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Abstract: We propose that the grand canonical topological string partition functions satisfy
finite-difference equations in the closed string moduli. In the case of genus one mirror curve
these are conjectured to be the q-difference Painlevé equations as in Sakai’s classification. More
precisely, we propose that the tau-functions of q-Painlevé equations are related to the grand
canonical topological string partition functions on the corresponding geometry. In the toric cases
we use topological string/spectral theory duality to give a Fredholm determinant representation
for the above tau-functions in terms of the underlying quantum mirror curve. As a consequence,
the zeroes of the tau-functions compute the exact spectrum of the associated quantum integrable
systems. We provide details of this construction for the local P1 × P1 case, which is related to
q-difference Painlevé with affine A1 symmetry, to SU(2) Super Yang-Mills in five dimensions and
to relativistic Toda system.
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1 Introduction and Summary

During the last decades an intriguing relationship has been observed between the low-energy
dynamics of N = 2 four-dimensional gauge theories and integrable systems [1–4]. The use of lo-
calization techniques in the supersymmetric path integral considerably clarified and widened this
relation in many directions [5, 6]. In this context, a precise connection between supersymmetric
partition functions and tau functions of isomonodromic deformation problems associated to the
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Seiberg-Witten geometry has been established leading to the Painlevé/ SU(2) gauge correspon-
dence [7–16]. More precisely, it was found that τ functions of differential Painlevé equations are
computed by the Nekrasov–Okounkov (NO) [5] partition functions of four dimensional SU(2),
N = 2 gauge theories in the self–dual phase of the Ω background. The specific matter content of
the gauge theory determines the type of Painlevé equation (see Table 2 in [13] for the precise rela-
tion). Moreover the long/short distance expansions of Painlevé equations are in correspondence
with the duality frames in the gauge theory [13, 17].

On the other hand, by resorting to the geometric engineering of gauge theories via topological
strings [18], it has been possible to show in some cases [17, 19] that these tau functions are
Fredholm (or spectral) determinants of quantum operators arising in a suitable limit of the
non-perturbative topological string formulation of [20, 21]. This embedding into topological
strings has allowed to take a first step through the generalisation of the Painlevé/ SU(2) gauge
correspondence to the higher rank case providing explicit Fredholm determinant representation
for the SU(N) theories [19], see also [22]. Furthermore from the string theory viewpoint it is
also natural to consider the five dimensional version of this correspondence as pointed out in
[13, 17, 23] and further studied in [24, 25]1. On the Painlevé side this corresponds to a lift from
differential to difference equations. The latter arises as a q–deformation of Painlevé equations and
we refer to them as q-Painlevé (q–P) equations, see [28, 29] for a review and a list of references.
On the gauge theory side instead this corresponds to a lift from four dimensional SU(2), N = 2
gauge theories to topological string on local CY manifolds. In particular one uses topological
string theory to compute tau-functions of q-Painlevé equations as defined and studied in [28, 30].

Although we expect the correspondence between topological strings and Painlevé to hold in
general for all Painlevé equations in Sakai’s classification [30] (see Table 1), in this work we will
focus on the ones with a toric topological string realization (see Fig. 1). We will give a prescription

Painlevé type Physical theory

Elliptic E-strings
Multiplicative Topological string on local del Pezzo’s.
Additive 4-dimensional SU(2) gauge theories

Table 1. On the left: classification of Painlevé equations according to [28, 30]. The additive type
correspond to the standard differential Painlevé equations plus the three finite additive cases corresponding
to Minahan-Nemeshanski four-dimensional gauge theories [31]. The multiplicative cases correspond to q-
difference Painlevé (see [28, 30] for more details). On the right: physical theory that we expect to compute
the tau functions of Painlevé equations. In the multiplicative case one has to consider blow up of del Pezzo
up to 8 blow up, while the Elliptic Painlevé makes contact with 1

2K3. The analogy between Sakai’s scheme
for Painlevé equations and the geometry underling the above physical theories was originally suggested in
[32].

to construct a Fredholm determinant representation of such tau-functions starting from the
geometrical formulation of q-Painlevé presented in [33, 34]. As we will outline in section 2, the
first step consists in associating a Newton polygon to these difference equations as illustrated for
instance in Fig. 1. Such a polygon can then be related to the toric diagram of a corresponding
Calabi–Yau (CY) manifold. We will conjecture that the Fredholm determinant of the operator
arising in the quantization of its mirror curve computes the tau-function of the corresponding q-

1 In [25], based on [26, 27], a different type of finite dimensional determinant was considered to compute τ
functions.
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difference Painlevé equation. As a consequence the zeros of such tau-function compute the exact
spectrum of the integrable systems associated to the underlying mirror curve [35, 36]. In this way
we also provide a concrete link between q-Painlevé equations and the topological string/spectral
theory (TS/ST) duality [20]. We remark that from the topological string viewpoint q-Painlevé
equations control the dependence of the partition function on the closed string moduli. This is in
line with the expectation of exact quantum background independence which should be fulfilled
by a non-perturbative formulation of topological string theory [37]2.

The structure of the paper is the following. In Sect. 2 we outline the general features of the
correspondence between topological strings, spectral theory and q-Painlevé. In the subsequent
sections we work out explicitly the example of the q-difference Painlevé III3

3 which makes contact
with topological strings on local P1 × P1. In this example the TS/ST duality [20] states that

ΞTS
P1×P1(κ, ξ, ~) = det (1 + κρP1×P1) , (1.1)

where
ΞTS
P1×P1(κ, ξ, ~) =

∑
n∈Z

eJP1×P1 (µ+2πin,ξ,~) κ = eµ (1.2)

is the grand canonical topological string partition function, JP1×P1 is the topological string grand
potential (see appendix A) and ρP1×P1 is the operator arising in the quantisation of the mirror
curve to local P1 × P1 (see equation (3.1)). In section 3 we show that (1.2) satisfies the q-
difference Painlevé III3 equation in the τ form. As a consequence this provides a conjectural
Fredholm determinant solution for the corresponding τ function whose explicit expression is
given on the r.h.s. of (1.1). As shown in [17] it exists a suitable limit in which

det (1 + κρP1×P1) (1.3)

reduces to a well known the determinant computing the tau function of the standard Painlevé
III3 [39, 40]. From that perspective our result can be viewed as a generalisation of [39, 40] for
the q-deformed Painlevé equations.

In section 3.4 we discuss the q-deformed algebraic solution associated to such a Fredholm
determinant representation, while in section 4 and 5 we test by explicit computations that the
r.h.s. of (1.1) indeed fulfils the q-difference Painlevé III3 equation in the τ form. Moreover, in
section 5 we connect our results with ABJ theory by relating q-Painlevé equations to Wronskian-
like relations of [41]. Section 6 is devoted to conclusions and open problems. In the appendices
we collect some technical results and definitions.

2 Generalities

In this work we propose that spectral determinants of operators arising in the quantization of
mirror curve to CY manifolds compute τ functions of q-deformed Painlevé equations when some

2We would like to thank Marcos Mariño for a discussion on this point.
3In Sakai’s classification [30] this corresponds to surface type A

(1)′
7 and symmetry type A

(1)
1 , where the su-

perscript (1) stands for affine extension of the Dynkin algebra. Notice that this is not the unique q-P equation
leading to differential Painlevé III3 in the continuous limit. Indeed, as pointed out for instance in [38], also the

q-P equation with surface type A
(1)
7 and symmetry type A

(1)′
1 makes contact with Painlevé III3. This is perfectly

consistent with the picture developed in this paper since the corresponding Newton polygon is identified with local
F1 (see Fig. 1). By the geometric engineering construction [18] we know that topological string theory on both F1

and P1 × P1 reduces to pure SU(2) theory in four dimensions. However in this work we denote by q-P III3 only

the one associated to surface type A
(1)′
7 and symmetry type A

(1)
1 .
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Figure 1. The letters E···
··· and A···

··· refers to symmetry type classification of q-Painlevé according to
[28, 30]. The Newton polygons on the upper line are the ones associated to the q-Painlevé according to
[33, 34]. This correspondence is not always unique as discussed in Section 2.2.

particular initial conditions are imposed. We start by reviewing some results which are relevant
for this proposal.

