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Introduction 

Semantic cognition 

Semantics–from the ancient Greek σημαντικός–is the branch of linguistics concerned with 

meaning. Yet, in contemporary neuroscience, semantics rather refers to the cognitive and brain 

processes due to which we know what the different entities in the world are, and how to interact with 

them. Crucially, semantic knowledge gives meaning to language, making otherwise meaningless 

auditory and visual objects appropriate vehicles for a successful communication with our 

conspecifics.   

 An adult human brain has a wealth of information about the concepts of the world we live in; 

this knowledge is acquired progressively throughout life, and it is stored within the semantic memory. 

A wide variety of human behaviors relies on this conceptual knowledge, such as the recognition and 

use of objects, the ability to apprehend abstract concepts, to name them and eventually to share them 

with others. We cannot reason, remember the past or imagine the future without having access to it. 

All human cultures–whether scientific, literary, religious, artistic–are built around a foundation of 

conceptual knowledge of this kind. However, despite being involved in almost all human activities, 

its neurobiological bases are far from being fully understood. 

 The current thesis aims at exploring the cognitive and brain mechanisms that allow for 

meaning extraction from a specific type of stimuli: words. This choice reflects the main interest that 

has driven my PhD, i.e. to understand how lexical–semantic knowledge is organized and accessed, 

rather than object recognition per se. Despite the processes of access to meaning for words and other 

visual stimuli partially overlap (Shinkareva, Malave, Mason, Mitchell, & Just, 2011; Simanova, 

Hagoort, Oostenveld, & Van Gerven, 2014), there is also evidence that the two semantic routes are 

not identical. Several neuroimaging studies reported different patterns of activation elicited by 

carefully matched words and pictures (Devereux, Clarke, Marouchos, & Tyler, 2013; Gates & Yoon, 
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2005; Price et al., 2006). Moreover, there are patients who show severe object recognition 

impairments in spite of a relatively spared word comprehension (Davidoff & De Bleser, 1994; 

Humphreys & Rumiati, 1998), further suggesting the specificity of semantic access via words. 

Theories of semantic cognition 

Classic view 

Traditionally, semantic memory was thought of as a modular and a–modal system where long–

term representations of concepts are stored (Tulving, 1972). Modularity points to a functionally 

specialized cognitive system, which is different from other memory structures such as episodic 

memory, which refers instead to the memory of events that took place at a specific time and place. 

A–modality refers to the independence of the semantic information associated with a given concept 

from the sensory modality through which it was originally perceived. For example, when reading the 

word orange, we activate its conceptual representation which includes information regarding its 

shape, color and taste, yet this information is dissociated from the sensory systems used to actually 

see and taste it.  

While Tulving’s theoretical framework for semantic memory surely represented the foundation 

for the scientific study of semantic representations, later research clearly challenged this classic view. 

Advances in neuroimaging techniques and computational modelling (Jones, Willits, & Dennis, 2015; 

Martin & Chao, 2001) made it possible to better understand the nature of semantic memory as a part 

of an integrated structure which is widely distributed across the brain and connected to sensory, 

perceptual, and motor systems.  

Embodied view 

Behavioral and neuroimaging experiments have shown that access to word meaning implies to 

activate sensorimotor information associated with perceiving and interacting with the real–world 
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entities words refer to. That is, unimodal sensory regions – including the visual, auditory and 

sensorimotor cortex – play an active role in the processing of lexical meaning (Binder & Desai, 2011; 

Glenberg & Gallese, 2012; Kiefer & Pulvermüller, 2012). For example, comprehending words related 

to movement, color, sound or emotion activates cortical regions involved in the processing of these 

specific types of information: lower temporal (motion), fusiform gyrus (color), superior temporal 

(sound), temporal pole and ventromedial prefrontal cortex (emotion). Similarly, deficits in the 

comprehension of action verbs have been reported for patients suffering from neurological syndromes 

that affect motor skills, such as Parkinson's disease (Boulenger et al., 2008) or amyotrophic lateral 

sclerosis (Grossman et al., 2008). These results have licensed the embodied semantics theory; under 

the more radical interpretations, this theory posits that understanding concrete words corresponds to 

activate the sensory–motor representations acquired when making experience with the corresponding 

referents (Barsalou, 2008). The same process holds for abstract words, whose meanings are 

constructed as metaphoric extensions from sensory–motor experience (e.g. love is a journey; 

happiness is up, sadness is down; Lakoff & Johnson, 1980). 

Although the activation of sensorimotor information during language understanding is 

uncontroversial, the question of the causal relation between the two has been the focus of a long–

lasting debate. Advocates of strong embodiment have suggested that this activation is not an 

epiphenomenon, but an essential mechanism of meaning construction, being mandatory 

(Pulvermüller, Hauk, Nikulin, & Ilmoniemi, 2005), automatic (Ansorge, Kiefer, Khalid, Grassl, & 

König, 2010; Dudschig, de la Vega, De Filippis, & Kaup, 2014), and attested already at early stages 

of semantic processing (Boulenger et al., 2006; Hoenig, Sim, Bochev, Herrnberger, & Kiefer, 2008). 

Such experiments are surely elegant and highlight intriguing phenomena; yet, whether they 

truly imply a causal connection between sensorimotor information and meaning, it is far from clear. 

Upon closer look, other explanations that do not require strong embodiment claims can be licensed. 

Mahon and Caramazza (2008), for example, pointed out replication issues in the literature, and 
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suggested that most of this evidence could be explained by a disembodied view of cognition that more 

carefully takes into consideration the dynamics of activation flow between cognitive and brain 

systems. Other studies directly questioned radical views of embodied semantics. Bottini, Bucur and 

Crepaldi (2016) found no evidence that words could automatically trigger sensorimotor information 

outside of awareness, although these words were clearly processed up to the semantic level. Similarly, 

Miller, Brookie, Wales, Wallace and Kaup (2018) conducted a series of EEG experiments in which 

participants made hand or foot responses to verbs referring to either hand or foot movements (e.g. 

punch, kick). While different ERPs were elicited by the specific motor actions required by the task, 

no such difference was attested for the semantic processing of the hand- versus foot-related target 

words. These results clearly challenged claims whereby access to the meaning of action verbs would 

mandatorily recruit motor areas activated when performing the corresponding action. 

Neuropsychological evidence is also intermixed; for example, there are cases of apraxic patients who 

were able to name and recognize words referring to objects they could not interact with (Mahon & 

Caramazza, 2005). 

To conclude, a cautious examination of the literature on embodied theory seems to dismiss its 

more radical versions, and tell us that sensory–motor information is clearly involved in the 

construction of lexical meaning, but plays a rather secondary and supportive role. 

Symbolic view 

Semantic representations are thus built upon lifelong verbal and non–verbal experience, and 

recruit several sensory, linguistic, motor and affective processing systems, which are widely 

distributed across the brain. Crucially, all the information coming from modality–specific areas 

eventually converges in regions that act as semantic hubs, and allow perceptual experiences to reach 

an abstract level of representation (Binder, Desai, Graves, & Conant, 2009; Damasio, 1989). This 

process seems to capture and incorporate two aspects of word meaning that were heavily studied in 



 

9 

 

Experimental Psychology and Cognitive Neuroscience: a taxonomic system responsible for assigning 

categories to lexical meanings, and a thematic system that link them based on frequent co–occurrence 

of the corresponding referents in events or scenarios (Mirman, Landrigan, & Britt, 2017).   

Early studies of semantic memory postulated the existence of taxonomic networks where 

concepts are stored and connected via parent–child hierarchies (Collins & Quillian, 1969). For 

example, the node ANIMAL would branch into subordinate nodes REPTILES, BIRDS, 

MAMMALS, etc., which in turn would branch into their subordinate nodes (e.g. RODENTS, 

PRIMATES, FELINES, etc.,), and so on. Each node is defined by a set of features (e.g. ANIMAL: 

breathes, eats, mates, etc.) that are inherited by all the elements at lower levels in the tree. Crucially, 

this model predicts the existence of a distance effect, so that the farther information is stored in the 

hierarchy, the longer the processing time; for example, it would be easier to confirm that “dog is a 

mammal” (one node) than “dog is an animal” (two nodes). While early evidence seemed to confirm 

such effect, later studies challenged it (Chang, 1986). More recently, taxonomic relationships have 

been described on the bases of a set of binary features that point to perceptual, functional and 

encyclopedic aspects of the corresponding entity. This approach relies on the collection of data from 

human raters in property generation tasks and word meaning, which can be eventually represented by 

a vector keeping track of such features (Dilkina & Lambon Ralph, 2012; McRae, Cree, Seidenberg, 

& McNorgan, 2005; Vinson & Vigliocco, 2008). Featural models does not conceive any distance 

effect, as they are not hierarchical. Rather, their core predictions stem from the distinctiveness and 

the overlap of the features associated to the entities, accounting for semantic similarity over and 

beyond categorical membership. For example, they can explain why an eagle is more similar to a 

hawk than to a penguin, while all being birds. Yet, they are not perfectly suited to represent the 

semantic content of abstract entities, whose describing features can be quite difficult to define and 

seem to be rather situation- and context-specific. 



 

10 

 

Thematic relationships, instead, reflect association due to contiguity between concepts, which 

can be represented as nodes within network models (Collins & Loftus, 1975). In these networks, 

activation would spread from one node to the other, with activation strength proportional to their 

association. This latter has been typically quantified by asking many subjects to list words brought to 

mind by a target word. (Nelson, McEvoy, & Schreiber, 2004). This approach has been widely used 

in psycholinguistic research, particularly to study the dynamics of lexical–semantic access. Yet, 

association norms represent quite a fuzzy psychological construct; they are not clearly defined and 

encompass a wide range of rather different types of relationships. For example, category membership 

(rifle-gun1), collocation (macaroni-cheese), synonymy (sofa-couch), meronymy (hammer-tool), 

antonymy (day-night), scripts (school-student), function (bed-sleep), even proper names of notorious 

entity (president-Bush). 

Experimental studies of word meaning: the priming paradigm 

No matter which specific theory one embraces, each entry in the semantic memory can thus 

activate a more or less extensive network of knowledge, which is influenced not only by the percept 

itself (bottom-up processing), but also by information already stored in the brain via previous 

experience with the stimulus (top-down processing). For example, reading the word mouse does not 

necessarily imply only the activation of a specific piece of encyclopedic and sensory information ("a 

small rodent that typically has a pointed snout, relatively large ears and eyes, and a long tail"), but 

possibly a much larger field of knowledge, partly variable from one individual to another. This field 

of knowledge includes the representations of related entities like cat, cheese, the Speedy Gonzales 

cartoons, the yard of your grandmother's country house, etc. (Figure 1).  

 
1 All the examples are taken from the University of South Florida Free Association Norms (Nelson, McEvoy, & 

Schreiber, 2004) 
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Figure 1. Access to the semantic content of a word (e.g., mouse) can "activate" related conceptual representations (e.g., mouse, cat, 

cheese, Speedy Gonzales, etc.) 

Thus, the activation of a representation stored in semantic memory generally overflows on 

concepts that are close to it. This phenomenon, called semantic priming, probes access to the meaning 

of a word by measuring the facilitation it exerts on a neighboring representation (McNamara, 2005). 

So if you ask a subject to perform a task requiring semantic processing of the word mouse – such as, 

for example, saying whether it is a natural or artificial entity – it will be faster and more accurate if 

mouse had been preceded by the related word cat, than if it had been preceded by an unrelated word 

such as ship. This facilitation occurs also when participants are involved in non-semantic task, such 

as lexical decision and naming; thus, priming seems to be driven by fundamental memory recruitment 

processes (McNamara, 1992).  

Semantic representations are highly complex and multidimensional, and different aspects of 

word meaning follow different time courses of activation. Thus, a critical factor modulating the 

emergence and the magnitude of priming is represented by the stimulus onset asynchrony (SOA), i.e., 

the time passed from the presentation of the prime to the presentation of the target. Longer SOAs are 

likely to allow for secondary and more effortful aspects of lexical meaning to be processed. For 

example, Lam, Dijkstra and Rueschemeyer (2015) reported priming for words referring to objects 
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that are manipulated in a similar way (e.g., paper plane-DART) already at a SOA of 100ms, while 

priming based on visual similarity (e.g., syringe-DART) showed up only at a SOA of 1000ms. 

Thus, priming experiments have been fundamental for the study of lexical semantic processing 

processing; however, the numerous studies using this paradigm that were carried out since the 

beginning of the 1970s have brought partly contradicting results. Most of the controversy relates to 

the specific contribution brought by taxonomic (feature-based) vs. thematic (association-based) 

relationships as described above. Previous studies provided conflicting results, leaving the issue still 

open and highly debated. For example, Lucas (2000) stated that “pure” feature-based similarity – i.e., 

in the absence of word association–produces priming, while he found no evidence supporting the 

opposite claim. Conversely, Hutchison (2003) concluded that both feature overlap and associative 

relatedness leads to a significant facilitation of related targets. One possibility is that it may not be 

fruitful to dichotomously differentiate between associative and featural similarity, given that highly 

associated items in norm production tend to share some form of semantic relationship as well 

(Brainerd, Yang, Reyna, Howe, & Mills, 2008; Guida & Lenci, 2007). Rather, this distinction points 

to the extremes of an underlying continuum. A theoretical approach describing meaning-based 

similarity in continuous terms is represented by distributional semantics. 

Distributional semantics 

Distributional semantics is a fully symbolic theory defining meaning activation as an a-modal 

process based on a set of connections linking words to each other. This approach builds upon the 

theoretical assumption that humans construct semantic representations of lexical items by keeping 

track of their distribution in language use. If words get their meaning due to the linguistic context 

they appear in, then words occurring in similar contexts will be similar in meaning. This idea is not 

new, but dates back at least to the 50s, as we can see from the following quotations: 
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“The meaning of a word is its use in the language” (Ludwig Wittgenstein, Philosophical 

Investigation, 1953) 

“Each language can be described in terms of a distributional structure, i.e. in terms of the 

occurrence of parts (ultimately sounds) relative to other parts” (Zellig Harris, Distributional 

Structure, 1954) 

“You shall know a word by the company it keeps” (John Rupert Firth, A synopsis of linguistic 

theory 1930-1955, 1957) 

Nowadays, distributional semantics represents a mainstream research paradigm in Computer 

Science and Cognitive Neuroscience, mostly due to the great advancements in the development of  

techniques capable of providing human-like estimates of meaning-based similarity between words. 

All these procedures are strictly linked to the development of linguistic corpora, large database of text 

documents made up of  billions of words (these models need to be trained on large amounts of 

material). By looking at their distribution, it is then possible to reveal recurrent patterns that could be 

eventually used as a proxy to represent lexical meaning, and therefore to account for semantic 

similarity. One of the major advantages of this approach is that words themselves represent the 

building blocks of semantic representations, ruling out the weakness of postulating a-priori which 

“features” constitute the basis for theoretical models of semantics. Moreover, similarity estimates can 

be automatically obtained for potentially all words attested in a given corpus, while feature-lists and 

association norms are available only for a limited set of stimuli and require time and resources to 

recruit participants. 

The most immediate way to model semantic relatedness according to word distribution is by 

looking at surface cooccurrence, based on the assumption that two words that exhibit a tendency to 

appear near to each other in natural language are likely to be associated in meaning. Typically, co–

occurrence is computed within a window comprising from 3 to 5 words, but it may vary according to 



 

14 

 

the specific experimental question being asked. Some studies have been interested into immediately 

adjacent words, also called bigrams (Pecina, 2010), while others have taken into consideration much 

wider windows (Vechtomova, Robertson, & Jones, 2003). Moreover, punctuations and function 

words – those words that convey only little meaning and primarily carry out a syntactic function – 

are normally excluded before collecting frequency counts, in order to face the data sparsity issue and 

increase the signal-to-noise ratio. The same reasoning holds for lemmatization, which reconducts all 

the inflected forms (e.g., speak, speaks, spoke, spoken) to the same abstract representation (e.g., 

speak).  

Mere recurrence is not enough to indicate strong attraction between lexical items, as word pairs 

may be highly attested due to the individual frequency of the single component. Thus, it is common 

practice to apply some mathematical transformation to the raw count of co–occurrence. For example, 

it is possible to estimate joint and conditional probabilities, run statistical tests of independence, 

compute likelihood and information-based measures (a systematic review can be found in Evert, 

2007). Here, we will focus on pointwise mutual information (PMI) between two words, which can be 

computed via the formula:  

PMI(w₁,w₂) = log₂
𝑝(𝑤₁,𝑤₂)

𝑝(𝑤₁)𝑝(𝑤₂)
 

where p(w₁,w₂) corresponds to the probability of the word pair, while p(w₁) and p(w₂) to the individual 

probabilities of the two components (Church & Hanks, 1989). PMI expresses how a given word can 

be used as a proxy for expecting another word, and thus can be rightfully considered as an index of 

local associative relationship. The metrics found successful applications in psycholinguistic research; 

for example, it could account for similarity judgements (Recchia & Jones, 2009), reading speed (Ellis, 

Simpson-Vlach, & Maynard, 2008), and free association and syntactic parsing (Pitler, Louis, & 

Nenkova, 2010).  
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More complex methods are based on word embeddings, a set of computational methods that 

involve the training of distributional semantic models (DSMs) where lexical items are mapped to 

numerical vectors. Similarity between words is indexed by spatial proximity in the semantic space, 

and it can then be measured via linear algebra operations, for example, by computing the cosine of 

the angle formed by two word-vectors: 

cosθ =
𝑎∙𝑏

||𝑎||∙||𝑏||
 

Early approaches built word vectors from co-occurrence matrices that kept track of word distribution 

in a given corpus. These matrices could differ regarding the type of linguistic context taken into 

consideration. Some models, such as the Hyperspace Analogue to  Language (HAL; Lund & Burgess, 

1996), relied on word-by-word matrices constructing distributional profiles for words based on which 

other words surrounded them, via a sliding context window that was normally advanced one word at 

a time along the entire corpus. Others, such as Latent Semantic Analysis (LSA; Landauer & Dumais, 

1997), constructed word-by-documents matrices by counting how many times words appear in 

broader linguistic contexts like paragraphs or entire text documents. After collecting frequency 

counts, raw vectors underwent some transformation allowing the model to achieve a better 

performance. This optimization process could imply reweighting the counts for context 

informativeness and smoothing them with dimensionality reduction techniques. 

More recent models, instead, have tackled vector construction as a supervised task, by 

implementing neural network architectures that assign weights to the vectors in order to maximize 

model performance. In particular, the state-of-art model (word2vec; Mikolov, Chen, Corrado, & 

Dean, 2013) represents a simple neural network consisting of an input, an output and a hidden layer, 

and is based on a predictive mechanism that allows to infer a target given a cue. There are two 

different learning architectures that can be implemented: in continuous-bag-of-words (CBOW), a 

given word is predicted on the basis of the surrounding words, while in skip-gram, the surrounding 
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words are predicted on the basis of a given word. In both cases, learning is performed by adjusting at 

each training step the weights of the connections between the nodes of the network, based on the 

difference between the outcome (the target) predicted on the basis of a cue (the context) by the 

network, and the correct one.  

Word2vec – and prediction-based models in general – have been proposed as a psychologically 

plausible model of learning, such as the Rescorla-Wagner model of classical conditioning (Günther, 

Rinaldi, & Marelli, 2019; Mandera, Keuleers, & Brysbaert, 2017). Model estimates cover a wide 

range of classic lexical-semantic relationships, such as synonymy (e.g. king-monarch2, 0.51) , 

antonymy (e.g. life-death, 0.42), meronymy (e.g. engine-car, .49). Associative relations as well can 

be grasped (monkey-banana, .41). Finally, it can account for featural similarity beyond category 

membership (e.g. shark-dolphin, .46 vs shark-tuna, .24). Experiment evidence has shown that 

word2vec has been shown to performed better than (or as well as) other DSMs in a variety of task, 

such as synonym detection, concept categorization, semantic priming (Baroni, Dinu, & Kruszewski, 

2014; Mandera et al., 2017; Marelli, 2017). 

Despite many DSMs involve the collection of cooccurrence data to construct distributed 

representations, there is a crucial difference between the two metrics. Spatial proximity in the 

semantic space reflects overlap in the contexts of use between words that may never cooccur directly. 

Two synonyms like car and automobile are not likely to appear in the same sentence; still, they point 

to the same entity, and are therefore expected to be used with pretty much the same words. 

Conversely, the fact that two words appear very often close to each other stems from the effective co-

presence of the corresponding referents as we experience them in our everyday experience. For 

example, the words glove and oven are not strongly related in the semantic memory, but are likely to 

go together in language due to the fact that every time you need to take out a baking pan from the 

 
2 All the examples are taken from the CBOW model developed by Mandera, Keuleers, & Brysbaert (2017) 
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oven, you need a glove for not getting burnt. The two approaches/metrics, therefore, specifically code 

for different aspects of word associations, even if these different aspects typically correlate. 
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Conscious and unconscious cognition 

Generations of scientists and philosophers have struggled with the uncertainty about how to 

define consciousness. Traditionally, the conscious state has been defined as a psychological state 

characterized by a subjective awareness of an experience; thus, a mental representation is described 

as conscious if and only if it is reportable – "I am aware of seeing this stimulus". The use of this 

criterion of reportability has been critical in the experimental work aimed at determining the cognitive 

and brain mechanisms underlying conscious access. Indeed, certain mental representations do not 

reach the consciousness and are therefore described as unconscious or subliminal.  

