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1 Introduction and summary of results

Equivariant localization has provided new tools to explore supersymmetric gauge theories

on various space-time geometries, unveiling rich algebraic and geometric structures of their

moduli spaces of vacua. This has also had a deep impact on various branches of math-

ematics. In particular, N = 2 supersymmetric gauge theories in four dimensions were
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analysed via these techniques starting from [1]. See the review [2] for a recent overview on

the subject. In this paper we apply equivariant localization to compute the supersymmet-

ric partition function and BPS correlators of gauge theories with general gauge group on

unoriented and open four manifolds. More precisely, we investigate gauge theories on Z2-

quotients of the four-sphere, namely RP4 and the hemisphere HS4, and on a Z2-quotient

of the HS4, whose boundary is the Lens space L(2, 1) = RP3. The one-loop gauge theory

computation is performed by a direct analysis of harmonic modes expansion around the

fixed locus of the equivariant action, by generalizing the techniques applied in [3] in the

HS4 case for b = 1.

We also study the three-dimensional gauge theories living on the boundaries of the four-

manifolds, finding coupled 3d/4d systems which describe defects in the four-dimensional

gauge theories.

An immediate application of our results is obtained by specializing to SU(2) quiver

gauge theories, which realize an extension of AGT correspondence [4] to unoriented/open

Liouville correlators. AGT correspondence naturally arises from the study of two M5-

branes compactified on product manifolds M4×Cg,n, where the latter is a Riemann surface

of genus g and n regular punctures. The gauge group SU(2)3g−3+n and field content of the

four-dimensional N = 2 supersymmetric theory are specified by the geometry of Cg,n [5]. In

particular, for genus g = 0 one gets superconformal linear quivers with n− 3 nodes and for

g = 1 circular quivers with n nodes [6]. Liouville theory correlators on Cg,n are reproduced

by the supersymmetric partition function of the corresponding gauge theory on M4 = S4.

This correspondence can be generalized by considering supersymmetric quotients of the

M5-brane theory. Orientable quotients of S4 by a finite group Γ ∈ SU(2), resulting in

four-manifolds locally described by ALE spaces C2/Γ, were first considered in [7–10], were

it was proposed that the corresponding two-dimensional CFT becomes a parafermionic

theory. In particular, for Γ = Z2 the gauge theory reproduces the correlators of N = 1

Super-Liouville theory [11].

The Z2-quotients we consider in this paper result instead in open and/or unoriented

four-manifolds. Since the (2, 0) six-dimensional superconformal theory expected to describe

the dynamics of M5-branes is chiral, the four-dimensional Z2-action has to be accompanied

by a suitable involution of Cg,n producing open/unoriented Riemann surfaces. For Riemann

surfaces of arbitrary topology we expect a superconformal quiver SU(2) gauge theory to

arise whose Coulomb moduli space is described by the moduli space of complex structures

of open/unoriented Riemann surfaces. Since these surfaces can be always constructed as

the Z2-quotient of closed Riemann surfaces, we expect the corresponding gauge theory to be

obtained as a suitable quotient of the quiver gauge theory associated to the oriented double.

For g = 0 the quotients result in the two-disk D or the real projective plane RP2.

Liouville amplitudes on the latter are compared with the gauge theory partition function

on RP4. Concerning the disk, one can choose two types of boundary conditions, namely

FZZT [12, 13] or ZZ [14], whose gauge theory counterpart are Dirichlet or Neumann bound-

ary conditions on the S3 boundary of the HS4. For g = 1, Z2 involutions give rise to

annulus A, Moebius strip M and Klein bottle K. From the M5-branes perspective, it is

natural to expect these to correspond to suitable quotients of circular quivers. When the
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resulting open/unoriented Riemann surface has boundaries, the relevant FZZT/ZZ bound-

ary conditions are implemented by imposing Dirichlet/Neumann boundary conditions on

the fields associated to the SU(2) nodes of the gauge theory quiver.

Notice that one can consider both bulk and boundary insertions. In particular, bound-

ary insertions are necessary to describe the strongly coupled frame of gauge theory, arising

when bulk insertions are separated very far away. Indeed, in this case bulk insertions can

approach a boundary making an open Liouville channel open up.

We consider the basic building blocks, i.e. the bulk-to-boundary two-point function

and the boundary three-point function. We interpret them as the partition functions,

respectively, of 3 and 4 free massless 4d hypermultiplets, with a specific 3d gauge theory

living on the boundary. The whole 3d− 4d system preserves 4 supercharges.

Our results connecting unoriented/boundary Liouville correlators with N = 2 gauge

theories on quotients of S4 can be summarized as follows.

• Crosscap with two bulk insertions versus partition function of SU(2), Nf = 4 gauge

theory on RP4, in the topological sector of gauge connections with trivial holonomy:

〈Vα1(q)Vα2(0)〉RP2 = ZRP4

Nf=4

(
µ1 = α1 −

Q

2
, µ1 = α2 −

Q

2
; q, ε1, ε2

)
. (1.1)

• Disk with two bulk insertions and FZZT boundary conditions1 with s = 0 versus

HS4, SU(2), Nf = 4 with Dirichlet boundary conditions:

〈Vα1(q)Vα2(0)〉FZZT, s=0
D = ZHS

4,Dir
Nf=4

(
µ1 = α1 −

Q

2
, µ1 = α2 −

Q

2
; q, ε1, ε2

)
(1.2)

• Disk with two bulk insertions and ZZ boundary conditions versus HS4, SU(2), Nf = 4

with Neumann boundary conditions:

〈Vα1(q)Vα2(0)〉ZZ, (s1=s2=1)
D = ZHS

4,Neu
Nf=4

(
µ1 = α1 −

Q

2
, µ1 = α2 −

Q

2
; q, ε1, ε2

)
. (1.3)

• Klein bottle amplitude versus Z2-quotient of SU(2) × SU(2) circular quiver on RP4

in the topological sector of gauge connections with trivial holonomy:

〈1〉K = ZRP4

[SU(2)×SU(2)]Z2 (q, ε1, ε2). (1.4)

The identity operator insertion on the Klein bottle in Liouville CFT corresponds to

N = 2∗ with mass µ = 1 for b = 1. This applies also for the analog cases below

until (1.8).

• Annulus with FZZT boundary conditions versus Z2-quotient of SU(2)×SU(2) circular

quiver on HS4 with Dirichlet boundary conditions:

〈1〉FZZT, s1=s2=0
A = ZHS

4,Dir

[SU(2)×SU(2)]Z2
(q, ε1, ε2). (1.5)

1We remark that in [15] Dirichlet boundary conditions are rather matched with Ishibashi states. The

difference is probably due to the fact that [15] refers to a different notion of Dirichlet boundary conditions.

– 3 –



J
H
E
P
0
7
(
2
0
1
9
)
0
4
0

• Annulus with ZZ boundary conditions versus Z2-quotient of SU(2) × SU(2) circular

quiver on HS4 with Neumann boundary conditions:

〈1〉ZZ, (r1,r2)=(s1,s2)=(1,1)
A = ZHS

4,Neu

[SU(2)×SU(2)]Z2
(q, ε1, ε2). (1.6)

• Annulus with (FZZT,ZZ) boundary conditions at the two ends as a circular quiver

quotients on HS4 with Dirichlet/Neumann boundary conditions on the two nodes:

〈1〉FZZT/ZZ, (s=0/(s1,s2)=(1,1))
A = Z

HS4,Dir/Neu

[SU(2)×SU(2)]Z2
(q, ε1, ε2). (1.7)

• Moebius strip with FZZT/ZZ boundary condition vs. Z2 quotient of SU(2) × SU(2)

circular quiver on HS4/Z2 with Dirichlet/Neumann boundary conditions:

〈1〉FZZT/ZZ
M = Z

HS4/Z2,Dir/Neu

[SU(2)×SU(2)]Z2
(q, ε1, ε2) (1.8)

where, as above, s = 0 for FZZT and (s1, s2) = (1, 1) for ZZ. The non-orientability

of the Moebius surface is compensated by an half-integral Chern-Simons level on the

boundary RP3 theory.

• Disk bulk/boundary two point function with FZZT boundary conditions versus 3d

U(1) N = 4 with Nf = 2 (called TSU(2)) coupled to 3 4d free hypers:

〈Ψβ(1)Vα(0)〉FZZT
D,σ = Z[BTSU(2)](β, α;σ). (1.9)

• Disk three point boundary function with FZZT boundary conditions versus 3d N = 2

U(1) with Nf = 4 and monopole superpotential coupled to 4 4d free hypers:

〈Ψβ1(0)Ψβ2(1)Ψβ3(∞)〉FZZT
D,σ1,σ2,σ3 = Z[BU(1),Nf=4](β1, β2, β3;σ1, σ2, σ3). (1.10)

We remark that the FZZT amplitudes with s = mb + nb−1 and ZZ amplitudes with

(s1, s2) = (m,n) are reproduced from the respective cases described above via Wilson

line insertions.

The structure of the paper is as follows. In section 2 we describe the equivariant

localization formulae for general gauge theories on RP4 and HS4. In section 3 we specialize

to SU(2) quivers and perform the comparison with Liouville amplitudes on open/unoriented

Riemann surfaces with bulk insertions, while section 4 is devoted to the boundary insertions

case and the corresponding three dimensional gauge theory sectors. Section 5 contains some

open questions and few technical appendices complete the presentation.

While we were typing this paper, [15] appeared which has partial overlap with our

section 3.

2 Localising gauge theories on RP4 and HS4

The calculation of partition functions and BPS correlators of supersymmetric gauge the-

ories on RP4 and HS4 via localization can be obtained by realizing those manifolds as
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Z2-quotients of S4. Henceforth, we first review the results for the S4 partition function in

order to set-up the notation for the subsequent computations.

It is well known that N = 2 supersymmetry can be realised on a four-manifold by

turning on some background fields, which can be either seen as coming from a rigid limit

of supergravity backgrounds [16–18] or as auxiliary fields needed to enforce the rigid N =

2 supersymmetry algebra [19]. Global supersymmetry transformations are generated by

suitable Killing spinors satisfying the following equations

DmξA + T klσklσmξ̄A = −iσmξ̄′A,
Dmξ̄A + T̄ klσ̄klσ̄mξA = −iσ̄mξ′A,

(2.1)

with ξ′A = i
4 σ̄nD

nξA and ξ̄′A = i
4σnD

nξ̄A, and the auxiliary equations:

σmσ̄nDmDnξA + 4DlTmnσ
mnσlξ̄A = MξA,

σ̄mσnDmDnξ̄A + 4DlT̄mnσ̄
mnσ̄lξA = Mξ̄A.

(2.2)

T kl, T̄ kl and M are anti-self-dual, self-dual and scalar background fields respectively. We

denote by A, B,. . . the SU(2)R doublet indices.2 The covariant derivatives act on the

spinor as

DmξA ≡ ∂mξA +
1

4
Ωab
mσabξA + iξBV

B
m A

DmDnξA ≡ ∂mDnξA +
1

4
Ωab
mσabDnξA − ΓpmnDpξA + iDnξBV

B
m A,

where V B
m A is the SU(2)R gauge field, Ωab

m are components of the spin connection one-form

and Γpmn are the Christoffel symbols.3 Similar formulae hold for the right handed spinors4

with σ̄ab instead of σab.

Let us review the solution of the above equations on round S4. We use the following

angular coordinates
x0 = R cos r

x1 = R sin r cos

(
θ

2

)
cos

(
ψ + φ

2

)
x2 = R sin r cos

(
θ

2

)
sin

(
ψ + φ

2

)
x3 = R sin r sin

(
θ

2

)
cos

(
ψ − φ

2

)
x4 = R sin r sin

(
θ

2

)
sin

(
ψ − φ

2

)
(2.4)

2SU(2)R denotes the R-symmetry group, whereas SU(2)R will be used to denote the right-handed

generators of the Lie algebra of the isometry group of S4 fixing the poles.
3Indices from the middle of the Latin alphabet (l,m, n, p . . .) are curved and those from the beginning

(a, b, c, . . .) are flat.
4The representation we work with is given by

σa = −iτa, σ̄a = iτa, (a = 1, 2, 3)

σ4 = 1, σ̄4 = 1,
(2.3)

where τa are the Pauli matrices.
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where 0 ≤ r ≤ π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π, and ψ ∼ ψ + 4π. The metric is

given by

ds2 = dr2 +
1

4
sin2 r

(
dθ2 + sin θ2dφ2 + (dψ + cos θdφ)2

)
Using the above data, one may verify that a solution of the main Killing spinor equation

eq. (2.1) is

ξαA =
1√
2

cos
(r

2

)
δαA , ξ̄α̇A =

1√
2

sin
(r

2

)
δα̇A (2.5)

corresponding to the background fields:

V B
m A = 0, T kl = 0, T̄ kl = 0. (2.6)

The auxiliary equation eq. (2.2) is automatically satisfied with M = −R/3 = −4/r2, where

R is the Ricci scalar and r is the radius of the four-sphere. We set r = 1 here onwards.

We start by considering pure N = 2 Super Yang-Mills theory, whose vector multiplet

consists of a pair of scalars (φ, φ̄), a gauge field Am, gauginos (λαA, λ̄
A
α̇ ), and a triplet of

auxiliary fields DAB = DBA, all transforming in the adjoint representation of the gauge

group G. The details of the supersymmetry transformation and gauge fixing terms are

relegated to the appendix B. The general N = 2 supersymmetric Yang-Mills action is

given by

LYM = Tr

[
1

2
FmnF

mn + 16Fmn(φ̄Tmn + φT̄mn)

− 4Dmφ̄D
mφ+ 2Mφ̄φ+ 64φ̄2TmnT

mn + 64φ2T̄mnT̄
mn

− 2iλAσmDmλ̄A − 2λA[φ̄, λA] + 2λ̄A[φ, λ̄A]

+ 4[φ, φ̄]2 − 1

2
DABDAB

]
(2.7)

which can be specialized to S4 by fixing the background fields as in (2.6).

The saddle-point about which one considers fluctuations is found by requiring that

Q̂ fermions = 0, where Q̂ = Q + QB, which are the supersymmetry differential

(eqs. (B.1), (B.8)) and the BRST differential (eqs. (B.5), (B.9)) respectively. The saddle-

point turns out to be [17]

Am = 0, φ2 = 0, φ1 = a0, DAB = −ia0wAB,

where a0 is a Lie algebra-valued constant, φ1 ≡ i(φ+ φ̄), φ2 ≡ φ− φ̄ and wAB a bilinear in

the ξAs.

The localizing action is given by the Q̂-transform of

Vvec = Tr
[
(Q̂λαA)†λαA + (Q̂λ̄α̇A)†λ̄α̇A

]
+ gauge-fixing terms,

which in terms of the “cohomological variables”

Ψ = Qφ2,

Ψm = QAm = Q̂Am −Dmc,

χa = ξBλA (σa)AB ,

– 6 –
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can be written as

Vvec = Tr
[
(Q̂Ψ)†Ψ + (Q̂Ψm)†Ψm + (Q̂χa)†χa

]
+ gauge-fixing terms. (2.8)

The gauge-fixing terms are:

Tr [c̄G+ c̄B0 + cā0] .

We choose the gauge-fixing function G = ∂nA
n. What is relevant for the localization proce-

dure is only the quadratic truncation of the localizing action Q̂Vvec, which we schematically

write as

Q̂Vvec|quad = (fermions)†Kfermion(fermions) + (bosons)†Kboson(bosons). (2.9)

Upon integration over the fluctuations, one finds the one-loop determinants

Zvec
1-loop =

√
detKfermion

detKboson
. (2.10)

The calculation of the one-loop determinants can be simplified by introducing

X ≡ (φ2, Am; ā0, B0) and Ξ ≡ (χa, c̄, c)

in terms of which the quadratic truncation of (2.8) can be written as

Vvec|quad =
(
Q̂X, Ξ

)(D00 D01

D10 D11

)(
X

Q̂Ξ

)
.