2.1 Topological string and spectral theory

In this section we review the results of [20] in a form which is suitable for the propose of this
work. Let us consider a toric CY X with genus one mirror curve 4. By following [42, 43] the
complex moduli of the mirror curve to X are divided in two classes of parameters: one ”true”
modulus, denoted by κ, and rX mass parameters, denoted by

mX =
{
m

(1)
X , · · · ,m(rX)

X

}
. (2.1)

We introduce the rescaled mass parameters m as [17, 44]

logm(i) =
2π

~
log
(
m

(i)
X

)
, (2.2)

as well as

ξ(i) = logm(i). (2.3)

The Newton polygon of X is defined as the convex hull of a set of two-dimensional vectors
[18, 45–47]

~ν(i) =
(
ν
(i)
1 , ν

(i)
2

)
, i = 1, · · · , k, (2.4)

from which one reads the mirror curve to X as

k∑
i=1

eν
(i)
1 x+ν

(i)
2 p+fi(mX) + κ = 0, x, p ∈ C (2.5)

where fi is a function of the mass parameters. For instance when X is the canonical bundle over
P1 × P1 its Newton polygon is shown in Fig. 2. The corresponding vectors are

~ν(1) = {1, 0}, ~ν(2) = {−1, 0}, ~ν(3) = {0, 1}, ~ν(4) = {0,−1}. (2.6)

4For the higher genus generalisation see [21].
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Figure 2. Newton polygon of local P1 × P1

Therefore the mirror curve reads

ex +mP1×P1e−x + ep + e−p + κ = 0. (2.7)

We introduce the quantum operators x, p such that

[x, p] = i~, (2.8)

and we promote the mirror curve (2.5) to a quantum operator by using Weyl quantization. The
resulting operator is

OX =

k∑
i=1

efi(mX)eν
(i)
1 x+ν

(i)
2 p. (2.9)

An explicit list of these operators can be found in Table 1 of [20]. It was conjectured in [20], and
later proved in [48, 49] for many geometries, that the inverse

ρX = O−1X (2.10)

is a self-adjoint, positive5 and trace class operator acting on L2(R). Therefore its spectral, or
Fredholm, determinant

ΞST
X (κ, ξ, ~) = det (1 + κρX) (2.11)

is analytic in κ. The operator (2.10) is related to the Hamiltonian of a corresponding integrable
system [35, 36]. The conjecture of [20] states that the spectral determinant (2.11) of operators
arising in the quantization of the mirror curves to X is computed by (refined) topological string
theory on X. This has led to a new and exact relation between the spectral theory of quantum
mechanical operators and enumerative geometry/topological string theory. We refer to it as
TS/ST duality. Let us define the grand canonical topological string partition function on X as

ΞTS
X (κ, ξ, ~) =

∑
n∈Z

eJX(µ+2πin,ξ,~), κ = eµ, ~ ∈ R+ (2.12)

where we denote by JX the topological string grand potential studied in [50–54]. By following
[21, 55] we write JX as

JX(µ, ξ, ~) = JWS
X (µ, ξ, ~) + JWKB

X (µ, ξ, ~), (2.13)

where JWS
X is expressed in terms of unrefined topological string while JWKB

X is determined by the
Nekrasov–Shatashvili (NS) limit of the refined topological string. The precise definitions can be

5Provided some positivity constraints are imposed on the mass parameters and ~.
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found in appendix A. We would like to stress that, even though both JWKB
X and JWS

X have a dense
set of poles on the real ~ axis, their sum is well defined and free of poles. This is the so–called
HMO cancellation mechanism [51] which was first discovered in the context of ABJM theory and
has played an important role in the TS/ST duality presented in [20]. One can also write (2.12)
as [20]

ΞTS
X (κ, ξ, ~) = eJX(µ,ξ,~)ΘX(µ, ξ, ~), (2.14)

where ΘX defines a quantum theta function which, for some specific values of ~, becomes a
conventional theta function. This happen for instance when ~ = 2π/m for m ∈ N as explained
in [20, 56, 57]. The conjecture [20] states that

ΞTS
X (κ, ξ, ~) = ΞST

X (κ, ξ, ~). (2.15)

Even though we still do not have a rigorous mathematical proof of (2.15), many aspect and
consequences of this proposal have been successfully tested and proved in severals examples both
numerically and analytically [17, 19–21, 44, 48, 57–75].

Originally the above construction was formulated only for real values of ~. Nevertheless it
was found in [76] that when the underling geometry can be used to engineer gauge theories one
can easily extend some aspects of [20] to generic complex value of ~. However in this work we
will focus on the real case.

2.1.1 Self–dual point

It was pointed out in [20, 56] that there is a particular value of ~ where the grand potential
simplify drastically, this occurs at ~ = 2π and we refer to it as self–dual point. At this point JX
is determined only by genus zero and genus one free energies (A.10), (A.13). Therefore at this
point we can express the spectral determinant (2.11) in closed form in term of hypergeometric,
Meijer and theta functions. Modular properties of the spectral determinant around this point
have been discussed in [65]. The explicit expression for JX(µ, ξ, 2π) and ΞTS

X (κ, ξ, 2π) for generic
X at the self–dual point can be found in section 3.4 of [20] or section of 3.2 of [21]. As explained
in these references, the genus one free energy appears as an overall multiplication factor, while
the dependence on the genus zero free energy and its derivatives is non trivial. In this section
we re-write the details only for two explicit examples, which we will use later. These cases have
been worked out in [56].

We first consider local P1 × P1 with ξ = 2πi 6. Then we have [56] 7

ΞTS(κ, 2π, 2π) = exp [A(iκ)]ϑ3(ξ(iκ), τ(iκ)), (2.16)

where

A(κ) =
log κ

4
+ F1 + FNS

1 − 1

π2

(
F0(λ)− λ∂λF0(λ) +

λ2

2
∂2λF0(λ)

)
. (2.17)

We denote by FNS
1 the NS genus one free energy (A.13) which in the present example reads

FNS
1 = − 1

24
log
(
16 + κ2

)
− log(κ)

12
. (2.18)

6This correspond to ABJM theory with level k = 2 [56]. In the ABJM context the self–dual point correspond
to an enhancement of the supersymmetry from N = 6 to N = 8.

7For sake of notation we will simply denote ΞTS(κ, ξ, ~) instead of ΞTS
P1×P1(κ, ξ, ~)
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Moreover F0 and F1 are the genus zero and genus one free energies in the orbifold frame. These
can be obtained from F0 and F1 in (A.10) by using modular transformation and analytic contin-
uation as explained in [77–79]. More precisely we have

∂λF0(λ) =
κ

4
G2,3

3,3

(
1
2 ,

1
2 ,

1
2

0, 0, −1
2

∣∣∣∣−κ216

)
+
π2iκ

2
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
, (2.19)

with

F0(λ) = −4π2λ2
(

log(2πλ)− 3

2
− log(4)

)
+ · · · (2.20)

and we denote by λ the quantum Kähler parameter at ~ = 2π in the orbifold frame namely

λ =
κ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;−κ

2

16

)
. (2.21)

Our convention for the hypergeometric functions G2,3
3,3(·) and 3F2(·) in (2.19) and (2.21) are as in

[56]. As for the genus one free energy we have

F1 = − log η (2τ)− 1

2
log 2, (2.22)

where η is the Dedekind eta function and we used

τ(κ) = − 1

8π3i
∂2λF0(λ) = −1

2
+

iK
(
κ2

16 + 1
)

2K
(
−κ2

16

) , (2.23)

where K(κ2) is the elliptic integral of first kind. In (2.16) we denote by ϑ3 the Jacobi theta
function

ϑ3(v, τ) =
∑
n∈Z

exp
[
πin2τ + 2πinv

]
(2.24)

and we define

ξ(κ) =
i

4π3
(
λ∂2λF0(λ)− ∂λF0(λ)

)
. (2.25)

Noticed that many of the quantities defined above have branch cuts, however according to [56]
these should cancel and the final answer (2.16) is analytic in κ.