Over the last decades, the neuroscientific study of consciousness has made significant progress 

by combining contributions from experimental psychology, functional brain imaging and 

computational modelling (Dehaene, Charles, King, & Marti, 2014). Due to such improvements, it is 

now possible to explore the unconscious counterpart of many high-level cognitive functions – such 

as memory, emotions, executive control, mathematics, language – whose exploration was most often 

conducted in conscious healthy subjects. 

Yet, how to characterize the differences between conscious and unconscious processing is still 

highly debated. Support for and against a qualitative difference between the two is present in the 

literature, and such empirical diversity resulted in a rather polarized distinction between firm 

supporters or deeply skeptics. According to former group, every fundamental high-level function can 

be carried out by the unconscious mind pretty much as the conscious one does (Hassin, 2013). This 

position is backed by experimental evidence showing unconscious completion of complex tasks like 

arithmetic (Karpinski, Briggs, & Yale, 2019), goal setting (Hassin, Bargh, & Zimerman, 2009), 

sound-symbolism mapping (Hung, Styles, & Hsieh, 2017), syntactic processing (Berkovitch & 

Dehaene, 2019) or sentence meaning construction (Sklar et al., 2012). Similarly, it has been claimed 

that working memory includes cognitive processes of which participants are not aware (Logie, 2016).  
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However, some of these results have failed replication attempts (Mongelli, Meijs, van Gaal, & 

Hagoort, 2019; Moors & Hesselmann, 2019; Nakamura et al., 2018). These results question the 

strength of previous claims and rather suggest that conscious and unconscious processing may be 

qualitatively different. More precisely, it may be possible that the amount of information that can be 

extracted and processed from a subliminally presented stimulus is reduced and more segregated 

relative to the conscious counterpart.  

This would be in line with the global workspace model (Baars, 2005; Dehaene & Changeux, 

2011; Dehaene, Changeux, Naccache, Sackur, & Sergent, 2006). In this model, unconscious 

processing is segregated in several modular brain networks. An information represented locally in 

one of these processors would only access consciousness if it is enhanced by attentive top-down 

amplification and then spreads, via long–distance connections throughout the cortex, to form a 

coherent state of activity at the global level in the brain. Such long-distance connectivity allows, at 

least when it is sufficiently persistent, to make information accessible to high-level processes such as 

categorization, long-term memorization, emotional evaluation and voluntary manipulation. This 

global availability of information through this global neuronal workspace would correspond exactly 

to what we experience in the form of perceptual awareness. 

Unconscious semantic processing: the masked priming paradigm 

Access to word meaning outside of awareness is generally accepted (Kouider & Dehaene, 2007). 

Most of the evidence came from masked priming studies in which the prime word is presented very 

briefly – 50 ms or less – and is embedded between a random sequence of uppercase characters (e.g. 

XYGDF) and the target word. This procedure, called backward masking, prevents conscious access 

to the prime, which will still facilitate the processing of a semantically related target.  
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Figure 2. Exemplar trial in a masked priming experiment 

The first evidence showing the existence of a subliminal priming effect came in the early 80s. 

Marcel (1983) found facilitation for related words (child-infant) independently of prime visibility. In 

another work, the same author followed up results on polysemous word (palm) from Schvaneveldt, 

Meyer and Becker (1976), who had showed how only one semantic representation at the time could 

be accessed when the word was processed consciously. Yet, Marcel reported that when the 

polysemous word was masked, both meanings were activated, suggesting that semantic 

representations could be richer and independent of executive control in the absence of conscious 

perception (Marcel, 1980). 

These exciting results, however, were widely criticized for their statistical weakness, lack of 

reproducibility, and also for the dubious effectiveness of the visual masking used, which relied only 

on the participants subjective report (Holender, 1986; Purcell, Stewart, & Stanovich, 1983). One 

approach that has been used widely to address this methodological concern is trying the participants 

with a detection task on the prime itself. Performance is then typically quantified via the Signal 

Detection Theory sensitivity measure d′, which makes possible to assess an objective threshold of 

conscious perception, now essential in any experiment using subliminal stimuli. Usually at the end 

of the experiment, participants are asked to perform a forced-choice task directly related to the hidden 

word, for example a lexical decision task. Results are then analyzed in terms of "hits" and "false 
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alarms", thus making it possible to calculate a detection index, the d’. By correlating the priming 

effect with this index of visibility, it is possible to estimate the priming effect when primes were fully 

masked, that is, at d’ equals to 0. 

Other criticisms to subliminal semantic priming were raised because of possible stimulus-

response mapping mechanisms that could account for the effect. This type of implicit association 

explained the effect in terms of direct activation by the prime of the response action required by the 

target, ruling out the semantic processing of the masked stimulus. Stimulus-response associations are 

likely to emerge when masked prime words are also presented in target position as well. Abrams and 

Greenwald (2000) neatly showed the non-semantic nature of this mechanism. In their experiment, 

target words had to be categorized according to their emotional valence, as positive or negative. After 

having repeatedly categorized smut and bile as negative words, participants provided faster responses 

to unpleasant targets when primed with the subliminal word smile, which was made up by fragments 

of the previously seen target words. Similarly, facilitation to pleasant responses was induced by the 

masked prime tumor when tulip and humor had been previously presented as target words. Indeed, 

such bias can be easily overcome by ensuring that hidden primes are never presented as visible targets. 

All these criticisms allowed for the development of new and stronger paradigms that made the 

existence of truly subliminal semantic priming no longer a matter of debate (Van den Bussche, Van 

den Noortgate, & Reynvoet, 2009). 

The mechanisms behind masked priming  

Traditionally, priming was accounted for via spreading activation mechanisms, both within 

localist frameworks, where activation spreads among concepts (Neely & Kahan, 2001), and within 

connectionist frameworks, where activation spreads among features (Plaut, 1995). Crucially, this 

process has been described as automatic and not liable to strategic control by the reader.  
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However, later studies challenged this view and suggested that access to word meaning without 

awareness is not automatic; rather, it is prone to top-down influences. More precisely, subliminal 

semantic priming has been found to depend on the availability of attentional resources. For example, 

the effect was drastically reduced if, prior to the onset of the prime, participants were engaged in a 

perceptual task requiring high allocation of attentional resources relative to a task requiring low 

allocation of attentional resources (Martens & Kiefer, 2009). Similarly, task settings have been shown 

to moderate the emergence of subliminal priming. While the effect is strongly attested in task tapping 

semantic properties of the stimuli, it is instead much more fleeting in lexical decision or naming task, 

where word meaning is de–emphasized (De Wit & Kinoshita, 2015).  

These findings have licensed another interpretation: subliminal priming would origin from 

processes that maximize the uptake of goal-oriented information, via the collecting evidence that is 

relevant to optimally perform the task. Because of the close contiguity between the prime and the 

target, evidence is accumulated from both the stimuli, which are effectively confounded (Kinoshita 

& Norris, 2010). When related prime–target pairs provide converging evidence to accomplish the 

task, the prime gives a head start to the accumulation process and thus makes the decision to the target 

easier. 

However, the specific information contributing to the such evidence accumulation process has 

not been fully understood yet. As outlined above, lexical-semantic representations cannot be uniquely 

defined, as words can be similar under many different aspects. For example, cat may prime dog due 

to feature overlap (e.g., they are both furry, have four legs, are kept as pets by humans; Quinn & 

Kinoshita, 2008), or due to category membership (animals; Abrams, Klinger, & Greenwald, 2002), 

or due to associative strength (similarly to how kangaroo is associated to Australia; Anaki & Henik, 

2003). All these different aspects of lexical meaning are reflected in words distribution, despite at 

different levels, from surface cooccurrence to latent language structure. Crucially, while meaning can 

be processed in all its multidimensional complexity when words are conveyed above the threshold 
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for conscious perception, the unconscious reader may have only a partial access to some specific 

dimensions. This is exactly the question that has driven my PhD, and that I have tried to address with 

the experiments that are gathered in this thesis.  
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Experimental contributions 

In the first chapter of this thesis, I tested the idea that conscious and unconscious priming is 

different in depth of processing. While unconscious semantic representations are built from symbolic 

information only, conscious representations reflect the contribution of symbolic and situated, extra-

linguistic knowledge. Teasing apart these different aspects of word meaning is obviously very 

difficult, since they overlap in the vast majority of the cases. A very convenient exception to this rule 

is provided by the mapping between space and time, which can happen along both a vertical and a 

lateral axis, but only the former is encoded in language use (e.g., "the future is ahead of you", not "to 

your right"). We took advantage of this particular feature of the space-time mapping, and tested 

metaphorical congruity priming along both axes, with primes presented wither masked or visible.  

In the second chapter, I tested subliminal and supraliminal priming by modelling semantic 

similarity as a continuous variable. To better define the symbolic information that is encoded in 

language, I collected distributional information for a set of prime-target pairs both at the local and at 

the distributed level, by looking at lexical cooccurrence (PMI; e.g., rubber-penknife) and spatial 

proximity in a semantic space (cosine similarity; e.g., sofa-hammock) respectively. The two metrics 

were compared in their capability to predict priming across a series of experiments manipulating 

prime duration and prime visibility.  

In the third chapter, I looked at the electrophysiological correlates of conscious semantic 

priming, testing the specific contribution of local (PMI) and distributed (cosine similarity) linguistic 

information to the brain signature of semantic facilitation. More precisely, I recorded EEG signal 

from participants performing a primed lexical decision, and test for the emergence of the N400 

component in word pairs that could be highly co-occurrent but far in the semantic space (e.g., car-

tank), or, symmetrically, neighbors in the semantic space but poorly associated locally (e.g., cell-

cage). 
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In the fourth chapter, I tried to explore subliminal priming in a situation where unawareness 

was not induced by some visual masking technique, but it was rather a stable trait of individuals who 

have suffered a psychological and/or neurological trauma. Thus, I tested neglect patients, a clinical 

population that lack attentional resources to consciously report stimuli presented in the affected 

hemifield (typically, the left one). However, these neglected stimuli are not simply ignored, but they 

activate cognitive representations that seem to exert an influence upon high-level cognitive processes. 

In this study I tested semantic priming in lexical decision task using the same set of stimuli as in the 

previous chapter. Prime visibility was manipulated by presenting the stimuli either on the left 

(neglected) side of the screen, or on the right one, where they were clearly visible.  
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Chapter 1. The limits of unconscious semantic processing as revealed by metaphorical 

priming 

Introduction 

There has been intense debate on the difference between conscious and unconscious cognition. 

The human mind was proven able to carry out a variety of tasks outside of awareness (goal setting, 

Hassin, Bargh, & Zimerman, 2009; arithmetics, Sackur et al., 2008; sentence meanign construction 

Sklar et al., 2012), to the point that there were suggestions that whatever we can compute consciously, 

we can also do outside of awareness (Hassin, 2013). However, some of these spectacular unconscious 

performances were proven difficult to replicate (Rabagliati, Robertson, & Carmel, 2018), and some 

authors argued that there are both quantitative (Kouider & Dehaene, 2007) and qualitative (Nakamura 

et al., 2018) differences between conscious and unconscious cognitive processing. 

Word meaning is the perfect battle camp for this debate. In fact, the semantic system is highly 

complex and multidimensional (Borghesani & Piazza, 2017), thus offering wide room for qualitative 

differences between conscious and unconscious processing to emerge. Words can be semantically 

related in many different ways. For example, cat may be similar to dog because these animals share 

features (e.g., they are both furry, have four legs, are kept as pets by humans; Quinn & Kinoshita, 

2008), or because the words belong to the same category (animals; Abrams, Klinger, & Greenwald, 

2002), or because they are associated with each other in our experience of the world (e.g., are likely 

to be primary associates in word association norms; Anaki & Henik, 2003), or again, merely because 

the words cat and dog often co-occur with each other in written and spoken language (Brunellière, 

Perre, Tran, & Bonnotte, 2017). While these different facets of word meaning are obviously all 

available to the fully aware reader, unawareness may allow only partial access to some of them.  

Several studies investigated unconscious semantic processing so far, but the evidence is unclear 

overall. Priming has been reported for highly associated category coordinates (e.g., table–chair) when 
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prime words were kept unconscious (i.e., presented for a very short time and visually masked), as 

well as when they were fully visible (Perea & Rosa, 2002). Similarly, semantic facilitation has been 

observed for word pairs that were related in terms of feature overlap (e.g., goose–turkey), 

independently of prime visibility (Bueno & Frenck-Mestre, 2008). Conversely, other studies showed 

different patterns of semantic facilitation depending on whether the prime was available to conscious 

report. In a lexical decision task, De Wit and Kinoshita (2015) reported priming only when the prime 

word was fully visible. Bottini, Bucur and Crepaldi (2016) showed that subliminal semantic priming 

interpreted as the result of unconscious sensorimotor simulations of the words’ referents (e.g., 

simulating an upward movement to understand the word up; Ansorge, Kiefer, Khalid, Grassl, & 

König, 2010) can also be explained by symbolic associations between response labels.  

To date, it is still unclear which aspects of word meaning are gathered unconsciously, and which 

aspects, instead, need conscious access to be retrieved. Indeed, the vast majority of the previous 

studies focused on whether masked semantic priming happens at all, rather than what kind of 

information may foster it. This is for a good reason, of course: it is hard to dissociate different aspects 

of word meaning experimentally, as they (quite unsurprisingly) correlate strongly. For example, 

associated words (e.g., cat–dog, fork–knife) tend to share semantic features (Brainerd, Yang, Reyna, 

Howe, & Mills, 2008), and situated knowledge is often encoded symbolically in language use (e.g., 

the words red and transparent, which both refer to vision, co–occur more often than words referring 

to different perceptual modalities, like red and loud; e.g., Louwerse & Connell, 2011) 

A notable exception to this rule, however, is provided by space–time conceptual metaphors. 

When people talk about time they often use spatial metaphors. In English and many other languages, 

the future is ahead and the past is behind (e.g., Clark, 1973). Thus, time flows along a sagittal (front–

back) axis. Beyond talking about time using spatial words, it has been shown that people also think 

about temporal sequences using schematic mental representations of physical space. In an experiment 

using motion capture to assess people’s posture, participants were more likely to lean backward when 
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thinking about the past and forward when thinking about the future (Miles, Nind, & Macrae, 2010). 

Likewise, participants are faster to judge sentences about the future by moving a joystick forward and 

faster to judge sentences about the past by moving it backward (Ulrich et al., 2012), consistent with 

expressions like “looking forward to retirement” or “thinking back on one’s childhood”.  

Within some of the same cultures that talk about time as flowing along a sagittal timeline, people 

also conceptualize time along a lateral timeline, with earlier events on the left and later events on the 

right. This lateral mental timeline is not encoded in any known spoken language (e.g., Monday comes 

before Tuesday, not to the left of Tuesday; Clark, 1973), yet participants are faster to classify words 

related to the past by pressing a left key and words related to the future by pressing a right key, 

compared to the opposite arrangement (e.g., Casasanto & Bottini, 2014a). Patients with left hemi-

spatial neglect, who ignore objects on the left side of space, also neglect the “left side” of time (i.e., 

they show better memory performance for events associated with the future than for events associated 

with the past; Saj, Fuhrman, Vuilleumier, & Boroditsky, 2013). English speakers have been found to 

gesture according to the lateral mental timeline more often than the sagittal timeline (Casasanto & 

Jasmin, 2012). Thus, perhaps counterintuitively, the implicit lateral timeline may be activated even 

more strongly than the sagittal timeline, despite its complete absence from conventional expressions 

in language.  

Both the sagittal and the lateral mental time lines (MTL) have clear sensorimotor origins. For 

instance, scanning behavior during reading and writing seems to be an important experience to learn 

and consolidate the horizontal (MTL). In fact, people that read from right to left (e.g., Hebrew 

speakers) also have a leftward MTL (Fuhrman & Boroditsky, 2010), and the MTL can be transiently 

reversed by a few minutes of mirror reading (Casasanto & Bottini, 2014a). On the other hand, the 

sagittal MTL seems to be based on our walking experience in the physical world: as people typically 

walk in forward direction, they also move forward through both space and time (Clark, 1973). 
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Accordingly, temporal processing can affect step movements along the sagittal space (Rinaldi, Locati, 

Parolin, Bernardi, & Girelli, 2016). 

 Therefore, the metaphorical relationship between space and time appears to be based on the 

activation of unidimensional spatial schemas that subtend the representation of both spatial and 

temporal relationships. This hypothesis is further corroborated by neuroimaging experiments that 

found overlapping activity in the posterior parietal cortex for temporal and spatial conceptual 

knowledge (Peer, Salomon, Goldberg, Blanke, & Arzy, 2015). 

Overall then, time and space are associated along both a sagittal and a lateral timeline. Both 

schemas are based on sensorimotor, situated experience, but only the sagittal one also emerges in 

language use (e.g., looking forward to retirement), thus creating a further symbolic, associative tie. 

Taking advantage of this dissociation, we tested the hypothesis that unconscious semantic processing 

is limited to these symbolic ties and does not allow access to situated spatial representations which 

are reserved to conscious word processing.    

To this aim, we devised a priming paradigm in which sagittal spatial words (front, back) and 

lateral spatial words (left, right) appeared as primes, and temporal words appeared as targets (e.g., 

past, future). Primes were presented both above and below the threshold for conscious identification; 

if our hypothesis is correct, priming should emerge strongly on both axes in the conscious condition, 

when meaning is fully accessed in all its facets, but should be stronger with sagittal primes in the 

unconscious condition, when processing would be mostly limited to language–encoded semantic ties.  

Experiment 1 

Methods 

Participants. 120 students at the University of Trieste were recruited into the experiment (30 males, 

90 females; mean age=24y, age range=18y-36y). All subjects were right-handed, native Italian 

speakers, and had normal or corrected-to-normal vision and no history of neurological disorders. 
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Participants gave written informed consent for participation, and received 8 Euros in exchange for 

their time.  

Material. All stimuli were Italian words. Primes were 2 spatial words related to the lateral axis 

(sinistra, left, and destra, right) and 2 spatial words related to the sagittal axis (davanti, front and 

dietro, back). Target stimuli were 8 temporal words. Four of them refers to the past (prima, earlier, 

ieri, yesterday, passato, past, scorso, previous), and four refers to the future (dopo, later, domani, 

tomorrow, futuro, future, successivo, next). Each prime word was coupled with every target item, 

resulting in 32 different pairs. Each pair was presented 12 times, making up a total of 396 

experimental trials. 

Procedure. Participants were seated in a comfortable chair and saw the stimuli from a distance of 

approximately 63 cm. We used a chinrest to keep the distance from the monitor constant and secure 

a forward orientation. All stimuli were shown in Arial font 32, in white against a black background, 

displayed on a 22’’ monitor with a refresh rate of 120 Hz, using MatLab Psychtoolbox (Kleiner et al., 

2007). Responses were collected with an external CEDRUS RB-740 response pad.  

Each trial started with a fixation point (+) displayed for 750 ms. In the unmasked condition, a blank 

screen was shown for 200 ms, followed by the prime and by another blank screen, both lasting 50 

ms. In the masked condition, where participants were not informed about the presence of the prime, 

the blank screens were replaced with two visual masks (10 random uppercase letters, e.g. 

XCBFTYUOIM). Finally, in both conditions, the target word was presented for 1500 ms, or until a 

response was provided (see Figure 1). Prime visibility was manipulated between subjects, i.e., half of 

the participants were assigned to the masked condition and half to the unmasked condition. 
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Figure 1. Trial timeline in the visible (left) and masked (right) conditions. 

The 396 experimental trials which were divided in two blocks. In one block, participants were 

instructed to press the central button of the response box when target words were related to the past, 

whereas in the other they were told to press the same button when target words were related to the 

future—a go–no go task. The order of the two blocks (go-Past, go-Future) was counterbalanced across 

subjects. Twelve practice trials were presented before each block. In addition to the main break 

between blocks, participants took one further period of rest half way through each block.  

We stress three important aspects of our design, which guarantee a fair assessment of semantic 

priming and overcome some limitations in the previous literature. First, the trial timeline was identical 

in the sub–liminal and supra–liminal conditions: as primes were presented for the same exact amount 

of time, we ensured that any difference would only depend on awareness, not on prime presentation 

time (Kanwisher, 2001). Second, target words never appeared as primes; this excluded the possibility 

that a priming effect could be due to (non semantic) stimulus–response associations (Damian, 2001) 

or action-trigger conditions (Kiesel, Hoffmann, & Kunde, 2003). Moreover, the go–no go paradigm 

allowed us to avoid lateralized responses, i.e., left or right button key presses; this excludes that 

participants’ behavior was influenced by any spatial coding of the response (Bottini et al., 2016). 

Prime visibility. After the main task, participants in the masked condition were informed about the 

presence of the prime, and were tested for their ability to perceive it consciously in a prime visibility 

task (Reingold & Merikle, 1988). More precisely, they were asked to assess whether the masked 

stimulus was a real word (vs. a string of identical lowercase letters, e.g., aaaaaaaaaa, xxxxxxxxxx). 
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As real words, we used the same four spatial words that we employed as primes in the main task. 