Correspondingly, we get

detKfermion

detKboson
=

detΞ Q̂2

detX Q̂2
=

detCokerD10 Q̂2

detKerD10 Q̂2
. (2.11)

Rather than computing the ratio of determinants above via index theorem, as done in [20]

and [17], we now proceed to explicitly determine the spaces CokerD10 and KerD10, and

compute the corresponding Q̂2 eigenvalues. As we will see in the following, this method

can be easily extended to Z2 quotients of the four-sphere calculating the relevant ratio of

determinants for the RP4 and HS4 cases.

The part of Vvec|quad that yields D10 is:

3∑
a=1

χa(Q̂χa)† + cDn(Q̂Ψn)† + c̄∂nA
n + c̄B0 + cā0 (2.12)

from which the terms containing φ1 and DAB may be dropped since they do not contribute

to D10.

– 7 –
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2.1 Gauge theories on RP4

In this section we compute of the partition function and Wilson loops of N = 2 supersym-

metric gauge theories with compact semi-simple gauge group G on RP4. We first discuss

the one-loop determinants calculation. The instanton contribution will be discussed in the

next subsection 2.1.1.

As anticipated in the previous section, we compute one loop determinants for su-

persymmetry multiplets by solving the kernel and cokernel partial differential equations

(PDEs) corresponding to D10 operator. The D10 operator is read from the fermionic func-

tional V used to localize the physical actions S for gauge and hyper multiplets. The PDEs

are solved by diagonalizing them in the basis provided by SO(4) ∼ SU(2)L × SU(2)R har-

monics, which are discussed in appendix A. It turns out that the PDEs reduce to ordinary

differential equations in variable r and as explained in the appendix C, each ODE can

be expressed as linear combinations of the generators of SU(2)L. This has the important

consequence that SU(2)R commutes with kernel and cokernel differential equations and the

solutions arrange themselves in SU(2)R multiplets. Let us denote by X0 the set of dynam-

ical fields in the kernel, and by X1 the fields in the cokernel of D10. In our computation

φ1, DAB only contribute via an overall factor in the index and so we set them to zero in the

one-loop computation. We denote by a = 1, 2, 3 the three directions in the tangent space

of the equator S3 and use the following combinations of gauge fields Aa belonging to X0

in this basis.

A+ ≡ A1 + iA2, A− ≡ A1 − iA2 and A3 . (2.13)

The fermions χa are correspondingly denoted as

χ+ ≡ χ1 + iχ2, χ− ≡ χ1 − iχ2 and χ3 . (2.14)

In this basis the differential equations appear simpler. The computation can be further

simplified by noting that, since D10 commutes with Q̂2, it closes on the fields of same Q̂2

eigenvalues both in X0 and X1. Since the kernel and cokernel differential equations can

be written only in term of SU(2)L generators, all the fields in X0 carry the same SU(2)R
charge equal to qR and those in X1 will carry −qR. The solutions of kernel and cokernel

equations are organized in SU(2)R multiplets each of dimension 2jR + 1 with the following

possible values of jR

jR = jL, jL + 1, jL − 1, (2.15)

as determined by the SO(4) harmonics.

The strategy to compute the one-loop determinants on RP4 ' S4/Z2, is to take the

solutions for kernel and cokernel equations on S4 and then apply the antipodal Z2 projection

on this solution set. This is done both for vector multiplet and hypermultiplet and then

the invariant modes are combined to get the total one loop determinant.

The analysis of ODEs can be performed in the simpler case of U(1) gauge group, the

generalization to general gauge group G, being obtained by multiplying the vector multiplet

– 8 –
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index by the factor
∑

α∈roots e
iα·a in the adjoint representation, and the hyper multiplet in

the representation R of G by the factor
∑

ρ∈R e
iρ·a. Finally, by using the eigenvalues of Q̂2

operator for the kernel and cokernel zero modes of D10 we calculate the one-loop factor

Z1-loop =

(
detCokerD10 Q̂2

detKerD10 Q̂2

)1/2

. (2.16)

We will work with the following Killing spinor ξ = (ξαA, iξ̄
α̇
A) on the covering space S4

ξ =


1√
2

cos r2 0

0 1√
2

cos r2
i√
2

sin r
2 0

0 − i√
2

sin r
2

 (2.17)

for the metric

ds2 = gµνdx
µdxν = dr2 +

f(r)2

4

(
dθ2 + sin θ2dφ2 + (dψ + cos θdφ)2

)
. (2.18)

We use Hopf fibration coordinates

z1 = sin r sin
θ

2
ei
ψ−φ
2 , z2 = sin r cos

θ

2
ei
ψ+φ
2 , t = cos r (2.19)

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 4π. In these coordinates, the antipodal Z2 action

reads

r → π − r, ψ → ψ + 2π, (2.20)

and correspondingly

z1 → −z1, z2 → −z2, t→ −t . (2.21)

On the Killing spinor we have

Z2 : ξ →


1√
2

sin r
2 0

0 1√
2

sin r
2

i√
2

cos r2 0

0 − i√
2

cos r2

 (2.22)

so that this is not preserved under the Z2 projection. In terms of the two component

notation

ξA =

 cos( r2)√
2

0

0
cos( r2)√

2

 , ξ̄A =

 i sin( r2)√
2

0

0 − i sin( r2)√
2

 (2.23)

we have

Z2 : ξA → −iξ̄BσB3A, ξ̄A → iξBσ
B
3A . (2.24)
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It is easy to check that anyway the localising action Q̂ξV remains invariant provided that

we choose the following transformation properties of dynamical and ghost fields

χ3 → −χ3, χ+ → χ+, χ− → χ−, c→ c, c̄→ c̄

Aψ → Aψ, Aθ → Aθ, Aφ → Aφ, Ar → −Ar, φ1 → φ1, φ2 → −φ2

(2.25)

The projection for fermions can also be written in terms of λs as

Z2 : λA → −iλ̄BσB3A, λ̄A → iλBσ
B
3A (2.26)

and these projections are consistent with supersymmetry transformations.

Z2-projection on the vector multiplet. On RP4 there are two Pin+ structures: one

structure with monodromy +1 as one moves along the orientation reversing loop and an-

other structure with monodromy −1. On S4, the double cover of RP4, these two types of

spinors translate into two parity conditions

PΨ = ±Ψ , (2.27)

where the two sides of the equality are to be evaluated at antipodal points. These parity

projections are consistent with N = 2 supersymmetry.

It is interesting to remark that5 since π1(SO(3)) = Z2 and π3(SO(3)) = Z, an SO(3)

bundle on a general 4-manifold M is characterized by two topological invariants. One

is the instanton number k and the other is the non-abelian magnetic flux or an element

of H2(M,Z2) called the second Stiefel-Whitney class of the SO(3) gauge bundle. If we

represent the second Stiefel-Whitney class as u = ω2(SO(3)), then these two topological

invariants are related by

k = −u · u
4

mod 1. (2.28)

See e.g. [21] for more explanations. The element of H2(RP4,Z2) with u = 0 corresponds to

the untwisted sector of perturbative and non-perturbative parts of the partition function. It

is identical to the contribution of an SU(2) gauge bundle. However for u 6= 0 ∈ H2(RP4,Z2)

one gets the contribution of the twisted sector. This operation is carried out on the one-

loop part by shifting the product over the modes by 1
2 and in the non-perturbative sector

by shifting k by the relation (2.28).

Let us start by discussing the trivial holonomy sector. As shown in the appendix C,

for the vector multiplet the solution set of the kernel equations is empty. We have the

following projection condition for cokernel fields

χ3 → −χ3, χ+ → χ+, χ− → χ−, c→ c, c̄→ c̄ (2.29)

The Q̂2 eigenvalue of the fields χ3, c and c̄ is n + ia · α with multiplicity n + 1, and that

of χ+,χ− is n+ ia · α with multiplicity n− 1. It is important to observe that the cokernel

5When all fields are in the adjoint representation, the gauge group can actually be taken to be

SU(2)/Z2 ∼ SO(3).
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equations are coupled and the system for χ3, c, c̄ admits a unique solution up to a constant.

Therefore they count as a single mode in the harmonic expansion. Thus according to (2.29),

χ3 give contribution from odd modes only and χ+ and χ− will give contribution just from

even modes. Explicitely for χ3

Z2 :
∏
α∈∆

∏
n≥1

(n+ ia · α)n+1 =
∏
α∈∆

∏
n≥1

(2n− 1 + ia · α)2n−1+1(2n+ ia · α)2n+1

=⇒
∏
α∈∆

∏
n≥0

(2n− 1 + ia · α)2n−1+1 (2.30)

and for χ+, χ−

Z2 :
∏
α∈∆

∏
n≥1

(n+ ia · α)n−1 =
∏
α∈∆

∏
n≥1

(2n− 1 + ia · α)2n−1−1(2n+ ia · α)2n−1

=⇒
∏
α∈∆

∏
n≥1

(2n+ ia · α)2n−1 (2.31)

The unregularized product can be rewritten as∏
α∈∆+

∏
n≥1

(2n+ia ·α)2n−1(2n−1+ia ·α)2n−1+1(2n−ia ·α)2n−1(2n−1−ia ·α)2n−1+1 (2.32)

whose ζ-function regularized form is

Zvec,RP4

1−loop =
∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1 + ia · α)2 cosh2 πa · α

2
(2.33)

For the non-trivial holonomy sector, a similar analysis yields the following expression

for the vector multiplet contribution to the one-loop determinant:∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1 + ia · α)2 sinh2 πa · α

2
. (2.34)

Z2-projection on hypermultiplets. Under the Z2 action the fields in matter hyper-

multiplet belonging to the kernel and Cokernel of Dhyper
10 transform as follows

qAB : q11 → q11, q12 → q12, q21 → −q21, q22 → −q22,

ΣAB : Σ11 → Σ11, Σ12 → Σ12, Σ21 → −Σ21, Σ22 → −Σ22. (2.35)

Here we are using the conventions of section 4 of [3]. As shown in the appendix C, for

the hypermultiplet the solution set of cokernel PDEs is empty and only the kernel fields

contribute. For completeness we give the mode expansion of kernel fields qA in a general

representation R

q11 :
∏
ρ∈R

∏
k≥1

(k + µ+ ia · ρ)k,

q12 :
∏
ρ∈R

∏
k≥1

(k − µ− ia · ρ)k,

q21 :
∏
ρ∈R

∏
k≥1

(−k + µ+ ia · ρ)k,

q22 :
∏
ρ∈R

∏
k≥1

(−k − µ− ia · ρ)k , (2.36)
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whose Z2 projection under (2.35) gives

q11 :
∏
ρ∈R

∏
k≥1

(2k + µ+ ia · ρ)2k,

q12 :
∏
ρ∈R

∏
k≥1

(2k − µ− ia · ρ)2k,

q21 :
∏
ρ∈R

∏
k≥1

(−2k + 1 + µ+ ia · ρ)2k−1,

q22 :
∏
ρ∈R

∏
k≥1

(−2k + 1− µ− ia · ρ)2k−1. (2.37)

where µ is the mass parameter. The one-loop determinant turns out to be( ∏
ρ∈R

∏
k≥1

(2k + µ+ ia · ρ)2k(2k − µ− ia · ρ)2k(2k − 1− µ− ia · ρ)2k−1

×(2k − 1 + µ+ ia · ρ)2k−1

)− 1
2

=

( ∏
ρ∈R

∏
k≥1

(k + µ+ ia · ρ)k(k − µ− ia · ρ)k
)− 1

2

(2.38)

The regularised form of the above is given by

Zhyper,RP4

1-loop =

( ∏
ρ∈R

G(1 + µ+ ia · ρ)G(1− µ− ia · ρ)

)− 1
2

(2.39)

=

( ∏
ρ∈R

H(µ+ ia · ρ)

)− 1
2

In the massless case µ = 0 this reduces to

Zhyper,RP4

1−loop,µ=0 =

( ∏
ρ∈R

H(ia · ρ)

)− 1
2

(2.40)

Combining the above with the vector multiplet contribution (2.33), the one loop partition

function of N = 2 with a massless hypermultiplet in a real representation reads

ZR,RP4

1−loop,µ=0 =
∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1 + ia · α)2 cosh2 πa · α

2

( ∏
ρ∈R

H(ia · ρ)

)− 1
2

(2.41)

A notable case we will need in the following is that of N = 2∗ theory with µ = 1 (namely,

the maximally supersymmetric case for the unsquashed case b = 1) whose hypermultiplet

one loop determinant reads

ZAdj,RP4

1-loop,µ=1 =

( ∏
α∈∆

G(2 + ia · α)G(−ia · α)

)− 1
2

=

( ∏
α∈∆

H(1 + ia · α)

)− 1
2

=

( ∏
α∈∆

Υ(ia · α)

)− 1
2

(2.42)
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Combining it with the vector multiplet contribution one finally gets

ZN=2∗,RP4

1−loop,µ=1 =
∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1 + ia · α)2 cosh2 πa · α

2

( ∏
α∈∆

Υ(ia · α)

)− 1
2

=
π

2i
coth

(πa · α
2

)
(2.43)

where in the second line we used standard identities on the Υ and Γ functions. Let us

present the one-loop contribution for N = 4 gauge theory

ZN=4,RP4

1−loop =
∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1 + ia · α)2 cosh2 πa · α

2

1(∏
α∈∆H(ia · α)

) 1
2

=
∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1+ia · α)2 cosh2 πa · α

2

( ∏
α∈∆

Γ(−ia · α)

Γ(1 + ia · α)(H(1 + ia · α))

) 1
2

=
∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1+ia · α)2 cosh2 πa · α

2

( ∏
α∈∆

Γ(−ia · α)

Γ(1 + ia · α)(Υ(ia · α))

) 1
2

=
∏
α∈∆+

(
− π

2a · α

)
coth

(πa · α
2

)
(2.44)

Finally, for the system of four hypermultiplets we denote the mass parameters as

µi, i = 1, . . . , 4. These mass terms in the Lagrangian are generated by gauging a U(1)4

subgroup of the flavour symmetry group SO(8). By using the above results for the mas-

sive hypermultiplet in the fundamental representation and in order to implement the Z2-

projection in the matter sector, we make the following identification of mass parameters

µ1 = µ3, µ2 = µ4. (2.45)

As a consequence under the Z2 projection the hypers of masses µ1, µ3 give rise to two half

hypers which under the identification µ1 = µ3 combine to give one hypermultiplet. Simi-

larly other two hypers of masses µ2, µ4 under Z2 projection and identification µ2 = µ4 give

rise to a second hypermultiplet. To compute the hypermultiplet contributions explicitly,

we have to determine the transformation of the component fields of the hypermultiplet

under the Z2 action. We first note that the Killing spinors (ξ, ξ̄) and (ξ̌, ¯̌ξ) transform as

ξ1α → −iξ̄1α̇, ξ2α → iξ̄2α̇

ξ̌1α → i ¯̌ξ1α̇, ξ̌2α → −i ¯̌ξ2α̇ (2.46)

Consistency with supersymmetry transformations given in appendix B requires us to choose

the transformation of the scalar and fermions in the hypermultiplet as

q1 → q1, q2 → −q2,

ψα → iψ̄α̇, ψ̄α̇ → −iψα, (2.47)
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Projecting out the Fourier components which do not obey this transformation, we get the

following contribution to the one-loop part

Z4 half−hypers =
∏
±

∏
i=1,2

Γ2(1± ia± µi) (2.48)

It is interesting to note that this contribution of hypers is identical to that on the Hemi-S4.

Finally the full expression for the one-loop part is the following

Z
Nf=4,RP4

1−loop =
∏
α∈∆+

Υ(ia · α)

ia · α
Γ(1 + ia · α)2 cosh2 πa · α

2

∏
±

∏
i=1,2

Γ2(1± ia± µi) (2.49)

2.1.1 Instanton contribution

Let us now discuss the instanton contribution to the supersymmetric partition function on

RP4. It is convenient to work on its double cover S4, with a suitable antipodal identification.

