ〉 with (1/16, 1/16). (A.26)

B An identity in boson theory

For a subset S ⊆ S0 with S0 = {0, 1, · · · , n − 1}, in eq. (4.24) we defined the function

hn(S). In ref. [90], it has been shown that

hn(S0) = 1. (B.1)

More generally, for an arbitrary subset S of S0 and its complement S̄ = S0/S, we have

the identity

hn(S) = hn(S̄). (B.2)

This relation can be simply proved by counting the poles on both sides of the equation, as

described in [63, 90]. Note that S ∩ S̄ = ∅, S ∪ S̄ = S0. Since hn(∅) = 1, the identity (B.1)

is a special case of (B.2). One useful corollary of the identity (B.2) is

∏
j1∈S,j2∈S̄

sin2 π(j1−j2)
n

sin π(j1−j2+`/L)
n sin π(j1−j2−`/L)

n

= hn(S)−2 = hn(S̄)−2. (B.3)
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C Some identities in fermion theory

For a primary excited state |φ〉 with scaling dimension ∆φ in a general 2D CFT, it is easy

to get the universal result

tr(ρφρ
n−1
0 )

trρn0
=

(
sin π`

L

n sin π`
nL

)2∆φ

, (C.1)

leading to the universal form of the relative entropy [69]

S(ρφ‖ρ0) = −Sφ + S0 + 2∆φ

(
1− π`

L
cot

π`

L

)
. (C.2)

Moreover, in order to compute the relative entropies in the 2D free massless fermion theory,

we need the following identities

trρnσ
trρn0

=
trρnµ
trρn0

= 1,

tr(ρ0ρ
n−1
σ )

trρn0
=

tr(ρ0ρ
n−1
µ )

trρn0
=

(
sin π`

L

n sin π`
nL

) 1
4

,

tr(ρµρ
n−1
σ )

trρn0
=

tr(ρσρ
n−1
µ )

trρn0
=

sin π`
L

n sin π`
nL

, (C.3)

which can be obtained by bosonization and follow from

(
1

n
sin

π`

L

)n
2 1

2n

s0+···+s2n−1=0∑
s0=±1,··· ,s2n−1=±1

[( ∏
0≤j1<j2≤n−1

∣∣∣ sin π(j1 − j2)

n

∣∣∣ s2j1s2j2+s2j1+1s2j2+1
2

)
×
( ∏

0≤j1,j2≤n−1

∣∣∣ sin π(j1 − j2 + `
L)

n

∣∣∣ s2j1s2j2+1
2

)]
= 1,

( 1

n
sin

π`

L

)n−1
2 1

2n−1

s2+···+s2n−1=0∑
s2=±1,··· ,s2n−1=±1

[( ∏
1≤j1<j2≤n−1

∣∣∣ sin π(j1 − j2)

n

∣∣∣ s2j1s2j2+s2j1+1s2j2+1
2

)

×
( ∏

1≤j1,j2≤n−1

∣∣∣ sin π(j1 − j2 + `
L)

n

∣∣∣ s2j1s2j2+1
2

)]
=

(
sin π`

L

n sin π`
nL

) 1
2

,

( 1

n
sin

π`

L

)n
2 1

2n

s0+···+s2n−1=0∑
s0=±1,··· ,s2n−1=±1

[
s0s1

( ∏
0≤j1<j2≤n−1

∣∣∣ sin π(j1 − j2)

n

∣∣∣ s2j1s2j2+s2j1+1s2j2+1
2

)

×
( ∏

0≤j1,j2≤n−1

∣∣∣ sin π(j1 − j2 + `
L)

n

∣∣∣ s2j1s2j2+1
2

)]
= −

(
sin π`

L

n sin π`
nL

)2

. (C.4)

The first of the identities in (C.4) has been proved in [90].
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D Some formulas for the analytic continuation

For n = 1, eq. (4.29) simplifies to

logD1[1] = log(π)− 2

∫ ∞
0

dt
1

t

(
1

1 + etx/2
− e−t

2

)
. (D.1)

The two integrals above are both divergent but their sum converges. The calculation may

be simplified by a sort of dimensional regularisation of each integral as

I1(a) =

∫ ∞
0

dt
ta

1 + etx/2
= 2 (2a − 1)x−a−1ζ(a+ 1)Γ(a+ 1) ,

I2(a) =

∫ ∞
0

dt
tae−t

2
=

Γ(1 + a)

2
, (D.2)

where ζ(a) is the Riemann ζ function. The desired integral (D.1) is recovered in the limit

a→ −1 where both I1(a) and I2(a) diverges, but their difference is finite

lim
a→−1

(I1(a)− I2(a)) = −1

2
log

x

π
, (D.3)

and hence

logD1[1] = log x . (D.4)

The other limit n→∞ is more cumbersome, but can be tackled with the same logic.

The starting formula is

lim
n→∞

logDn[1]

n
= log(2π)+

∫ ∞
0

dt

(
e−t

t
− 2

xt2
+

2

t(et−1)
− 2etx/2

xt2 (et−1)
+

2et−tx/2

xt2 (et−1)

)
. (D.5)

As before each piece can be regularised in a dimensional way. There is only one problem

with the term 2/(xt2) that cannot be regularised. Anyhow, such a term cannot have a

finite contribution, and so it would be sufficient to take the sum of the finite contribution

of the other four integrals. Proceeding in this way, after long but simple algebra, we arrive

to the very compact form

lim
n→∞

logDn[1]

n
=

2
(
ζ ′
(
−1,1− x

2

)
−ζ ′

(
−1, x2

))
x

, (D.6)

where ζ ′(z, y) ≡ ∂zζ(z, y) denotes the derivative of the generalised ζ function with respect

to the first argument. It is possibile that such expression can be further simplified, but for

our goals it is enough to write it as above.
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[140] B. Chen and J. Long, Rényi mutual information for a free scalar field in even dimensions,

Phys. Rev. D 96 (2017) 045006 [arXiv:1612.00114] [INSPIRE].

[141] B. Chen, L. Chen, P.-x. Hao and J. Long, On the Mutual Information in Conformal Field

Theory, JHEP 06 (2017) 096 [arXiv:1704.03692] [INSPIRE].

[142] B. Chen, Z.-Y. Fan, W.-M. Li and C.-Y. Zhang, Holographic Mutual Information of Two

Disjoint Spheres, JHEP 04 (2018) 113 [arXiv:1712.05131] [INSPIRE].

[143] E.H. Lieb, T. Schultz and D. Mattis, Two soluble models of an antiferromagnetic chain,

Annals Phys. 16 (1961) 407 [INSPIRE].

[144] P. Pfeuty, The one-dimensional Ising model with a transverse field, Annals Phys. 57 (1970)

79.

[145] P. Calabrese, F.H. Essler and M. Fagotti, Quantum quench in the transverse field ising

chain: I. time evolution of order parameter correlators, J. Stat. Mech. (2012) P07016

[arXiv:1204.3911].
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