Participants were instructed to press either a left or a right key to provide their response. In order to 

make sure that participants knew where the prime was within the trial, they saw two examples where 

prime duration was increased to 150 ms before starting the task, so that the prime became visible even 

with the visual masks. The prime visibility task included 10 practice and 128 experimental trials. 

Statistical analyses. Statistical analyses of the reaction times were conducted via mixed–effects linear 

regression, which is most appropriate when the design includes crossed random effects for both 

subjects and items (Baayen, Davidson, & Bates, 2008). Following the principles of the New Statistics 

(Cumming, 2014), we based our analyses on confidence intervals and did not rely on null–hypothesis 

significance testing. Models were fitted using the lme4 package (Bates, Maechler, Bolker, & Walker, 

2015) in the statistical software R.  We had fixed effects for Congruity (prime–target congruent vs. 

prime–target incongruent), Axis (lateral vs. sagittal), Prime Visibility (masked vs. unmasked), and 

their interactions. We additionally included random intercepts for Subject and Target Word. We 

modelled the fixed effects in order to expose the parameters that are most relevant to our predictions 

(Meteyard & Davies, 2019), that is, (i) the contrast between congruent and incongruent primes in the 

sagittal, masked condition (sagittal masked priming); (ii) how much more (or less) effective are 

congruent primes in the lateral, masked condition, as compared with (i) (the contrast between sagittal 

and lateral masked priming); and (iii) how much more (or less) effective are congruent primes in the 

lateral, unmasked condition, as compared with (ii) (how the difference between sagittal and lateral 

primes changes in the unmasked, compared to the masked condition). Model–based estimated of 

response times in each design cell were obtained via the R package emmeans (Lenth, 2018). 

Open practices statement. This experiment was not formally pre–registered. All data and analysis 

code are available at https://osf.io/wc7by/, and can be accessed independently from the authors.  
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Results  

Overall accuracy in the experiment was 98%. The mean RT on accurate trials was 550 ms. 

RT analyses were conducted only on accurate go trials. One participant was excluded because of a 

particularly anomalous performance (mean accuracy= 88.8%, while every other participant was 

above 93.7%). In order to reduce the effect of extremely long and short RTs, those individual data 

points standing at more than 2 standard deviations from each participant’s mean were also removed 

from the analyses. This reduced the analysis set to 21648 data points, which corresponds to a loss of 

~4.5% of the potentially available dataset.  

Sagittal congruent primes determined quicker RTs than incongruent primes in the masked 

condition, β = -9.89 [-14.63 – -5.15]. This facilitation shrank substantially with lateral primes in the 

masked condition, β = +8.13 [+1.43 – +14.84]. In the unmasked condition instead, congruent lateral 

primes were again effective, β = –10.54 [-20.02 – -1.07].  

This pattern of results is represented in the model estimates illustrated in Figure 2. In the 

masked condition, RTs for congruent prime–target pairs were quicker than for incongruent pairs on 

the sagittal axis, 505 ms [489 – 522] vs. 516 ms [499 – 535], but much less so (if not at all) on the 

lateral axis, 510 ms [494 – 528] vs. 513 ms [496 – 531]. Supraliminally instead, facilitation was 

similar with sagittal, 509 ms [492 – 527] vs 516 ms [499 –534], and lateral primes, 511 ms [494 –

529] vs 517 ms [500 –535]. 
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Figure 2. Estimated priming effect on the masked (left panel) and the visible condition (right panel). The congruent condition is plotted 

in green, and the incongruent condition in red. Error bars refer to the 95% confidence intervals. 

Prime visibility task. No participant reported having noticed the prime. Data in the prime visibility 

task were analyzed in terms of d–prime, which is based on the ratio between correct YES response 

(hits) and incorrect YES responses (false alarms) for each participants. The d–prime distribution is 

shown in Figure 3; the average value was 0.35 [0.25 – 0.44]. These values are widely taken to indicate 

that primes were effectively masked from perceivers’ awareness (Kouider & Dupoux, 2005).  

In order to conclusively exclude that prime visibility was an important driver of the facilitation 

in the sagittal primes condition, we further analyzed the data by regressing the amount of priming 

against d–prime values (Greenwald, Klinger, & Schuh, 1995). With this linear model, we can estimate 

facilitation when the d–prime is zero, that is, when prime visibility is null. As illustrated in Figure 3, 

the 95% CI at the intercept lies entirely above the origin, indicating that priming is indeed estimated 

to be higher than zero even when primes are completely outside of awareness. According to the model 

prediction, we would observe a sagittal priming effect of 10 ms [5 – 15] when the d-prime is zero. 

Finally, the individual d–prime values did not correlate with the size of the sagittal masked priming 

effect, r= 0.022 [-0.24 – +0.28], further confirming that facilitation does not depend on prime 
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visibility.  

 

Figure 3. Density plot representing the distribution of the participants’ d-prime in the prime visibility task (left panel). Relationship 

between priming and prime visibility (right panel). Points represent individual participants, and the shaded area indicates the 95% 

confidence interval of the regression line. Note that priming is measured by subtracting mean RTs on congruent trials from mean RTs 

on incongruent trials, that is, positive values indicate facilitation. 

Discussion 

Supraliminal primes generate significant congruity effects on both the sagittal and the lateral 

axis, consistent with previous studies that provide evidence for sagittal and lateral mental timelines 

(Casasanto & Bottini, 2014b; Clark, 1973). Furthermore, priming does not differ across axes. The 

pattern of results is clearly different with masked primes, which yield substantial priming only on the 

sagittal axis; facilitation on the lateral axis is very small, and substantially smaller than with sagittal 

primes. These findings comply with the hypothesis under scrutiny—subliminal priming shows little 

or no sensitivity to semantic ties that are not represented in language use. 

Moreover, any role for some residual visibility of the masked primes was ruled out here, in 

four ways: (i) none of the participants reported noticing any of the masked primes; (ii) the d–prime 

analysis indicated that primes were effectively kept outside of participants’ awareness, consistent 

with previous work on unconscious word processing (e.g., Kouider & Dupoux, 2005); (iii) the 
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correlation analysis between prime visibility and the size of the facilitation effect showed no 

relationship between the two and estimated priming to be significantly above zero when d–prime is 

zero (i.e., there is no prime visibility whatsoever); (iv) it is unclear why residual visibility would 

selectively affect lateral, but not sagittal primes.  

In order to ensure that these results are solid, and in the light of the recent challenges to 

reproducibility in Experimental Psychology (Open Science Collobaration, 2015), we carried out a 

replication study. In this replication, we also improved the design by varying prime visibility within 

subjects, that is, all participants took part both in the masked and unmasked conditions, thus reducing 

spurious variance in the comparison between sub–liminal and supra–liminal priming due to individual 

variability. 

Replication Experiment 

Method  

Participants. 56 students at the University of Trieste were recruited into the experiment (18 males, 

38 females; mean age=23y, age range=19y-30y). None of them took part in Experiment 1. All 

subjects were right-handed, and they all stated being native Italian speakers, with normal or corrected-

to-normal vision and no history of neurological disorders. Subjects gave written informed consent for 

participation, and received 15 Euros in exchange for their time.  

Material, Procedure and Analyses were the same as in Experiment 1, with the only difference that 

the same participants took up both the masked and unmasked tasks, that is, we adopted a within-

subject design for prime visibility too. This required splitting the experimental sessions in two blocks. 

In the first block, participants underwent the masked priming and prime visibility tasks, while in the 

second, which took place 3 to 5 days later, they concluded the study with the visible priming 

condition. 
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Results 

The overall accuracy in the experiment was 98%. The mean RT on accurate trials was 539ms. 

Both metrics are very similar to the previous experiment. Data trimming led to the exclusion of ~5% 

of the total observations, resulting in 20374 datapoints available for the mixed–effects linear 

regression; again, these figures are very similar to the original experiment. 

Linear mixed models reveal again that congruent trials yielded faster RTs than incongruent 

trials in the masked, sagittal condition (β = -7.69 [-12.63 – -2.74]). With lateral primes, again in the 

masked condition, this facilitation was reduced (β = +4.42 [-2.57 – +11.41]). Although both 

parameters shrink towards zero as compared to the previous experiment (see Figure 4), they seem to 

confirm the original pattern. The highest–level parameter, which tracks the difference between 

masked and overt priming, varies more substantially as compared to the previous study, and is now 

close to zero (β = -0.10 [-9.98 – +9.78]).  

 

Figure 4. Model betas for the parameters of interest in the analysis. Values from the original experiment are shown in red, and values 

from the replication experiment are shown in blue. Error bars refer to the 95% confidence intervals. 

Model estimates of the RTs per condition are represented in Figure 5. Overall, the pattern is 

very similar to the original experiment (see Figure 2 for comparison) and show stronger priming for 
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sagittal than lateral primes in the masked condition, and similar facilitation on the two axes with 

visible primes3.  

 

Figure 5. Estimated priming effect on the masked (left panel) and the visible condition (right panel). Congruent condition is plotted in 

green, and incongruent condition in red. Error bars refer to the 95% confidence interval. 

 Prime visibility task. As in the original study, no participant reported having noticed the primes. The 

d–prime distribution is shown in Figure 6; the average value is 0.39 [0.29 – 0.49], very similarly to 

the original experiment. The correlation between d–prime and amount of priming turned out to be 

slightly stronger in this experiment than in the original one, r= 0.191 [-0.08 – +0.43] (see Figure 6). 

The estimated priming when the d–prime is null is still a rather substantial 5 ms [-1 – 11], suggesting 

again the presence of sagittal masked priming outside of awareness.   

 
3 RTs are now generally shorter in the visible than in the masked condition. This is probably due to the within–subject 
design, which required participants to be tested twice on the same material. Because subjects needed to be unaware 
of the presence of the primes in the masked condition, the corresponding session took place first for all participants. 
As a result, visible primes may have benefitted from an increased familiarity with the task and the testing materials.   
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Figure 6. Density plot representing the distribution of the participants’ d-prime in the prime visibility task (left panel)  . Relationship 

between priming and prime visibility (right panel). Points represent individual participants, and the shaded area indicates the 95% 

confidence interval of the regression line. 

Meta–analysis of the original and replication experiments 

To deliver the full potential of the data collected in this work, we merged the original 

experiment and its replication in a meta–analysis. The Bayesian approach is particularly suitable here, 

as it allows to build cumulatively on previously acquired knowledge, i.e., the posterior of the original 

experiment becomes the prior for the replication (Kline, 2013). Following this approach, we 

computed a mean RT for each subject in each design cell (i.e., congruent, sagittal, masked primes; 

incongruent, sagittal, masked primes; congruent, lateral, masked primes; and so on), and then carried 

out a Bayesian t test for each congruent–incongruent contrast; this procedure allowed us to estimate 

facilitation for sagittal and lateral primes, in the masked and unmasked condition. For the original 

experiment, we used an uninformative Cauchy prior ( scale parameter=.707; Strachan & Van Dijk, 

2003), with a directional hypothesis (we hypothesized that congruent primes could only determine 

quicker response times); the posterior distribution in the original experiment then became the prior 
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for the replication. This analysis was carried out with JASP (Wagenmakers et al., 2018), while the 

posterior distribution in the original experiment was estimated in R.  

Results are illustrated in Figure 7. Bayes factors in favor of the alternative hypothesis that 

congruent primes yield quicker RTs than incongruent primes are 16.46, .86, 20.30 and 20.66 for 

masked sagittal, masked lateral, unmasked sagittal and unmasked lateral primes, respectively. There 

is thus strong evidence for priming in all conditions, expect for the lateral primes, sub–liminal one. 

Importantly, while the 95% credible intervals are very similar for sagittal and lateral primes in the 

unmasked condition, [-.497, -.099] vs. [-.508, -.152]4, they are very different outside of awareness, 

where sagittal prime generate a strong effect, [-.758, -.362], while lateral primes only yield very weak 

(if any) facilitation, [-.263, -.009].  

 

Figure 7. Results from the Bayes factor (BF) replication test for the different conditions.  

 
4 The values reported here are standardized effect sizes as computed in JASP, and are interpretable similarly to 

Cohen’s d.   
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General discussion 

In this study we investigated what kind of semantic information is extracted when people 

process words unconsciously. We proposed and tested the hypothesis that sub–liminal processing is 

limited to language–encoded semantic ties. To this aim, we took advantage of the fact that Westerners 

scaffold time onto space along a sagittal and a lateral timeline, but only the former is expressed in 

language (e.g., Monday comes before, not to the left of Tuesday). Consistent with the hypothesis, we 

found strong and comparable space-time congruity effects along the sagittal (front-back) and lateral 

(left-right) timelines when primes were visible. By contrast, when participants read the same prime 

words unconsciously, the sagittal primes produced much stronger effects than the lateral ones, which 

only yielded very weak facilitation (if any).  

These results shed new light on unconscious semantic processing, at least as indexed by 

masked priming. In most circumstances it is impossible to isolate the role of linguistic experience in 

the computation of word meaning, because words that are semantically related are typically also 

related in language use. Our lateral prime-target pairs, by contrast, are related in semantic memory, 

but not in conventional linguistic expressions (Clark, 1973). Therefore, the finding that lateral spatial 

primes affected temporal judgments when the prime was read consciously, but much less (if not at 

all) when it was read unconsciously, supports a reinterpretation of the catalog of results showing 

unconscious semantic priming (e.g. Kouider & Dehaene, 2007). That is, readers may not access their 

semantic system to a full extent when exposed to words subliminally. Rather, they may navigate their 

the lexical–semantic system based on how words are linked to each other in language use (in this 

case, as related to linguistic metaphors). 

An interesting aspect of these experiments, and an improvement as compared to most of the 

previous literature, is that awareness was manipulated via visual masking, while prime presentation 

time was kept identical in the sub–liminal and supra–liminal conditions. Thus, we show that prime 

presentation time is not the main driver of the asymmetry between masked and overt priming—a 
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hypothesis that was compatible with the results from most previous studies where awareness was 

manipulated via prime presentation time (e.g., Brunellière, Perre, Tran, & Bonnotte, 2017).  

These results highlight the role of backward masking, instead. One possible mechanism is that 

masking prevents words from reaching consciousness by limiting the flow of information within the 

lexical semantic network (Dehaene et al., 2001). This interpretation is compatible with neuroimaging 

findings. In fMRI experiments, neural activity related to unconsciously perceived words appears to 

be limited to occipital–temporal visual areas within the brain word processing network (Price & 

Devlin, 2011). By contrast, consciously perceived words produce a highly distributed pattern of 

activations in the cerebral cortex, including not only occipital and temporal areas, but also parietal, 

motor, and prefrontal areas (Gaillard et al., 2009). These data were taken to support models of 

consciousness suggesting that stimuli become conscious by activating a “global workspace” 

(Dehaene & Naccache, 2001), where distant cortical areas can communicate with each other, and a 

fronto–parietal network can send top-down amplification signals to more posterior and primary 

sensory areas (Gaillard et al., 2009). The activation of a global workspace network may also facilitate 

the integration of information coming from different modalities (e.g., visual, auditory) or from brain 

networks that implement different kinds of mental content (e.g., wordforms, spatial schemas). From 

this point of view, unconscious processing is likely to be more segregated than conscious processing 

(Kouider & Dehaene, 2007), and access to the global workspace network with reverberating and 

sustained activity at the whole-brain scale may be crucial for making the leap from form to meaning 

in language. 

Of course, we did not explore the entire causal chain behind these phenomena. What we 

observe here is that, when primes are masked, there is no conscious access and semantic priming is 

bound to linguistic experience. When primes are not masked instead, there is conscious access and 

semantic priming is not bound to linguistic experience anymore. This is a compatible with a view 

whereby conscious access is the main causal factor behind fully–fledged semantic priming (possibly 
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because it overcomes the limited spread of lexical–semantic information imposed by visual masking). 

However, the data are also compatible with a milder interpretation where conscious access simply 

goes together with unbounded semantic priming; and there is a primary cause for both these 

phenomena, which we did not uncover here. More research is required to clarify this important point. 
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Chapter 2. Word meaning with and without awareness as explored through semantic priming 

and computational linguistics 

Introduction 

Over the last decades, several studies have addressed the question of whether readers process 

subliminal words up to their meaning (Kouider & Dehaene, 2007; Mudrik, Faivre, & Koch, 2014). 

Masked semantic priming represents one of the most commonly used experimental paradigm to 

address this issue. In this technique, the recognition of a given word (the target), is facilitated  by the 

quick and masked previous presentation of  a related word, (the prime; McNamara, 2005). 

Specifically, the prime word is presented briefly (50 ms or less), embedded between two sequences 

of random characters (e.g. “#####”, “kxlujwd”). Despite participants would not typically spot its 

presence, the prime affects the processing of the following target. For example, the word dog is 

processed faster if preceded by the related word cat than if preceded by the unrelated word ship.  

Since the pioneering study by Marcel (1983), several experiments have further shown how “invisible” 

words can prime related targets. Improvements in the experimental procedures have also allowed for 

a better assessment of the subliminal nature of the masked stimuli, leading to stronger and more 

reliable results (Greenwald, Klinger, & Schuh, 1995; Reingold & Merikle, 1988). 

Despite the existence of subliminal priming is no longer a matter of debate, many studies have 

tried to shed light onto its cognitive and neural mechanisms. Similarly to overt priming, unconscious 

semantic priming has been traditionally explained in terms of automatic spread of activation (Collins 

& Loftus, 1975). Words are represented as nodes within an interconnected network, and links between 

nodes reflect lexical–semantic ties. When a given word is read, the corresponding node is activated, 

and activation spreads along the network to related nodes. Crucially, this process has been described 

as automatic and not liable to strategic control by the reader. 
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However, some recent discoveries have changed our way to look at masked semantic priming, 

suggesting that it could be driven by much more dynamic mechanisms (Kiefer, Adams, & Zovko, 

2012). In particular, the supposed automaticity of the effect has been challenged as task dependency 

and top–down influences were found to modulate it. In their meta-analysis of 46 studies, Van den 

Bussche, Van den Noortgate and Reynvoet (2009) highlighted how the task performed by participants 

affects priming: different variables moderate priming in semantic categorization and lexical decision, 

and overall the former provides more reliable results and greater effect sizes than the latter. Similarly, 

Martens and Kiefer (2009) found that the effect critically depends on the attentional resources 

currently available, so that a significant reduction was attested if participants, prior to prime 

presentation, were engaged in an attentional effortful secondary task, as opposed to a less demanding 

one. 

An orthogonal question is what kind of information is grasped subliminally. In fact, words can 

be semantically related in several different ways (e.g., couch and sofa vs. koala and Australia), and 

their meaning is extremely multi–faceted (e.g., ‘red’ refers to visual perception, but is also associated 

to the meaning ‘stop’ via our experience with traffic lights, and is metaphorically linked to passion 

and warmth). Do we capture all these associations and various aspects of words outside of awareness? 

According to non-symbolic, embodied accounts of masked semantic priming, the effect would 

emerge due to the activation of the motor schema associated with lexical meaning. For instance, 

Ansorge, Kiefer, Khalid, Grassl and König (2010) found that spatially congruent pairs (e.g., up-

ABOVE) elicited faster reaction times than incongruent pairs (e.g., down-ABOVE). Critically, this 

effect interacted with the movement required to provide a response: facilitation was larger when 

participants had to press an upward button for the target above, as compared to when they had to 

move down to respond to the same target. According to the authors, the effect would be driven by the 

activation of the motor program associated with the prime word, which would then be grasped 

subliminally. However, embodied theories of masked priming have been recently challenged. Bottini, 
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Bucur and Crepaldi (2016) tested symbolic and non-symbolic accounts of masked priming in a series 

of six experiments, showing that no effect was observed once only embodied mechanisms could 

account for the emergence of priming. On the contrary, priming was attested when embodied 

explanations were made impossible by the task manipulation, which instead left symbolic ties free to 

deploy. 

Symbolic theories of semantic representations define meaning activation as an a-modal process 

based on the set of connections that link a given word to others (Louwerse, 2011). Under this 

perspective, there are at least two main approaches to define the aforementioned set of connections, 

based either on the conceptual representation of words’ referents or on the frequency with which two 

entities occur together in our experience of the world. This difference has been typically described as 

an opposition between semantic similarity and association strength (Mirman, Landrigan, & Britt, 

2017). 

According to traditional models of semantic similarity (Smith, Shoben, & Rips, 1974; Tversky, 

1977), lexical meaning is encoded as a list of descriptive features referring to perceptual, functional 

and encyclopedic aspects of the words’ referent. For example, the words dog and fox are similar as 

the two entities share several features—both are mammals, have 4 legs and a tail, are furry, etc. While 

earlier models did not fully specify how particular features came to be and how they were ranked, 

more modern implementations of the same idea used data from human raters in property generation 

tasks to address these issues (McRae, Cree, Seidenberg, & McNorgan, 2005; Vinson & Vigliocco, 

2008). Word meaning can then be represented by a vector keeping track of such features, so that the 

higher the overlap, the greater the semantic similarity between two words. This approach has been 

successfully used to explore several issues regarding semantic representation and impairment (Hinton 

& Shallice, 1991; Randall, Moss, Rodd, Greer, & Tyler, 2004), including semantic priming (McRae 

& Boisvert, 1998; Vigliocco, Vinson, Lewis, & Garrett, 2004). 
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The associative approach focuses instead on the  link between words whose referents tend to 

co-occur in the same scenario or event, linguistic or otherwise (De Deyne, Navarro, & Storms, 2013; 

Nelson, McEvoy, & Schreiber, 2004). For example, the words dog and leash are associated, at least 

in Western societies, as every time we encounter a dog, or hear the word dog, it is very likely that we 

will also encounter a leash, or hear the word leash. Note that dogs and leashes do not really share 

features, and would thus be considered to be unrelated in feature–based theories, although this is by 

no means systematic: dogs and cats do share features, and are associated in our experience as well. 