For example in stereographic coordinates ( 4Xi
XiXi+4 ,

XiXi−4
XiXi+4) with Xi ∈ R4 the antipodal

identification is

Xi → −
4Xi

XiXi
(2.50)

where summation over i = 1, . . . , 4 is understood. On S4 the contribution to the super-

symmetric partition function comes only from point-like instantons and anti-instantons at

the South pole and North pole respectively. Under the antipodal identification, instantons

of charge k are mapped to anti-instantons of charge −k. In other words, since RP4 is non-

orientable, as an instanton is moved along the orientation reversing path, it comes back to

the original position as an anti-instanton due to non-trivial monodromy. As a result the

θ-term

Sθ =
θ

32π2

∫
d4xεµνρσF

µνF ρσ (2.51)

which is added to the SYM action to give the vacuum a topological charge, flips it sign

under antipodal map and hence is ill defined. However for θ = 0, π the integral remains

invariant. For θ = 0 this is obvious, and for θ = π due to 2π periodicity. For θ = 0 the

coupling constant is τ = 4πi
g2

and, due to the antipodal identification of North and South

poles, the non-perturbative contribution is just one factor of Nekrasov instanton partition

function with the above value of τ . The other case θ = π will be discussed later in the case

corresponding to the Moebius strip.

2.2 Gauge theory on HS4

The explicit computation of the supersymmetric partition function on HS4 was performed

in [3]. Here for completeness we recall their results and also compute new cases which are

needed for the comparison with Liouville theory. The possible choices of supersymmetric

boundary conditions are Dirichlet and Neumann.
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Dirichlet Boundary Condition for the vector multiplet. The Dirichlet boundary

conditions on the boundary S3 of the hemisphere for the fermionic fields Ξ are given by

χ±(ρ)|ρ=π/2 = χ0, c|ρ=π/2 = 0,

χ3|ρ=π/2 = 0, c̄|ρ=π/2 = 0,

where χ0 is a constant. The solutions of the cokernel equations are displayed in appendix C.

The ones compatible with the above boundary conditions are those corresponding to |qL| =
jL + 1. Therefore, the multiplicity of an eigenvalue n+ ia · α is |n| − 1, as opposed to 2|n|
for the spherical case. The corresponding unregularized product is given by:∏

α∈∆+

∏
n≥1

(n+ ia · α)n−1(n− ia · α)n−1 (2.52)

which, upon regularization and choosing the gauge group to be SU(2), becomes

Zvec
Dir, 1−loop(a) = Υ(2ia)

Γ(1 + 2ia)2

ia
. (2.53)

Let us consider Wilson loops in the boundary of the hemisphere. Solely for this section,

we will use the coordinates (ρ, ϑ, ϕ, χ), where ϕ = ψ+φ
2 , χ = ψ−φ

2 , and where ϕ and χ are

periodic with period 2π. There are two classes of closed loops in the boundary S3, one

winding around ϕ, and another winding around χ. Following [17], the circles supporting

the Wilson loops are:

S1
ϕ

(
ρ =

π

2

)
: (x0, x1, x2, x3, x4) = (0, ε1 cosϕ, ε1 sinϕ, 0, 0),

S1
χ

(
ρ =

π

2

)
: (x0, x1, x2, x3, x4) = (0, 0, 0, ε2 cosχ, ε2 sinχ).

The supersymmetric Wilson loops are

Wϕ(R) ≡ TrRP exp i

∫
S1
ϕ(ρ=π

2 )
dϕ(Aϕ + iε1φ1),

Wχ(R) ≡ TrRP exp i

∫
S1
χ(ρ=π

2 )
dχ(Aχ + iε2φ1).

These have the following vevs:

Wϕ(R) = TrRP exp (−2πba)

Wχ(R) = TrRP exp
(
−2πb−1a

)
.

To compute their expectation values, one simply inserts these classical expressions in the

integral expression for the partition function. One could also consider a more general

Wilson loop that winds m-times around ϕ and n-times around χ in the fundamental repre-

sentation. These play a relevant rôle for the matching between gauge theory and Liouville

amplitudes.
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Neumann boundary conditions for the vector multiplet. Neumann boundary con-

ditions are:

χ±(ρ)|ρ=π/2 = 0.

The only non-trivial solutions to the cokernel equations compatible with this boundary

condition correspond to |qL| = jL + 1. The multiplicity of a solution with eigenvalue

n+ ia · α is |n|+ 1. The one-loop partition function is

Zvec
Neu(a) =

∏
α∈∆+

∏
n≥1

(n+ ia · α)n+1(n− ia · α)n+1 (2.54)

which, upon regularization and choosing the gauge group to be SU(2), gives

Υ(2ia)
1

Γ(1− 2ia)2(ia)

The partition function is obtained by integrating the above over the Coulomb branch

parameter. Analogous to the case of a sphere, we must include the factor arising from the

Vandermonde determinant:

Zvec
1-loop, Neu(a) = Υ(2ia)

ia

Γ(1− 2ia)2
. (2.55)

Dirichlet boundary conditions for the hyper-multiplet. Let us recall that the

solution set of cokernel PDEs is empty in the hypermultiplet case. Therefore the only con-

tribution comes from the kernel fields as in (2.36). Imposing Dirichlet boundary conditions

amounts to set

q12

(
θ,
π

2

)
= 0, q21

(
θ,
π

2

)
= 0, Σ11

(
θ,
π

2

)
= 0 Σ22

(
θ,
π

2

)
= 0,

∂θq12

(
θ,
π

2

)
= 0, ∂θq21

(
θ,
π

2

)
= 0, ∂θΣ11

(
θ,
π

2

)
= 0, ∂θΣ22

(
θ,
π

2

)
= 0

(2.56)

and

∂rq11

(
θ,
π

2

)
= 0, ∂rq22

(
θ,
π

2

)
= 0, ∂rΣ12

(
θ,
π

2

)
= 0, ∂rΣ21

(
θ,
π

2

)
= 0 (2.57)

This translates into the following expression for the one-loop determinant( ∏
ρ∈R

∏
k≥1

(k − µ− ia · ρ)k(k + µ+ ia · ρ)k

)− 1
2

(2.58)

and after regularization to

Zhyper
Dir,1−loop =

( ∏
ρ∈R

G(1− µ− ia · ρ)G(1 + µ+ ia · ρ)

)− 1
2

(2.59)
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For the the N = 2∗ theory at µ = 1

ZN=2∗, hyper
1-loop, Dir =

(∏
α∈∆

G(−ia · α)G(2 + ia · α)

)− 1
2

=

(∏
α∈∆

G(1− ia · α)G(1 + ia · α)Γ(1 + ia · α)

Γ(−ia · α)

)− 1
2

=

(∏
α∈∆

Γ(1 + ia · α)H(ia · α)

Γ(−ia · α)

)− 1
2

(2.60)

Combining it with the vector one loop part one gets

ZN=2∗,µ=1
Dir,1−loop =

(∏
α∈∆

H(ia · α)

ia · α sinh(iπa · α)

) 1
2
(∏
α∈∆

Γ(−ia · α)

Γ(1 + ia · α)H(ia · α)

) 1
2

=

(∏
α∈∆

Γ(ia · α)

ia · α

) 1
2
(∏
α∈∆

Γ(−ia · α)

) 1
2

=

(∏
α∈∆

Γ(ia · α)Γ(−ia · α)

ia · α

) 1
2

(2.61)

Finally, the one-loop contribution of N = 4 theory with Dirichlet BCs can be obtained by

combining the one-loop part of N = 2 vector multiplet with that of N = 2 hypermultiplet

in the adjoint representation

Zvec
Dir,1−loop =

∏
α∈∆+

G(1 + ia · α)G(1− ia · α)

a · α sinh(πa · α)

=
∏
α∈∆+

H(ia · α)

a · α sinh(πa · α)

Zhyper
Dir,1−loop =

( ∏
α∈∆

1

H(ia · α)

) 1
2

(2.62)

Combining them one get the perturbative part of N = 4 vector multiplet with Dirichlet

BCs on HS4

ZN=4
Dir,1−loop =

∏
α∈∆+

H(ia · α)
1

a · α sinh(πa · α)
×

( ∏
α∈∆

1

H(ia · α)

) 1
2

(2.63)

From the identity G(1+ia ·α)G(1−ia ·α) = H(ia ·α), it is clear that H(ia ·α) = H(−ia ·α).

Therefore one gets

ZN=4
Dir,1−loop =

∏
α∈∆+

H(ia · α)
1

a · α sinh(πa · α)
× 1

H(ia · α)

=
∏
α∈∆+

1

a · α sinh(πa · α)
(2.64)
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Neumann boundary conditions for the hyper-multiplet. Neumann boundary con-

ditions imply

q11

(
θ,
π

2

)
= 0, q22

(
θ,
π

2

)
= 0, Σ12

(
θ,
π

2

)
= 0 Σ21

(
θ,
π

2

)
= 0,

∂θq11

(
θ,
π

2

)
= 0, ∂θq22

(
θ,
π

2

)
= 0, ∂θΣ12

(
θ,
π

2

)
= 0, ∂θΣ21

(
θ,
π

2

)
= 0

(2.65)

and

∂rq12

(
θ,
π

2

)
= 0, ∂rq22

(
θ,
π

2

)
, ∂rΣ11

(
θ,
π

2

)
= 0, ∂rΣ22

(
θ,
π

2

)
= 0 (2.66)

It is clear from the mode decomposition that we will get the following result( ∏
ρ∈R

∏
k≥1

(k − µ− ia · ρ)k(k + µ+ ia · ρ)k

) 1
2

=

( ∏
ρ∈R

∏
k≥1

G(1 + µ+ ia · ρ)G(1− µ− ia · ρ)

) 1
2

(2.67)

This is identical to the previous case which for µ = 1 leads to

Zhyper,µ=1
Neu,1−loop =

(∏
α∈R

Γ(1 + ia · α)H(ia · α)

Γ(−ia · α)

) 1
2

(2.68)

Combining it with the vector one loop part one gets

ZN=2∗, µ=1
Neu,1−loop =

( ∏
α∈R

H(ia · α)a · α sinh(iπa · α)

) 1
2
( ∏
α∈R

Γ(−ia · α)

Γ(1 + ia · α)H(ia · α)

) 1
2

=

( ∏
α∈R

a · α sinh(πa · α)

) 1
2
( ∏
α∈R

Γ(1 + ia · α)Γ(−ia · α)

(Γ(1 + ia · α))2

) 1
2

=

(∏
α∈R

a · α
Γ(1 + ia · α)2

) 1
2

(2.69)

The perturbative part of N = 4 vector multiplet with Neumann BCs is given by

ZN=4
Neu,1−loop =

∏
α∈∆+

H(ia · α)a · α sinh(πa · α)×

( ∏
α∈∆

1

H(ia · α)

) 1
2

=
∏
α∈∆+

a · α sinh(πa · α) . (2.70)
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2.2.1 Instanton contribution

In the computation of the partition function on S4 the non-perturbative contributions arise

only from point like instantons and anti-instantons located at the fixed points of the U(1)

isometry which is used to localize the path integral, namely the South and North poles

of S4. If a Z2-involution acts on S4 with the S3 at the equator as its fixed locus, then,

with either supersymmetric Dirichlet or Neumann BCs, the non-perturbative contribution

will be just one factor of Zkinst ≡ ZkNekrasov. Since π3(S3) = Z, the instanton sector is

characterized by an integer k equal the winding mode at the equator. Let us remind for

completeness the expression of the instanton partition function for N = 2∗ theory at fixed

instanton number

Zkinst,N=2∗ =
∑

~Y ,|~Y |=k

q|
~Y |

N∏
α,β=1

∏
s∈Yα

(Eαβ − m̃)(ε1 + ε2 − Eαβ − m̃)

Eαβ(ε1 + ε2 − Eαβ)
(2.71)

where Yα, α = 1 . . . N is the set of Young diagrams N−tuples, |~Y | =
∑

α Yα = k the

instanton number, the equivariant hypermultiplet mass m̃ is related to the physical mass

m as m̃ = m+ ε1+ε2
2 and Eαβ(s) = (−hYβε1 +(vYα +1)ε2)+aβ−aα with aα, aβ elements of

the Cartan of the gauge group. Note that for the special value m̃ = 0 the ratio in Zkinst,N=2∗

cancels to one and therefore the sum over the Young diagrams produces 1/η(τ) factors [22].

This will turn out to be useful in the comparison with Liouville theory amplitudes. To

this end, it is important to underline that the insertion of Liouville identity operator on

the torus corresponds to N = 2∗ theory on S4, where the mass of the hypermultiplet is

i/r [23]. In our normalization this is the case µ = 1, where µ = m̃/
√
ε1ε2.

3 Comparison with Liouville theory

Let us start by briefly reviewing basic relevant facts about AGT correspondence [4]. The

N = 2 SU(2) gauge theory can be formulated on the squashed four sphere

S4
ε1,ε2 ≡

{
(x0, . . . , x4)|x2

0 + ε21(x2
1 + x2

2) + ε22(x2
3 + x2

4) = 1
}
.

and its spectral content can be put in correspondence with the geometry of an auxiliary

Riemann surface. Liouville theory correlators on such a surface can be put in correspon-

dence with supersymmetric gauge theory partition function. In particular, the four points

correlator on the Riemann sphere corresponds to the partition function of the Nf = 4

gauge theory on the squashed four sphere.

Z(~m; τ ; ε1, ε2) ∝ 〈e2α4φ(∞)e2α3φ(1)e2α2φ(q)e2α1φ(0)〉b, (3.1)

where ~m encodes the mass parameters m1, . . . ,m4, and b is the parameter that appears in

the Liouville action

Sb =
1

4π

∫
d2z

[
(∂aφ)2 + 4πµe2bφ

]
. (3.2)

The dictionary between the two theories has been tested to be

b =

√
ε1
ε2
, q = e2πiτ , αj = (Q/2) + imj ,

where Q = b+ b−1.
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The usual correspondence is based on closed Riemann surfaces, while here we discuss

the case of open/unoriented Riemann surfaces. These can be obtained as Z2 involutions

of closed ones. It is then natural to consider gauge theories on Z2 involutions of the

four sphere. Indeed, AGT correspondence arises from M5-branes compactifications on the

product of the four sphere and the Riemann surface itself. Since the six-dimensional (2,0)

theory describing the dynamics of M5-branes is chiral, the Z2 involution has to act on both

factors consistently [24], namely has to be either antipodal or with fixed points on both

factors. There are different classes of Z2 actions, distinguished by their fixed point locus.

We will study the resulting quotients of the original theory in two cases, focusing on the

Nf = 4 and N = 2∗ theories, that is on the possible quotients of Riemann surfaces of genus

zero and one.

Let us consider the Z2 quotients of the four punctured Riemann sphere. This can be

a two-disk or an RP2. In the unorientable case, the Z2 action is the antipodal action on

the four-punctured two sphere producing the RP2 with two punctures, namely:

where we have assumed that the punctures were aligned so as to make the antipodal

identification possible. On the four dimensional factor, the Z2 quotient is the RP4 geometry.

In the orientable case the fixed locus of the involution is the equator and, depending

on the location of the punctures with respect to it, one has three possible configurations:

• Two points in the bulk:

• Two points on the boundary and one point in the bulk:

• Four points on the boundary:

On the four dimensional factor, the Z2 quotient is the HS4 geometry.
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In the study of Liouville field theory on open surfaces, one has to choose the boundary

conditions. We are allowed a choice of two boundary conditions: ∂aφ = 0 or φ → ∞ at

the boundary of the disk. These correspond, respectively, to the FZZT [12, 13] and the ZZ

brane [14].

Let us first consider the FZZT boundary condition. As seen earlier in eq. (3.2), the

bulk Liouville interaction term is given by
∫
Σ

√
gµe2bφ. In the presence of a boundary, one

also has the boundary interaction term
∫
∂Σ g1/4µBe

bφ. The constant µB, often called the

boundary cosmological constant, is unrestricted and parametrizes the family of conformally

invariant boundary conditions. One has therefore a scale invariant ratio (µ2
B/µ) on which

the correlation functions depend. It is customary to trade the scale invariant ratio with a

parameter s as follows:
cosh2 πbs

sinπb2
=

µ2
B

µ
.