Likewise for local P1 × P1, ~ = 2π and ξ = 0 8 we have [56]

ΞTS(κ, 0, 2π) = exp

[
log 2

2
− log iκ

4
+A(iκ)

]
ϑ1

(
ξ(iκ) +

1

4
, τ(iκ)

)
, (2.26)

where
ϑ1(v, τ) =

∑
n∈Z

(−1)n−1/2 exp
[
πi (n+ 1/2)2 τ + 2πi (n+ 1/2) v

]
. (2.27)

2.2 Spectral theory and q-Painlevé

In the present work we give a concrete link between q-Painlevé equations and the TS/ST duality
of [20]. Our proposal is the following. As explained in [33, 34] one can associate a Newton polygon
to a class of q-Painlevé equations in Sakai’s classification (see Fig. 1). Such polygons represent the
rational surfaces which are used to classify Painlevé equations in [30]. Once the Newton polygon
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Figure 3. A schematic representation of the correspondence between q-Painlevé equations, spectral
theory and topological strings. We denoted by ρX the operator (2.10) and by ΞTS

X the grand canonical
partition function of topological string (2.12).

of a given q-Painlevé equation has been identified, we can apply the quantisation procedure
presented in section 2.1. We expect the resulting Fredholm determinant (2.11) to compute the
τ function of the given q–Painlevé equation. This is schematically represented on Fig. 3. In this
work we will test this proposal in detail for the q–PIII3, however it would be important to test
this expectation for other q–Painlevé equations as well.

We would like to observe that the correspondence between q–Painlevé equations and Newton
polygons is not always unique. Indeed given a q–Painlevé equation, the idea of [33, 34] is that one
can naturally associate to it a Newton polygon by looking at the integral curves, or conserved
Hamiltonians, in the so-called autonomous limit. However, as discussed in [33], such integral
curve admits different realisations. In turn, this is related to the fact that, as explained in [28],
some of the q-Painlevé admit a classification in terms of both blow ups of P1 × P1 or blow ups

of P2. For instance, in the case of q-PVI (surface type A
(1)
2 and symmetry type E

(1)
6 in Sakai

classification [30]) there are two different ones leading to the two different Newton polygons
depicted in Fig. 4. Analogously, for the q-Painlevé III3 one can consider either P1 × P1 or

Figure 4. Two Newton polygons associated to q-PVI according to [33, 80]

F2 surfaces. Interestingly it was pointed out in [44, 59] that the spectral problems arising in
the quantisation of the mirror curve to local P1 × P1 and local F2 are equivalent. Therefore,
upon a suitable normalisation and identification of the parameters, the Fredholm determinants
associated to these two manifolds are identified. This is in perfect agreement with the proposal
of this paper since they both compute the tau function of the same q-Painlevé equation. It would
be interesting to see if the same identification holds also for other polygons describing the same

8This correspond to ABJ theory with level k = 2 and gauge group U(N)× U(N + 1)[56].
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q-Painlevé equation such as for instance the ones in Fig. 4. 9

As an additional comment we notice that the self-dual point introduced in section 2.1.1
has a natural meaning from the q–Painlevé perspective. Indeed the q–Painlevé equations can be
studied in the so–called autonomous limit q = 1 [80–83] in which they are expected to be solvable
by elliptic theta functions10. From the TS/ST perspective q = e4π

2i/~ and q = 1 corresponds to

~ =
2π

m
m ∈ N. (2.28)

It is possible to show [20, 56, 57] that for these values the quantum theta function in (2.14)
becomes a conventional theta function. Moreover for m = 1, 2 the full spectral determinant can
be expressed simply in terms of hypergeometric, Meijer and Jacobi theta functions as illustrated
in section 2.1.1. Such simplifications are expected from the q–Painlevé viewpoint since q = 1
correspond to the autonomous case.

3 Fredholm determinant solution for q-Painlevé III3

Let us consider the canonical bundle over P1 × P1. Its mirror curve is given by (2.7) and the
corresponding operator is

ρP1×P1 =
(
ex + ep + e−p +mP1×P1e−x

)−1
, [x, p] = i~. (3.1)

The rescaled mass parameter m (2.2) is given by

logmP1×P1 =
~

2π
logm =

~
2π
ξ. (3.2)

Then according to the proposal of [20] we have

det (1 + κρP1×P1) =
∑
n∈Z

eJP1×P1 (µ+2πin,ξ,~), κ = eµ (3.3)

where JP1×P1 is given in appendix A. In this section by using the results of [23] we show that, up
to a normalisation factor, the term ∑

n∈Z
eJP1×P1 (µ+2πin,ξ,~) (3.4)

satisfies the q-deformed Painlevé III3 in the τ form. As a consequence equation (3.3) provides a
Fredhom determinant representation for the τ function of q-PIII3.

3.1 The Bershtein–Shchechkin approach

It was observed in [23] that the τ function of q-deformed Painlevé III3 can be written as

τC(u, Z, q) =
∑
n∈Z

snC(uq2n, q, Z)
Z(uq2n, Z, q−1, q)

(uq2n+1, q, q)∞ (u−1q−2n+1, q, q)∞
, (3.5)

9 After the preliminary version of this work was sent to Yasuhiko Yamada, he proved the equality between the
two spectral problems arising in the quantisation of the two polygons in Fig. 4.

10 We thank Yasuhiko Yamada for discussions on this point.
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where Z are the SU(2) q-deformed conformal blocks at c = 1. As explained in appendix B these
correspond to the instanton partition function of topological string on local P1 × P1. Moreover
(·, ·, ·)∞ denotes the Pochhammer symbol and C is a quite generic function. The variable s
characterises the initial condition of the tau function and for the pourpouse of this paper we
will always consider s = 1. In [23] it was conjectured and tested that τC(u, Z, q) satisfies the
q–deformed Painlevé III3 equation in the τ form, namely

Z1/4τC(u, q, qZ)τC(u, q, q−1Z) = τC(u, q, Z)2 + Z1/2τC(uq, q, Z)τC(uq−1, q, Z) (3.6)

provided C fulfils [23]
C(uq, q, Z)C(uq−1, q, Z)

C(u, q, Z)2
= −Z1/2,

C(uq, q, qZ)C(uq−1, q, q−1Z)

C(u, q, Z)2
= −uZ1/4,

C(u, q, qZ)C(u, q, q−1Z)

C(u, q, Z)2
= Z−1/4.

(3.7)

The solution to these difference equations is clearly not unique and in [23] several C-functions
have been proposed. In the next section we show that it is possible to chose C in such a way
that τC(u, Z, q) is the spectral determinant of (3.1) in the form conjectured in [20]. This choice
express C in terms of q-deformed conformal blocks at c =∞. Notice also that in [23], in order to
ensure good convergence properties of (3.5) for a generic function C, they had to assume | q |6= 1.
However, as we will see in the following, by using an appropriate definition of C one can make
sense of (3.5) when | q |= 1, which is the case studied in this paper 11. This is important in order
to study the autonomous limit of qP equations.

3.2 Tau function and quantum curve

In this section we explain how to relate the results of [23] to the TS/ST conjecture of [20]. As
discussed previously the relevant geometry which makes contact with the q-Painlevé III3 studied
in [23] is the canonical bundle over P1 × P1. In particular to connect (3.5) and the r.h.s. of (3.3)
we use the following dictionary

Z−1 = eξ, q = ei4π
2/~, u = eξQb, Qb = e−

2π
~ t(µ,ξ,~), (3.8)

where t(µ, ξ, ~) denotes the quantum mirror map namely

t(µ, ξ, ~) =2µ− 2(mP1×P1 + 1)κ−2 + κ−4

(
−3m2

P1×P1 −
2mP1×P1

(
e2i~ + 4ei~ + 1

)
ei~

− 3

)
+O

(
κ−6

)
,

κ = eµ, mP1×P1 = e
~
2π
ξ.