Association strength is normally estimated through word-generation tasks requiring participants to 

list one or more words for each target cue. Associative strength gets psycholinguistic validity as 

significant predictor of various semantic phenomena, such as similarity judgment of word pairs 

(Deyne, Peirsman, & Storms, 2008) and RTS to the target in a priming context (Anaki & Henik, 2003; 

de Groot & Nas, 1991). 

It is not very clear how these different aspects of word meaning characterize semantic access 

outside of awareness. Despite semantic similarity and associative strength have been proposed and 

contrasted as the mechanisms underlying the emergence of priming (Ferrand & New, 2003), results 

are mixed, leaving the question still highly debated (Hutchison, 2003; Lucas, 2000). Indeed, it is not 

easy to tear the two apart, as highly associated items tend to share semantic features as well (Brainerd, 

Yang, Reyna, Howe, & Mills, 2008; Guida & Lenci, 2007). Part of the problem may also stem from 

the definition of the two types of relatedness, which was often rather loose. In a broad sense, semantic 

similarity may reflect any kind of relations that link two words based on their meaning. For instance, 

prime-target pairs were considered semantically similar if the two words were synonyms (e.g. boat-

SHIP; Bueno and Frenck-Mestre, 2002), or if they share perceptual (e.g., pizza-COIN) or functional 

similarity in the way they are used (e.g. house key–SCREWDRIVER; Lam, Dijkstra and 

Rueschemeyer, 2015). Category membership has also been proposed as a proxy of semantic 

relatedness; yet, results are mixed. Some studies provided evidence for subliminal semantic priming 
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based on category membership (Dell’Acqua & Grainger, 1999; Van Den Bussche & Reynvoet, 2007) 

others found that the effect was attested only for stimuli belonging to small categories (e.g., farm 

animals, mule-SHEEP; Abrams, 2008). Quinn and Kinoshita (2008) demonstrated how category 

membership cannot be considered as the main engine of masked priming: in their first experiment, 

each target was paired with a highly similar category coordinate (hawk-EAGLE), with a category 

coordinate that did not share many features (mole-EAGLE) and a category incongruent prime (knee- 

EAGLE). Only the former condition elicited significant priming, the other two not being different. 

Crucially, the authors also showed that a significant effect was observed for prime-target pairs like 

moon and earth, that are highly similar in terms of feature overlap despite not belonging to the same 

category (planets). Interestingly, the authors suggested that their pattern of results could also be 

explained by associations in language use (e.g., the words moon and earth occur relatively often 

within the same sentence). 

Another way to explore the issue of what aspects of word meaning are captured outside of 

awareness is to compare masked and overt semantic priming. While most of the above-mentioned 

experiments focused either on the masked or on the unmasked condition, few studies have directly 

contrasted the two. Again, results are intermixed: some spoke in favor of a qualitative difference, 

others instead suggested rather a quantitative distinction. For example, Gomez, Perea and Ratcliff 

(2013) provided behavioral and computational evidence that masked and unmasked primes are 

processed in a qualitative different manner. More precisely, they developed a drift diffusion model 

fed with behavioral data collected from participants engaged in a lexical decision with primes 

presented either consciously or unconsciously. In the former condition, priming was clearly observed, 

while in the latter semantic facilitation, if any, was weak. Model parameters were differently affected 

by visible and masked primes, leading the authors to conclude that the effect elicited by attended 

stimuli is qualitative different from the effect elicited by unattended stimuli. However, as already 
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mentioned, masked priming is known to be task dependent, and the study from Gomez and colleagues 

considered lexical decision only.  

On the other hand, De Wit and Kinoshita (2015) compared subliminal and supraliminal priming 

across different tasks. Crucially, they observed that masking the primes affects priming only in the 

lexical decision, while in the semantic categorization the effect was attested independently of prime 

visibility. Thus, priming is not tied to the relation between prime and target, but it hinges upon the 

nature of the experimental task. Rather than merely identifying words, readers collect information 

that is relevant to address the task they are required to perform. In the case of lexical decision, the 

optimal strategy would exploit relatedness between the prime and the target as a cue of target lexical 

status (retrospective semantic matching). This strategy critically depends on prime visibility, as 

masking makes the comparison with the target impossible.  

Yet, in the case of semantic decision, priming is a byproduct of processes of evidence 

accumulation and source confusion. Information to optimally performed the task – that the authors 

described in terms of shared semantic features – is extracted from the stimuli. Under masking 

condition, the prime and the target are presented so close in time that readers cannot distinguish 

between the two sources of information. As a consequence, when the task requires them to address a 

semantic question (e.g., does this word refer to something you can eat?), readers will unconsciously 

process the prime meaning and gather question–relevant information (the prime lasagna provides 

information toward a YES response), which is not distinguished from the information later obtained 

from the target, so that when the word pasta comes up, they will become convinced of a YES response 

more quickly. 

Overall, we have learned a great deal from the studies described above, but we are still far from 

having a clear picture on what aspects of word meaning are captured subliminally. One issue that 

surely contributes to cloud this picture is a less than rigorous definition of the various facets of word 
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meaning—category membership, feature overlap, and associative strength were often confounded, or 

used to explore different types of semantic relationships across different studies, or again, 

operationalized in different ways, and sometimes sub–optimally (e.g., only based on the authors’ 

intuition). 

Luckily, useful tools to characterize meaning-based similarity in a very precise, quantitative 

manner were recently developed in the field of computational linguistics. Distributional semantics 

assumes that lexical meaning can be described on the basis of statistical analysis of the way words 

are used in large text corpora (Baroni & Lenci, 2010; Sahlgren, 2008). The main idea under this view 

is that words that tend to share the same linguistic contexts will be similar in meaning; words 

themselves act as semantic features and the corresponding occurrence frequencies define the strength 

of the semantic link in a quantifiable and objective manner. By making no assumption about the 

organizational principles contributing to the observed similarity, it is then possible to avoid the 

theoretical weakness of postulating a-priori a given set of semantic features. Moreover, similarity 

estimates can be obtained for most of the words attested in a text corpus (normally in the range of 

hundred thousands), while feature-lists and associated words are available only for a limited set of 

stimuli. 

Distributional Semantic Models (DSMs) represent lexical meaning via vectors that populate a 

high-dimensional space where similar words tend to cluster together. Early models (LSA, Landauer 

and Dumais, 1997; HAL, Lund and Burgess, 1996) built word vectors from co-occurrence matrices 

that keep track of how words are used in relation to each other in a given corpus. Meaning relatedness 

between two words is computed by applying geometrical techniques to these vectors; for example, 

one can approximate relatedness as the cosine proximity (henceforth COS) between the two word 

vectors: 

COSθ =
𝑎∙𝑏

||𝑎||∙||𝑏||
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DSMs have been proposed as a psychologically plausible models of semantic memory, with 

particular emphasis on how meaning representations are achieved and structured. In particular, the 

state-of-art model (word2vec; Mikolov, Chen, Corrado and Dean, 2013) represents a simple neural 

network consisting of an input, an output and a hidden layer, and is based on a predictive mechanism 

that allows to infer a target given a cue. Word2vec provides similarity estimates that cover a wide 

range of classic lexical-semantic relationships, like synonymy5 (e.g., car-automobile, 0.45), antonymy 

(e.g., young-old, 0.51), meronymy (e.g., cherry-fruit, .49). Although word2vec is not specifically 

designed to capture associative relationships, these can be grasped as well  (e.g., carrot-stick, .41). 

Finally, featural similarity can be accounted for beyond category membership; to get back to Quinn’s 

and Kinoshita’s (2008) study described above, word2vec clearly teases apart similar members of the 

same category (e.g., lion-tiger, .54) from dissimilar members (e.g., lion-mole, .17). 

Experimental evidence has shown that word2vec (and DSMs in general) explains human 

behavior well in a variety of tasks, such as synonym detection, concept categorization and synonym 

detection (Baroni, Dinu, & Kruszewski, 2014; Marelli, 2017). Interestingly, DSMs were also used to 

account for supraliminal, overt semantic priming. Mandera, Keuleers and Brysbaert (2017) tested 

word2vec performance on a large dataset of behavioral data comprising reaction times to word targets 

in primed lexical decision and naming tasks. Model estimates nicely fit the data, better than (or as 

good as) those based on association norms or feature lists. Whether these data and theoretical insights 

would also hold for masked semantic priming, thus characterizing the computation of word meaning 

outside of awareness, it is currently unexplored. 

A simpler and more immediate way to model meaning based on the linguistic context is to look 

at surface co-occurrence, i.e., how much two words are used together within a given window of text 

(Spence & Owens, 1990). Borrowing from information theory, computational linguistics has adopted 

 
5 All model estimates taken from Mandera, Keuleers and Brysbaert (2017) 
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Pointwise Mutual Information (henceforth PMI) to express association between two words in this 

terms, according to the formula: 

PMI(w₁,w₂) = log₂
p(w₁,w₂)

p(w₁)p(w₂)
 

where p(w₁,w₂) corresponds to the probability of occurrence of the word pair, while p(w₁) and p(w₂) 

refer to the individual probabilities of the two components (Church & Hanks, 1989). In essence, what 

we are capturing here is how likely two words will occur together, given their individual probability 

of occurrence. 

PMI expresses how a given word can be used as a proxy for expecting another word, thus can 

be rightfully considered as an index of associative relationship. Another important property of this 

metric is that, despite the window of text in which co–occurrence is counted can vary, they are 

typically quite small, which makes PMI a strong index of local, short range relationships. 

The metrics has been used to model a wide range of psycholinguistics phenomena, such as 

similarity judgements (Recchia & Jones, 2009), reading speed (Ellis, Simpson-Vlach, & Maynard, 

2008), and free association and syntactic parsing (Pitler, Louis, & Nenkova, 2010). Moreover, PMI 

has also been shown to successfully generalize to non-linguistic fields (e.g., reasoning; Paperno, 

Marelli, Tentori and Baroni, 2014).  

Despite they are both based on word co–occurrence counts, cosine proximity and PMI capture 

rather different information about word meaning. The former is more geared towards higher order 

relationships: two words may never occur together, but will come up as related as long as they occur 

similarly with all the other words in the vocabulary. The words car and automobile are not likely to 

appear close to each other in a given text; still they represent the same referent, and therefore will be 

used in similar contexts. PMI is instead more geared towards local, shallower relationships,  and rely 

only on the effective co-presence of two words within the same window of text. For example, the 

words glove and oven do not really entertain any obvious semantic relationship (e.g., they are not 
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synonyms, do not belong to the same category, do not share many features), but are likely to be used 

together in language due to the fact that every time you need to take out a baking pan from the oven, 

you need a glove to avoid getting burnt.  

If cosine proximity and PMI can be disentangled, several items can be found where the two 

metrics diverge, thus allowing to address their contribution separately. In addition, these metrics 

provide a more precise and consistent definition, and therefore a neat quantification, of the dynamics 

that govern meaning construction outside of awareness (at least as far as masked priming can tell). 

This is the goal of this paper—we will use these metrics to create a set of items that tease apart local 

ties vs. higher–level relationships, therefore allowing us to further our knowledge on what kind of 

semantic information we can process outside of awareness. Hopefully, the more rigorous approach 

that is brought about by computational semantics will clarify some of the inconsistent results that we 

have highlighted above. 

The present study features several other novelties as compared to the existing literature. Because 

computational linguistics brings us a precise quantification of the strength of words’ relationships, 

we do not need to dichotomize these relationships. Accordingly, we don’t have related and unrelated 

primes in this experiment; rather, prime–target pairs vary continuously for the strength of their 

relationship, either according to PMI or cosine proximity, and priming is captured by regressing 

response times on these computational indexes. This approach has several advantages. It reflects more 

naturally the nature of words’ semantic ties, which are genuinely continuous—words are never totally 

related or unrelated, but rather vary from very weak to very strong associations with no obvious 

discrete steps. With this design, we also avoid the baseline problem: in classic studies it is not easy 

to understand whether priming comes from quicker response on related trials, or slower responses on 

unrelated trials, or, quite likely, a mixture of the two. 
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A second important feature of the study is that the trial timeline was identical in the supraliminal 

and subliminal conditions, which differed only for the presence\absence of visual masks. This implies 

that primes were presented for the same amount of time, thus ensuring that any difference would only 

depend on awareness, not on prime presentation time (Kanwisher, 2001).  

Next, to make sure that our masking technique was effective and to consider individual 

variability appropriately, we asked participants to perform a prime visibility task after they concluded 

the masked priming experiment. Based on their performance in this task, we computed a d–prime 

score (d’) for each participant, a signal detection theory metric that, in this context, provides a 

quantitative measure of prime visibility (Reingold & Merikle, 1988).  

Finally, we made use of the exact same set of stimuli in the masked and unmasked priming 

conditions, so as to be able to compare  subliminal and overt priming directly. In fact, the comparison 

between masked and overt priming that we have described above is mostly based on data from 

different studies, where target and prime words obviously changed in several different ways.  

Experiment 1 

In the first experiment, we explored masked semantic priming via a set of 300 prime–target 

pairs with varying degree of PMI and cosine proximity—participants performed a semantic decision 

on the target words after having seen a more or less related prime. Critically, the correlation between 

PMI and cosine proximity was kept as low as possible, so as to be able to disentangle their 

contribution to priming. Also importantly: (i) participants underwent a prime detection task after the 

main task was carried out, so that prime visibility was kept under appropriate control; and (ii) a 

perfectly symmetrical supraliminal version of the experiment was also carried out, allowing us to 

contrast semantic priming within and outside of awareness.    



 

74 

 

Methods 

Participants. 102 healthy volunteers (68 females and 34 males; mean age= 24 years) were recruited 

into the experiment. Ten participants were left-handed. All participants were native Italian speakers, 

with normal or corrected–to–normal vision and no history of neurological diseases. They all provided 

their informed consent to take part into the experiment, and were compensated for their time with 8 

Euros. 

Stimuli. 100 Italian words were used as target stimuli, 50 of which referred to animals (e.g., aquila, 

eagle) and 50 to tools (e.g., forbice, scissor). Each target was paired with three words from the same 

category (animals were paired with animals, and tools with tools), resulting in 300 unique prime–

target pairs. 

For each of these pairs, we computed two indexes of semantic relatedness, Pointwise Mutual 

Information (PMI, henceforth) and Cosine Proximity between the corresponding word vectors (COS). 

For PMI, cooccurrence data were gathered by means of a 5–words window sliding across the Itwac 

corpus, a lemmatized and part–of–speech annotated database of nearly 2 billion Italian words built 

by web crawling (Baroni, Bernardini, Ferraresi, & Zanchetta, 2009). All characters were set to 

lowercase, and special characters were removed together with a list of stop–words. The raw counts 

were subsequently transformed into PMI scores according to the following equation: 

PMI(w₁, w₂)  =  log₂
p(w₁, w₂)

p(w₁)p(w₂)
  

where p(w₁,w₂) represents the probability of encountering the two words within the same 5–word 

window, and p(w₁) and p(w₂) represents the overall probability of encountering w₁ and w₂. 

Cosine proximity between word vectors was obtained training a word2vec model (Mikolov et 

al., 2013) on the same corpus. Model’s parameters were set according to the WEISS model (Marelli, 

2017). All words attested at least 100 times were included in the model, which was trained using the 
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continuous-bag-of-word (CBOW) architecture, based again on a 5-word window and on 200 

dimensions. The parameter k for negative sampling was set to 10, and the subsampling parameter to 

10-5. Among the two different architectures implemented in word2vec, CBOW has been proved to 

gain better results than Skip-Gram in semantic priming simulations (Baroni et al., 2014). Negative 

sampling reduces the computational load of the model by selecting a restricted set of items in the 

output layer for each learning phase, when the probabilities are estimated.  Subsampling allows the 

model to reduce the influence of very high–frequency words, which are known to provide little 

information for distributional analysis. 

Prime–target pairs were selected to obtain nice PMI and COS distributions (see Figure 1), and 

to avoid excessive correlation between the two indexes (r= .541), so that it is possible to disentangle 

their specific contribution to semantic priming.  

 

Figure 1. Scatterplot showing of the prime-target pairs used in the study. 
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Prime and target features are reported in Table 1.  

 Prime Target 

Zipf Frequency  3.83 (0.49) 3.22 (0.47) 

Length 6.24 (1.39) 6.56 (1.19) 

Old20 1.88 (0.58) 2.11 (0.47) 

Table 1. Prime and target lexical features - mean (sd). 

 We also selected an additional sample of 100 filler prime–target pairs, which worked as NO–

response trials. These items were not included in the analysis. We used abstract words as target 

stimuli, roughly comparable in frequency (m= 3.40, sd= 0.57), length (m= 6.51, sd= 1.25) and 

orthographic neighborhood size (m= 2.15, sd= 0.53) to the target words in the experimental trials. 

These filler targets were paired with animal and tool word primes, different from those presented in 

the experimental set, but, again, similar to them in frequency (m= 4.03, sd= 0.49), length (m= 6.34, 

sd= 1.39) and orthographic neighborhood size (m= 1.93, sd= 0.56). This way, we ensured that the 

response to the target was not predictable on the basis  of the prime.   

Procedure. Each trial began with a 750 ms fixation-cross (+). The prime word was then shown for 

50 ms, either embedded between two visual masks (i.e. sequences of random uppercase letters as 

long as the prime word), for the masked condition; or embedded between two blank screens, for the 

unmasked condition. The visual masks/blank screens lasted 200 ms (before the prime) and 50 ms 

(after the prime). Finally, the target word was presented for 1500 ms, or until a response was 

provided (see Figure 2). In the masked condition, participants were not informed of the presence of 

a prime word. 
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Figure 2. Exemplar trials in the masked (left) and visible (right) conditions. 

All stimuli were presented in Arial (font size=32), in white against a black background. We 

used Matlab Psychtoolbox (Brainard, 1997) to control the presentation of the stimuli and gather 

participants’ response times, which were collected via a Cedrus button box. Stimuli were presented  

on a 22’’ monitor with a refresh rate of 120 Hz. 

Participants were engaged in a classic YES/NO task, requiring them to classify target words as 

members of either the animal or tool category, according to the instructions. YES responses were 

always provided with the dominant hand. Primes were rotated over target words in a classic Latin 

Square design, so that each participant was exposed to each target word only once. Because each 

target was associated with three different prime words, this procedure generated three experimental 

lists. Each list was composed of 200 trials, which were divided into two blocks. In one block, subjects 

were asked to press the YES-button if the target word referred to an animal, while in the other block 

they were asked to press the yes-button if the target word referred to a tool. The proportion of YES 

responses was .50 in both blocks. The order of the two blocks was counterbalanced across subjects. 

Ten practice and two warm-up trials were presented before each block. Participants were allowed to 

take a short break halfway through each block. 

Each participant took up both the masked and the overt priming conditions, in two separate 

sessions that were held between 2 and 5 days far from each other. The condition order was also 

counterbalanced across participants.   



 

78 

 

Prime visibility task. Once participants had completed the masked version of the experiment, they 

were informed about the presence of the prime. Because there is variability in the participants’ ability 

to perceive masked primes, and we wanted to control for this variability, they were then engaged into 

a prime visibility task requiring them to spot the presence of the letter “n” within the masked word. 

The trial timeline and presentation parameters remained exactly the same as in the main task; 

essentially, the trials were just played back to the participants. In order to ensure that participants 

understood the prime’s position within the trial, two examples were presented before the proper task 

where prime duration was increased to 150ms, in order to make it visible despite the visual masks. 

Then, 10 practice and 80 experimental trials were displayed. The 80 experimental trials were taken 

from the main task and were selected randomly, but in such a way that the proportion of YES-response 

was .50 again.  

Data analysis. Analyses were conducted on accurate YES responses only. Individual subjects and 

items were excluded if they departed substantially from the group distribution, based on visual 

inspection. Response Times (RTs) were inverse transformed to approximate a normal distribution 

and used as a dependent variable in linear mixed-effects regression models using the package lme4 

(Bates, Maechler, Bolker, & Walker, 2015) of the statistical software R (Chambers, 2008). Outliers 

were controlled for by fitting a random-effect-only model and excluding those individual data points 

with standardized residuals exceeding 2.5 standard deviations. This technique allows to discard 

outliers “a-priori” and to avoid any bias toward the effects of interests. 