Therefore the bulk one-point function with FZZT boundary condition will depend on the

continuous parameter s. For the ZZ boundary condition the bulk one-point function in this

case depends instead on a choice of two positive integers, m and n, as explained in [25].

As we will show in the following, these two classes of boundary conditions correspond

respectively to Dirichlet and Neumann boundary conditions of the gauge theory on the

HS4. In the rest of this section we discuss bulk punctures, the boundary ones being

deferred to the subsequent section 4.

In the following we will provide evidence of the correspondence described so far. More-

over, we will also treat Z2 involutions of genus one curves. In this case the complex double

is a torus and the Klein bottle, annulus and Moebius strip can be obtained by applying

different anti-holomorphic involutions, as show in the following figure:

The conformal families of tori admitting such involutions are Lagrangian submanifolds in

the Teichmüller space of the covering torus modded by the translations τ → τ + 1, with{
τ ∈ C | Im(τ) > 0, −1

2 ≤ Re(τ) ≤ 1
2

}
. These are vertical straight lines at Re(τ) = 0 for the

annulus and the Klein bottle while at Re(τ) = ±1
2 for the Moebius strip. Since the double

cover of these internal geometries of the M5 compactification is a torus, we expect that the

corresponding gauge theory to be a Z2-quotient of an appropriate circular quiver. This is

indeed the case as we will show in detail in the following. For the case of Moebius strip,

we will actually follow an equivalent approach, by performing a Z2-quotient of the annulus

amplitudes. However, keeping in mind the torus double covering is useful to discuss the

instanton sector of the corresponding gauge theory. In particular this makes transparent

the arising of a θ = π topological term in the four dimensional gauge theory action in

this case.
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3.1 RP2 with two punctures vs. Nf = 4 on RP4

The Liouville two point correlator on RP2 can be conveniently expressed in terms of the

OPE as in the following diagram:

The right hand side of the figure corresponds to the expression (up to the conformal block

which is not relevant for the present discussion):

C

(
Q

2
+ im1,

Q

2
+ im2,

Q

2
− ia

)
× 〈VQ/2+ia〉RP2 , (3.3)

where C is the DOZZ three-point function and the second factor is the crosscap wavefunc-

tion ΨC(a) as in [26].

Let us unpack the product in eq. (3.3) as

C

(
Q

2
+ im1,

Q

2
+ im2,

Q

2
− ia

)
ΨC(a)

=
∏
±±±

Γ2

(
±ia± im1 ± im2 +

Q

2

)
×
(

Υ(2ia)
Γ(1 + 2iab)Γ(1 + 2iab−1) cosh(πab) cosh(πab−1)

ia

)
=b=1

∏
±±±

Γ2 (±ia± im1 ± im2 + 1)

(
Υ(2ia)

Γ(1 + 2ia)2 cosh(πa)2

ia

)
(3.4)

The last expression makes precise contact with the one-loop partition function of Nf = 4

on RP4 as computed in section 2, formula 2.49. In particular, the first factor on the

right corresponds to the hypermultiplet contribution and the second factor to one loop

contribution of the vector multiplet in the trivial holonomy sector (namely, the projection

on even modes).

3.2 Disk with two bulk punctures vs. Nf = 4 on HS4

As before, the Liouville amplitude is decomposed as:

giving

C

(
Q

2
+ im1,

Q

2
+ im2,

Q

2
− ia

)
× 〈VQ/2+ia〉disk. (3.5)
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Before we can evaluate the second factor on the right above, we have to choose the boundary

condition for the Liouville field on the disk, namely either FZZT or ZZ.

In the FZZT case, the disk one point function turns out to be

〈VQ/2+ia〉FZZT,s ' Ψs(a) ' Γ(1 + 2iba)Γ(1 + 2iab−1) cos(2πsa)

−2iπa
. (3.6)

By writing the above product as

1∏
±±± Γ2

(
±ia± im1 ± im2 + Q

2

)
×
(

Υ(2ia)
Γ(1 + 2iba)Γ(1 + 2iab−1) cos(2πsa)

−2iπa

) (3.7)

one can easily find the dictionary with gauge theory. Indeed, for s = 0, the above expression

coincides with the one-loop partition function of Nf = 4 on HS4 with Dirichlet boundary

conditions, which can be obtained from 2.53 and 2.59. The case s = pb+ rb−1 is related to

the expectation value of a corresponding Wilson loop winding (p, r) times the two circles

at the S3 equator.

Now we turn to the ZZ boundary condition. Rather than a continuous parameter as

in the previous case, the bulk one-point function now depends on two positive integers.

When both of them are equal to one we have:

〈VQ/2+ia〉ZZ,(1,1) ' Ψ1,1(a) ' 2iπa

Γ(1− 2iba)Γ(1− 2iab−1)
. (3.8)

The full Liouville theory amplitude reads

C

(
Q

2
+ im1,

Q

2
+ im2,

Q

2
− ia

)
×Ψ1,1(a). (3.9)

and is explicitly given by

C

(
Q

2
+ im1,

Q

2
+ im2,

Q

2
− ia

)
×Ψ1,1(a)

'
∏
±±±

Γ2

(
±ia± im1 ± im2 +

Q

2

)(
Υ(2ia)

2iπa

Γ(1− 2iba)Γ(1− 2iab−1)

)
(3.10)

This expression corresponds to the one-loop partition function of of Nf = 4 on HS4 with

Neumann boundary conditions, see 2.55 and 2.67. Similarly to the FZZT case, for higher

values of the integer parameters in the Liouville amplitude, one finds the corresponding

Wilson loop expectation values.
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3.3 Klein bottle vs. quotiented circular quiver on RP4

Let us now turn to the amplitudes obtained from quotients of the torus. We decompose

along an intermediate channel according to the following pictures:

The Liouville amplitude for for Klein bottle K2 is given by [25]:

ZK =

∫ ∞

−∞
dPΨC(P )ΨC(−P )

qP
2

η(τ)
(3.11)

where

ΨC(P ) = µµµ−iP b−1
21/4

Γ(1 + 2iP b)Γ(1 + 2iP b−1)

2πiP
cosh(πPb) cosh(πPb−1) (3.12)

and q = e−2πτ . We have defined µµµ = πµγ(b2) and we will use this throughout. Simplifying

this expression we get

ZK2 =
1

2
√
2

∫ ∞

−∞
dP

cosh(πPb) cosh(πPb−1)

sinh(πPb) sinh(πPb−1)

qP
2

η(q)
(3.13)

where the identity

Γ(1 + x)Γ(1− x) =
πx

sin(πx)
(3.14)

has been used. As discussed at the beginning of this section, the corresponding gauge

theory turns is a circular quiver with two SU(2) gauge nodes and two bifundamental hy-

permultiplets. The Z2 action which defines RP4 acts on the gauge group SU(2) × SU(2)

as an automorphism. Under this automorphism both the two SU(2) nodes and bifunda-

mentals are swapped and result in an N = 2∗ SU(2) gauge theory. The resulting modes

combine to give the correct expression for the Klein bottle partition function, as we will

now explain. The Dynkin diagram associated to SU(2) × SU(2) is of type D2 � A1 × A1.

It is represented by two disconnected nodes, with each node corresponding to a simple

root and moreover these two simple roots are orthogonal. The automorphism symmetry

corresponds to switching the two nodes and is implemented by conjugating with a O(4)

matrix with determinant equal to −1. Since the nodes of our root system are disconnected,

it can be consistently quotiented by this automorphism symmetry to yield the invariant

part of it and we get

D2 → B1,

SU(2)× SU(2) → SO(3) (3.15)
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SU(2) SU(2)

bi-fundamental

bi-fundamental

yZ2 projection

SU(2) adjoint-hyper

Figure 1. Z2 projection of the SU(2)× SU(2) gauge theory.

Consequently, the one-loop part of the Z2 projected theory (see the above picture), by

using the results of section 2, is given by

Z1−loop =
Υ(−2ia)Γ(1− 2ia)2 cosh(πa)2

aH(1 + 2ia)
× Υ(2ia)Γ(1 + 2ia)2 cosh(πa)2

aH(1− 2ia)

=
4π2a2 cosh(πa)4

a2 sinh(2πa)2

=
π2 cosh(πa)2

sinh(πa)2
(3.16)

where we used the identities H(1 − 2ia) = Υ(−2ia). We remark that the above is the

one-loop contribution of N = 2∗ theory with µ = 1, which corresponds to the insertion of

the identity operator in Liouville theory [23], thus perfectly matching our expectations.

Annulus vs. Z2-quotient of SU(2)× SU(2) circular quiver on HS4. Let us start

by considering an annulus with full FZZT boundary conditions parameterized by s1 and s2:

Zs1s2 =

∫ ∞
−∞

dPΨs1(P )Ψs2(−P )
qP

2

η(τ)
(3.17)

where q = e2πiτ and

Ψs(P ) = 2−1/4µµµ−iP b
−1 Γ(1 + 2iP b)Γ(1 + 2iP b−1)

−2πiP
cos(2πsP ). (3.18)

On simplifying:

Zs1s2 =
1√
2

∫ ∞
−∞

dP
cos(2πs1P ) cos(2πs2P )

sinh(2bπP ) sinh(2b−1πP )

qP
2

η(τ)
. (3.19)

As we learnt in the disk case, the relevant boundary conditions on the gauge theory side

are the Dirichlet ones.
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Let us discuss first the case s1 = s2 = 0. The Z2 quotient of the circular quiver

gauge theory corresponding to FZZT boundary conditions on the two sides of the annulus

amounts to impose SUSY Dirichlet boundary conditions on the two SU(2) gauge nodes and

on the two bifundamental hypermultiplets. Moreover, the two Coulomb branch parameters

a1, a2 have to be identified under the Z2 action. The Dirichlet boundary conditions on the

circular quiver gauge theory is imposed in the following way:

a) for one SU(2) node the Dirichlet BCs are imposed on the positive roots, whereas for

the other SU(2) the boundary conditions are imposed on the negative roots.

b) for SU(2) gauge group at the two nodes, each of the two bifundamentals transforms

in the (2, 2) representation, so that imposing Dirichlet BCs on the bifundamental will

result in a ‘half’ bifundamental.

c) identifying the two Coulomb branch parameters a1 = a2 = a under the Z2 action will

imply that the two half nodes and two half bifundamentals combine to give N = 2∗

SU(2) theory with µ = 1.

The resulting one-loop partition function is therefore

Z1−loop =
∏
α∈∆

H(ia · α)

(H(ia · α)H(ia · α))
1
2

1

(sinhπ(a · α))
=

1

(sinh(2πa))2
. (3.20)

which, when combined with the classical qP
2

term and the 1
η(τ) instanton term provides

the integrand of (3.19). The general result for si = mib + nib
−1 , i = 1, 2 is obtained by

inserting Wilson loops in the supersymmetric path integral.

In the case of full ZZ boundary conditions the annulus Liouville amplitude is

Z(m1n1),(m2n2) =

∫ ∞
−∞

dPΨ(m1n1)(P )Ψ(m2n2)(−P )
qP

2

η(τ)

= 2
√

2

∫ ∞
−∞

dP

[
sinh(2πbP ) sinh(2πb−1P )

qP
2

η(τ)

×
(

sinh(2πm1Pb
−1) sinh(2πm2Pb

−1) sinh(2πn1Pb) sinh(2πn2Pb)

sinh2(2πPb−1) sinh2(2πPb)

)]
(3.21)

where

Ψ(m,n)(P ) = Ψ(1,1)(P )
sinh(2πmPb−1) sinh(2πnPb)

sinh(2πPb−1) sinh(2πPb)
(3.22)

and

Ψ(1,1)(P ) = 23/4(πµγ(b2))−iP b
−1 2πiP

Γ(1− 2iP b)Γ(1− 2iP b−1)
. (3.23)

This correlator for m1 = m2 = n1 = n2 = 1 corresponds to a Z2 quotient of the circular

quiver with Neumann BCs imposed in the following way:

a) for one SU(2) node the Neumann BCs are imposed on the positive roots, whereas for

the other SU(2) the boundary conditions are imposed on the negative roots.
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b) for each of the SU(2) nodes, the two bifundamentals transform in the (2, 2) represen-

tation. Therefore, imposing Neumann BCs results in a ‘half’ bifundamental.

c) identifying the two Coulomb branch parameters a1 = a2 = a under the Z2 action

implies that the two ‘half’ nodes and two ‘half’ bifundamentals combine to give

N = 2∗ SU(2) theory with µ = 1.

This results in the following expression for the one-loop partition function

Z1−loop =
∏
α∈∆

H(ia · α)

(H(ia · α− 1)H(ia · α+ 1))
1
2

(sinhπ(a · α))

(a · α)

=
∏
α∈∆

1

a · α
× (sinhπ(a · α))

(a · α)

=
(sinh(2πa))2

4a4
. (3.24)

This accounts correctly for the Vandermonde factor in the integration measure associated

to the two SU(2) nodes with Neumann BCs, which gives a factor of a4. The formula

for general values of the integer parameters should correspond to the vev of Wilson loops

analogously to what discussed in previous cases.

A remark is in order about S-duality properties of the amplitude (3.21). Indeed by

expressing this in terms of the modular-transformed parameter τ ′ = −1/τ one obtains a

finite sum of characters of degenerate representations of the Virasoro algebra:

Z(mn),(m′ n′) =

min(m,m′)−1∑
k=0

min(n,n′)−1∑
l=0

χm+m′−2k−1,n+n′−2l−1(τ ′) (3.25)

where

χm,n(τ) =
q−mb

−1+nb
2
/4 − q−mb−1−nb2/4

η(q)
(3.26)

The above formulae claim for a simple gauge theory interpretation of this dual phase which

it would be interesting to explore further.

In the mixed case FZZT/ZZ we finally have the following Liouville amplitude

Zs,(m,n) =

∫ ∞
−∞

dPΨs(P )Ψ(m,n)(−P )
qP

2

η(τ)

=
√

2

∫ ∞
−∞

dP cos(2πsP )

(
sinh(2πmPb−1) sinh(2πnPb)

sinh(2πPb−1) sinh(2πPb)

)
qP

2

η(τ)
(3.27)

Similarly to the previous two cases, the gauge theory counterpart of this amplitude is

obtained by taking the Z2 quotient of circular quiver in the following way:

a) for one SU(2) node the Neumann BCs are imposed on the positive roots, whereas for

the other SU(2) the Dirichlet boundary conditions are imposed on the negative roots.
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b) on each bifundamental we have to impose Dirichlet BCs at one node and Neumann at

the other. Since the representation (2, 2) is symmetric with respect to the exchange

of the two nodes, it does not matter at which node we impose Dirichlet and on which

node Neumann BCs. This set of BCs again gives two ‘half’ bifundamentals.

c) identifying the two Coulomb branch parameters a1 = a2 = a under the Z2 action

implies that the two ‘half’ nodes and two ‘half’ bifundamentals combine to give

N = 2∗ SU(2) theory with µ = 1.

This results in the following expression one the one-loop partition function

Z1−loop =
∏
α∈∆

H(ia · α)

(H(ia · α+ µ)H(ia · α− µ))
1
2

=
∏
α∈∆

H(ia · α)

(H(ia · α+ 1)H(ia · α− 1))
1
2

for µ = 1

=
∏
α∈∆

1

ia · α

=
1

4a2
(3.28)

where we have used the identity H(x+ 1)H(x− 1) = H(x)2x2 in the last line. Notice that

the factor 1
a2

cancels with the Vandermonde determinant.

3.4 The Moebius strip cases vs circular quiver on HS4/Z2

In this subsection we consider the Moebius strip by realising it as a Z2-quotient of the

annulus, or, equivalently, as a Z2 × Z2 quotient of the circular quiver on S4. More pre-

cisely, we consider a circular quiver consisting of gauge group SU(2) × SU(2) with edges

representing bifundamental hypermultiplets on S4, and apply the following sequence of

Z2 quotients. The first Z2-quotient leads to HS4 and corresponds to imposing supersym-

metric boundary conditions, either Dirichlet or Neumann, on the matter content of the

gauge theory. This Z2 action will generate two half-vector multiplets coupled through two

‘half’-bifundamentals. On top of the previous Z2 action, we apply orientation reversing or

antipodal identification

ρ→ π − ρ, θ → θ, ψ → ψ + 2π, φ→ φ.