(3.9)
When ~ is real, one can check numerically that the series (3.9) has a finite radius of convergence
(see for instance [54]). For generic complex values of ~ one has to perform a partial resumation
in mP1×P1 but it is still possible to organise (3.9) into a convergent series as discussed in [76].
Notice that

t(µ, ξ ± 4π2i

~
, ~) = t(µ, ξ, ~). (3.10)

11 On the operator side our result can be generalised straightforwardly for any ~, however on the topological
string side one has to be more careful to ensure the good convergence properties of ΞTS

X (see [76] for more details).

– 10 –



By using the dictionary (3.8) we have that shifting

u→ qnu, n ∈ Z (3.11)

while leaving Z invariant in (3.6), (3.7) is equivalent to

µ→ µ− inπ, n ∈ Z, (3.12)

in the language of section 2.1, where we used

t(µ, ξ, ~) + 2nπi = t(µ+ niπ, ξ, ~). (3.13)

Likewise shifting
Z → qnZ, n ∈ Z (3.14)

while leaving u invariant is equivalent to

µ→ µ− inπ, and ξ → ξ − 4niπ2/~ n ∈ Z. (3.15)

Therefore by using the dictionary (3.8) together with the above considerations we can write (3.6)
as

e−ξ/4τC(µ− iπ, ~, ξ − 4iπ2

~
)τC(µ+ iπ, ~, ξ +

4iπ2

~
) = τC(µ, ~, ξ)2

+ e−ξ/2τC(µ+ iπ, ~, ξ)τC(µ− iπ, ~, ξ).
(3.16)

In the rest of the paper we will use the notation τC(µ, ~, ξ) and τC(u, q, Z) interchangeably. We
define C0(u, q, Z) such that

C0(u, q, Z)Z(u, Z, q−1, q)

(uq; q, q)∞ (u−1q; q, q)∞
=e

JP1×P1 (µ,ξ,~)+JCS

(
iπ+ 1

2
ξ, 2π

2

~

)
, (3.17)

where the variables on the two sides are related by the dictionary (3.8). Moreover JP1×P1 is the
topological string grand potential (2.13) for the canonical bundle over P1×P1 and we denoted by
JCS the non–perturbative Chern–Simons free energy, which can be identified with the topological
string grand potential of the resolved conifold [84] (see appendix A for the full definition). We
also denote

ZCS (~, ξ) = exp

[
JCS

(
iπ +

1

2
ξ,

2π2

~

)]
. (3.18)

By using the results of appendix C it is easy to see that C0(u, q, Z) defined as in (3.17) fulfils
(3.7). Therefore

τC0(µ, ~, ξ) = ZCS (~, ξ)
∑
n∈Z

eJP1×P1 (µ+2πin,ξ,~) (3.19)

satisfies the q- Painlevé III3 equation given in (3.16). By using the conjectural expression for the
spectral determinant given in (3.3) together with (3.19), it follows that

τC0(µ, ~, ξ) = ZCS (~, ξ) det (1 + κρP1×P1) . (3.20)

Hence this choice of C0(u, q, Z) provides a Fredholm determinant representation for the τ function
of the q-Painlevé III3 equation. This representation can be thought as a generalisation of [39, 40]

– 11 –



for the q-difference equation since in the limit ~→∞ (3.20) reproduces the solution to differential
Painlevé III3 presented in [39, 40] (see section 3.5).

At this point the following question arises: can we prove directly that the r.h.s of (3.20)
satisfy (3.16) without using the TS/ST duality namely without using the expression of

det (1 + κρP1×P1) (3.21)

in terms of enumerative invariants given in (3.3)? Even though we do not have a proof of it, in
sections 4 and 5 we will test this by direct analytical an numerical computations.

3.3 The self–dual point

As we will see in section 3.4, ZCS (~, ξ) satisfy (3.38). In particular this means that we can replace
(3.16) with a more explicit equation for 12

ΞTS(κ, ξ, ~) =
∑
n∈Z

eJP1×P1 (µ+2πin,ξ,~). (3.22)

More precisely (3.16) becomes

ΞTS(−κ, ξ − 4iπ2

~
, ~)ΞTS(−κ, ξ +

4iπ2

~
, ~)(1 + e−ξ/2) = ΞTS(κ, ξ, ~)2 + e−ξ/2ΞTS(−κ, ξ, ~)2 .

(3.23)
At the self dual point ~ = 2π and for ξ = 0 this reads

2ΞTS(−κ,−2πi, 2π)ΞTS(−κ, 2πi, 2π) = ΞTS(κ, 0, 2π)2 + ΞTS(−κ, 0, 2π)2. (3.24)

By using the results of section 2.1.1 it is easy to see that (3.24) becomes simply an identity
between theta functions (we take Re(κ) > 0 )

ϑ3 (ξ(iκ), τ(iκ))ϑ4 (ξ(iκ), τ(iκ)) =
i√
iκ

(
ϑ1(ξ(iκ) +

1

4
, τ(iκ))

)2

+
i√
iκ

(
ϑ1(ξ(iκ)− 1

4
, τ(iκ))

)2

,

(3.25)

where
ϑ4(v, τ) =

∑
n∈Z

(−1)n exp[iπn2τ + 2πinv] (3.26)

while the others quantities have been defined in section 2.1.1. We also used

ΞTS(−κ,−2πi, 2π) = ΞTS(κ, 2πi, 2π). (3.27)

Hence in this particular case the q-Painlevé equation leads to

η8 (4τ(κ))

η8(τ (κ))
=

κ2

256
. (3.28)

where we used

η(τ) = eiπτ/12
∞∏
n=1

(
1− e2πinτ

)
(3.29)

12For sake of notation we omit the subscript P1 × P1 in ΞTS
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as well as the following theta function identity 13

ϑ1(v + 1/4, τ)2 + ϑ1(v − 1/4, τ)2

4eiπτ/2ϑ3(v, τ)ϑ4(v, τ)
=

∞∏
n=1,n/∈4N

(1− e2niπτ )−2. (3.30)

Let us look at (3.28) as an equation for τ . We can write it as as

j(2τ) =

(
κ4 + 16κ2 + 256

)3
κ4 (κ2 + 16)2

(3.31)

where

j(2τ) =

(
256∆16

η + 16∆8
η + 1

)3
∆16
η

(
16∆8

η + 1
)2 , ∆η =

η (4τ(κ))

η(τ (κ))
. (3.32)

This is the well known expression for the j-invariant function as quotient of η functions and can
be easily derived by using the identities in appendix D. Hence (3.31) is the well known relation
between j-invariant and the modular parameter of the elliptic curve describing the mirror curve
to local P1 × P1 whose solution is known to be (2.23). 14 Therefore in the self-dual case the
q-Painlevé equation reduces to the well known relation (3.31) which define the prepotential of
the underling geometry. To capture all the gravitational corrections instead one should consider
q-Painleve with q 6= 1.