This analysis allows us to control for all the covariates that may have affected the 

performance, such as trial position in the randomized list, rotation, RT and accuracy on the preceding 

trial, the response required in the preceding trial, frequency and length of the target. All these 

variables were modeled as fixed effects, with participant and item as random intercepts, in a baseline 

model. Only those covariates that significantly contributed to the goodness of fit were retained into 

the model. The variables of interest, PMI and COS, were then added to the baseline model, and we 
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checked both whether they provided additional goodness of fit (via a Chi–Square test) and whether 

their parameters in the model were significantly different from zero (via a t test). In order to compare 

the specific contribution of PMI and COS, we used the same statistical approach and inserted (i) PMI 

in the baseline model augmented with COS, and (ii) COS in the baseline model augmented with PMI. 

PMI and COS were both scaled before entering the model. Finally, p-values were computed using 

the Satterthwaite approximation to degrees of freedom (Luke, 2017) provided by the jtools package 

(Long, 2018).  

Data from the prime visibility task were analyzed in terms of sensitivity index (d’), which 

computes, for each participant, the ratio between correct hits and false alarms, according to the 

formula: 

d′ = Z(hit rate) − Z(false alarm rate) 

where Z(p), p ∈ [0,1], is the inverse of the cumulative distribution function of the Gaussian 

distribution. Prime visibility can thus be indexed by each participant’s d’, so that the higher its value, 

the better s\he is able to detect the masked stimulus. Unawareness of the primes is assumed when d’ 

does not differ significantly from 0, despite values below .5 are interpreted as flagging scarce ability 

to detect the target (in their review of 58 papers, Van den Buscche and colleagues reported d’ values 

ranging from -0.06 to 0.66). 

Open practices statement. All data and analysis code are available at https://osf.io/zcdba/, and can be 

accessed independently from the authors.  

Results 

Masked primes and prime visibility task. The overall accuracy in this condition was 97%. The mean 

RTs on accurate trials was 727 ms. No individual participant was taken out because of a particularly 



 

80 

 

anomalous performance. Inaccurate trials (~2.6%) and outliers (~1.6%) were identified and removed, 

leaving an overall set of 9750 available data points for the analysis.  

The d’ distribution is shown in Figure 3; the average value was 0.54 [95% CI= 0.41 – 0.67], 

comparable to previous studies assessing prime awareness (e.g., Bottini et al., 2016; Kouider and 

Dupoux, 2005). 

 

Figure 3. Density plot of the distribution of the d’ 

RT analysis showed no main effect of semantic similarity—neither PMI nor COS led to a 

significant increase in goodness of fit (𝜒(1)
2 = 0.58, p< .001 and  𝜒(1)

2 = 0.29, p= .591 respectively), nor 

their parameters in the model were significantly different from zero (PMI: β= -0.002, t(9582)= -0.76, 

p=.449; COS: β= -0.002, t(9361)= -0.54, p= .591) 

Interestingly though, model fit increased when semantic indexes were tested in interaction with 

prime visibility as tracked by participants d’ in the letter detection task, 𝜒(1)
2 = 12.56, p= .446 and  

𝜒(1)
2 = 10.11, p= .001, for PMI and COS respectively. As illustrated in Figure 6, the higher the d’, the 

more response times shrink as PMI (β= -0.012, t(9547)= -3.54, p< .001) and COS (β= -0.010, 

t(9546)= -3.18, p= .001) grow. That is, the higher the d’, the larger the semantic priming. Also, Figure 
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4 illustrates quite clearly that semantic priming is likely null when d–prime is low (see the red line, 

which refers to a d–prime value of 0). 

 

Figure 4. Interaction between d’ and prime–target association. Both PMI (left) and COS (right) effects become stronger as prime 

visibility (d’) increases. Shaded areas refer to 95% C.I. 

Visible primes. The overall accuracy in this condition was 97% and  the mean response time on 

accurate trials was 720 ms. No individual participant was excluded because of a particularly 

anomalous performance. Removal of incorrect trials (~2.5%) and outliers (~ 1.75%) led to a total 

9770 datapoints for modelling. 

Relative to the baseline model with non semantic variables only, we observed a better goodness 

of fit resulting from the inclusion of either PMI (𝜒(1)
2 = 10.13, p= .001) or COS (𝜒(1)

2 = 6.50, p= .011). 

This is in line with the model parameters, which are significantly different from zero for both PMI 

(β= -0.010, t(9400)= -3.18, p= .001) and COS (β= -0.008, t(8870)= -2.55, p= .011).  

When we compared the two metrics, we found out that adding PMI to the COS model improved 

the overall fit to the behavioral data (𝜒(1)
2 = 4.16, p= .041), but not vice-versa (𝜒(1)

2 = 0.52, p= .469). 

Correspondingly, the parameter analysis in the model with both PMI and COS reveals that while the 

former is significantly different from zero (β= -0.008, t(8623)= -2.03, p= .042), the latter is not (β= -

0.003, t(7817)= -0.73, p= .465). The pattern of results is shown in Figure 5. 
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Figure 5. Significant effects of PMI (upper-left) and COS (upper-right) in isolated models. When the two predictors are contrasted, 

PMI (lower-left) outperformed COS (lower-right). Shaded areas refer to 95% C.I. 

Discussion 

Based on these data, genuine masked semantic priming seems dubious, no matter what semantic 

index is taken into consideration. Neither PMI nor COS were, by themselves, significant predictors 

of the emergence of priming in the masked condition; and both interacted with prime visibility, in a 

way that facilitation increases with participants’ ability to detect the prime. Thus, some degree of 

prime visibility may be required for processing words up to the semantic level. 

These results are at odds with several previous studies supporting the existence of masked 

semantic priming. Those studies, however, used the classic, dichotomous design contrasting related 

and unrelated primes. Perhaps, when one explores the effect along the entire relatedness continuum, 
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subliminal semantic effects may actually turn out to be weaker than previously thought. Also, it is 

hard to tear apart local associations (i.e., PMI) from more distributed, high–level relatedness (i.e., 

DSM) at the extremities of the semantic continuum, where words tend to be associated (or not 

associated) on both indexes. So, perhaps, masked semantic priming in previous studies benefitted 

from multiple levels of relatedness, which we explicitly tried to separate here. 

Semantic facilitation, instead was clearly attested when primes were fully visible. In the overt 

condition, both PMI and COS successfully predicted the emergence of priming—the higher the 

strength of the link between the prime and the target, the shorter the response time. Yet, when both 

the indexes were entered in the same model, PMI outperformed DSM in the fit to the behavioral data. 

These results seem to suggest that overt semantic priming is primarily driven by local association ties 

as tracked by word co-occurrence, rather than by higher–level semantic relationship as tracked by 

state–of–the–art DSMs. 

A comparison between masked and overt priming —which is possible here for the first time on 

the same subjects, items and prime presentation time— clearly reveals a strong asymmetry: while 

priming does not seem to emerge subliminally, at least for those participants who really had no 

awareness of the primes, facilitation is solid supraliminally. 

Of course, some of the conclusions we draw here need further testing. For example, we are 

aware that 50 ms is quite atypical for prime presentation time in studies on conscious semantic 

priming, and several experiments have shown how different prime durations may affect facilitation 

depending on the particular kind of semantic link being processed (Lam et al., 2015). This calls for 

longer prime durations, which we tested in Experiment 3. 

Before that, however, we turned our attention to masked priming, and tested one prediction of 

the interpretation offered above for this phenomenon. The interaction between the semantic indexes 

and prime visibility, and the d–prime distribution itself, shows that some participants were still able 
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to somehow detect the presence of the masked primes. So, in Experiment 2 we reduced prime duration 

to 33ms, thus enforcing lower prime visibility. If semantic facilitation does indeed need some 

awareness of the primes to emerge, then it should completely disappear under such conditions. In 

other words, in Experiment 2 we expect (i) lower, possibly around zero d–primes; and, consequently, 

(ii) no sign of priming, nor interaction between priming and d–prime. 

Experiment 2 

Methods 

Participants. 75 healthy volunteers (56 females and 19 males; mean age= 23 years) were recruited 

into the experiment. They all provided their informed consent, and were compensated for their time 

with 8 Euros. None of the subjects took part in the previous experiments. 

Stimuli and Procedure were kept the same as in the masked priming condition of Experiment 1, with 

the only difference that primes remained on the screen for 33 ms now. We adapted the duration of 

the backward mask consequently (67 ms), so as to keep the overall prime-target stimulus onset 

asynchrony (SOA) fixed at 100ms.  

As for Experiment 1, once the participants had completed the main task, they were informed 

about the presence of the prime and underwent the prime visibility task.  

Data analysis were conducted exactly as in Experiment 1. 

Results 

The overall accuracy in this experiment was 97%. The mean RTs on accurate trials was 675 ms. 

No individual participant was excluded because of a particularly anomalous performance. After 

inaccurate trials (~2.4%) and outliers (~2%) were removed, 7196 available data points were 

considered for the analysis.  
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From each subject’s performance in the prime visibility task, we computed the corresponding 

d’ score. Mean d’ was 0.03 [95% CI= -0.03 – 0.10]; the overall distribution is illustrated in Figure 6. 

Participants’ ability to spot the prime was, as expected, lower than in the previous experiment, as 

confirmed via Welch Two Sample t-test between the two d’ distribution, t(146)= -6.77, p< 00.1. 

Moreover, all participants except 4 (95%) had a d’ below .5, thus being effectively unaware of the 

primes.   

 

Figure 6. Density plot of the distribution of the d’. 

Consistently with these d’ data and the results of Experiment 1, the RT analysis revealed no 

effect of semantic similarity—goodness of fit of the baseline model did not benefit from adding PMI 

(𝜒(1)
2 = 0.47, p= .492) or COS (𝜒(1)

2 = 0.38, p= .538) as predictors. Model parameter further confirmed 

that the two indexes had no effect on the dependent variable (β= -0.002, t(7024)= -0.69, p= .492 and 

β= 0.002, t(6820)= 0.62, p= .538 for PMI and COS respectively), nor yielded an interaction with d’ 

scores (β= 0.007, t(7021)= 0.74, p= .457 and β= 0.005, t(7021)= 0.57, p= .569 for PMI and COS 

respectively).  
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Discussion 

The critical manipulation in this experiment, that is, prime presentation time brought down to 

33 ms, worked as expected—prime visibility decreased dramatically from Experiment 1, and is now 

effectively null, as indexed by d–primes in a letter detection task on the primes themselves. As 

predicted on the basis of the results in Experiment 1, this prevented semantic priming—we did not 

observe any evidence for a main effect of PMI or COS, similarly to Experiment 1, and also, more 

importantly, we did not observe any interaction with d–primes either. Essentially, priming does not 

emerge consistently across the d–prime spectrum that we captured in this experiment. 

Putting together the results from Experiment 1 and 2, it seems that priming would only start to 

emerge for d–prime values around 1, which does indicate some prime visibility. Thus, no semantic 

priming seems to be attested when primes are strictly kept outside of awareness. 

How does this go together with the several reports of masked semantic priming that populate 

the literature? The most apparent difference between this study and the previous one is in the design—

while classic masked priming experiments are based on taking the difference between response times 

in a related (e.g., cat–DOG) and unrelated condition (e.g., tip–DOG), here we modeled the strength 

of the prime–target relatedness continuously. Essentially, instead of tapping only onto the extremes 

of the relatedness distribution, we explored its effect all along its continuum. If this is the reason why 

we do not find evidence for subliminal semantic priming, then we should be able to see this priming 

emerge if we just apply the more classic, dichotomic approach to these very same data. We illustrate 

this analysis in the next section. 

A dichotomic re–analysis of the masked priming data 

Of the 300 prime–target pairs that we employed in Experiment 1 and Experiment 2, we selected 

as related pairs those that were concurrently above the upper quartile of the distribution of both the 

metrics considered (11.04 for PMI, 0.41 for COS); and those that were below the lower quartile of 
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the distribution (7.69 for PMI, 0.24 for COS), as unrelated pairs. Unfortunately, we could not ensure 

the within-target comparison between related and unrelated primes, as normally done in priming 

experiments, because not all the targets in the related condition appeared in the unrelated condition 

as well. Yet, possible confounding from unbalanced design could be controlled for in the analysis. 

Finally, selecting pairs only from the extremes did not allow us to disentangle between PMI and COS 

as specific sources of priming because of the high correlation (r= .9) between the two metrics.  

We then took all the response times we gathered on these pairs in Experiment 1 (prime 

duration=50ms) and Experiment 2 (prime duration=33ms), which generated a sample of 4193 

datapoints. We submitted these data to mixed–effect modelling, with semantic relatedness and 

experiment/prime duration, as well as their interaction, as fixed effects, and participant and item as 

random intercepts. All other details about the modelling of the data were the same as in Experiment 

1 and Experiment 2. We also collected the d–prime values for all the participants involved in this re–

analysis (n= 177), and regressed them against each participant’s priming effect. This method does not 

only allow us to assess the correlation between facilitation and prime visibility, but also to estimate 

facilitation when d–prime is zero, that is, when prime visibility is null (Greenwald et al., 1995).  

Results are illustrated in Figure 7. We observed a significant interaction between relatedness 

and experiment/prime duration (𝜒(1)
2 = 5.39, p= .020); with a 33ms presentation time for the primes 

priming does not seem to emerge (β= 0.002, t(1048)= 0.13, p= .900), while facilitation is more 

strongly attested for primes lasting 50 ms (β= 0.036, t(3963)= 2.32, p= .020). In this latter condition, 

the correlation between prime visibility and facilitation at the subject level was .19 (95% CI: -.004 – 

.371; p= .55. See Figure 7b), which suggests, similarly to the original analysis of the Experiment 1 

data, that masked priming partially depends on prime visibility. However, the 95% CI at the intercept 

lies entirely above the origin (5ms – 37ms; point estimate=21ms), indicating that priming is indeed 

estimated to be higher than zero even when primes are completely outside of awareness. 
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Figure 7 (a) Priming effect across different prime exposures. The congruent condition is plotted in green, and the incongruent condition 

in red. Error bars refer to the 95% confidence intervals. (b) Relationship between priming and prime visibility. Points represent 

individual participants, and the shaded area indicates the 95% confidence interval of the regression line. Note that priming is measured 

by subtracting mean RTs on congruent trials from mean RTs on incongruent trials, that is, positive values indicate facilitation. 

This re–analysis of the masked priming data with the more classic, dichotomic approach reveals 

that, at least when the prime duration was 50ms (which is a very typical value in the masked priming 

literature; Van den Bussche et al., 2009), facilitation does seem to emerge outside of awareness. Or 

at least, this would be the interpretation of the pattern of results that we observe here: related trials 

yield quicker response times than unrelated trials, and the regression analysis shows that priming 

would be significantly higher than zero when the d–prime is zero. 

So, at 33ms of prime presentation time the effect is virtually null, and therefore a continuous 

rather than a dichotomous modelling does not really affect the outcome. However, when the prime is 

available for 50ms, we are only able to see it when the extremes of the semantic continuum are 

considered. Thus, subliminal priming effects may be the result of an “all-or-nothing” phenomenon 

(or illusion?), which requires a strong difference in relatedness to emerge clearly in the data. Should 

we “believe” more in the dichotomic analysis, and therefore claim genuine subliminal semantics? Or 

rather, we should trust the continuous analysis, and therefore deny masked semantic priming? We 

will take up this issue in the General Discussion. We were not able to disentangle the different sources 
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of information contributing to meaning similarity due to the high overlap between the measures 

considered. More research, possibly adopting a mega study approach with thousands of datapoints 

taken into consideration, is necessary to further explore the dynamics of subliminal semantic 

processing.  

Experiment 3  

In this experiment, we assess whether the results observed in Experiment 1 on overt priming, 

that is, that PMI accounts for the phenomenon better than COS, are confirmed when we adopt a 

prime duration that is more comparable with previous studies. In particular, we tested 150ms and 

1150ms.  

Methods 

Participants. 85 healthy volunteers (59 females and 26 males, mean age= 24 years) were recruited 

into the experiment, which involved two different sessions with 2 to 5 days in between. They all 

provided their informed consent , and were compensated for their time with 10 Euros. None of the 

subjects took part in the previous experiments.  

Stimuli and Procedure were kept identical to the overt priming condition in  Experiment 1, with the 

only difference that primes were now presented for 150 ms and 1150 ms, in two separate sessions. 

Participants always underwent the shorter prime duration session first. 

Data analysis. Data were analyzed exactly as in Experiment 1, with the exception that there was an 

additional variable of interest here, prime presentation time (150ms vs. 1150ms), which we modeled 

as a further fixed effect. 
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Results 

The overall accuracy in this condition was 97%. The mean RTs on accurate trials was 674 ms. 

No individual participant was taken out because of a particularly anomalous performance. Inaccurate 

trials (~2.4%) and outliers (~1.8%) were removed, leaving a total of 16261 overall observations for 

the analysis. 

Entering either PMI (𝜒(1)
2 = 21.65, p< .001) or COS (𝜒(1)

2 = 10.98, p< .001) in the model with 

non-semantic covariates improved the fit to the data. According to model estimates, both PMI (β= -

0.012, t(15291)= -4.65, p< .001) and COS (β= -0.009, t= -3.31, p= .001) significantly predict priming, 

so that the higher the semantic similarity, the shorter the RT to the target. Remarkably, we found no 

evidence of an interaction between priming and prime duration (𝜒(1)
2 = 0.04, β= 0.001, t(16059)= 0.19, 

p= .848 and 𝜒(1)
2 = 0.99, β= 0.004, t(16059)= 0.99, p= .320, for PMI and COS respectively). 

Next, we contrasted the two measures one against the other. Adding PMI improved the overall 

fit to the data relative to the model testing for COS in isolation (𝜒(1)
2 = 10.96, p= .001), but not vice-

versa (𝜒(1)
2 = 0.29, p= .591). LMM analysis confirmed the strong facilitation determined by PMI (β= 

-0.011, t(13502)= -3.31, p= .001), while the COS effect drastically dropped off (β= -0.002, t(11574)= 

-0.54, p= .591). Again, there was no interaction between the observed PMI-led priming and different 

prime timing\SOA (𝜒(1)
2 = 0.17, β= -0.002, t(16057)= -0.42, p= .677). Results are shown in Figure 8. 
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Figure 8. Significant effects of PMI (upper-left) and cosine proximity (upper-right) in isolated models. When the two predictors are 

contrasted, PMI (lower-feft) outperformed cosine proximity (lower-right). Shaded areas refer to 95% C.I. 

Discussion 

We perfectly replicated the results observed in the supraliminal condition of Experiment 1.  

Semantic facilitation was successfully accounted for by both distributional metrics, in line with the 

previous literature addressing semantic priming with computational linguistics tools (Günther, 

Dudschig, & Kaup, 2016; Mandera et al., 2017). Yet, when we contrasted PMI and COS, the former 

clearly outperformed the latter. This seems so be true irrespective of the time available to process the 

prime word.  
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General Discussion 

This study represents a large-scale attempt at gauging semantic priming while modeling 

quantitatively and in a principled way different types of semantic relationships. To this aim, we 

considered a state–of–the–art Distributed Semantic Model (DSM), namely wordToVec (Mikolov et 

al., 2013), which track various types of high–level, long–distance semantic relationships (e.g.,  sofa-

hammock, worm-caterpillar), and Pointwise Mutual Information (PMI), which specifically captures 

associative, more local ties (e.g., tank–paint, scissors–razor). In a series of experiments manipulating 

prime visibility and prime duration, we obtained the following core results: 

(i) When we gauge semantic priming along the whole relatedness continuum, we do not observe 

a reliable effect; only when primes are at least partially visible facilitation starts to emerge. 

(ii) When semantic relatedness is modeled dichotomically instead, thus contrasting strongly 

related prime–target pairs with unrelated ones, subliminal priming does seem to arise. 

(iii) Overt priming is nicely accounted for by both DSM and PMI similarity, when these indexes 

are assessed in isolation; however, when the two are contrasted, PMI seems to provide a far 

better account of semantic facilitation.  

(iv) This pattern of results is unaffected by prime duration; as long as the prime is visible, PMI 

dominates DSM. 

 It is not obvious what to make of (i) and (ii). On the one hand, they may just offer a 

methodological warning: dichotomizing naturally continuous variables may create effects that are not 

confirmed (or, at the very least, are much weaker) when the entire continuum is considered.  We 

believe, however, that these results also carry an important theoretical message. Previous studies 

typically used words from small/closed classes (e.g., spatial words, planet names; e.g., Bottini et al., 

2016; Quinn and Kinoshita, 2008), thus allowing explanations of the effect based on target 

predictability, or at least potentially limiting the scope of their conclusions. Conversely, here we drew 
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stimuli from across the lexicon, and sampled form very large categories such as animals and tools. 

Together with the regression design, which considers all levels of semantic relatedness, these features 

make this study the widest–scope investigation to date of masked semantic priming. The fact that this 

approach does not result in solid subliminal priming casts doubts on a wide, across–the–lexicon 

processing of semantic information outside of awareness.  

These results are in line with previous behavioral data suggesting a primary role for local 

linguistic ties in supraliminal semantic priming. Günther et al. (2016) showed that similarity estimates 

derived from a semantic space based on local context information (based on word-by-word matrix) 

predict priming better than those derived from a semantic space based on global context information 

(based on a word-by-document matrix). Similarly, Brunellière, Perre, Tran and Bonnotte (2017) 

probed that, while keeping semantic similarity constant, the magnitude of priming was greater as 

prime-target pairs co–occur more frequently. 