Note the important fact that the Killing spinor

ξ =



cos( ρ2 )√
2

0

0
cos( ρ2 )√

2
i sin( ρ2 )√

2
0

0 − i sin( ρ2 )√
2

 (3.29)

which is used to perform localization does not depend on ψ, θ, φ and the action on ρ

is the same as in the previous Z2 action. Therefore the second Z2 quotient does not
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break supersymmetry and we can consistently apply it. As usual by now, the different

FZZT/ZZ boundary conditions correspond to Dirichlet/Neumann boundary conditions on

the RP3 boundary.

For FZZT the Liouville amplitude is

ZMs =

∫ ∞
−∞

dPΨC(P )Ψs(−P )
qP

2

η(iτc + 1
2)

= −
∫ ∞
−∞

dP
cos 2πsP

4 sinhπbP sinhπb−1P

qP
2

η(iτc + 1
2)

Acting with first Z2 on the circular quiver theory implies imposing Dirichlet boundary

conditions on the two SU(2) nodes and the adjoint hyper. As already stated before, the

first Z2 action reduces round S4 to a Hemi-S4. The antipodal identification acts only on

the boundary of the Hemi-S4, and, as an important consequence, it acts only on the field

modes at the boundary ρ = π
2 . Since hypermultiplets have no boundary contribution, the

antipodal identification does not act on them. The final expression we get is therefore

Z1−loop
half =

∏
α∈∆

∏
n≥1(n+ ia.α)n

(
∏
α∈∆

∏
n≥1(n+ 1 + ia.α)n(−n+ 1 + ia.α)n)

1
2

× 1∏
α∈∆

∏
n≥1(2n+ ia.α)

=

∏
α∈∆G(1 + ia.α)

(
∏
α∈∆G(2 + ia.α)G(−ia.α))

1
2

Γ(1 +
ia.α

2
)

=

∏
α∈∆G(1 + ia.α)

(
∏
α∈∆G(1 + ia.α)G(1− ia.α))

1
2

(
Γ(−ia.α)

Γ(1 + ia.α)

) 1
2

Γ

(
1 +

ia.α

2

)

=
∏
α

(
Γ(−ia.α)

Γ(1 + ia.α)

) 1
2

Γ

(
1 +

ia.α

2

)
(3.30)

Combining it with the other half we will get

Z1−loop =
∏
α

(
Γ(−ia.α)

Γ(1 + ia.α)

) 1
2

Γ

(
1 +

ia.α

2

)∏
α

(
Γ(ia.α)

Γ(1− ia.α)

) 1
2

Γ

(
1− ia.α

2

)
=

1

sinh(πa)2
(3.31)

For ZZ boundary condition the Liouville amplitude reads

ZMm,n =

∫ ∞
−∞

dPΨC(P )Ψm,n(−P )
qP

2

η(iτc + 1
2)

= −2

∫ ∞
−∞

dP coshπPb coshπPb−1 sinh 2πnPb sinh 2πmPb−1

sinh 2πPb sinh 2πPb−1

qP
2

η
(
iτc + 1

2

)
= −1

2

∫ ∞
−∞

dP
sinh 2πnPb sinh 2πmPb−1

sinhπPb sinhπPb−1

qP
2

η
(
iτc + 1

2

) .
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Considerations similar to the FZZT case takes us to the following expression for Neumann

boundary conditions

Z1−loop
half =

∏
α∈∆

∏
n≥1(n+ ia.α)n

(
∏
α∈∆

∏
n≥1(n+ 1 + ia.α)n(−n+ 1 + ia.α)n)

1
2

×
∏
α∈∆

∏
n≥1

(2n− 1 + ia.α)

=

∏
α∈∆G(1 + ia.α)

(
∏
α∈∆G(2 + ia.α)G(−ia.α))

1
2

1

Γ(1
2 + ia.α

2 )

=

∏
α∈∆G(1 + ia.α)

(
∏
α∈∆G(1 + ia.α)G(1− ia.α))

1
2

(
Γ(−ia.α)

Γ(1 + ia.α)

) 1
2 1

Γ(1
2 + ia.α

2 )

=
∏
α

(
Γ(−ia.α)

Γ(1 + ia.α)

) 1
2 1

Γ(1
2 + ia.α

2 )
(3.32)

Combining it with the other half we will get

Z1−loop =
∏
α

(
Γ(−ia.α)

Γ(1 + ia.α)

) 1
2 1

Γ(1
2 + ia.α

2 )

∏
α

(
Γ(ia.α)

Γ(1− ia.α)

) 1
2 1

Γ(1
2 + −ia.α

2 )

=
cosh(πa)2

a2
(3.33)

which matches with ZM1,1. FZZT and ZZ amplitudes with more general values of the bound-

ary parameters can be obtained as usual via Wilson loop insertions.

Let us now briefly discuss the instanton contribution for the comparison with the

Moebius strip amplitudes. In this case the gauge theory coupling constant is τ = 4πi
g2

+ 1
2 =

iτc+ 1
2 , where the 1

2 corresponds to turn on a half-integer Chern-Simons term on the three-

sphere fixed under the involution. The simplest way to understand this relation is by noting

that the Moebius strip can also be realized as a Z2 quotient of a torus, as we remarked at

the beginning of this section. More precisely, the Moebius strip can be obtained by acting

on a torus with the above complex modulus by the following involutions

z → 1− z̄ + iτ2,

z → −z̄, z → 2− z̄ (3.34)

The second set of involutions has a fixed point set which defines the boundary of the

Moebius strip. On the gauge theory side, this has the interesting interpretation of turning

on a θ-term with θ = π. This can also be interpreted as a contribution from a Chern

Simons term on the RP3 boundary.

4 Coupled 3d/4d Gauge theories and boundary Liouville insertions

In this section we consider Liouville theory on Riemann surfaces with punctures on the

boundary. The two building blocks for all the possible amplitudes are given by

• the disk with a boundary and bulk puncture.

• the disk with 3 boundary punctures.
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Both of these cases can be obtained taking a Z2 quotient of the 2-sphere with 3 punctures.

In the first case one starts from the 2-sphere with one puncture on the equator:

In the second case from the 2-sphere with all three punctures on the equator:

The 2-sphere with 3 punctures is AGT dual of the 4d N = 2 theory of the SU(2)3 tri-

fundamental, that is 4 free massless hypermultiplets.

The amplitude for these two building blocks are well known. In this section we in-

terpret them as 3d boundary conditions for the theory of 4 free massless hypermultiplets,

following [27] (see also [28–30]). It turns out that the original SU(2) bulk symmetries

are broken to U(1) if the puncture is on the equator fixed by the Z2, while if the punc-

ture is in the bulk of the Riemann surface the global symmetry is still SU(2). There are

also purely 3d symmetries, whose fugacities are the cosmological constants σ living on the

boundary segments. Such purely 3d symmetries seems to always be SU(2), sometimes it’s

an apparently U(1)σ non-trivially enhanced to SU(2)σ.

We then write the amplitudes for the boundary four point function and the “two

boundary — one bulk” three point function. These can be thought of as the Z2 quotient

of the sphere with 4 punctures, that is N = 2 SU(2) SQCD with Nf = 4, so they represent

boundary conditions for interacting 4d theories. These amplitude are written in terms of

the two basic amplitudes, but they also contain instanton factors.

4.1 “One bulk — one boundary” two point function: 3d N = 4 U(1) with 2

flavours coupled to 3 4d hypers

The Liouville amplitude for the disk with one bulk puncture (with fugacity α) and one

boundary puncture (with fugacity β)

〈Ψβ(1)Vα(0)〉FZZT
D,σ = Z[BTSU(2)](β, α;σ) (4.1)

can be taken from eq 5.39 of [25] and gives us the hemisphere partition function Z for the

3d− 4d system:

Z[BTSU(2)] =
Γb(Q/2± 2α̃− β̃)Γb(Q/2− β̃)2

Γb(Q)Γb(−2β̃)Γb(2α̃)Γb(Q− 2α̃)
Sb

(
Q

2
− β̃

)
×
∫ +i∞

−i∞
e2πσxSb

(
Q

4
±x±α̃+

β̃

2

)
dx (4.2)
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U(1)3d
x SU(2)4d

α̃
U(1)4d

βΣ3d

pi

p̃i
X4d

Figure 2. Quiver depiction of the 3d− 4d system for the case of the “one bulk — one boundary”

Liouville two point function. X4d is a 4d half-hyper, not a full hyper, so we depict it with an arrow.

where F (x± y) = F (x+ y)F (x− y) and we redefined α̃ = −Q/2 + α, β̃ = −Q/2 + β. We

applied the definition of Sb(x)
Γb(x)

Γb(Q− x)
= Sb(x) (4.3)

One can interpret 4.2 as the partition function of a coupled 3d−4d system living on a half-

S4. Γb is the contribution of a half-hyper in the 4d bulk. Sb(
Q
2 r+ iy) is the contribution of

3d chiral multiplet living on the S3 at the boundary, with R-charge r and global-symmetry

fugacity y.

Looking at 4.2, it is easy to see that on the boundary there is U(1) gauge theory with

4 charged fields. x is the fugacity for a 3d U(1) gauge symmetry, with FI parameter σ,

which is the fugacity of the topological symmetry.

The four 4d Γb fields are in the numerator of the prefactor in 4.2:

• Γb(Q/2± 2α̃− β̃)Γb(Q/2− β̃) is a 4d half-hyper, SU(2)α̃-triplet, X4d
I

• Γb(Q/2− β̃) is a 4d half-hyper, SU(2)α̃-singlet, Y 4d

• Sb(Q/4 + x± α̃+ β̃/2) are two 3d chiral multiplets pi of gauge charge +1

• Sb(Q/4− x∓ α̃+ β̃/2) are two 3d chiral multiplets p̃i of gauge charge −1

• Sb(Q/2− β̃) is a 3d gauge singlet Σ3d

We only see 4 of the 8 half-hypers because this is a hemisphere partition function

instead of a sphere partition function.6

In order to describe completely the boundary condition, we need to write the super-

potential. We consider the most general gauge invariant terms which are also uncharged

under the α̃, β̃ and σ fugacities, and also impose SU(2)α non-Abelian global symmetry.

This is given by

W3d−4d = Σ3d(p1p̃1 + p2p̃2) + λ
(
X4d
−1p1p̃2 +X4d

0 (p1p̃1 − p2p̃2) +X4d
+1p2p̃1

)
(4.4)

The 3d part of this boundary condition is precisely the matter content and superpotential

of the 3d N = 4 gauge theory TSU(2), that is U(1) with 2 flavours.

6The 4d fields are the field content of SU(2) N = 4 SYM on a half-S4, that is Liouville theory on a torus

with one puncture, modded out by Z2. On the full S4 we would see 8 half hypers, and the integral over

the Cartan of SU(2)α̃ and the symmetry with fugacity β would be SU(2) instead of U(1). We expect the

3d gauge theory to be related to the S-duality wall gauge theory of 4d N = 4 SYM, that is TSU(N), with

N = 2.
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The SU(2)α̃ doublets pi, p̃j have scaling dimension 1/2, the singlet Σ3d has scaling

dimension 1. The superpotential 4.4 is scale invariant because the 4d fields and the 3d

mesons have scaling dimension 1. Notice that in this case we don’t need the 3d − 4d

superpotential to fix the correct scaling dimensions of the 3d fields, these are fixed just by

the 3d superpotential. The coupling in front of the term Σ(p1p̃1 + p2p̃2) is not marginal, it

is needed to fix the scaling dimension of Σ. The coupling λ is instead exactly marginal.

Another term preserving all the global symmetries is Y 4d(p1p̃1+p2p̃2), but the F -terms

of Σ coming from 4.4 are setting to zero the gauge invariant (p1p̃1 + p2p̃2) in the 3d chiral

ring, so we don’t expect the term Y 4d(p1p̃1 + p2p̃2) to be present. Therefore, the 3d − 4d

system considered here is a boundary condition for the 3 4d hypers X4d
I .

The topological symmetry, with fugacity σ, is just a 3d symmetry, in the sense that no

4d fields are charged under it, and it’s enhanced to SU(2)σ, since U(1) with 2 flavours, with

N = 4 3d susy, is a balanced quiver, so the basic monopoles M± have scaling dimension 1

and sit in the same supermultiplet of the off diagonal currents of SU(2)σ. The coupling to

the 4d fields respect the SU(2)α × SU(2)σ global symmetry.

The 3d theory itself displays N = 4 supersymmetry and is the so called TSU(2) theory,

which is the S-duality for 4d N = 4 SYM with gauge group SU(2), but here we are coupling

the 3d theory to a N = 2 4d (free) theory, so we expect that the full 3d − 4d system has

only 4 supercharges. In particular the SU(2)×SU(2) 3d R-symmetry of the TSU(2) theory

is broken to U(1)R ×U(1)β .

4.2 Boundary three-point function: U(1) with 4 flavours and Wmon coupled

to 4 free hypers

The three point function gives us the partition function for a 3d− 4d coupled system

〈Ψβ1(0)Ψβ2(1)Ψβ3(∞)〉FZZT
D,σ1,σ2,σ3 = Z[BU(1),Nf=4](β1, β2, β3;σ1, σ2, σ3) (4.5)

(see the second figure at the beginning of this section) can be found from Cσ3σ2σ1β3β2β1
in

eq. (5.45) of [25]

Z[BU(1),Nf=4] =
Γb(Q/2− β̃1 ± β̃2 ± β̃3)Sb(Q/2± σ̃1 − σ̃3 − β̃3)Sb(Q/2± σ̃2 + σ̃3 − β̃2)

Γb(−2β̃1)Γb(−2β̃2)Γb(−2β̃3)Γb(Q)

×
∫ +i∞

−i∞
Sb

(
Q

4
+x−σ̃3±β̃2

)
Sb

(
Q

4
+x±σ̃1−β̃1

)
(4.6)

×Sb
(
Q

4
−x+σ̃3+β̃1± β̃3

)
Sb

(
Q

4
−x±σ̃2

)
dx

We shifted the integration variable x by Q/4 − σ2 and defined β̃i = −Q/2 + βi, σ̃i =

−Q/2 + σi.

The 4d hypers X4d
I,J Γb(Q/2− β̃1± β̃2± β̃3) are half of the tri-fundamental of SU(2)β̃1×

SU(2)β̃2 × SU(2)β̃3 . Only the four half-hypers with negative β̃1 charge appear. The 4d

fields appearing in the denominator Γb(−2β̃1)Γb(−2β̃2)Γb(−2β̃3) become 4d N = 2 vector

multiplets upon gluing the boundary three-point function with a bulk-boundary propagator

or with another copy of the boundary three-point function, they will not play a role in

this subsection.
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The 3d gauge theory is U(1) with 4 flavours of charge +1 and 4 flavours of charge

−1. It enjoys N = 2 supersymmetry. The 8 charged 3d fields can be organized in 4

charged doublets:

• Sb(Q/4 + x− σ̃3 ± β̃2) is a SU(2)β̃2-doublet Q1,2

• Sb(Q/4 + x± σ̃1 − β̃1) is a SU(2)σ̃1-doublet Q3,4 = Qα

• Sb(Q/4− x+ σ̃3 + β̃1 ± β̃3) is a SU(2)β̃3-doublet Q̃1,2

• Sb(Q/4− x± σ̃2) is a SU(2)σ̃2-doublet Q̃3,4 = Q̃α̇

and 8 gauge singlets

• Sb(Q/2± σ̃1 − σ̃3 − β̃3) is a SU(2)σ̃1-doublet X3d
α

• Sb(Q/2± σ̃2 + σ̃3 − β̃2) is a SU(2)σ̃2-doublet X̃3d
α̇

• Γb(Q/2− β̃1 ± β̃2 ± β̃3) is a SU(2)β̃2 × SU(2)β̃3-bifundamental Z4d

Notice that the 4d fields Z4d are not charged under the σ̃i fugacities. We use the notation

SU(2)β̃i even if the β̃i-fugacities are associated to U(1) symmetries.