3.4 The q-deformed algebraic solution

One of the immediate consequences of representing the τ function as a spectral determinant is
that one can easily obtain the corresponding algebraic solution studied for instance in [85, 86].
In the case of differential Painlevé III3 the τ function is characterised by the initial conditions 15

(σ, η) (3.33)

which correspond to the monodromy data of the related Fuchsian system. When η = 0 the τ
function admits the following spectral determinant representation [17, 39]

τ (σ, T ) = e−
log(2)
12
−3ζ′(−1)T 1/16e−4

√
T det

(
1 +

cos(2πσ)

2π
ρ4D

)
(3.34)

where

ρ4D = e−4T
1/4 cosh(x) 4π(

ep/2 + e−p/2
)e−4T

1/4 cosh(x), [x, p] = 2πi. (3.35)

In particular when σ = 1/4 we have

τ(1/4, 0, T ) = e−
log(2)
12
−3ζ′(−1)T 1/16e−4

√
T . (3.36)

which reproduces the well known algebraic solution for Painlevé III3 [23, 85].
Similarly for the q-Painlevé equations the Fredholm determinant representation makes con-

tact with the q-analogue of the algebraic solution when κ = 0. From (3.20) it follows that

log τC0(µ, ~, ξ) |κ=0= logZCS (~, ξ). (3.37)

13We thank Yasuhiko Yamada for bringing our attention on this identity.
14We thank Jie Gu for discussions on this point.
15We follow the notation of [8].
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Hence the q-difference Painlevé III3 at κ = 0 reads

ZCS
(
~, ξ + 4π2i/~

)
ZCS

(
~, ξ − 4π2i/~

)
= ZCS (~, ξ)2

(
eξ/4 + e−ξ/4

)
. (3.38)

By using (A.24), (A.25) together with (C.13), (C.14) it is easy to verify that (3.38) is indeed
satisfied. As expected, up to an overall ~ dependent normalisation, the solution (3.37) reproduces
the q-deformed algebraic solution of [23] provided we choose C in (3.5) as in (3.17). At the self–
dual point ~ = 2π we have a particularly nice expression (we suppose 0 < e−ξ < 1) (A.26)

logZCS (2π, ξ) =
Li3(e

−ξ)

8π2
+

Li2(e
−ξ)ξ

8π2
− ξ3

96π2
− log(1− e−ξ)ξ2

16π2

− ξ

16
− 1

8
log(1− e−ξ)− 1

8
log

(
e−ξ/2 + 1

1− e−ξ/2

)
+
Ac(4)

2
,

(3.39)

where Ac is defined in (A.22). It is easy to see that (3.39) fulfils (3.38).
We note that, to our knowledge, the generic Riemann–Hilbert problem behind q-deformed

Painlevé equations has not been found so far. However the algebraic solution to q-III3 is the
grand potential of the resolved conifold as defined in [54]. We observe that in [87, 88] the partition
function of the resolved conifold arises as a tau function of a given Riemann–Hilbert problem.
It would be interesting to see if it exists a generalisation for the Riemann–Hilbert problem of
[87, 88] whose tau function makes contact with the Fredholm determinants appearing in [20]
namely (2.11),(2.15) and therefore with q-deformed Painlevé equations.

3.5 The continuous limit

We are now going to explain how to obtain the standard differential Painlevé III3 starting from
the q-Painlevé III3 written in the form (3.23). It is more convenient to work with the variables

ξ, Qf = eξe−
2π
~ t(µ,ξ,~). (3.40)

Then we write (3.23) as

Ξ(Qf , ξ −
4iπ2

~
, ~)Ξ(Qf , ξ +

4iπ2

~
, ~)(1 + e−ξ/2) = Ξ(Qf , ξ, ~)2

+ e−ξ/2Ξ(e4π
2i/~Qf , ξ, ~)Ξ(e−4π

2i/~Qf , ξ, ~).
(3.41)

We omit the overscripts ·TS or ·ST because what follows holds both for ΞTS and for ΞST. We
write

Ξ(Qf , ξ −
4iπ2

~
, ~)Ξ(Qf , ξ +

4iπ2

~
, ~) = Ξ(Qf , ξ, ~)2+(

4π2i

~

)2 (
− (∂ξΞ(Qf , ξ, ~))2 + Ξ(Qf , ξ, ~)∂2ξΞ(Qf , ξ, ~)

)
+O(~−4).

(3.42)

The continuous limit leading to differential Painlevé III3 in the gauge theory language corresponds
to the dual 4d limit introduced in [17, 19]. Let us introduce a new set of variable (T, a) such that

ξ = aβε− log
(
(4π2)4β4Tε4

)
, Qf = eaβε. (3.43)

and

~ =
1

βε
. (3.44)
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Hence
∂ξ = −T∂T (3.45)

The continuous limit is obtained by sending

β → 0. (3.46)

More precisely it was shown in [17] that in this case one has

ΞTS(eα4π
2i/~Qf , ξ, ~)

β→0−−−→ ΞTS
4d (σ, T ) = e

log(2)
12

+3ζ′(−1)T−1/16e4
√
TZNO(σ +

α

2
, T ) (3.47)

where a = 8π2iσ and ZNO(σ, T ) is the Nekrasov–Okounkov partition function for pure N = 2,
SU(2) gauge theory in the selfdual Ω background. More precisely

ZNO(σ, T ) =
∑
n∈Z

T (σ+n)2B(T, σ + n)

G(1− 2(σ + n))G(1 + 2(σ + n))
,

B(T, σ) =

(
1 +

T

2σ2
+

(
8σ2 + 1

)
T 2

4σ2 (1− 4σ2)2
+O(T 3)

)
.

(3.48)

Likewise it was shown in [17] that

ΞST(eα4π
2i/~Qf , ξ, ~)

β→0−−−→ ΞST
4d (σ, T ) = det

(
1 + κ(σ +

α

2
)ρ4d

)
(3.49)

where

κ(σ) =
cos(2πσ)

2π
(3.50)

and ρ4D are defined in (3.35). In particular both ΞST and ΞTS are well defined in the limit β → 0.
In this limit (3.42) reads

Ξ4d(σ, T )2 +
(
4π2iεβ

)2 (− (T∂TΞ4d(σ, T ))2 + Ξ4d(σ, T )(T∂T )2Ξ4d(σ, T )
)

+O(β4). (3.51)

Hence (3.23) becomes

16π4
√
Tε2

(
Ξ4d(σ, T )2 − Ξ4d(σ +

1

2
, T )2 − Ξ4d(σ, T )T 3/2∂2TΞ4d(σ, T )

+T 3/2 (∂TΞ4d(σ, T ))2 − Ξ4d(σ, T )
√
T∂TΞ4d(σ, T )

)
+O(β) = 0

(3.52)

By keeping the leading order in β and defining

τ(σ, T ) = e−4
√
TΞ4d(σ, T ) (3.53)

we can write (3.52) as

− τ(σ, T )2
(
T

d

dT

)2

log τ(σ, T )−
√
Tτ(σ +

1

2
, T )2 = 0, (3.54)

which is the Painlevé III3 in the τ form. More precisely equation (3.54) is also called the Toda-like
form of Painlevé III3, see for instance [86]. Notice that if we take

τ(σ, T ) = e−4
√
TΞTS

4d (σ, T ), (3.55)

– 15 –



then we recover the results of [8] relating Painlevé III3 to pure SU(2) gauge theory. Likewise by
setting

τ(σ, T ) = e−4
√
TΞST

4d (σ, T ), (3.56)

we make contact with the solution to Painlevé III3 of [39, 40]. As explained in [17] the expressions
(3.55) and (3.56) are different representation of the same function, namely the τ function of
differential Painlevé III3.

4 The q-deformed Painlevé III3 and matrix models

In this section we focus on the operator side of the TS/ST duality and we formulate the results
of section 3 by using the operator theory/matrix models point of view. We first recall that by
using (3.38) and (3.19) we can write the q-deformed Painlevé III3 (3.16) in the form (3.23). This
means that at the level of the spectral determinant

ΞST(κ, ξ, ~) = det (1 + κρP1×P1) (4.1)

the q-deformed Painlevé III3 equation reads

ΞST(−κ, ξ − 4iπ2

~
, ~)ΞST(−κ, ξ +

4iπ2

~
, ~)(1 + e−ξ/2) = ΞST(κ, ξ, ~)2 + e−ξ/2ΞST(−κ, ξ, ~)2.

(4.2)
In the forthcoming sections we will perform several tests of (4.2), even though a proof is still
missing.

4.1 Matrix model representation

By using standard results in Fredholm theory we express the determinant (4.1) in terms of
fermionic spectral traces

Z(N, ~, ξ) =
1

N !