These data are difficult to reconcile with theoretical accounts of priming based on automatic 

activation spreading within a semantic network coding for high–level, relatively complex 

relationships (Collins & Loftus, 1975; Neely & H., 1991). Taking PMI at face value, these results 

may suggest that priming  is based on expectancy generation—the prime is taken as a cue for the 

coming target, and expectation is computed based on local, relatively simple association links. 

Interestingly, this makes connection with models of sentence processing, where it is very well 

established that upcoming words are predicted based on the current and previously encountered ones 

(Kuperberg & Jaeger, 2016). Perhaps, a similar mechanism is in action with isolated word priming; 

given that syntax and discourse level information is just not available, the reader is left with mere 

word–level prediction, for which PMI offers a nice metric. The lack of the same kind of results with 

masked priming would further suggests that this strategy requires awareness. 
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The operationalization of associative strength in terms of information conveyed by the prime-

target pairs based on their weighted surface co-occurrence (what PMI codes for, essentially) may 

inform us about the nature of priming. The effect seems to be better explained by associative 

mechanisms that link lexical items in our mental lexicon, rather than by the activation of conceptual 

information in semantic memory. A similar perspective has been proposed by Recchia and Jones 

(2009), who showed that PMI-based similarity estimates collected from very large amounts of data 

more closely matched with human semantic similarity ratings than do several more complex models. 

Our results support these findings and provide further psychological validation of this modeling via 

semantic priming. What has been traditionally thought of as semantic processing could be largely an 

epiphenomenon of such processes. This would be in line with previous literature suggesting that the 

behavior of the human cognitive system may be effectively described by Information Theory 

principles aimed at transforming perception into information (Crupi, Nelson, Meder, Cevolani, & 

Tentori, 2018; Sayood, 2018).  

Our study could speak in favor of a semantic match account of priming (Jones, 2010), according 

to which the effect would be due to a retrospective strategy applied by subjects who may check for a 

relationship between the two stimuli after target presentation. Unfortunately our best predictor, PMI, 

is by definition a symmetric measure, and therefore we cannot assess whether the prospective 

expectancy generation or the retrospective semantic match could better account for the current results. 

Should we merely take these computational indexes as useful metrics that, for some reason, 

happen to reflect well human behavior? Or should we rather consider them as realistic models of how 

we come to acquire this information? The methodological advantages provided by distributional 

techniques are undeniable; not only they outperform (or match) similarity estimates from feature lists 

or association norms in accounting for a variety of language-related behaviors, but they are also much 

easier to collect and share. More importantly, all the measures developed within the distributional 

framework are based on an inferential mechanism that exploits the effective presence or absence of a 
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given stimulus to predict the presence or absence of another stimulus. This learning procedure, that 

has a long tradition in cognitive psychology and neuroscience that traces back to Rescorla and Wagner 

(1972), can be observed in several biological and psychological systems. Therefore, it is not specific 

to language modelling but rather may offer a general mechanism of learning that humans exploit to 

pick up statistical regularities in the environment and construct complex conceptual representations 

(Günther, Rinaldi, & Marelli, 2019).  

As a final remark, we would like to acknowledge that contrasting PMI and DSM is a rather 

gross oversimplification of the complexity of the human semantic system. We followed on several 

recent attempts (e.g., Mandera et al., 2017; Paperno et al., 2014) and tried to use the nice quantitative 

tools developed in the field of computational semantics to shed light on a psychological phenomenon, 

whose investigation, we believe, had suffered the lack of such tools, and the precision in defining 

constructs that they bring about. We think that this gave us important insight already—we saw here 

that subliminal semantic priming is not as clear as it might seem, and that overt priming is better 

accounted for by local associations rather than by general, higher–level semantic models. These latter, 

however, and particularly the metric that we specifically investigated here, capture a number of very 

different semantic relationships, which may well deploy their effect on priming (and, potentially, on 

several other meaning–based human behaviors) very differently from one another. Future work will 

try to dig deeper in this respect, and tease apart more precisely the mechanics that govern the human 

lexical–semantic system. 
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Chapter 3. Electrophysiological correlates of semantic processing as revealed by priming and 

distributional semantics 

Introduction 

Semantic knowledge represents a fundamental feature of human cognition: it allows us to assign 

meaning to different entities in the world, and consequently to make inferences about how to interact 

with these entities, as well as how they may interact between each other. Such knowledge is clearly 

reflected in language, as it allows speakers to extract meaning from the words stored in the mental 

lexicon and to link them via meaning-based similarity relationships. 

Pivotal insights into the internal organization of the mental lexicon have been provided via 

semantic priming experiments (McNamara, 2005). This paradigm is based on faster recognition times 

when a target word (e.g., dog) is preceded by a semantically related prime word (e.g., cat) vs. a 

semantically unrelated one (e.g., cap). The word “semantic” in semantic priming implies that the 

observed facilitation is due to overlap in meaning between the two words. The effect is very robust, 

as it can be observed in a variety of tasks, such as lexical decision, semantic categorization  or naming. 

Originally, the observed facilitation was accounted for via spreading activation mechanisms: 

words are represented as nodes within an interconnected network, and links between nodes reflect 

lexical-semantic ties (Collins & Loftus, 1975). When a given word is read, the corresponding node is 

activated, and activation spreads to related nodes, proportionally to their association strength.  

This latter has been traditionally computed by presenting subjects with a given seed word and 

asking them to produce one or more words that the seed brought to their mind (Nelson, McEvoy, & 

Schreiber, 2004). Association norms–the documents where these responses are collected–have been 

used in psycholinguistic research as significant predictor for the emergence of priming (Anaki & 

Henik, 2003). Despite their successful application, it is not clear what those norms represent as a 

psychological construct. Their definition is rather loose (participants can walk the semantic space 



 

104 

 

from the seed word in any different way), and therefore they end up capturing several different types 

of relationships, like category membership (hare-rabbit)6, collocation (keg-beer), synonymy (stone-

rock), meronymy (cheddar-cheese), antonymy (north-south), scripts (cinema-movie), function (lock-

key), even proper names of notorious entity (flipper-dolphin).  

A different approach to model semantic association is based on featural similarity (McRae, De 

Sa, & Seidenberg, 1997). Under this view, lexical meaning is represented by means of features 

describing perceptual, functional and encyclopedic aspects of the corresponding referent. The more 

features two words share, the higher their semantic similarity. For example, the words ‘dog’ and 

‘wolf’ are similar as the two entities they refer to share  much of the same characteristics (have a fur, 

four legs, a tail, both yowl, etc.). Operationally, this approach relies on human participants performing 

feature-production tasks. Words are then encoded as vectors keeping track of the presence\absence 

of such features, and semantic similarity is numerically defined as the cosine of the angle between 

vectors (McRae, Cree, Seidenberg, & McNorgan, 2005). 

While feature-based approaches performed quite well in modelling a wide range of language 

related behaviors (McRae & Boisvert, 1998; Vigliocco, Vinson, Lewis, & Garrett, 2004), they are 

not immune to criticism. For example, they are not perfectly suited to represent the semantic content 

of abstract entities, whose features can be quite difficult to define.      

Computational Semantics now offer another approach to define and quantify semantic 

relationship, based on how words are used together in language. The main theoretical assumption 

behind this approach is that humans process words in relation to a context, i.e., words get their 

meaning due to the linguistic context they appear in (Lenci, 2008; Sahlgren, 2008). The idea is not 

new (Firth, 1957; Harris, 1954), but it has only recently become a critical aspect of contemporary 

research in Computer Science and Cognitive Neuroscience. Over the past two decades, great 

 
6 All the example are taken from the University of South Florida Free Association Norms (Nelson et al., 2004) 
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advancements have been made in the mathematical manipulation on word co–occurrence data and in 

the development of ever more precise estimates of word distributions in the language, mainly thanks 

to the development of larger linguistic corpora. In this approach, words themselves represent the 

organizational principles of the semantic system, making it possible to avoid the theoretical weakness 

of postulating a-priori a given set of semantic features. Moreover, similarity estimates can be obtained 

for most of the words attested in a text corpus, including abstract words of course; feature-lists and 

association norms, instead, are available only for a relatively limited set of stimuli.   

More precisely, in distributional semantic models (DSMs; Günther, Rinaldi, & Marelli, 2019), 

lexical items are represented as vectors that populate a high-dimensional space where semantic 

relatedness is reflected in spatial proximity. Words with similar meaning tend to cluster together, and 

such similarity can be quantified by applying geometrical techniques to these vectors. For example, 

one can approximate relatedness as the cosine similarity (henceforth COS) formed by two word-

vectors: 

COSθ = 
a∙b

||a||∙||b||
 

DSMs have been proposed as a psychologically plausible models of semantic memory, with 

particular emphasis on how meaning representations are achieved and structured. In particular, state-

of-art models (e.g., word2vec; Mikolov, Yih, & Zweig, 2013) represent a simple neural network 

consisting of an input, an output and a hidden layer, and is based on a predictive mechanism that 

allows to infer a target given a set of cue words. Thus, words are similar if they are similarly predicted 

in similar linguistic contexts. For example, in a sentence about pets, it’s likely to encounter the word 

‘dog’, as well as the word ‘cat’. Word2vec provides similarity estimates that cover a wide range of 

classic lexical-semantic relationships, like synonymy (e.g. student-pupil, 0.54), antonymy (e.g. rich-

poor, 0.57), meronymy (e.g. hound-dog, .53). Associative relations can be grasped as well (dog-leash, 

.50). Finally, it can account for featural similarity beyond category membership (e.g. eagle-hawk, .45 

vs penguin-hawk, .19). Word2vec has been shown to perform better than (or as well as) other DSMs 
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in a variety of task, such as synonym detection, concept categorization, semantic priming (Baroni, 

Dinu, & Kruszewski, 2014; Mandera, Keuleers, & Brysbaert, 2017). 

Cosine similarity in vector models is not the only computational linguistic metric that one can 

use to measure semantic proximity/association. A more immediate way to model linguistic context is 

by looking at surface co-occurrence, i.e., simply counting how many times two are used close 

together. This approach  can be psychologically interpreted as how strong of a cue word A is for word 

B (Spence & Owens, 1990). A useful mathematical tool to operationalize this assumption is Pointwise 

Mutual Information (henceforth PMI): 

PMI(w₁,w₂) = log₂
p(w₁,w₂)

p(w₁)p(w₂)
 

where p(w₁,w₂) corresponds to the probability of occurrence of the word pair in a given window of 

test (e.g., five consecutive words), while p(w₁) and p(w₂) are the individual probabilities of occurrence 

of the two words in isolation (Church & Hanks, 1989). PMI has been used to model a wide range of 

psycholinguistics phenomena, such as similarity judgements (Recchia & Jones, 2009), reading speed 

(Ellis & Simpson-Vlach, 2009), and free association and syntactic parsing (Pitler, Louis, & Nenkova, 

2010). Moreover, PMI has also been shown to successfully generalize to non-linguistic fields, such 

as reasoning and induction (e.g., Paperno, Marelli, Tentori, & Baroni, 2014).  

So, cosine similarity and PMI allow us to investigate semantic processing with tools that provide 

a precise and consistent definition, and therefore a neat quantification, of the word relationships that 

govern meaning construction. Importantly, they also seem to roughly map onto different 

psychological constructs that were heavily investigated in the past: while PMI seems to specifically 

track local associations, COS more generally captures a variety of higher–level relationships (e.g., 

category membership, feature similarity, synonymy, antonymy) that most often do not result into 

direct co–occurrence in language use. The paper builds onto these considerations, and addresses the 

processing of psychologically relevant aspects of word meaning via rigorously defined mathematical 

tools. 
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One important aspect in which the different facets of word meaning tracked by PMI and COS 

may differ is timing. If PMI truly tracks local, relatively shallow associations, one might imagine that 

its effect will deploy quickly after word presentation; while perhaps the complex, higher–level 

relationships captured by COS may take more time to emerge. To keep track of the time-course of 

the processes underlying priming, we recorded participant’s EEG signal. Several event related 

potentials (ERPs) have been associated with language related phenomena; in particular, the N400, 

has been acknowledged as an index of lexical and semantic processing (Lau, Phillips, & Poeppel, 

2008). In the context of priming, N400 reflects a more pronounced negativity for unrelated primes 

compared to related ones, typically emerging in a time window between 300 ms to 500 ms after word 

onset.  

There is no unique interpretation of what kind of processes are reflected by N400. At least two 

major components seem to be at stake: accessing long-term representations of words’ meaning and 

integrating such representations into a more complex mental structure. Early explanations defined the 

effect in terms of semantic match between a target word and the preceding context, in sentences like 

"He spread the warm bread with butter/socks" (Kutas & Hillyard, 1980). Later results challenged this 

interpretation; while controlling for semantic congruency with the preceding context, N400 seemed 

to track the likelihood with which a given target was expected, like in ‘Don’t touch the wet paint/dog’ 

(Kutas & Hillyard, 1984).  

The debate on the N400 interpretation is still open today, although the focus has moved 

somewhat on whether the N400 modulation reflects information processing at the semantic or at the 

lexical level. According to the integration theory (Federmeier & Kutas, 1999; Kutas & Federmeier, 

2011), the semantic features associated with the upcoming target are preactivated, making the 

integration with the preceding context less effortful. Conversely, the prediction theory posits that 

N400 truly reflects pre-activation of the critical word itself, resulting in an easier lexical access 
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(Bornkessel-Schlesewsky & Schlesewsky, 2019; Lau, Namyst, Fogel, & Delgado, 2016; Szewczyk 

& Schriefers, 2018).  

Interestingly, PMI and COS are particularly fit to attack this debate. While cosine proximity 

should mostly represent relatively high–level semantic aspects of word representation, PMI may more 

genuinely reflect association/prediction at a pure lexical level.  

Of course, this is not the first attempt at looking at the electrophysiological correlates of 

semantic similarity from a distributional perspective. In an MEG study, Parviz, Johnson, Johnson, & 

Brock (2012) tested several variables as possible predictors for the emergence of N400m, the 

neuromagnetic analog of N400. They define the strength of the link between a given sentence and the 

corresponding final word in terms of surprisal and semantic congruency. The former was 

operationalized as the likelihood with which the ending word was expected given the preceding 

context, based on co-occurrence patterns emerging from a large text corpus. The latter was 

implemented with Latent Semantic Analysis representations derived from word-by-documents 

matrices, that is, matrices keeping track of how words distribute across the several different 

documents (e.g., books, newspaper articles) that were considered in this model (Landauer & Dumais, 

1997). Crucially, both the metrics could successfully account for the modulation of the MEG signal 

in the N400 time window. Similarly, Frank and Willems (2017) showed how semantic similarity—

i.e. word2vec similarity estimates—and word expectancy—i.e. probability estimate based on the 

preceding words—elicit distinct patterns of brain activity as revealed by fMRI data, despite such 

difference was not attested at the ERP level. 

Yet, differently from these studies that analyzed the N400 from a computational linguistic 

perspective in a sentence context (see also Ettinger, Feldman, Resnik, & Phillips, 2016), the current 

work attempts to dip further into this issue with isolated word processing. In addition to setting a 

bridge with the vast behavioral literature that is dominated by individual word experiments, this adds 
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a further element of interest—we check whether and how metrics that are based on how words go 

together in language deploy their effects when words are presented in isolation, without any broader 

contextual information.  More specifically, we designed a priming experiment where we contrast 

related and unrelated prime–target pairs in three conditions: (i) association is quantified via PMI, 

while COS is controlled for; (ii) association is quantified via COS, while PMI is controlled for; (iii) 

association is quantified via both PMI and COS, so that related and unrelated primes are such on both 

metrics. With this design, we hope to identify the separate contribution and timing of relatively 

shallow, associative ties (PMI) vs. higher–level, more abstract semantic relationships (COS), as well 

as their eventual interaction (through the PMI+COS condition).   

The experiment 

Method  

Participants. 30 students at the University of Trieste were recruited into the experiment (12 males, 

18 females; mean age=25y, age range=20y-32y). All subjects were right-handed, native Italian 

speakers, and had normal or corrected-to-normal vision and no history of neurological disorders. 

Subjects gave written informed consent for participation, and received 15 Euros in exchange for their 

time. 

Design. The experiment was based on a 2-by-3 design comparing congruent and incongruent prime-

target pairs across 3 categories that differed with regard to the type of semantic similarity linking the 

two words. Target words, that were not the same across categories, were paired with one congruent 

and one incongruent prime. Participants saw all the prime-target pairs once in the experiment.  

Material. Ninety Italian words were selected to be used as target stimuli and were equally divided 

(N=30) across three categories, PMI , COS and PMI+COS. Each target was paired with one related 
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and one unrelated prime (e.g., PMI: cheese\monument-MOUSE; COS: lamp\missile-TORCH; 

PMI+COS: prawn\veal-CRAB) 

PMI was computed by first collecting cooccurrence data by means of a 2–words window 

sliding along the Itwac corpus, a lemmatized and part–of–speech annotated database for Italian of 

nearly 2 billion words (Baroni et al, 2009). All characters were set to lowercase, and special characters 

were removed together with a list of stop-words. The raw counts were subsequently transformed into 

PMI scores according to the following equation: 

PMI(w₁,w₂) = log₂ 
p(w₁,w₂)

p(w₁)p(w₂)
 

where p(w₁,w₂) represents the probability of encountering the two words within the same 2–word 

window, and p(w₁) and p(w₂) represents the overall probability of encountering w₁ and w₂. 

Cosine proximity between word vectors was obtained training a word2vec model (Mikolov, 

Chen, Corrado, & Dean, 2013) on the same corpus. Model’s parameters were set according to 

(Marelli, 2017). All words attested at least 100 times were included in the model, which was trained 

using the continuous-bag-of-word (CBOW) architecture, based again on a 5-word window and on 

200 dimensions. The parameter k for negative sampling was set to 10, and the subsampling parameter 

to 10-5.  Among the two different architectures implemented in word2vec, CBOW has been proven 

to gain better results than Skip-Gram in semantic priming simulations (Baroni et al., 2014).  Negative 

sampling reduces the computational load of the model by selecting a restricted set of items in the 

output layer for each learning phase, when the probabilities are estimated. Subsampling allows the 

model to reduce the influence of very high–frequency words, which are known to provide little 

information for distributional analysis. 

In order to test for the specific contribution to the emergence of priming provided by semantic 

similarity as indexed by PMI and COS, we constructed the categories so that the two indexes could 

be kept as separated as possible. That is, we ensured that when testing for one variable (e.g. PMI), 
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the other (e.g. COS) was as matched as possible across the comparison. Thus, in the PMI category, 

average PMI for related and unrelated conditions was 7.77 (sd 1.17) and 0.13 (sd 0.69) respectively, 

while average COS was 0.17 (sd 0.04) and 0.13 (sd 0.04) respectively. Viceversa, in the COS 

category, average PMI for related and unrelated conditions was 1.80 (sd 1.76) and 0 (sd 0) 

respectively, while average COS was 0.43 (sd 0.04) and 0.13 (sd 0.05) respectively. Finally, in the 

PMI+COS category, related pairs had an average value of 8.79 (sd 1.97) and 0.45 (sd 0.12) for PMI 

and COS respectively, while unrelated pairs had an average value of 0.21 (sd 0.83) and 0.12 (sd 0.04) 

for PMI and COS respectively. Figure 1 shows the distribution of the two metrics across the three 

categories. 

 

Figure 1. Distribution of the semantic indexes considered (PMI, left; COS, right)  

Primes and targets in the three categories were matched in frequency, length, and orthographic 

neighbourhood, as shown in Table 1. 
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 Prime 

Frequency 

Prime 

Length 

Target 

Frequency 

Target 

Length 

Prime 

OLD20 

Target 

OLD20 

PMI  4.18 (0.35) 6 (1) 3.68 (0.33) 6 (2) 1.73 (0.52) 1.95 (0.59) 

COS 4.17 (0.41) 6 (1) 3.62 (0.36) 7 (1) 1.77 (058) 2.05 (0.49) 

PMI+COS 4.20 (0.40) 6 (1) 3.67 (0.32) 7 (1) 1.76 (0.53) 2.12 (0.37) 

Table 1. Prime and target lexical features - mean (sd).  

Finally, 90 non-word targets were constructed by shuffling the letters from the target words 

and recombing them without violating phonotactic rules (e.g., tabio <  abito). Each non-word target 

was paired with two word primes, different from those used in the word-trials. Thus, the word/non-

word target ratio was equal to .5.    

Procedure. Participants performed a lexical decision task, requiring them to assess whether the target 

stimulus was an existing Italian word. Stimuli presentation was done using using MatLab 

Psychtoolbox (Brainard, 1997). All words were shown in Arial font, 32 in size, in white against a 

black background, displayed on a 22’’ monitor with a refresh rate of 120 Hz. Responses were 

collected by keyboard press. The experiment comprised 4 blocks of 90 trials. Each trial started with 

a fixation point (+) displayed for 500ms. Then, the prime was shown for 200ms, followed by a 100ms 

blank screen, and then by the target, which stayed on screen for 1000ms. Finally, a question mark (?) 

was presented, triggering the participants to respond (see Figure 2).  
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Figure 2. Exemplar trial of the experiment. 