As opposed to (4.2), in the integral (4.6) there is no FI term, moreover the fugacities of

the 8 charged fields sums up to zero. Together, these facts imply that both U(1) topological

and the U(1) axial symmetries of the U(1) with Nf = 4 gauge theory are broken. The

way to achieve this breaking is to include in the 3d superpotential two terms containing

monopole operators Wmon = M+ + M− (see [31] for a study of U(Nc) gauge theories

with such a superpotential). M± is the basic supersymmetric monopole operator with

topological charge ±1.

The 16 gauge invariant quadratic mesons QiQ̃j of the U(1) with Nf = 4 gauge theory

have the following global symmetry fugacities

Q1 Q2 Q3 Q4

Q̃1 β̃1 + β̃2 + β̃3 β̃1 − β̃2 + β̃3 σ̃1 + σ̃3 + β̃3 −σ̃1 + σ̃3 + β̃3

Q̃2 β̃1 + β̃2 − β̃3 β̃1 − β̃2 − β̃3 σ̃1 + σ̃3 − β̃3 −σ̃1 + σ̃3 − β̃3

Q̃3 σ̃2 − σ̃3 + β̃2 σ̃2 − σ̃3 − β̃2 σ̃1 + σ̃2 − β̃1 −σ̃1 + σ̃2 − β̃1

Q̃4 −σ̃2 − σ̃3 + β̃2 −σ̃2 − σ̃3 − β̃2 σ̃1 − σ̃2 − β̃1 −σ̃1 − σ̃2 − β̃1


(4.7)

Comparing these charges with the charges of the 8 gauge singlets, we find that the 3d

superpotential compatible with the Cartan generators of all the global symmetries is given

by the monopoles and 8 flipping terms coupling the 8 gauge-singlets to 8 of the 16 mesons:

W = M+ + M− + X̃3d
α̇ Q1Q̃

α̇ +X3d
α Q

αQ̃1 +
∑

I,J=1,2

Z4d
I,JQIQ̃J (4.8)
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The non-Abelian SU(2)σ̃1 × SU(2)σ̃2 symmetry is respected by these interactions:

U(1)3d
x

SU(2)3d
σ̃1

SU(2)4d
β̃2

SU(2)4d
β̃3

SU(2)3d
σ̃2

Z4d

X3d
αX̃3d

α̇

Qα

Q̃1,2

Q̃α̇

Q1,2

The above superpotential is enough to fix all the R-charges, as we now explain. There

is a Z2 charge-conjugation symmetry Qi ↔ Q̃i , X
3d ↔ X̃3d, so R[Qi] = R[Q̃i]. The

SU(2)σ̃1×SU(2)σ̃2 symmetry imposes R[Q3] = R[Q4]. The R-charge of the basic monopoles

in a 3d N = 2 U(1) gauge theory with 4 flavours is given in terms of the R-charge of the

elementary fields by the usual formula

R[M±] =
4∑
i=1

(1−R[Qi]) (4.9)

Let us consider for a moment the 3d theory U(1) with Nf = 4 withWmon and the 4 flipping

singlets X, X̃ in isolation, without coupling to 4d fields Z4d. Performing Z-extremization,

for the isolated 3d theory we find

R[Q1] ' 0.7532 , R[Q2] ' 0.3215 , R[Q3,4] ' 0.4624 R[X3d, X̃3d] ' 0.7839 (4.10)

This implies that the model we are discussing is different from the models called T(4,4)

in [27], which is U(1) with NF = 4 and W = M+ + M−, where the R-charges of the Q’s

are all 1
2 .

Now instead we couple the 3d theory to 4 free 4d fields Z4d, which must have R-

charge 1.7 This, because of the last term in 4.8, implies that R[Q1] = R[Q2] = 1
2 . Com-

bining with eq. (4.9), we conclude that in the 3d− 4d coupled system

R[Q1, Q2, Q3, Q4] =
1

2
, R[X3d, X̃3d] = 1 (4.12)

7It is also interesting to see what happens if we think of the 4 fields Z4d as 3d gauge invariant singlets

Z3d. In this case we have to perform a Z-extremization on two variables. The result is

R[Q1] ' 0.771 , R[Q2] ' 0.511 , R[Q3,4] ' 0.359 . (4.11)

Notice that R[Z3d
1,1] = 2− 2R[Q1] < 1

2
, so the unitarity bound for Z3d

1,1 would be violated.
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The chiral ring operators of the boundary condition have thus integral R-charges. At

the lowest level, R = ∆ = 1, there are 16 operators: the 8 mesons not appearing the

superpotential and the 8 gauge singlet fields X, X̃, Z. The fugacities of these 16 operators

are given by


Z11 Z12 X3d

α

Z21 Z22 QαQ̃2

X̃3d
α̇ Q2Q̃α̇ QαQ̃α̇

 :


−β̃1 − β̃2 − β̃3 −β̃1 + β̃2 − β̃3 −σ̃1 − σ̃3 − β̃3 σ̃1 − σ̃3 − β̃3

−β̃1 − β̃2 + β̃3 −β̃1 + β̃2 + β̃3 σ̃1 + σ̃3 − β̃3 −σ̃1 + σ̃3 − β̃3

−σ̃2 + σ̃3 − β̃2 σ̃2 − σ̃3 − β̃2 σ̃1 + σ̃2 − β̃1 −σ̃1 + σ̃2 − β̃1

σ̃2 + σ̃3 − β̃2 −σ̃2 − σ̃3 − β̃2 σ̃1 − σ̃2 − β̃1 −σ̃1 − σ̃2 − β̃1


(4.13)

Looking at these quantum numbers, we see that the operators X3d
α and the operators

QαQ̃2 can be organized in a SU(2)σ̃3 doublet. Similarly the operators X̃3d
α̇ and the operators

Q2Q̃α̇ form another SU(2)σ̃3 doublet. It is natural to expect that the U(1)σ̃3 symmetry is

actually enhanced to SU(2)σ̃3 . This enhancement should happen on a special point in the

conformal manifold of the 3d − 4d system. In order to prove this it should be useful to

study non trivial dualities for the theory under consideration, as in [27]. The symmetry

enhancement should also follow from the cyclic Z3 symmetry of the 3-points boundary

function: all three symmetries associated to σi are on equal footing and enhance to SU(2).

This cyclic symmetry is indeed non-trivial to prove, see [32].

It was shown in [27] (see also [33]) that the theory T4,4, U(1) with NF = 4 and

W = M+ + M− (with SU(4) × SU(4) global symmetry) is part of a web of dual theories.

20 = 1 + 18 + 1 dual phases are of the form U(1) with NF = 4, W = M+ + M−, with 0

or 8 or 16 gauge singlets fields flipping the mesons. There are also dual phases of the form

SU(2) with 6 doublets, again with some gauge singlets flipping fields (6 or 10). This set

of mutually dual 3d theories was coupled in [27] to 16 free 4d hypers to produce SO(12)-

invariant boundary conditions. We can act with all these dualities also on our 3d theory

U(1) with NF = 4, W = M+ + M− and 4 gauge singlet flipping fields, producing many

dual phases with a varying number of 3d flipping fields.

4.3 Gluing the building blocks: gauge theory interpretation

In this subsection we consider two simple examples of gluing procedure for the building

blocks discussed above and their gauge theory interpretation. The gluing factor is given

by the conformal block of CFT on the strip, which amounts to considering just one copy

of Virasoro descendants. The corresponding gauge theory factor is one copy of Nekrasov

instanton partition function with real coupling. As we will show later, also the one-loop

factors of the gauge theory change. Indeed, concerning the vector, one has to take into

account only half of the modes on each side to reproduce the CFT OPE coefficients.

Moreover, the reality of the mass parameters implies a reduction of the flavour symmetry

of the gauge theory from SU(2)s to U(1)s: this is reflected in the global symmetries of the

boundary 3d gauge theories.

We first consider the boundary four-point function. From the gauge theory viewpoint,

this is obtained from Nf = 4 SU(2) gauge theory on HS4 with real masses and gauge
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coupling, coupled to a 3d sector living on the S3 boundary which is discussed below.

The four-point function is obtained by boundary gluing two disks with three boundary

punctures as in the following figure:

The corresponding amplitude reads

〈Ψσ1σ4
β4

(x4)Ψ
σ4σ3
β3

(x3)Ψ
σ3σ2
β2

(x2)Ψ
σ2σ1
β1

(x1)〉

=

∫
dβ Cσ1σ4σ2

β1,β4,β
Cσ3σ2σ4
β3,β2,Q−βF

s(∆βi
,∆β , x1, x2, x3, x4)

(4.14)

As we will see this Liouville correlation function corresponds to N = 2 gauge theory on

Hemi-S4 with Neumann BCs and with certain matter content. We consider the one-loop

part in this channel

Cσ1σ4σ2
β1,β4,β

Cσ3σ2σ4
β3,β2,Q−β

=
Γb(

Q
2 − β̃ ± β̃1 ± β̃4)

Γb(−2β̃)Γb(−2β̃1)Γb(−2β̃4)Γb(Q)
Sb

(
Q

2
± σ̃2 − σ̃1 − β̃1

)
Sb

(
Q

2
± σ̃4 + σ̃1 − β̃4

)
×
∫

dx

[
Sb

(
Q

4
+ x− σ̃1 ± β̃4

)
Sb

(
Q

4
+ x± σ̃2 − β̃

)
×Sb

(
Q

4
− x+ σ̃1 + β̃ ± β̃1

)
Sb

(
Q

4
− x± σ̃4

)]
×

Γb(
Q
2 + β̃ ± β̃2 ± β̃3)

Γb(2β̃)Γb(−2β̃2)Γb(−2β̃3)Γb(Q)
Sb

(
Q

2
± σ̃4 − σ̃3 − β̃3

)
Sb

(
Q

2
± σ̃2 + σ̃3 − β̃2

)
×
∫

dy

[
Sb

(
Q

4
+ y − σ̃3 ± β̃2

)
Sb

(
Q

4
+ y ± σ̃4 + β̃

)
×Sb

(
Q

4
− y + σ̃3 − β̃ ± β̃3

)
Sb

(
Q

4
− y ± σ̃2

)]
(4.15)

where we have used the redefined fugacities −Q
2 + βi ≡ β̃i.

For b = 1

1

Γb(−2β̃)Γb(2β̃)
=

Υ(2β̃)

Γ(1− 2β̃)Γ(2β̃)
(4.16)

which is nothing but the vector one loop determinant for the choice of Neumann BCs on

dynamical fields. This is so because β̃ denotes vev of the scalar of bulk vector multiplet

and there is an overall integration over it. For the bulk hypers it is clear that four half

hypers with masses ±β̃1± β̃4 are coupled to the half of vector multiplet with negative sign

of β̃ and another four half hypers with masses ±β̃2 ± β̃3 are coupled to the other half of

vector with positive sign of β̃.
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We now pass to consider the open gluing of a bulk-to-boundary disk amplitude in the

following example:

The amplitude reads

BB(ã, Q− β, σ)Cσ1,σ,σ
β2,β1,β

=
Γb(±2ã+ β)Γb(Q+ β)2Υ(ã)

Γb(Q)Γb(−Q+ 2β)
Sb(β)

∫
e2πiσySb

(
± y ± ã− β/2 +

Q

2

)
dy

×
Γb(

Q
2 − β̃ ± β̃2 ± β̃1)

Γb(−2β̃)Γb(−2β̃2)Γb(−2β̃4)Γb(Q)
Sb

(
Q

2
± σ̃ − σ̃1 − β̃2

)
Sb

(
Q

2
± σ̃ + σ̃1 − β̃1

)
×
∫

dx

[
Sb

(
Q

4
+ x− σ̃1 ± β̃1

)
Sb

(
Q

4
+ x± σ̃ − β̃

)
×Sb

(
Q

4
− x+ σ̃1 + β̃ ± β̃2

)
Sb

(
Q

4
− x± σ̃

)]

5 Open questions

There are a number of open questions worth investigating.

To start with, we did not discuss the interpretation and consequences of the Z2-quotient

on the BPS spectrum and infrared properties of the supersymmetric gauge theories. The

Seiberg-Witten curve of the quotient gauge theory is expected to be given by a covering of

the open/unoriented geometries on which the M5-branes are wrapped. As noted in [34],

there is a non-trivial interplay between the involution and the S-duality properties of the

BPS spectrum.

The localization computation we performed in section 2 in the RP4 case are valid for

all gauge groups and thus amenable for a large N analysis. One can easily obtain matrix

models from the one-loop calculations presented in section 2. This raises the question of a

holographic dual description of these gauge theories.

Localization computations were performed on toric manifolds allowing for new com-

putations in Donaldson theory [35, 36]. It would be interesting to investigate whether our

results could be used to extend Donaldson theory to un-orientable manifolds.

As far as the AGT correspondence is concerned, the higher rank gauge theory compu-

tations performed in this paper should have a natural counterpart in open/unoriented Toda

CFT [37–39]. More work is required to deepen our understanding of the correspondence in

presence boundary punctures. Actually, the bulk-to-boundary overlap wavefunction should

be related to the S-duality kernel for the relevant conformal block/gauge theory instanton

sector, while boundary puncture degenerations should be related to the S-duality kernel
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associated to the disk three-point function. Also, a general analysis of the 4d-3d systems

associated to two Riemann surfaces with boundaries and boundary insertions, by attaching

boundary insertion of each one would be welcome but goes beyond the scope of this paper.

It would also be interesting to perform quotients of four-dimensional manifolds other

than S4. A notable example is S2×S2, whose two-dimensional CFT counterpart has been

related to Liouville gravity [19]. This should give access to a gauge theory description of

the open sector of Liouville gravity, see [40] for recent developments on this topic.

One could also consider quotients of other six dimensional M5-brane geometries, such

as S3×M3, and investigate their consequences at the level of 3d-3d correspondence [28, 41].
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A SU(2)× SU(2) harmonics

Our choice of vielbeins is

e1
L = −1

2
cosψ sin ρ dθ − 1

2
sin θ sinψ sin ρ dφ,

e2
L = +

1

2
sinψ sin ρ dθ − 1

2
sin θ cosψ sin ρ dφ,

e3
L = −1

2
sin ρ dψ − 1

2
cos θ sin ρ dφ,

e4
L = dρ. (A.1)

The subscript will be explained shortly. The non-zero components of the spin connection

derived from the above choice of vielbeins are

Ω12
ψ = −1

2
, Ω34

ψ = −1

2
cos ρ,

Ω13
θ = −1

2
sinψ, Ω14

θ = −1

2
cos ρ cosψ,

Ω23
θ = −1

2
cosψ, Ω24

θ = −1

2
cos ρ sinψ,

Ω12
φ = −1

2
cos θ, Ω13

φ =
1

2
sin θ cosψ, Ω14

φ = −1

2
cos ρ sinψ sin θ,

Ω23
φ = −1

2
sin θ sinψ, Ω24

φ = −1

2
cos ρ cosψ sin θ, Ω34

φ = −1

2
cos θ cos ρ.
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Another choice of vielbeins is as follows:

e1
R = −1

2
cosφ sin ρ dθ − 1

2
sin θ sinφ sin ρ dψ,

e2
R = −1

2
sinφ sin ρ dθ +

1

2
sin θ cosφ sin ρ dψ,

e3
R = −1

2
sin ρ dφ− 1

2
cos θ sin ρ dψ

e4
R = dρ,

(A.2)

which is essentially obtained by exchanging φ and ψ in eL. Call the above set the right-

handed vielbeins, and those in Eq A.1 the left-handed vielbeins.

It can be verified that the six one-forms sin ρ eaL and sin ρ eaR, where a ∈ {1, 2, 3},
satisfy the Killing equation Dmvn +Dnvm = 0, and therefore correspond to generators of

the isometry group of S4. The SO(4) group is isomorphic to SU(2)L × SU(2)R, where the

subscripts on SU(2) indicate which set of generators it is related to. In order to obtain

the commutation relations of the two SU(2) algebras in the canonical form, we rescale the

generators (written as one-forms) as follows:

l1 =
i

2
sin ρ e1

L,

l2 = − i
2

sin ρ e2
L,

l3 =
i

2
sin ρ e3

L.

r1 =
i

2
sin ρ e1

R,

r2 =
i

2
sin ρ e2

R,

r3 =
i

2
sin ρ e3

R.