∑
σ∈SN

(−1)σ
∫

dNx
N∏
i=1

ρP1×P1(xi, xσ(i)), (4.3)

as

ΞST(κ, ~, ξ) =
∑
N≥0

κNZ(N, ~, ξ) (4.4)

where SN in (4.3) is the group of permutations of N elements and ρP1×P1(x, y) is the kernel of
(3.1). Furthermore by using the Cauchy identity we can write (4.3) as an O(2) matrix model [44]

Z(N, ~, ξ) =
e−

~
8π
Nξ

N !

∫
dNz

(2π)N
e−
∑N
i=1(V (zi,~,ξ))

∏
i<j(zi − zj)2∏
i,j(zi + zj)

, (4.5)

where the integral is over the positive real axis and the potential is given by

e−V (z,~,ξ) =e
b2 log z

2
Φb( b log z2π − b

8π ξ + ib/4)

Φb( b log z2π + b
8π ξ − ib/4)

Φb( b log z2π + b
8π ξ + ib/4)

Φb( b log z2π − b
8π ξ − ib/4)

. (4.6)

We use

~ = πb2 (4.7)
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and Φb denotes the Fadeev quantum dilogarithm [89, 90]. Our conventions for Φb are as in [44].
Let us define

V±(z, ~, ξ) =V (z, ~, ξ±4π2i/~),

Z±(N, ~, ξ) =Z(N, ~, ξ±4π2i/~).
(4.8)

Then we have

Z±(N, ~, ξ) = e−
~
8π
Nξ (∓i)N

N !

∫
dNz

(2π)N
e−
∑N
i=1(V±(zi,~,ξ))

∏
i<j(zi − zj)2∏
i,j(zi + zj)

. (4.9)

It follows that the q-difference Painlevé equation (4.2) is equivalent to the following relation
between the matrix models Z±(N, ~, ξ) and Z(N, ~, ξ)

N∑
N1=0

Z(N1, ~, ξ)Z(N −N1, ~, ξ)
(

1 + e−ξ/2(−1)N
)

=

N∑
N1=0

Z+(N1, ~, ξ)Z−(N −N1, ~, ξ)
(

(−1)N + e−ξ/2(−1)N
)
.

(4.10)

Let us check this equation in the simplest example, namely N = 1. We write (4.10) as

2(1− e−ξ/2)Z(1, ~, ξ) = −(1 + e−ξ/2)(Z+(1, ~, ξ) + Z−(1, ~, ξ)). (4.11)

By using the properties of the quantum dilogarithm (see for instance appendix A in [91]) it is
easy to see that

e−V−(z,~,ξ) =e−V−(z
−1,~,ξ)

e−V+(z,~,ξ) =− e−V−(z,~,ξ)

((
eξ/4 + iz

) (
eξ/4z + i

)(
eξ/4 − iz

) (
eξ/4z − i

))

e−V (eiπ/b
2
z,~,ξ) =

1− ieξ/4z

eξ/4z − i
e−V−(z,~,ξ).

(4.12)

Moreover ∫
R+

dz

z
e−V (eiπ/b

2
z,~,ξ) =

∫
R+

dz

z
e−V (z,~,ξ), ξ, b ∈ R. (4.13)

Hence (4.11) is equivalent to ∫
R+

dz

z
H(z, ξ)e−V−(z,~,ξ) = 0, (4.14)

where

H(z, ξ) =

(
−2e−

ξ
4

(
eξ/2 − 1

) (
z2 − 1

)(
eξ/4 − iz

) (
eξ/4z − i

) ) . (4.15)

Since H(z, ξ) = −H(1/z, ξ) it follows that (4.14) indeed holds.
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4.2 Comment on TBA

In the previous sections we found that the spectral determinant of the operator (3.1) fulfils the
q-deformed Painlevé III3 equation in the τ form. Moreover it is possible to show that such a
determinant is determined by a TBA system [39, 92]. Let us review how this goes. We consider
a trace class operator whose kernel is of the form

ρ(x, y) =
e−u(x)−u(y)

4π cosh
(x−y

2

) . (4.16)

Then the Fredholm determinant of (4.16) is determined by a set of TBA equations whose explicit
form can be found in [39]. If we set

u(x) = t cosh(x) (4.17)

we can make contact with the solution (3.34) of Painlevé III3 as explained in [39]. Let us take
instead

u(x) = − log

∣∣∣∣f ( bx2π
)∣∣∣∣+

b2

16
ξ (4.18)

where

f(x) = eπxb/2
Φb(x− b

8π ξ + ib/4)

Φb(x+ b
8π ξ − ib/4)

, ~ = πb2 (4.19)

and Φb denotes the Faddeev’s quantum dilogarithm. With the choice (4.18) the kernel (4.16) is
related by unitary transformation to the one of (3.1) (see [44]) and therefore to q−P III3. This
connection with TBA system can be exploited to compute Z(N,m, ~) in (4.5) exactly for finite
values of N,m, ~. Some examples are provided in the next sections.

We also observe that in [60] the authors constructed a TBA system which determines the
Fredholm determinant of the operator arising by quantizing the mirror to local P2. It would be
interesting to understand if one can systematically construct a TBA for each q-deformed Painlevé
equation.

4.3 The self–dual point

At the self–dual point ~ = 2π and for ξ = 0 equation (4.10) gives a relation between the following
O(2) matrix integrals:

Z(N, 0, 2π) =
1

N !

∫
dNz

(4π)N

(
N∏
i=1

1

(zi + 1)2

)∏
i<j

(
zi − zj
zi + zj

)2

(4.20)

Z±(N, 0, 2π) =
(∓i)N

N !

∫
dNz

(4π)N

(
N∏
i=1

1

(z2i + 1)

)∏
i<j

(
zi − zj
zi + zj

)2

. (4.21)

Both these matrix integrals have been evaluated exactly for various values of N in [51, 93] . For
the first few values we have

Z(1, 0, 2π) =
1

4π
, Z(2, 0, 2π) =

1

128

(
1− 8

π2

)
, Z(3, 0, 2π) =

5π2 − 48

4608π3
, (4.22)

Z+(1, 0, 2π) = − i

8
, Z+(2, 0, 2π) = − 1

32π2
, Z+(3, 0, 2π) = i

10− π2
512π2

, (4.23)

and similar expression can be obtained for higher N as well. By using these exact values we
checked that (4.10) indeed holds for N = 1, · · · 13.
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5 Connection with ABJ theory

The q-deformed Painlevé written in the form (4.2) is similar to Wronskian like relations that
have been found experimentally in ABJ theory [41]. This link is not surprising since topological
string on local P1×P1 and ABJ theory at level k with gauge group U(N)×U(N+M) are closely
related [78, 94, 95]. In order to connect these two theories one has to use the following dictionary
[93, 96]

logmP1×P1 = i~− 2πiM, ~ = πk. (5.1)

Therefore shifting

ξ → ξ±4iπ2/~ (5.2)

in topological string is equivalent to a shift of the rank of the gauge group in the ABJ theory by

M →M ± 1. (5.3)

Let us denote the grand canonical partition function of ABJ theory by

ΞABJ(κ, k,M) =
∑
N≥0

κNZABJ(N,M, k) (5.4)

where ZABJ(N,M, k) is the partition function of ABJ theory at level k and with gauge group
U(N)× U(N +M). According to [94, 95, 97] we have

ZABJ(N,M, k) =
1

N !