The delayed–response design prevented us from performing an analysis of the response times (RT), 

but crucially avoided motor interference in the target-related EEG signal. Each participant was 

provided with a few practice trials before the actual experiment, and s\he was invited to have a one-

minute break between blocks. 

EEG Recording. Data acquisition was conducted via a Biosemi ActiveTwo system. Throughout the 

experiment, EEG signal continuously recorded from a 128-electrode cap at a sampling rate of 1024 

Hz. All electrodes were referenced to a common mode sense (CMS) electrode and grounded to a 

driven right leg (DRL) passive electrode.  

EEG Preprocessing. Preprocessing was implemented using EEGLab (Delorme & Makeig, 2004). Out 

of the 30 participants who took part into the experiment, two were excluded for technical problem in 

the recording (prime triggers were missing), and three for a noisy signal. Data were first filtered with 

0.1 Hz high-pass and 40 Hz low-pass filters, and resampled at 256 Hz. The continuous recording was 

segmented into 1500ms epochs, from 500ms before the onset of the target until its offset. Noisy 

channels (~9 per subject) were removed and ICA was run to detect blinks and ocular movements; 

automatic artifact correction was performed via ADJUST (Mognon, Jovicich, Bruzzone, & Buiatti, 

2011). Data were then re-referenced to the average activity at all electrodes, and baseline corrected. 

Automatic epoch rejection was conducted by removing epochs during which the signal exceeded the 

limit of ±100mV in any of the channels (7.9% of the data). Finally, missing channels were 
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interpolated from neighboring electrodes, and grand-averages per subject per condition were 

computed. 

Statistical analysis. Comparisons between the conditions of interest at the group level were conducted 

on the preprocessed EEG data via non-parametric cluster based permutation test (CBPT) as 

implemented in the FieldTrip toolbox (CBPT; Maris & Oostenveld, 2007). This analysis allows to 

tackle the multiple comparison problem in a straightforward manner. Due to the spatio-temporal 

structure of EEG data, a reliable effect should be attested across different electrodes and time bins. 

Rather than checking for differences between conditions point-wise, which would result in a huge 

number of comparisons, CBPT groups together observations that are close in both space and time. 

More precisely, for each condition, single channel-by-time observations are statistically compared 

via a t-test. The t values of adjacent spatio-temporal points with p values < 0.05 are grouped together 

and a cluster-level statistic is computed; in our case, we used cluster-mass, which is the sum of the t-

values within the cluster. The next step is to compute the distribution of the cluster size under the null 

hypothesis of no difference between conditions. This is achieved via non-parametric permutation test: 

conditions are shuffled, and cluster-level statistics are computed again. This step is repeated several 

times (e.g. 2500) and on each iteration the highest cluster-mass is retained. Finally, cluster level p 

values are calculated as the proportion of cluster-mass resulting from the null hypothesis that are 

higher than the observed one.  

In order to assess the reliability of the group level results, we additionally performed a test at 

the subject level. For each subject, we extracted the activity averaged over space and time as 

determined by the group-level cluster. Conditions of interest were compared via t-test, and 

corresponding t values were then set to 1 if they matched the difference observed at the cluster level, 

or to 0 if they did not. Finally, these transformed t values underwent a one-tailed binomial test. With 

this analysis, we could assess the strength of an effect observed at the group level by looking at how 

many participants show a difference between conditions in the same direction. 
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Open practices statement. All data and analysis code are available at https://osf.io/qs4fr/, and can be 

accessed independently from the authors.  

Results 

The cluster-based permutation tests were run across all electrodes in the N400 time window 

(300-500 ms) for each category separately. The analyses revealed a significant main effect of 

Relatedness in the PMI category (p= .034, g= 0.42483 [0.10924 - 0.75869], significant time window= 

379 ms–426 ms). The topography corresponding to this effect (Figure 3-A) is broadly suggestive of 

an N400, being particularly pronounced over centro-frontal electrodes. No such difference was 

observed when comparing related and unrelated conditions in the COS category (p= .680). 

Conversely, a significant difference between related and unrelated conditions emerged in the 

PMI+COS condition (p= .032, g=0.45232 [0.1569 - 0.7672]; significant time window=309 ms–383 

ms). As shown in Figure 3-C, the negativity was particularly prominent over central electrodes—

again, roughly consistent with a classic N400 effect. 
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Figure 3. A N400 response was observed for word pairs related according to the PMI (A B) and for word pairs related on both cosine 

proximity and PMI (C D). On the right, grand averages over significant electrodes in the CBPT. Time zero indicates the onset of the 

target word. Shaded areas denote 95% CI. Vertical dashed red line delimits time window of analysis. Horizontal solid blue line 

indicates p < 0.05 (cluster corrected). 

Results from individual participants mirrored the results observed at the group level. This 

analysis showed that the majority of the participants displayed a difference between conditions in the 

direction congruent with the tested hypothesis in both PMI category (22/25, 88%, p< .001) and 

PMI+COS category (18/25, 85.71%, p= .021). 

Discussion 

In this paper we investigated the electrophysiological correlates of semantic priming taking 

advantage of computational linguistics metrics that allow for a neat definition of the specific 

relationship linking primes and targets. Relatedness was defined as either local association between 
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words, as captured by Pointwise Mutual Information (PMI);  or neighborhood in a multi-dimension 

semantic space, as tracked by cosine similarity (COS) in a word2vec model for Italian built on the 

same corpus. We also considered a third condition where prime–target relatedness was based on both 

metrics, so as to assess their eventual interaction and\or additive effect. We recorded participants’ 

EEG signal while they were performing a primed lexical decision task, and analyzed the data at the 

ERP level, focusing on the N400 component. While a robust effect emerged for locally associated 

words (PMI), with incongruent trials eliciting a higher negativity over fronto-central electrodes, the 

effect for semantic neighbors (COS) was quite weaker, and did not reach significance. Yet, when 

items were both strong associates and close in the semantic space (PMI+COS), N400 was observed 

again, with a slightly different topography, though, more posterior than in PMI alone and mostly 

driven by central electrodes. A slight difference in time also emerged, with a slightly earlier effect for 

PMI+COS pairs as compared to the PMI only condition. 

Overall, these results suggest that semantic priming  in the brain is primarily driven by local 

association. In a review of 26 papers addressing semantic and associative priming, Lucas (2000) 

demonstrated that purely semantic relationships tend to elicit smaller effect sizes than associative 

ones, and put forward the idea of an "associative boost"—priming would be stronger when an 

associative relationship top up a semantic tie. Here we show that associative priming is stronger than 

semantic priming even when the two are tested independently. More recently, Brunellière, Perre, 

Tran, & Bonnotte (2017) showed that semantic priming was boosted when the primes and the targets 

co-occurred frequently. Other studies modeling semantic similarity as a continuous variable 

corroborated these results. Günther, Dudschig, & Kaup (2016) showed that similarity estimates 

derived from a semantic space based on local context information predict priming better than those 

derived from a semantic space based on global context information. Our own work brought behavioral 

evidence in support of these claims; in the previous chapter, we tested how PMI and cosine proximity 
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perform in accounting for response times in a set of sematic priming experiments, and the former 

systematically outperformed the latter, independently of prime visibility and duration. 

These considerations would suggest that the cognitive and neural mechanics behind semantic 

priming are not primarily driven by spreading activation, or feature overlap, or, more generally, by 

the way the semantic network is arranged in the brain. Rather, the prime is taken by the system as a 

cue to the target, and the information that this cue activates is primarily associative in nature—more 

than predicting semantically similar words, or category associates, or synonym (which it may surely 

activate, to some extent), the prime predicts words with which it often co–occur. This interpretation 

of semantic priming, at an even more general level is in line with previous literature suggesting that 

the behavior of the human cognitive system may be effectively described by Information Theory 

principles, aimed at transforming perception into information (Crupi, Nelson, Meder, Cevolani, & 

Tentori, 2018; Paperno et al., 2014). 

Another interesting insight coming from these data is that the effects of association/PMI and 

semantic relatedness/COS do not simply sum up; it is not simply the case that the brain reacts more 

strongly to prime–target pairs that are related both on PMI and COS. Rather, the brain pattern seems 

to change qualitatively—priming in the PMI+COS condition emerged earlier and was captured by 

more posterior electrodes as compared to priming in the PMI–only condition. Although different 

time–space distributions cannot be directly mapped onto different cognitive processes, this 

observation does suggest that local association and higher–level semantic relatedness interact in a 

complex way. Perhaps, the presence of a semantic tie potentiates dynamics in the semantic network, 

thus reducing the dominance of the more shallow predictive process suggested in the previous 

paragraph.    

Our results also shed light onto the nature of the information processing behind the N400 

component. They do not seem to sit well with theoretical accounts according to which the modulation 
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of this ERP is primarily due to semantic integration. The lack of a significant difference between 

related and unrelated condition in the COS condition, where congruent prime-target pairs were close 

in semantic space but not predictively related, rather suggests that N400 is first and foremost an index 

of lexical access, and particularly of word prediction. Several studies reported larger N400 responses 

for semantically incongruent words relative to semantically congruent ones. However, they might 

have mixed up congruity and predictability, making the congruent condition also highly predictable 

given the preceding the context—indeed, the two correlate quite strongly. However, when 

predictability and semantic relatedness are disentangled, like in the present study, the former is clearly 

a stronger modulator of N400.  

Furthermore, the different topographies in the N400 window for the PMI and PMI+COS 

condition lend support to suggestions that the N400 is hardly a unitary component. Lau et al. (2016), 

for example, demonstrated that predictability highly affected the amplitude of N400, while semantic 

congruity resulted in a smaller effect, and with a quite different distribution. More precisely, the effect 

of predictability could be observed at electrode Fz, where instead semantically congruent and 

incongruent conditions could not be distinguished. Szewczyk and Schriefers (2018) showed that an 

already predicted target word that was semantically incongruent with the preceding text, still did not 

elicit N400.  

As a final remark, we want to stress that the current results were obtained using a lexical 

decisions task, and semantic priming is known to be highly task dependent (De Wit & Kinoshita, 

2015). On the one hand, this makes these data even more interesting and convincing: lexical decision, 

in fact, typically yields weaker semantic effects (than semantic decision tasks, for example); and yet, 

we find solid brain signatures for semantic priming here. On the other hand though, we cannot exclude 

that using a task tapping more explicitly on word meaning may facilitate the activation of semantic 

features proper, eliciting a stronger effect for COS as well. Similarly, varying the stimulus onset 

asynchrony between the stimuli, and thus giving participants more time to process the prime, can 
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affect the observed results. For example, Lam, Dijkstra and Rueschemeyer (2015) found that action 

similarity (i.e., similarity in how objects are manipulated; e.g. piano-typewriter) elicited priming 

already at a SOA of 100 ms, while facilitation from visual similarity (e.g. pizza-coin) emerged only 

at a SOA of 1000 ms. Again, it is possible that allowing for a longer processing of the prime may 

elicit an effect in the COS category. More research is clearly required to address these issues. 
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Chapter 4. Semantic priming in neglect patients 

Introduction 

 Nowadays, the idea that words presented below the threshold for conscious perception can 

activate cognitive representations is uncontroversial. In particular, lexical meaning is generally held 

to be accessed outside of awareness (Kouider & Dehaene, 2007)—evidence from priming 

experiments suggest that words can be processed up to the semantic level even when the 

speaker/reader did not perceive them consciously. This paradigm shows how words are recognized 

faster if preceded by a semantically related prime (cat-DOG) rather than a semantically unrelated 

prime (cap-DOG).  

In order to test unconscious processing, this paradigm is often used with prime words 

presented very briefly (for at most 50ms), sandwiched between visual masks (e.g., a string of 

hashmarks, “#########”, or a random string of letters, e.g., “aljfkhs”, or the target word itself). This 

paradigm is specifically called “masked priming”. Despite participants are generally unaware of the 

presence of the primes, these can still make semantic judgments on the subsequent target words faster. 

For example, Perea and Rosa (2002) observed that category coordinates (table-CHAIR; dog-CAT) 

elicited similar priming both in visible and in masked conditions. Similarly, Bueno and Frenck-Mestre 

(2008)reported faster response times (hereafter, RT) to targets that were preceded by prime words 

with a high overlap in semantic features (yacht-SHIP; eagle-HAWK), again independently of their 

visibility. Thus, it may seem that semantic representations are accessed similarly with and without 

awareness.  

Conversely, other studies described different patterns of semantic facilitation depending on 

whether the prime was available to conscious report. Gomez, Perea and Ratcliff (2013) provided 

behavioral and computational evidence that masked and unmasked priming involve different 

cognitive processes. Some studies reported weak (if any) priming in the masked condition, while 

facilitation clearly showed up if primes were visible (Brunellière, Perre, Tran, & Bonnotte, 2017; 
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Montefinese, Buchanan, & Vinson, 2018). The effect was also shown to be task dependent, as its 

emergence is most often attested when participants are engaged in a semantic task rather than in 

lexical decision or naming (De Wit & Kinoshita, 2015) 

As outlined above, masked and overt semantic priming data are mixed, and it is not clear 

whether semantic relationships are processed in the same way with or without awareness. 

Furthermore, it is not clear what kind of semantic information can be extracted subliminally, nor the 

depth of processing up to which it may undergo. For example, cat may prime dog due to feature 

overlap (they are both furry, have four legs, are kept as pets by humans; Quinn and Kinoshita, 2008), 

or due to category membership (animals; Abrams, Klinger & Greenwald, 2002), or due to associative 

strength (which is also reflected in their high co–occurrence in language use; Anaki & Henik, 2003). 

While these different aspects of lexical meaning are accessible when words are conveyed above the 

threshold for conscious perception, the unconscious reader may only grasp part of them. 

Indeed, visual masking is only one of several techniques to make stimuli “invisible”, each 

with its own relative strengths and weaknesses (see Kim & Blake (2005) for an exhaustive review). 

Awareness may be also disrupted by visual crowding (Whitney & Levi, 2011), or by bistable  

perception, as in binocular rivalry (Tong, Nakayama, Vaughan, & Kanwisher, 1998). Similarly, 

overloading participants’ attentional resources may fail them to report the presence of a given 

stimulus, as in the attentional blink paradigm. The choice of a specific method may affect the overall 

results. For example, in a study comparing unconscious processing under continuous flash 

suppression (CFS) and meta-contrast masking, while keeping stimuli and tasks the same, Peremen 

and Lamy (2014) found that unconscious processing was substantial with meta-contrast masking, but 

absent with CFS.  

Crucially, all the aforementioned techniques represent psychophysical “tricks” that induce 

unawareness experimentally. However, unawareness also emerges spontaneously in several real–life 

situations, and, in some cases, it is even un unfortunate stable trait of individuals who have suffered 
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a psychological and/or neurological trauma. For example, brain–damaged patients, particularly when 

the neurological insult has affected the right parietal lobe, may present a complex syndrome whose 

fundamental feature is the failure to report consciously events that happened in the contralateral (most 

often, left) visual hemifield (Corbetta & Shulman, 2011). Of course, Spatial Neglect is a much more 

complex syndrome than the characterization we offered above. The deficit can hit the visual domain 

only, or multiple senses (Beschin, Cazzani, Cubelli, Della Sala, & Spinazzola, 1996). It can also 

affects imagination, in addition to perception (Bisiach & Luzzatti, 1978). Moreover, patients may or 

may not have motor symptoms (Punt & Riddoch, 2006). The core feature of the syndrome, however, 

remains the inability to report events in the hemifield contralateral to the lesion; and this is the feature 

of interest in this study. 

It is well-known that neglected stimuli are not simply ignored, but they activate cognitive 

representations that seem to exert an influence upon high-level cognitive processes. Marshall and 

Halligan (1988) reported the case of a patient who was shown simultaneously with two pictures of a 

house, one of which had its left side on fire. While she did not report any difference between the two, 

when asked to choose which house she would prefer to live in, she consistently manifested preference 

for the one spared by the flames. 

Other studies directly tested if a stimulus, and particularly a word, presented in the left 

hemifield of a neglect patient can be processed up to semantic level. In a single case study, Làdavas, 

Paladini and Cubelli (1993) found that centrally presented target words were primed by related words 

that were presented in the neglected hemifield (silver-GOLD). Similar results were provided a few 

years later by McGlinchey-Berroth et al. (1996) in a group study involving seven patients. More 

recently, Sackur et al. (2008) tested a group of four patients in a magnitude judgement task, where 

each target number was preceded by a number prime that was presented either in the neglected or in 

the intact hemifield. Priming emerged independently of prime position, both at the group and at the 

single subject level.  
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Thus, there seems to be evidence supporting semantic processing of neglected words. Yet, all 

the aforementioned studies are not exempt of problems. In McGlinchey-Berroth et al. (1996) and 

Sackur et al. (2008), for example, primes were presented only 1.5 or 2 degrees of visual angle, 

respectively, to the left of the central targets. It is not obvious, then, that participants were entirely 

unaware of them—the separation between the visible and the invisible hemifield is never abrupt, of 

course, and this close distance from the center of the visual field may have left some partial conscious 

access available. 

This was not an issue in the study by Làdavas et al. (1993), where primes were presented 5.5 

degrees of visual angle away from the center of the visual field. However, these authors used different 

semantic relationships in their stimulus set, which included noun-adjective collocates (blood-red) 

together with highly related category co-ordinates (dog-cat). It is perhaps clear, then, that their 

patients were accessing word meaning, at least to some extent, but it is not all clear which specific 

semantic information they were processing—it may well be, in fact, that only some of the several 

facets of word meaning remain available outside of awareness. 

In the current experiment, we fix the issues highlighted above by implementing a strictly 

controlled priming experiment that tests conscious and unconscious semantic processing in neglect 

patients. To make sure that prime words were truly neglected, before the main experiment patients 

performed a visibility task requiring them to assess whether a square box appeared either on the left, 

on the right, or on both sides of a centrally presented fixation point; this way, we guarantee that primes 

were truly presented in parts of the visual field where patients had no conscious access.  

Also, we carefully define different types of meaning-based similarity, taking advantage of 

distributional semantics techniques. These procedures stem from the theoretical assumption that 

words with similar meaning will tend to be used in similar linguistic context. Words themselves act 

as semantic features and their distribution observed over large text database define the strength of the 
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semantic link in a quantifiable and objective manner. In particular, we compare word embedding and 

local cooccurrence. 

Word embedding represents a computational technique to create distributional semantic models 

(DSMs), where words are mapped to numerical vectors derived from word-by-word contingency 

tables. Words with similar meaning tend to cluster together, and such similarity can be quantified by 

applying geometrical techniques to these vectors. For example, one can approximate relatedness as 

the cosine of the angle formed by two word-vectors: 

cosθ = 
𝑎∙𝑏

||𝑎||∙||𝑏||
 

DSMs have been proposed as a psychologically plausible models of semantic memory, with 

particular emphasis on how meaning representations are achieved and structured. In particular, the 

model we employed (word2vec; Mikolov, Yih, & Zweig, 2013) represents a simple neural network 

consisting of an input, an output and a hidden layer, and is based on a predictive mechanism that 

allows to infer a target given a cue. Thus, words are similar if their presence is expected in roughly 

the same linguistic context; for example, in a sentence about domestic pets, it’s likely to encounter 

the word dog, as well as the word cat. Word2vec provides similarity estimates that cover a wide range 

of classic lexical-semantic relationships, like synonymy (e.g., car-automobile, 0.45), antonymy (e.g., 

young-old, 0.51), meronymy (e.g., cherry-fruit, .49). Associative relations as well can be grasped 

(carrot-stick, .41). Finally, it can account for featural similarity beyond category membership (e.g. 

lion-tiger, .54 vs lion-mole, .17). Word2vec has been shown to perform better than (or as well as) 

other DSMs in a variety of task, such as synonym detection, concept categorization, semantic priming 

(Baroni, Dinu, & Kruszewski, 2014; Mandera, Keuleers, & Brysbaert, 2017) 

Local co–occurrence was instead captured by simply counting how many times two words are 

used close to one another. As behavioral and computational studies have shown, words that are likely 

to be used together, tend to be associated in meaning. This type of local relationship is also reflected 
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in the likelihood with which a given word recalls a second one (Spence & Owens, 1990). A useful 

tool to test for this assumption is to compute Pointwise Mutual Information (henceforth PMI) between 

two words, according to the formula: 

PMI(w₁,w₂) = log₂
𝑝(𝑤₁,𝑤₂)

𝑝(𝑤₁)𝑝(𝑤₂)
 

where p(w₁,w₂) corresponds to the probability that word w₁ and word w₂ co–occur in a window of test 

of a given size, while p(w₁) and p(w₂) are the individual probabilities of occurrence of word w1 and 

word w2 in isolation (Church & Hanks, 1989). PMI has been used to model a wide range of 

psycholinguistics phenomena, as similarity judgements (Recchia & Jones, 2009), reading speed (Ellis 

& Simpson-Vlach, 2009), free association and syntactic parsing (Pitler, Louis, & Nenkova, 2010). 