(A.3)

We shall denote the Lie derivatives with respect to la and ra as JaL and JaR. We also define

J±L = J1
L± iJ2

L, which are raising and lowering operators for SU(2)L and coincide with Lie

derivatives with respect to l± = l1±il2. Similar definitions hold for right-handed generators.

Let us first consider scalars. Lie derivative is the usual directional derivative: JaL =

lam∂m. Consider a basis in which J3
L,R are diagonal. Scalar functions belonging to this

basis are given by f(θ, ρ)ei(qLψ+qRφ). For such a function to be a highest weight function

with respect to both SU(2)s, it has to be annihilated by J+
L,R. (We do not have to consider ρ

dependence since none of the generators act along the ρ direction. One can freely multiply

an arbitrary function of ρ, and the resulting function would again be a highest weight

function). It can be easily seen that for a function to be annihilated by both the raising

operators, the highest weights with respect to the two SU(2)s, call them jL and jR, must

be equal. The highest weight function then takes the form

ΦjL =

(
cos

θ

2

)2jL

eijL(ψ+φ) (A.4)

up to a (possibly ρ-dependent) normalization factor. Acting s times on ΦjL by J−R , we get:

(J−R )sΦjL = eijLψ+i(jL−s)φ
(

cos
θ

2

)2jL−s(
sin

θ

2

)s
which is a highest weight state with respect to SU(2)L (therefore is an eigenstate of J3

L

with eigenvalue jL), but has J3
R eigenvalue jL − s. To find the lowest weight state with
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respect to SU(2)R, we act on the above state by J−R once more and set the result equal to

zero. Doing so, one finds that (J−R )sΦjL is the lowest weight state when s = 2jL. Therefore,

there are 2jL states with SU(2)L weight equal to jL. Similar result holds if we consider

descendants with respect to the left lowering operator.

Let us now turn to one-forms. The Lie derivative of a one-form ω, with respect to la

for instance, is given by:

(JaL ω)n = lam(∂mωn − ∂nωm) + ∂n(lamωm).

We would like to repeat the same exercise and try to find one-forms that are simultane-

ously the highest weight states with respect to SU(2)R and SU(2)L. The calculations are

straightforward, but tedious, and we will therefore be sketchy in our description, emphasiz-

ing only the results that will be important later. Consider a one-form that is an eigenstate

of J3
L,R:

ωm(ψ, θ, φ) = ei(qLψ+qRφ)ω̃m(θ)

Apply the raising operators J+
L,R to the above one-form, and set the result equal to zero.

One can divide the analysis into two cases:

• ω̃ρ(θ) is not identically zero. In this case, simultaneous vanishing of (J+
L ω)ρ and

(J+
R ω)ρ requires that the highest weights, which we denote jL and jR, are equal.

With this condition, the other components can be easily solved for, and we get the

following highest weight one-form:

ω0 ≡ eijL(ψ+φ)

(
cos

θ

2

)2jL
(
dψ + dφ+ i tan

θ

2
dθ + αdρ

)
up to an overall normalization constant, and where α is some constant.

• ω̃ρ(θ) is identically zero. We may no longer conclude that jL = jR. The ψ and φ

components can be easily solved to give

ω̃ψ = C1

(
cos

θ

2

)jL (
sin

θ

2

)−jL
(sin θ)jR

ω̃φ = C2

(
cos

θ

2

)jR (
sin

θ

2

)−jR
(sin θ)jL

The component ω̃θ can now be solved for in multiple ways, and the various solutions

agree only when the combinations C1(1 + jl − jR) and C2(−1 + jl − jR) both vanish.

This can happen if either C1 = 0, C2 6= 0, jL−jR = 1 or C1 6= 0, C2 = 0, jL−jR = −1.

(If both C1 and C2 vanish, then we have a one-form that is identically zero). We

have, then, the following two possibilities, up to normalization:

ωL ≡ ei(jL−1)φ+i jLψ

(
cos

θ

2

)2jL−2

(sin θ dφ+ i dθ)

ωR ≡ ei(jL+1)φ+i jLψ

(
cos

θ

2

)2jL

(sin θ dψ + i dθ)

where, in the first solution jL = jR + 1, whereas in the second solution jL = jR − 1.

We have written jR everywhere in terms of jL.
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Let us now consider scalar combinations of the highest weight one-forms and the left Killing

vectors lam (where a ∈ {1, 2, 3}). Let us first do this for the one-form with jL = jR:

ω0a ≡ lamω0
m = eijL(ψ+φ)

(
cos

θ

2

)2jL
(
e−iψ tan

θ

2
, ie−iψ tan

θ

2
,−i
)
. (A.5)

Further, consider the combinations ω0± = ω01 ± iω02:

ω0+ = 0, ω0− = 2eijL(ψ+φ)−iψ
(

cos
θ

2

)2jL−1(
sin

θ

2

)
.

Note that the third component ω03 is already a scalar highest-weight function with weight

jL. The combination ω0+ is trivially belongs to a highest-weight representation, whereas

ω0− can be seen to be a level one descendent of a highest weight function with weight jL:

ω0− ∝ J−L ΦjL . Therefore, all of {ω0+, ω03, ω0−} belong to the highest weight representation

with weight jL.

The same exercise carried out for ωL gives:

(ωL+, ωL3, ωL−) =

(
0, 0, 2ei(jL−1)(φ+ψ)

(
cos

θ

2

)jL−1)
,

which implies that all the above components belong to a scalar highest-weight representa-

tion with weight jL − 1. Finally, from ωR we get:

(ωR+, ωR3, ωR−) ∼
(
ΦjL+1, J

−
L ΦjL+1, (J

−
L )2ΦjL+1

)
(The ∼ sign indicates that each of the terms on the left is proportional to the corresponding

term on the right, but the constant of proportionality, which is irrelevant to our purposes,

may differ for each term.)

Let us summarize: if ω is a highest weight one-form with right weight jR, then the

scalar combinations of ω with {l±, l3} belong to a scalar highest weight representation

with highest weight jR. This means that we can study one-form highest weight functions

in terms of scalar highest weight functions and their descendents.

B Supersymmetry transformations

The supersymmetry transformation of a vector multiplet is given by [17]:

QAm = iξAσmλ̄A − iξ̄Aσ̄mλA,

Qφ = −iξAλA,

Qφ̄ = +iξ̄Aλ̄A,

QλA =
1

2
σmnξA(Fmn + 8φ̄Tmn) + 2σmξ̄ADmφ+ σmDmξ̄Aφ+ 2iξA[φ, φ̄] +DABξ

B,

Qλ̄A =
1

2
σ̄mnξ̄A(Fmn + 8φT̄mn) + 2σ̄mξADmφ̄+ σ̄mDmξAφ̄− 2iξ̄A[φ, φ̄] +DAB ξ̄

B,

QDAB = −iξ̄Aσ̄mDmλB − iξ̄Bσ̄mDmλA + iξAσ
mDmλ̄B + iξBσ

mDmλ̄A

− 2[φ, ξ̄Aλ̄B + ξ̄Bλ̄A] + 2[φ̄, ξAλB + ξBλA]. (B.1)
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The square of the supersymmetry transformation is given by

Q2Am = ivnFnm +DmΦ,

Q2φ = ivnDnφ+ i[Φ, φ] + (w + 2Θ)φ,

Q2φ̄ = ivnDnφ̄+ i[Φ, φ̄] + (w − 2Θ)φ̄,

Q2λA = ivnDnλA + i[Φ, λA] +

(
3

2
w + Θ

)
λA +

i

4
σklλADkvl + ΘABλ

B,

Q2λ̄A = ivnDnλ̄A + i[Φ, λ̄A] +

(
3

2
w −Θ

)
λ̄A +

i

4
σ̄klλ̄ADkvl + ΘABλ̄

B,

Q2DAB = ivnDnDAB + i[Φ, DAB] + 2wDAB + ΘACD
C
B + ΘBCD

C
A,

(B.2)

where

vm = 2ξ̄Aσ̄mξA

Φ = −2iφξ̄Aξ̄A + 2iφ̄ξAξA

w = − i
2

(
ξAσmDmξ̄A +Dmξ

Aσmξ̄A
)

Θ = − i
4

(
ξAσmDmξ̄A −Dmξ

Aσmξ̄A
)

ΘAB = −iξ(Aσ
mDmξ̄B) + iDmξ(Aσ

mξ̄B).

In particular, it can be seen that the generator of gauge transformations is

Φ̂ = Φ− ivnAn. (B.3)

For the Killing spinors in eq. (2.5), we see that the generators of scaling and U(1)R trans-

formations, w and Θ respectively, are both zero. The other generators are

vm∂m = 2∂ψ, Φ̂ = 2iφ sin2 ρ

2
+ 2iφ̄ cos2 ρ

2
− 2iAψ, ΘAB =

(
0 1

1 0

)
. (B.4)

We now describe the gauge-fixing procedure, more details regarding which may be

found in [20]. In order to perform gauge-fixing, one introduces a BRST-like operator QB,

and a zoo of fields that satisfy

QBc = a0 + icc, QB c̄ = b, QB ā0 = c̄0, QBb0 = c0,

QBa0 = 0, QBb = [a0, c̄], QB c̄0 = [a0, ā0], QBc0 = [a0, b0].
(B.5)

To understand the role of each of these fields, consider the gauge-fixing action

QBVGF,ξ ≡ QBTr

[
c̄(i∂mA

m) + c̄b0 + c

(
ā0 −

ξ

2
a0

)]
. (B.6)

(What goes into the action is of course (Q+QB)VGF,ξ, but it can be shown that QVGF,ξ does

not alter the partition function [20]. Further, it will be shown below that ξ drops out from
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the final expression, and therefore can be chosen to be zero. But we retain it temporarily

to make the role of some of the gauge-fixing fields more transparent). Expanding the above

expression we get

Tr [b(i∂mA
m)− c̄(i∂mDmc) + bb0 − c̄c0 − cc̄0]

+ Tr

[
(icc+ a0)

(
ā0 −

ξ

2
a0

)]
.

(B.7)

In the first line, the constant fields b0, c0, c̄0, on integrating over, absorb the zero modes of

b, c̄, c respectively. After this is done, the integration over the remaining modes of b, c̄, c

imposes the gauge condition ∂mA
m = 0 (via the term ib∂mA

m), and provides the Faddeev-

Popov determinant (via the term ic̄∂mD
mc). This successfully fixes the gauge.

The terms in the second line do not give any non-trivial contribution to the partition

function on integration. To see this, rewrite it as

Tr

[
− ξ

2

(
a0 −

1

ξ
ā0 +

i

2
cc

)2

+
1

2ξ

(
ā0 +

iξ

2
cc

)2 ]
.

Integrating over a0 on a real locus and then over ā0 on an imaginary locus shows that ξ

drops out and there are no other non-trivial contributions.

To complete this section on gauge fixing, we also need to describe the action of Q on

the gauge-fixing fields:

Qc = −Φ̂, Qc̄ = 0, Qā0 = 0, Qb0 = 0,

Qa0 = 0, Qb = ivm∂mc̄, Qc̄0 = 0, Qc0 = 0.
(B.8)

and that of QB on the vector multiplet fields:

QBAm = Dmc, QB scalar = i[c, scalar], QB fermion = i{c, fermion}. (B.9)

Φ̂ that appears in Qc was introduced in eq. (B.3). This ensures that the square of Q̂ ≡
Q + QB is, besides other bosonic transformations shown in eq. (B.2), a constant gauge

transformation by a0 rather than a gauge transformation by Φ̂. In particular, for the case

at hand,

Q̂2 = iLie(v) + Gauge(a0) + SU(2)R(ΘAB),

where the generators in parentheses are given in eq. (B.4).

Finally, we look at hypermultipets. These are multiplets that have had too much coffee.

B.1 Hypermultiplet Lagrangian for N = 2∗

To give mass to a single hypermultiplet, we have to couple it to a background vector

multiplet with abelian gauge group. This abelian gauge group is taken as the subgroup

of the commutant of the embedding of SU(2) in Sp(r). For this coupling to background

vector multiplet to be supersymmetric, the gaugino variation of this extra multiplet is set

to zero and solved for the vacuum solution and finds the following

φ = φ̄ = φ0, D0
AB = 2φωAB (B.10)
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where φ0 is a constant and ωAB in the notation of [17] is given by

ωAB =
4ξAσ

mnξB(Tmn − Smn)

ξAξA
= −4ξ̄Aσ̄

mnξ̄B(T̄mn − S̄mn)

ξ̄Aξ̄A
(B.11)

Then we get the following Lagrangian for massive matter multiplet

Lmat =
1

2
Dmq

ADmqA − qA{φ, φ̄}qA +
ι

2
qADABq

B

+

(
1

8
(R+M + {φ0, φ0})εAB + 2φ0ωAB

)
qAqB − ι

2
ψ̄σ̄mDmψ

−1

2
ψφψ +

1

2
ψ̄φ̄ψ̄ − 1

2
ψφ0ψ +

1

2
ψ̄φ0ψ̄ +

ι

2
ψσklTklψ −

ι

2
ψ̄σ̄klT̄klψ̄

−qAλAψ + ψ̄λ̄qA − 1

2
FAFA. (B.12)

where it is understood that vector multiplet fields Φ carry Sp(r) indices as ΦI
J and im-

portantly for the background vector multiplet the I, J indices belong to the commutant of

gauge group in Sp(r).

C Kernel equations

Before we delve into the details of the calculation, let us first make some useful definitions

and observations. Analogous to the what was done in the section on highest-weight one-

forms, define Aa = l ma Am for a ∈ {1, 2, 3}. Further, define A± = A1 ± iA2. Let us note

the action of Q̂2 on these new variables (and Aρ) ):

Q̂2A+ = 2eiψ∂ψ

(
e−iψA+

)
Q̂2A− = 2e−iψ∂ψ

(
eiψA−

)
Q̂2A3 = 2∂ψA3

Q̂2Aρ = 2∂ψAρ

Q̂2φ2 = 2∂ψφ2.

Similarly, we define χ± = χ1 ± iχ2. These transform under Q̂2 (up to a gauge transforma-

tion) as

Q̂2χ+ = 2eiψ∂ψ

(
e−iψχ+

)
Q̂2χ− = 2e−iψ∂ψ

(
eiψχ+

)
Q̂2χ3 = 2∂ψχ3

Q̂2c = 2∂ψc

Q̂2c̄2 = 2∂ψ c̄2.

Our solution hinges on the following observations: firstly, Q̂ squares to a Lie derivative

over scalars along l3 (with some shifts as in the cases of A± and χ±). Secondly, D10 (like
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all Dij) commutes with Q̂2. These two facts together imply that we can expand the fields

(A±, A3, Aρ, φ2) and (χ±, χ3, c, c̄) in SU(2)L×SU(2)R harmonics, and analyse D10 over the

Fourier modes. Further, these Fourier modes (with adequate shifts for A± and χ±) will

have the same eigenvalue with respect to Q̂2. Thirdly, as we will show explicitly later, the

equations whose solutions give KerD10 and CokerD10 can be written only in terms of the

JLs and without the JRs. This implies that the J3
R eigenvalue will only serve to count the

multiplicity of the solutions, if a solution exists (we will see this explicitly while computing

CokerD10). Concretely, one can expand the fields as follows

A+(ψ, θ, φ, ρ) =
∑
qL,qR

e−i(qL−1)ψe−iqRφA+,(qL,qR)(θ, ρ),

A−(ψ, θ, φ, ρ) =
∑
qL,qR

e−i(qL+1)ψe−iqRφA−,(qL,qR)(θ, ρ),

A3(ψ, θ, φ, ρ) =
∑
qL,qR

e−i(qL)ψe−iqRφA3,(qL,qR)(θ, ρ),

Ar(ψ, θ, φ, ρ) =
∑
qL,qR

e−i(qL)ψe−iqRφAρ,(qL,qR)(θ, ρ),

φ2(ψ, θ, φ, ρ) =
∑
qL,qR

e−i(qL)ψe−iqRφφ2,(qL,qR)(θ, ρ),

and

χ+(ψ, θ, φ, ρ) =
∑
qL,qR

ei(qL+1)ψeiqRφχ+,(qL,qR)(θ, ρ),

χ−(ψ, θ, φ, ρ) =
∑
qL,qR

ei(qL−1)ψeiqRφχ−,(qL,qR)(θ, ρ),

χ3(ψ, θ, φ, ρ) =
∑
qL,qR

ei(qL)ψeiqRφχ3,(qL,qR)(θ, ρ),

c(ψ, θ, φ, ρ) =
∑
qL,qR

ei(qL)ψeiqRφc(qL,qR)(θ, ρ)

c̄(ψ, θ, φ, ρ) =
∑
qL,qR

ei(qL)ψeiqRφc̄(qL,qR)(θ, ρ),

where the summation over qR runs from −jR to jR and the summation over qL runs from

−jL − 1 to jL + 1. We recall from appendix A that for scalar harmonics, jL = jR. We

have also labelled the modes so that all modes with subscripts (qL, qR) have the same Q̂2

eigenvalue (not considering the gauge transformation, see below).