∫ N∏
i=1

dxi
4πk

VM (xi)
∏
i<j

(
tanh

(
xi − xj

2k

))2

, (5.5)

where

VM (x) =
1

ex/2 + (−1)Me−x/2

M−1
2∏

s=−M−1
2

tanh
x+ 2πis

2k
. (5.6)

It follows that

ΞABJ(κ, k,M) = det (1 + κρABJ) =
∏
n≥0

(
1 + κe−En

)
(5.7)

where

ρABJ =
1

2 cosh(v/2)

1

e
u
2 + (−1)Me−

u
2

M−1
2∏

s=−M+1
2

tanh
(u + 2πis

2k

)
, [u, v] = 2πik. (5.8)

This is a trace class operator acting on L2(R) and we denote by e−En its eigenvalues. It was
shown in [44], that by using the dictionary (5.1) we have

ZABJ(N,M, k) = eN iπk/4−N iπM/2Z(N, ~,m). (5.9)
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5.1 Wronskian-like relations and q-Painlevé

The q–Painlevé equation in the form (4.2) and in the ABJ dictionary (5.1) reads

ΞABJ(−κi, k,M + 1)ΞABJ(iκ, k,M − 1)(1− e2πiM/k)

= ΞABJ(κ, k,M)2 − e2πiM/kΞABJ(−κ, k,M)2.
(5.10)

In the following we show that (5.10) can be derived also by using the Wronskian-like relations of
[41]. Let us recall the result of [41]. We factorise the determinant (5.7) according to the parity
of the eigenvalues of ρABJ, namely

ΞABJ(κ, k,M) = Ξ+(κ, k,M)Ξ−(κ, k,M), (5.11)

where
Ξ+(κ, k,M) =

∏
n≥0

(
1 + κe−E2n

)
, Ξ−(κ, k,M) =

∏
n≥0

(
1 + κe−E2n+1

)
. (5.12)

Then in [41] it was found experimentally 16 that the following relations hold

e
M
2k
πiΞ+ (iκ, k,M + 1) Ξ− (−iκ, k,M − 1)

− e−
M
2k
πiΞ+ (−iκ, k,M + 1) Ξ− (iκ, k,M − 1) = 2i sin

(
Mπ

2k

)
Ξ (κ, k,M) ,

(5.13)

and

e−
M
2k
πiΞ+ (iκ, k,M − 1) Ξ− (−iκ, k,M + 1)

+ e
M
2k
πiΞ+ (−iκ, k,M − 1) Ξ− (iκ, k,M + 1) = 2 cos

(
Mπ

2k

)
Ξ (κ, k,M) .

(5.14)

These relations are similar to the Wronskian-like relations of [98]. Let us denote by

W1[κ] = e
M
2k
πiΞ+ (iκ, k,M + 1) Ξ− (−iκ, k,M − 1)− e−

M
2k
πiΞ+ (−iκ, k,M + 1) Ξ− (iκ, k,M − 1)

(5.15)
and

W2[κ] = e−
M
2k
πiΞ+ (iκ, k,M − 1) Ξ− (−iκ, k,M + 1) + e

M
2k
πiΞ+ (−iκ, k,M − 1) Ξ− (iκ, k,M + 1) .

(5.16)
By using these definitions it is easy to verify that

1

2
i csc

(
πM

k

)(
W1[κ] + e

iπM
k W1[−κ]

)(
−W2[κ] + e

iπM
k W2[−κ]

)
=
(

1− e
2iπM
k

)
ΞABJ(−iκ, k,M + 1)ΞABJ(iκ, k,M − 1).

(5.17)

On the other hand by using (5.13) and (5.14) we have

1

2
i csc

(
πM

k

)(
W1[κ] + e

iπM
k W1[−κ]

)(
−W2[κ] + e

iπM
k W2[−κ]

)
= ΞABJ(κ, k,M)2 − e

2iπM
k ΞABJ(−κ, k,M)2.

(5.18)

The combination of (5.17) with (5.18) leads to (5.10). Since (5.13) and (5.14) have been tested
in detail both numerically and analytically (see [41]), this provides a further strong evidence for
the conjecture that the Fredholm determinant of the operator (3.1) indeed computes the tau
function of q-PIII3.

16 By a detailed numerical analysis of the spectrum of the operator (5.8).
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5.2 Additional tests

In this section we perform further tests of (4.10) by using several results obtained in the context
of ABJ theory. By using (5.1) and (5.9) we write (4.10) as

N∑
N1=0

e−N iπk/4+N iπM/2ZABJ(N1,M, k)ZABJ(N −N1,M, k)
(

1− e2πiM/k(−1)N
)

=

N∑
N1=0

e−N iπk/4+iπ(−N+MN+2N1)/2ZABJ(N1,M + 1, k)ZABJ(N −N1,M − 1, k)(−1)N
(

1− e2πiM/k
)
.

(5.19)
This equation can be tested in detail for several values of N,M, k thanks to the exact results for
ZABJ(N,M, k) obtained in [51, 93, 99, 100] by using TBA like techniques. Let us illustrate this
in one example. We consider (5.19) for M = 1, k = 3. We have

N∑
N1=0

e−N iπ/4ZABJ(N1, 1, 3)ZABJ(N −N1, 1, 3)
(

1− e2πi/3(−1)N
)

=

N∑
N1=0

e−N iπ3/4(−1)N1+NZABJ(N1, 1, 3)ZABJ(N −N1, 0, 3)
(

1− e2πi/3
)
.

(5.20)

where we used Seiberg-like duality of ABJ theory [101] to set

ZABJ(N, 2, 3) = ZABJ(N, 1, 3). (5.21)

The quantities
ZABJ(N, 0, 3), ZABJ(N, 1, 3), (5.22)

have been computed exactly in [51, 93] for N = 1, · · · , 10. For instance for the first few values
of N we have

ZABJ(1, 0, 3) =
1

12
, ZABJ(1, 1, 3) =

1

12

(
2
√

3− 3
)
,

ZABJ(2, 0, 3) =
π − 3

48π
, ZABJ(2, 1, 3) =

1

432

(
−27 + 14

√
3 +

9

π

)
.

(5.23)

The exact values of (5.22) for higher N can be found in [51, 93, 100]. By using these results we
have explicitly checked that (5.20) indeed holds for N = 1, · · · 10. Similar tests can be done for
other values of M,k providing in this way additional evidence for (4.2) and as a consequence for
the conjecture that the Fredholm determinant of the operator (3.1) computes the τ function of
q-Painlevé III3.

6 Conclusions and open questions

In this work we conjecture that Fredholm determinants of operators associated to mirror curves
on suitable Calabi-Yau backgrounds compute τ functions of q–Painlevé equations. We test this
proposal in detail for the case of q–Painlevé III3 which is related to topological strings on local
P1×P1. However, it would be important to test, and eventually prove, our proposal in the other
cases, see Fig. 1.
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At the self dual point ~ = 2π the spectral determinant reduces to a classical theta function
up to a normalisation factor and the q-Painlevé equations to the well known relation between the
j-invariant and the modular parameter of the elliptic curve describing the mirror curve to local
P1×P1. Hence in this particular limit q-Painlevé equations determine the tree-level prepotential
F0 of the underling geometry. It would be interesting to determine all the higher genus free
energies Fg explicitly starting from the q-Painlevé at q 6= 1. In addition it would be interesting
to understand better the relation between the self-dual point, which is determined by F0 and
its derivatives, and the autonomous limit of q-Painlevé equations or QRT maps [81–83]. This
would provide an interesting new link between supersymmetric gauge theories/topological strings
and dynamical systems, presenting the deformation of five dimensional Seiberg-Witten theory
induced by a self-dual Ω-background as a deformation of integrable mappings in two-dimensions,
which appear in soliton theory and statistical systems [81, 82].

A special role in the tests that we perform is played by ABJ theory. Actually, q–Painlevé
III3 equation gives a relation between two ABJ theories with different ranks of the gauge group.
In this case equation (4.2) can be derived from the Wronskian-like relations of [41]. It would be
interesting to see if it is always possible to express the q–Painlevé equations by using Wronskian-
like relations. In the case of other q–Painlevé equations we expect the role of ABJ to be played
by the other superconformal gauge theories which make contact with topological string on del
Pezzo’s surfaces as displayed in Fig. 1 (see for instance [102, 103]).

Another related question is the connection with tt* equations. Indeed it is well known that
differential Painlevé III3 arises in the context of 2d tt* equations [104]. It would be interesting to
see if and how the q-deformed case is related to the 3d tt* equations of [105]. Likewise it would
be interesting to understand if it exists a deformation of the 2d Ising model which makes contact
with q-deformed Painlevé equation and the determinant (1.3).