Moreover, PMI has also been shown to successfully generalize to non-linguistic fields as 

epistemology and psychology of reasoning (Paperno, Marelli, Tentori, & Baroni, 2014). Most 

critically for the purpose of the present experiment, this metric is specifically suited to capture local 

associations (e.g., leash–dog, kangaroo–australia, white–flag), and is known to fail on several higher–

level semantic relationships, such as synonymy. This kind of relationships require methods, such as 

DSM, that consider wider contexts and “abstract away” from mere local co–occurrence. 

By contrasting DMS– and PMI–associated prime–target pairs, and showing them to Neglect patients 

in either their visible or affected hemifield, we investigate whether word meaning is available outside 

of awareness and, most importantly, which aspects of word meaning are captured in subliminal word 

perception. 

Experiment 

Method 

Patients. Seven right-handed patients (2 males, 5 females; 62 to 87 years old) were recruited into the 

experiment, who suffered from left unilateral neglect secondary to right hemisphere strokes. I saw 

the patients between 3 and 9 days after stroke; thus, all were in sub-acute conditions (see Table 1). 
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Testing was performed in the hospital, in a dedicated and quiet room when patients could manage a 

sitting position; or at the patients’ bed otherwise. For each patient, neglect was assessed by non 

standardized pen-and-pencil neuropsychological testing, which included line bisection, star 

cancellation, the bell test and clock drawing.   

 

Age Gender Education Stroke Day Test Day Δ stroke-test Site of the lesion 

1 69 M 8 31/07/2018 03/08/2018 3 F-T 

2 70 F 13 09/09/2018 13/09/2018 4 F-T-P + basal ganglia  

3 65 F 13 05/10/2018 10/10/2018 5 F-T-P + internal capsule 

4 83 F 8 14/10/2018 18/10/2018 4 F-T 

5 87 F 8 11/12/2018 15/12/2018 4 F-Insula 

6 83 F 8 16/01/2019 25/01/2019 9 T-F 

7 62 M 11 29/01/2019 01/02/2019 3 T-P-Insula 

Table 2. Clinical details of the patients involved in the current experiment 

Design. The independent variables were prime–target relatedness (related vs. unrelated), type of 

similarity (local association/PMI only, higher–level semantics/COS only, or both PMI and COS), and 

prime awareness (aware, that is, presented in the spared hemifield vs. unaware, that is, presented in 

the neglected hemifield). These variables were fully crossed, thus generating a 2-by-2-by-3 full 

design. 

Material. The materials were the same as in Chapter 3. Ninety Italian word per category were equally 

divided across three category and used as target stimuli. Each of them was paired with a congruent 

and an incongruent prime, according to the semantic category it was assigned to (e.g., PMI: 

cheese\monument-MOUSE; COS: lamp\missile-TORCH; PMI+COS: prawn\veal-CRAB). Target 

across categories were matched on length and frequency. Next, ninety pronounceable non-word 

targets were added, and each of them was couple with two prime words, different from those used in 

the word-trials.  

Procedure. Patients performed a lexical decision task, which required them to assess whether the 

target stimulus was a real Italian word (e.g., tavolo, table) or not (e.g., tevolo, lit. teble). All stimuli 
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were shown in Arial font 32, in white against a black background, and were displayed on a 17’’ 

monitor with a refresh rate of 60 Hz, using MatLab Psychtoolbox (Brainard, 1997). Responses were 

collected by mouse press.  

The experiment was comprised of 720 trials. Each prime-target pair was shown twice, one 

with the prime word displayed on the left, and the other with the prime word displayed on the right 

side of the screen. Each trial started with a fixation point (+) displayed for 750ms. Then, the prime 

was shown for 200ms, at 5 degree of visual angle to the left or to the right of the fixation point; 

contralaterally to the prime word, a visual foil (#####) of the same length was presented. Finally, the 

target word appeared and remained on the screen until a response was provided (Figure 1). 

 

Figure 1. Exemplar trials used in the current experiment. “Subliminal” primes were presented in the left side of the screen, and 

visible primes on the right side of the screen. 

Data analysis. Accurate, YES–response trials were retained for the analyses,  which were carried out 

via mixed–effects linear regression using the package lme4 of the statistical software R (Chambers, 

2008). Reaction times (RTs) were logarithmically transformed to approximate a normal distribution, 

and were employed as dependent variable. The factors constituting our main experimental 

manipulations – semantic category (PMI only, COS only and PMI+COS), congruency (congruent vs 

incongruent) and prime presentation (left vs right) – were tested as main effects, as well as their 

interactions. We additionally added random intercepts for each individual patient and target word. P-

values were computed using the Satterthwaite approximation to degrees of freedom (Luke, 2017) 

provided by the lmerTest package. Model–based estimated of RTs in each design cell were eventually 
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obtained via the R package emmeans (Lenth, 2018). We construct the model for the analysis in order 

to explore the parameters that are most relevant to our experimental questions, that is, (i) weather 

priming differs according to the type of semantic similarity linking the prime to the target; (ii) weather 

masking the prime changed the results relative to the visible condition. 

Open practices statement. All data and analysis code are available at https://osf.io/bdwp4/, and can 

be accessed independently from the authors.  

Results 

 Patients mean accuracy in the priming task was 84% (sd 37%). Mean RT on accurate word 

trials was 1.97 second (sd 0.87 second). RT distributions, at the group and individual level, are shown 

in Figure 2. Based on visual inspection, datapoints with RT higher than 6 seconds were removed (2 

in totals), leaving a total of 2149 observations for the analysis. 

 

Figure 2. Density distribution of RT in corrected trials for each individual patient and at the group level. 
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 Data were firstly analyzed by means of a full model testing the main effect of semantic 

category, congruency and prime presentation, as well as their interactions. Yet, this model faced high 

collinearity between predictors, so that the coefficient estimates of the multiple regression may 

change erratically in response to small changes in the model or the data. The variance inflation factor 

for the 3-way interactions was 30, while it should not be higher than 10 (VIF; Fox & Monette, 1992). 

Thus, we fitted two individual model, one for each prime position level, testing the emergence of 

priming across the 3 different semantic categories. 

 When primes were presented on the right hemifield – thus, they were clearly visible – we 

observed main effects of congruency (F(1,998)= 7.72, p= .006) and category (F(2,88)= 4.90, p= 

.010), while their interaction was not significant (F(2,998)= 0.44, p= .644). Although the congruency 

by category interaction was not significant, the model parameters revealed that priming was attested 

for the PMI (t(987)= -2.02, p= .043) and BOTH (t(996)= -2.07, p= .039) categories, but was much 

weaker (actually, absent) for the COS category (t(1006)= -0.79, p= .430).  

When primes were presented on the left side of the screen – thus, they did not reach awareness – we 

did not find any effect of Congruity (F(1,982)= 0.10, p= .757) nor of Category (F(2,87)= 0.75, p= 

.476); their interaction was not significant as well (F(2,982)= 2.00, p=.136). Model estimates of the 

RTs per condition are represented in Figure 3. 
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Figure 3. Model estimates of the RT for each category (p= PMI, c=COS, b=PMI+COS). On the left, results observed with 

"subliminal" primes, on the right with visible primes. Congruent condition is shown in green, incongruent condition in red. Error 

bars refer to the 95% confidence intervals. 

Discussion 

 In the current study we explored the mechanisms underlying semantic processing via a primed 

lexical decision experiment. To explore weather meaning is accessed similarly when words are 

processed above or below the threshold of conscious perception, we recruited patients suffering from 

spatial neglect—by delivering the prime either on the left (neglected) or on the right (spared) 

hemifield, we were able to compare overt and masked priming without the need to manipulate the 

way the prime was presented.  

 The semantic relationship between prime and target was also defined in a quantitatively and 

principled manner, taking advantage of distributional semantics technique to model meaning 

similarity based on word usage. In particular, prime-target pairs could be related according to local 

association as tracked by Pointwise Mutual Information (PMI); higher–level semantic similarity, as 

tracked by spatial proximity in a multidimensional semantic space (cosine similarity, COS); or both. 
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When primes were presented subliminally, in the neglected hemifield, priming did not 

emerge, regardless of the semantic relationship being considered. Conversely, when primes were 

presented on the right side of the screen, and thus they were processed consciously by the patients, 

solid facilitation emerged in the PMI category, where congruent primes resulted in shorter RT to the 

target than incongruent ones. Similarly, the effect was also attested when primes and targets were 

related according to both PMI and COS. Yet, only weak – if any – priming was elicited in the COS 

only category.  

The lack of subliminal priming is not surprising, and it echoes previous reports showing that 

masking the prime makes the effect unstable and difficult to reproduce (Brunellière et al., 2017; 

Montefinese et al., 2018). Furthermore, priming has been shown to be dependent on the specific task 

being performed: whereas related masked and visible primes prompt faster response to the target in 

a semantic categorization, presenting the prime out of conscious perception deletes the effect in a 

lexical decision (De Wit & Kinoshita, 2015). We implemented a lexical decision due to comparability 

with previous studies; clearly, more research adopting a semantic task is required to further explore 

semantic priming with neglect patients. 

The lack of semantic priming outside of awareness would be in line with other data reported 

in this thesis. In Chapter 2, we report that, even in a condition that would be considered masked 

priming by most, facilitation only emerges when at least some residual prime visibility is attested in 

a detection task performed on the prime itself. When prime presentation time is short enough to 

entirely prevent its visibility, the effect disappears. However, in that same paper, we also showed that 

subliminal priming re–emerges when data are analyzed dichotomously, by only taking items at the 

extremes of the relatedness distribution, thus drawing a comparison between related and unrelated 

primes. This is exactly the approach we adopted here; so, those data would have predicted that we 

should obtain facilitation here too. 
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These data are also inconsistent with Làdavas et al. (1993). Although they did not differentiate 

types of semantic relationship in their paper, they do report overall semantic priming in the neglected 

hemifield. There are various reasons that can explain the discrepancy between their results and ours. 

The main difference between the two studies is at the participant level: while our patients were in 

sub-acute condition and were still hospitalized, the single patient involved in the study by Làdavas 

and colleagues was tested two years after the stroke, and was monitored for six months before the 

doing the experiment. Even more importantly, his education level (18 years) was much higher than 

the one of our patients (8-13 years). It is well known that linguistic competence is a factor modulating 

lexical processing, as more educated speakers are likely to have been exposed to more varied language 

during their school/university years (Dabrowska, 2015; Yap, Hutchison, & Tan, 2016). 

Data from the visible condition suggest instead that semantic facilitation is particularly strong 

for word pairs linked by local association; if this latter is prevented, cosine similarity alone is not 

enough for words to fully prime each other. These results matched those of the previous chapters, 

showing that simple measures based on local, surface information are more effective in predicting 

priming than the more complex ones based on word embedding. Without reiterating what we 

described extensively before, this might indicate that the processes underlying the emergence of 

priming are better described in terms of associative mechanisms that link lexical items in our mental 

lexicon, rather than by the activation of conceptual information in semantic memory.  

Finally, a word of caution on these data. Finding sub–acute stroke patients who are amenable 

to testing, semantically intact, and also show neat symptoms of Spatial Neglect is not easy; the 

numbers illustrated in the Participants section attest to this. Despite the effort, then, the final sample 

of participants, albeit larger than in most of the previous investigations of this issue (Làdavas et al., 

1993; McGlinchey-Berroth et al., 1996; Sackur et al., 2008), is still rather limited. In addition, RTs 

in brain–damaged patients are typically very noisy, and do make it difficult for neat effects to come 

up. So, clearly, the current data must be taken with caution, and, although we surely believe that they 
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provide useful insights into the dynamics of lexical-semantic processing, they should be replicated in 

a sample of chronic patients, whose neglect is more stable (and therefore stimuli presentation can be 

tight up more precisely to the unattended part of their visual field) and whose general condition would 

also be likely better, thus providing a better signal–to–noise ratio with their response times.  
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Conclusions 

In the current thesis, I have investigated the cognitive and brain processes underlying access 

to lexical meaning, and weather semantic processing is held similarly when words are presented 

below or above the threshold for conscious perception.  

In the first experimental contribution presented in this thesis, I advanced and tested the 

hypothesis that subliminal processing is limited to language–encoded semantic ties. A perfect test 

bed for this hypothesis was offered by the metaphorical relationship linking time to space. At least in 

Western societies, time is spatially arranged along a sagittal and a lateral mental timeline, but only 

the former is linguistically encoded. That is, while people normally speak of the future as located in 

front of us and the past at our back (look ahead to the weekend; think back to the childhood), no 

languages is known to rely on the lateral mapping. Thus, I developed a priming experiment where 

temporal targets (e.g. yesterday, tomorrow) were paired with spatial primes (e.g. left, back) that were 

presented either consciously or unconsciously. 

Coherently with the hypothesis tested, we found evident and comparable space-time congruity 

effects along the sagittal and lateral timelines when primes were visible. By contrast, in the masked 

condition, sagittal words strongly primed related targets, while the lateral words led only to a weak 

(if any) facilitation. According to these results, readers may not be able to activate fully fledged 

semantic representations when exposed to subliminal words. Rather, they may navigate their the 

lexical–semantic system based on how words are linked to each other in language use (in this case, 

as related to linguistic metaphors). 

In the second experimental contribution, we followed up these results by further exploring 

how meaning-based similarity is encoded in language. To this aim, we took advantage of 

distributional semantics methods that allow to define lexical meaning by looking at words distribution 

over large text corpora. Words themselves represent semantic features in these models, and by 
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looking at how they are used in relation to each other, it is possible to define the strength of the 

semantic link in a quantifiable manner. Clearly, there are several ways to do so; here, I considered 

cosine similarity (COS) derived from the state–of–the–art Distributed Semantic Model, namely 

wordToVec (Mikolov, Chen, Corrado, & Dean, 2013), which tracks various types of high–level, 

long–distance semantic relationships (e.g., sofa-hammock, worm-caterpillar), and Pointwise Mutual 

Information (PMI), which specifically captures associative, more local ties (e.g., tank–paint, scissors–

razor). Thanks to these metrics, I was able to explore the entire relatedness continuum, rather than 

selecting only the extreme values like in most published studies, which adopted a dichotomous 

design.  

In a series of experiments manipulating prime visibility and prime duration, we observed that 

genuine semantic priming seems not to emerge in the masked condition. Neither PMI nor COS led to 

a significant facilitation in the processing of the target stimuli when prime visibility was strictly 

controlled for. When, instead, some room for prime detection was allowed, priming started to emerge; 

the interaction between prime visibility and both PMI and COS clearly showed how the effect 

increases with participants’ ability to spot the presence of the primes. Yet, when we restricted our 

stimulus set by selecting only word pairs that were either strongly related or strongly unrelated on 

both the metrics, subliminal priming showed up. 

Conversely, when primes were fully visible, a clear modulation of the semantic index on the 

response times to the target was observed. Even with the same presentation time - but, most likely, a 

better information uptake by the participants - semantic facilitation was fully observed. Both PMI and 

COS successfully predict the emergence of priming, replicating effects already shown in the 

literature. Yet, when the two metrics were pitted one against the other, PMI clearly outperformed 

COS in the fit to the behavioral data, independently from how much time is given to process the 

prime. Overall, semantic priming seems to be primarily driven by local word associations that can be 

extracted from surface co-occurrence patterns emerging from natural language documents. 
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In the third experimental contribution, I investigated the electrophysiological correlates of 

semantic priming. As the previous experiments showed more solid and reliable results when the 

primes were visible, I choose to focus on this condition only. Similarity between word pairs was again 

defined via either PMI or COS, disentangling as much as possible the specific contribution provided 

by each metrics. Furthermore, we included a third category where congruent prime-target pairs were 

related according to both PMI and COS. In order to explore the event related potentials associated 

with the processing of the semantic information reflected by these metrics, we contrasted 

dichotomously related and unrelated conditions. Thus, I recorded participants’ EEG signal while they 

were performing a primed lexical decision task, and analyzed the data focusing on the N400 

component. 

A strong effect emerged for word pairs in the PMI category, with incongruent trials resulting 

in higher negativity than congruent trials, mostly over fronto-central electrodes. Conversely, the effect 

of cosine similarity was much weaker, and did not reach significance. Yet, N400 was observed again 

for items that were both strong associates and close in the semantic space (PMI+COS); the topography 

of the effect was slightly different though, more posterior than in PMI alone and mostly attested over 

central electrodes.  

Finally, in the fourth experimental contribution, I tested subliminal and supraliminal semantic 

processing in patients suffering from Spatial Neglect. This syndrome is characterized by a deficit in 

attending and responding to stimuli presented on one side of the visual field, which is often 

contralateral to the hemisphere of the brain where a damage had been sustained. By delivering the 

prime either on the left (neglected) or on the right (spared) hemifield, we were able to compare overt 

and masked priming without the need for psychophysical “tricks” that induce unawareness 

experimentally, such as visual masking.  
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Mirroring results from the previous experiments, no facilitation showed up with subliminal 

primes, those presented in the neglected hemifield, independently of the semantic relationship being 

considered. Conversely, when primes were delivered on the right side of the screen, and thus they 

were processed consciously by the patients, priming emerged in the PMI category, where incongruent 

primes resulted in longer RT to the target than congruent ones. Similarly, the effect was also attested 

when primes and targets were related according to both PMI and COS. Yet, only weak – if any – 

priming was elicited in the COS category. 

To sum up, during my PhD I have conducted a series of priming experiments aimed at better 

understanding how lexical meaning is computed with and without awareness. Subliminally, when we 

estimated priming taking the entire relatedness continuum into consideration, we observed only a 

weak effect which strongly depended on prime visibility. However, unconscious semantic facilitation 

showed up only when related and unrelated prime-target pairs laid at the extreme tails of the semantic 

continuum (Chapters 1 & 2). The lack of subliminal priming in the experiment presented in Chapter 

4 instead does not match our experimental hypothesis, which conversely predicted its presence, 

especially in the category with relatedness defined by both PMI and COS. Yet, such results may be 

accounted for by the task adopted (but see Làdavas, Paladini and Cubelli, 1993), or they may be due 

to the patients we managed to test, whose clinical situation and education level were not optimal for 

experimental testing. 

Thus, the current thesis not only offers the methodological warning that forcing into 

categorical terms naturally continuous variables may create effects that are not attested (or, at the 

very least, are much weaker) when the entire distribution is considered. More importantly, these data 

cast some doubts on a wide, across–the–lexicon processing of semantic information outside of 

awareness.  

On the other side, semantic processing was clearly attested when primes were visible. More 

interestingly, the effect was better explained by local association measures (PMI) than by more 
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complex metrics that take into account long–distance, higher–level semantic relationships more 

generally (COS). This pattern of results held both behaviorally and at the ERP level, suggesting the 

strength and reliability of the current findings.  

These data clearly contradict theoretical accounts of masked priming whereby the effect would 

origin from automatic spread of activation within a semantic network (Collins & Loftus, 1975; Neely 

& H., 1991). Rather, priming may mostly arise due to expectancy generation—the prime is taken as 

a cue for the coming target, and expectation is computed based on local, relatively simple association 

links (Jones, 2010).  

This is in line with previous behavioral data suggesting a primary role for local linguistic ties 

in structuring our lexical-semantic system. Günther, Dudschig and Kaup (2016) showed that 

similarity estimates derived from a semantic space based on local context information predict priming 

better than those derived from a semantic space based on global context information. Similarly, 

Brunellière, Perre, Tran and Bonnotte (2017) probed that, while keeping semantic similarity constant, 

the magnitude of priming was greater as prime-target pairs co–occur more frequently. 

Next, these results may be informative of the kind of information processing reflected in the 

N400. The lack of a significant difference between related and unrelated condition in the COS 

category suggested that N400 is first and foremost an index of lexical access, which is more strongly 

modulated by predictability than incongruity (Bornkessel-Schlesewsky & Schlesewsky, 2019; Lau, 

Namyst, Fogel, & Delgado, 2016). Thus, this experiment goes against theoretical accounts according 

to which modulation of the ERP reflects the effort of integrating lexical meanings in a semantically 

coherent way (Federmeier & Kutas, 1999; Kutas & Federmeier, 2011). 

Clearly, there are several issues left open in the current thesis. First of all, our best predictor, 

PMI, is by definition a symmetric measure, and therefore we cannot assess weather expectations 

proceed prospectively or retrospectively. This is a crucial point, as association can be directional; for 
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example, the words surgeon and hospital are clearly related to each other, but surgeon is a much 

stronger cue to predict hospital than the other way around. Asymmetric association can exert an 

influence on human behavior. With regard to priming, evidence is intermixed. In his review, 

Hutchison (2003) reported that the size of the backward priming was statistically equivalent to the 

size of the forward priming effect. However, Zeelenberg, Shiffrin, & Raaijmakers (1999) found that 

backward association was mandatory for priming to be attested. Similarly, false memory formation 

seems to depends more on backward than on forward associative strength (Roediger, Watson, 

Mcdermott, & Gallo, 2001).  

Moreover, it would be interesting to follow up the present EEG study with a more naturalistic 

experimental setting, that is, making participants read sentences rather than words in isolation. These 

methodological changes may allow for a better understanding of how semantic congruency and 

lexical predictability interact during on-line language comprehension. The same reasoning holds for 

eye-tracking methods.  

Thus, more research is clearly required to address these issues, and I hope that this thesis may 

represent the starting point of an amazing journey exploring the fascinating dynamics of human 

language.  
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