For simplicity, we take the gauge group to be abelian. This is analogous to what has

been done in [20] and [17], where the authors first calculate the index for the abelian case,

and then account for contribution due to a non-abelian gauge group to the eigenvalue with

respect to Q̂2. This contribution to the eigenvalue is
∑

α∈∆ a0 · α, where ∆ represents all

the roots of the Lie algebra of G.

Finally a few words on notation: We will suppress the subscript L in the following while

referring to JLs, since we will work almost exclusively with the left-handed generators.

As noted in appendix A, the θ-dependence of a scalar harmonic is given by Y jL,qL.qR(θ)
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(which are related to the Jacobi polynomials), while the ρ dependence is unrestricted by

the SU(2)L × SU(2)R algebra. Therefore, a Fourier mode such as χ3,(qL,qR)(θ, ρ) can be

decomposed as

χ3,(qL,qR)(θ, ρ) = Y jL,qL.qR(θ)χ3,(qL,qR)(ρ)

We are therefore using the same symbol for the field, its Fourier mode, and a part of that

mode that depends only on ρ. We hope no confusion will occur.

C.1 The kernel equations for the vector multiplet

The space KerD10 consists of the solutions of five differential equations that are obtained

as coefficients of the fermionic fields (χa, c, c̄) in eq. (2.12). One of those equations is

0 = M
1

2
sin θ sin ρ

(
−4∂2

θφp − sin2 ρ ∂2
ρφp − 4 cot θ ∂θφp

)
− 3 sin ρ cos ρ ∂ρφp − 4 csc2 θ φp

(
q2
L − 2qLqR cos θ + q2

R

)
.

The right-hand side of the above equation is proportional to the Laplacian of φp, and

therefore only has a constant solution. We presently focus only on non-constant solutions

that correspond to jL > 0. The (non-zero) constant solutions will be discussed later.

Therefore, we set φp = 0 for now.

With this condition, the other differential equations that yield KerD10, in terms of the

Fourier modes, are Ei = 0, i = 1, . . . , 4, where

E1 = qL cos ρA− −
1

2
sin ρ∂ρA− + sec ρJ−A3 +

1

2
sin ρJ−Aρ

E2 = qL cos ρA+ +
1

2
sin ρ∂ρA+ + sec ρJ+A3 −

1

2
sin ρJ+Aρ

E3 = J−A+ − J+A− + (1 + sec2 ρ) tan ρ∂ρA3 + qL sin ρ cos ρAρ

E4 = J−A+ + J+A− − 2qLA3 −
3

2
sin ρ cos ρAρ −

1

2
sin2 ρ∂ρAρ.

Some notation has been abused above in favour of readability: A+, for example, stands for

A+,(qL,qR)(θ, ρ), and similarly others. We will not employ this notation anywhere else. As

advertised earlier, the equations yielding the kernel are written entirely in terms of JLs.

For clarity, we inform the reader right at the beginning that the result of the following

analysis is that the kernel is empty. We divide the analysis into the following cases:

• |qL| = jL + 1: let us consider the case qL = jL + 1.

The expressions E1,3,4 vanish identically on imposing qL = jL + 1, and the only

non-trivial equation arises E2 = 0:

2(1 + jL) cos ρA
(jL,−jL,−qR)
+ (ρ) + sin ρ ∂ρA

(jL,−jL,−qR)
+ (ρ) = 0,

solving which gives

A
(jL,−jL,−qR)
+ (ρ) = A0

+(sin ρ)−2(1+jL).
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This solution is clearly singular at the two poles ρ = 0, π, forcing us to set A0
+ = 0.

Therefore, we do not have a non-trivial solution.

The case qL = −(jL + 1) is almost identical. In this case, only the equation E1 = 0 is

non-trivial, but the only solution that is non-singular at the poles is the trivial one.

• |qL| = jL: again, we only provide details for the case qL = jL. The case qL = −jL
is similar. The expression E1 identically vanishes. The remaining equations give the

following system of equations:

∂ρ

A+

A3

Aρ

 =

−2jL cot ρ −4jL sec ρ csc ρ 2jL
− cot ρ − cot ρ(1 + sec2 ρ) −jL cos2 ρ

2 csc2 ρ −4jL csc2 ρ −3 cot ρ


A+

A3

Aρ


where for brevity we have used the shorthand A+ ≡ A

(jL,1−jL,−qR)
+ (ρ), A3 ≡

A
(jL,−jL,−qR)
3 (ρ) and Aρ ≡ A

(jL,−jL,−qR)
ρ (ρ). One can proceed by eliminating

A
(jL,1−jL,−qR)
+ (ρ) between the second and third equations, and then integrating for

A
(jL,−jL,−qR)
3 (ρ). One gets

A
(jL,−jL,−qR)
3 (ρ) = −1

2
cos ρ sin ρA(jL,−jL,−qR)

ρ (ρ) + C cos ρ(sin ρ)−2(jL+1).

Regularity of the solution at the poles forces C = 0. One can finally use the first

equation (along with the information obtained above) to solve for A
(jL,−jL,−qR)
ρ (ρ):

A(jL,−jL,−qR)
ρ (ρ) = (sin ρ)−3−jL

(
C1 cos ρ− C2P

(− 1
2
,−2jL−1)

1
2

(− cos(2ρ))

)
where the special function P

(α,β)
n (x) in the second term is the Jacobi polynomial

introduced in the appendix A. For the values of the parameters given here, it turns

out to be a polynomial in cos2 ρ of degree 2jL, or equivalently, a linear combination

of cos(2mρ) where m = 0, . . . , 2jL. The only values of C1 and C2 for which the above

function is regular is C1 = C2 = 0. Therefore, A
(jL,1−jL,−qR)
+ (ρ) and A

(jL,−jL,−qR)
3 (ρ)

are also zero, and we have no non-trivial solution.

• |qL| < jL. Let us first deal with the case qL = 0. One can solve E3, 4 = 0 for

A
(jL,±1,−qR)
± in terms of the other fields and their derivatives, and then use this to

solve the second-order ODE for A
(jL,0,−qR)
ρ (ρ), for instance:

A(jL,0,−qR)
ρ (ρ) = C1

[
tan

(ρ
2

)]1+2jL
+ C2

[
cot
(ρ

2

)]1+2jL
csc2 ρ,

whose regularity at the poles requires both constants to be zero. Therefore, there is

again no non-trivial solution in this case.

Let us finally deal with the case 0 6= |qL| < jL. Rather than directly integrating

the equations and showing that the solutions are not smooth, we will show that the

existence of a smooth solution leads to a contradiction.

Putting it all together, we see that KerD10 is indeed empty.
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C.2 The cokernel equations for the vector multiplet

To find the equations whose solutions yield the space CokerD10, we integrate the relevant

part of the localizing action by parts and substitute the Fourier expansion. The relevant

equations are CE i = 0, i = 1, . . . , 5 where

CE1 = 2(1− qL) cos ρχ− + sin ρ ∂ρχ− + 2J−χ3 + 2iJ−c̃p,

CE2 = 2(1 + qL) cos ρχ+ + sin ρ ∂ρχ+ + 2J+χ3 + 2iJ+c̃p,

CE3 = −J−χ+ + J+χ− + sin ρ ∂ρχ3 + 2iqL cos ρc̃p,

CE4 = J−χ+ + J+χ− + 2qL cos ρχ3 + i sin ρ ∂ρc̃p,

CE5 = 3χ3 + 2 csc2 ρ
[
J+J− + J−J+ + 2J2

3

]
c− 3 cot ρ ∂ρc− ∂2

ρc− 2iqLc̃p.

where we have used similar shorthand as we did while writing the kernel equations in terms

of JLs: χ3, for examples, in a shorthand for χ3,(qL,qR)(θ, ρ), and similarly others. We now

begin the analysis of the above equations, paralleling what we did for the kernel equations.

However, in this case, will find that the cokernel is not empty.

• |qL| = jL + 1: let us first consider the case qL = jL + 1. The equations CE i = 0 are

satisfied identically for i ∈ {2, . . . , 5}. The only non-trivial constraint comes from the

equation CE1 = 0, which gives

sin ρ ∂ρχ
(jL,jL,qR)
− (ρ) = 2jL cos ρχ

(jL,jL,qR)
− (ρ)

which yields

χ
(jL,jL,qR)
− (ρ) = χ0

−(sin ρ)2jL .

All the other fermionic fields (χ+, χ3, c, c̃p) are identically zero. The multiplicity of

this solution is 2jL + 1. The eigenvalue of Q̂2 corresponding to the above solution is

2(jL + 1). Denoting this eigenvalue as n, we see that the multiplicity corresponding

to this eigenvalue is n− 1. For the case qL = −jL− 1, the only non-trivial constraint

comes from the equation CE2 = 0, which gives

χ
(jL,−jL,qR)
+ (ρ) = χ0

+(sin ρ)2jL .

This is again the only non-vanishing field. The multiplicity of this solution is 2jL+1.

The eigenvalue of Q̂2 corresponding to the above solution is n ≡ −2(jL + 1), so that

the multiplicity corresponding to this eigenvalue is |n| − 1.

• |qL| = jL. Let us first consider qL = jL. The equation CE2 = 0 vanishes identically

(as does the field χ+). The equations CE1,3,4 = 0 give the system

sin ρ ∂ρ

χ−
χ3

c̃p

 =

 2(jL − 1) cos ρ −2 −2i

−2jL 0 −2ijL cos ρ

2ijL 2ijL cos ρ 0


χ−
χ3

c̃p


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where χ−, χ3, c̃p stand for χ
(jL,jL−1,qR)
− (ρ), χ

(jL,jL,qR)
3 (ρ), c̃

(jL,jL,qR)
p (ρ) respectively.

Besides this, CE5 = 0 gives the following second-order ODE:

sin2 ρ ∂2
ρc+ 3 cos ρ sin ρ ∂ρc− 4jL(jL + 1)c+ 2ijL sin2 ρc̃p − 3 sin2 ρχ3 = 0.

where c stands for c(jL,jL,qR)(ρ), and similarly c̃p and χ3.

We can proceed by eliminating χ
(jL,jL−1,qR)
− (ρ) between the second and third equa-

tions of the first-order system. On solving the resulting differential equation we get

χ
(jL,jL,qR)
3 (ρ)− ic̃(jL,jL,qR)

p (ρ) = C [sin ρ]2jL .

To fully solve for χ
(jL,jL,qR)
3 (ρ) and c̃

(jL,jL,qR)
p (ρ), introduce the ansatz

c̃(jL,jL,qR)
p (ρ) =

i

2
C [sin ρ]2jL + g(ρ)

into the first first-order ODE (while also eliminating χ
(jL,jL−1,qR)
− (ρ) using the other

equations). The ODE we get is

sin2 ρ ∂2
ρg(ρ) +

3

2
cos 2ρ ∂ρg(ρ)− jL (2jL + 7 + (2jL − 3) cos 2ρ) = 0.

We will argue that g(ρ) vanishes identically if it is required to be smooth. In order

to see this, multiply the above equation by sin ρg(ρ) and consider the integral of the

resulting expression over ρ ∈ (0, π). Integrating-by-parts the term with ∂2
ρg(ρ) gives∫ π

0

[
(− sin ρ)

(
sin2 ρ(∂ρg)2 + jL(2jL + 7 + (2jL − 3) cos 2ρ)g2

)]
dρ

!
= 0.

where the boundary terms vanish due to the assumed regularity of g(ρ) at the poles.

Note that g(ρ) is a real function. The co-efficient of g2 above is easily verified to

be positive for all allowed values of jL. Therefore, the only way the above integral

vanishes is if g(ρ) = 0 identically. Using this solution we can also immediately see

that χ
(jL,jL−1,qR)
− (ρ) vanishes, and the second-order ODE for c(jL,jL,qR)(ρ) gives us

essentially the inhomogeneous Laplace equation:

sin2 ρ∂2
ρc+

3

2
sin 2ρ∂ρc− 4jL(jL + 1)c = C

(
3

2
+ jL

)
[sin ρ]2jL+2

where c ≡ c(jL,jL,qR)(ρ). Since the homogeneous Laplace equation does not have any

non-trivial smooth solution on the sphere, the following solution is unique:

c(jL,jL,qR)(ρ) = − 1

4jL
C [sin ρ]2jL

To summarize, the solution is:

c(jL,jL,qR)(ρ) = − 1

4jL
C [sin ρ]2jL , c̃(jL,jL,qR)

p (ρ) =
i

2
C [sin ρ]2jL ,

χ
(jL,jL,qR)
3 (ρ) =

1

2
C [sin ρ]2jL ,
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with all other fields vanishing. The eigenvalue of this solution is 2jL. Referring to

this as n, the multiplicity is n+ 1.

The case qL = −jL is similar: following the same steps as above, we find that the

non-vanishing fields of the solution set are

c(jL,jL,qR)(ρ) = − 1

4jL
C [sin ρ]2jL , c̃(jL,jL,qR)

p (ρ) = − i
2
C [sin ρ]2jL ,

χ
(jL,jL,qR)
3 (ρ) =

1

2
C [sin ρ]2jL ,

The eigenvalue of this solution is n = −2jL and its the multiplicity is |n|+ 1.

• |qL| < jL: the analysis of this case is similar to the case |qL| < jL for kernel equations,

and therefore will not be detailed. The result is that we have no non-trivial solutions

in this case.

We see that the total multiplicity for any integer eigenvalue n ∈ Z is (|n|−1)+(|n|+1)=2|n|.
To the eigenvalues we found above, we need to add the contribution due to the non-

abelian gauge group. After doing so, we see that the ratio of the determinants in eq. (2.11)

is equal to the unregularized product∏
α∈∆

∏
n≥1

(n+ ia · α)2n(n− ia · α)2n (C.1)

The partition function, which is the square-root of the above expression, on regularizing

becomes ∏
α∈∆+

Υ(ia · α)Υ(−ia · α)

(ia · α)2
.

The above expression enters the expression of the total partition function, integrated of the

Lie algebra of the gauge group. When the integral over the entire Lie algebra is reduced to

an integral over the Cartan subalgebra, the integration measure contains a Vandermonde

factor, which precisely cancels the (ia ·α)2 in the denominator. The total partition function

then is

Zvec
S4 =

∫
da e

− 8π2

g2
Tr(a2)|Zinst|2

∏
α∈∆+

Υ(ia · α)Υ(−ia · α) (C.2)

C.3 Including matter

We now introduce matter in the form of four hypermultiplets in the fundamental represen-

tation. In this case we will find that the cokernel is empty while the kernel is not.

Including the contributions due to the hypermultiplets, and specializing the formulae

for SU(2) gauge group, the complete expression for the one-loop contribution is

Υ(−2ia)∏
±±Υ(Q/2 + ia± im1 ± im2)

Υ(2ia)∏
±±Υ(Q/2− ia± im3 ± im4)

(C.3)
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