A last interesting point would be the generalisation to mirror curves with higher genus.
Indeed the conjecture of [20] can be generalized to higher genus mirror curves by introducing
the notion of generalised spectral determinant [21]. However, the equations obeyed by these
generalised determinants both in five and in four dimensions are not known to us. Some first
results in this direction are presented in [19] were a relation with 2d tt* geometry and Toda
equation was found in a particular limit. It would be interesting to see whether this continues
to hold also in five dimensions at the level of relativistic Toda hierarchy.
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A The grand potential: definitions

In this section we review the definition of the topological string grand potential JX associated
to a toric CY X with genus one mirror curve. We mainly follow the notation of [21, 55]. As in
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section 2.1 we denote
κ = eµ (A.1)

the ”true” modulus of X, mX the set of mass parameters, m the rescaled mass parameters (2.2)
and

ξ = log m. (A.2)

The Kähler parameters of X are denoted by ti and can be expressed in terms of the complex
moduli through the mirror map:

ti = ciµ+

rX∑
j=1

aij logm
(j)
X + Π(κ−1,mX), (A.3)

where Π is a series in κ−1and mX while ci, aij are constants which can be read from the toric
data of the CY [42, 43]. For instance for local P1× P1 c2 = c2 = 2, a11 = 0, a21 = −1 . By using
the quantum curve (2.9) one promotes the Kähler parameters to quantum Kähler parameters
[106] which we denote by

ti(~) = ciµ+

rX∑
j=1

aij logm
(j)
X + Π(κ−1,mX , ~). (A.4)

For instance when X is the canonical bundle over P1 × P1 we have

t1(~) = t(µ, ξ, ~), t2(~) = t(µ, ξ, ~)− ~
2π
ξ, (A.5)

where (see also equation (3.9))

t(µ, ξ, ~) =2µ− 2(mP1×P1 + 1)z + z2

(
−3m2

P1×P1 −
2m
(
e2i~ + 4ei~ + 1

)
ei~

− 3

)
+O

(
z3
)
,

z = e−2µ, mP1×P1 = e
~
2π
ξ.

(A.6)

We introduce the topological string free energy

F top
X (t, gs) =

1

6g2s
aijktitjtk + biti + FGV

X (t, gs) (A.7)

with

FGV
X (t, gs) =

∑
g≥0

∑
d

∞∑
w=1

1

w
ndg

(
2 sin

wgs
2

)2g−2
e−wd·t, (A.8)

where ndg are the Gopakumar–Vafa invariants of X and gs is the string coupling constant. The
coefficients aijk, bi are determined by the classical data of X . In the limit gs → 0 we have

F top
X (t, gs) ∼

∑
g≥0

Fg(t)g2g−2s , (A.9)

where Fg(t) are called the genus g free energies of topological string. For instance we have

F0(t) =
1

6
aijktitjtk +

∑
d

Nd
0 e−d·t,

F1(t) =biti +
∑
d

Nd
1 e−d·t,

(A.10)
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where Nd
g are the genus g Gromov–Witten invariants. When X is a toric CY one has explicit

expressions for (A.10) in terms of hypergeometric and standard functions (see for instance [54, 78,
107]). Let us discuss briefly the convergence properties of (A.8). Let us first note that (A.8) has
poles for π−1gs ∈ Q which makes ill defined on the real gs axis. If instead gs ∈ C/R, then (A.8)
diverges as a series in e−t. Nevertheless by using instanton calculus it is possible to partially
resumm it and organise it into a convergent series [23].

Similarly we define the Nekrasov–Shatahsvili free energy as

FNS(t, ~) =
1

6~
aijktitjtk+bNS

i ti~+
∑
jL,jR

∑
w,d

Nd
jL,jR

sin ~w
2 (2jL + 1) sin ~w

2 (2jR + 1)

2w2 sin3 ~w
2

e−wd·t, (A.11)

where Nd
jL,jR

are the refined BPS invariants of X. Moreover it exists a constant vector B, called
the B-field , such that

Nd
jL,jR

6= 0 ↔ (−1)2jL+2jR+1 = (−1)B·d. (A.12)

For local P1 × P1 this can be set to zero [20, 54]. When ~ → 0 we recover the following genus
expansion

FNS(t, ~) =
∑
g≥0

FNS
g (t)~2g−2. (A.13)

The convergent properties for the NS free energy are analogous to the ones (A.8).

The topological string grand potential is defined as

JX(µ, ξ, ~) = JWKB
X (µ, ξ, ~) + JWS

X (µ, ξ, ~), (A.14)

where

JWS
X (µ, ξ, ~) = FGV

X

(
2π

~
t(~) + πiB,

4π2

~

)
. (A.15)

Moreover

JWKB
X (µ, ξ, ~) =

ti(~)

2π

∂FNS(t(~), ~)

∂ti
+

~2

2π

∂

∂~

(
FNS(t(~), ~)

~

)
+

2π

~
biti(~) +A(ξ, ~), (A.16)

where A(ξ, ~) denotes the so–called constant map contribution. It is important to notice that,
even tough both JWS

X and JWKB
X have a dense set of poles on the real ~ axis, their sum (A.14) is

free of poles. In particular JX is well defined for any value of ~. Moreover, we have

JWKB
X (µ, ξ, ~) =

1

12π~
aijkti(~)tj(~)tk(~) +

(
2πbi
~

+
~bNS
i

2π

)
ti(~) +O

(
e−ti(~)

)
+A(ξ, ~). (A.17)

Hence it is convenient to split

JWKB
X (µ, ξ, ~) = PX(µ, ξ, ~) + JWKB,inst

X (µ, ξ, ~) +A(ξ, ~) (A.18)

where PX encodes the polynomial part in ti of JWKB
X . For local P1 × P1 we have

PP1×P1(µ, ξ, ~) = −ξt(µ, ξ, ~)2

16π2
+
t(µ, ξ, ~)3

12π~
− ~t(µ, ξ, ~)

24π
+
πt(µ, ξ, ~)

6~
− ξ

24
. (A.19)
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The constant map contribution for local P1 × P1 reads [108]

A(ξ, ~) = Ap(ξ, ~)− JCS

(
2π2

~
, iπ +

1

2
ξ

)
, (A.20)

where

Ap(ξ, ~) =
~2

(4π2)2

[
ξ3

24
+
π2ξ

6

]
+Ac

(
~
π

)
, (A.21)

with

Ac(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞
0

x

ekx − 1
log(1− e−2x)dx. (A.22)

Moreover JCS(gs, t) is the non–perturbative Chern–Simons free energy [84, 109]. As explained in
[84] this also coincides with the grand potential of the resolved conifold as defined in [54] namely

JCS(gs, T + iπ) =− g−2s
T 3

12
− g−2s

π2T

12
− 1

24
T +

1

2
Ac(4π/gs) +

∑
n≥1

1

n

(
2 sin

ngs
2

)−2
(−1)ne−nT

−
∑
n≥1

1

4πn2
csc

(
2π2n

gs

)(
2πn

gs
T +

2π2n

gs
cot

(
2π2n

gs

)
+ 1

)
e
− 2πn

gs
T
.

(A.23)
We also denote

Jpert
CS (gs, T + iπ) = −g−2s

T 3

12
− g−2s

π2T

12
− 1

24
T +

1

2
Ac(4π/gs) +

∑
n≥1

1

n

(
2 sin

ngs
2

)−2
(−1)ne−nT ,

(A.24)

Jnp
CS (gs, T + iπ) = −

∑
n≥1

1

4πn2
csc

(
2π2n

gs

)(
2πn

gs
T +

2π2n

gs
cot

(
2π2n

gs

)
+ 1

)
e
− 2πn

gs
T
. (A.25)

For instance when gs = π and T > 0 we have [84]

JCS(π, T + iπ) =− (π)−2
T 3

12
− T

12
− 1

24
T +

1

2
Ac(4) +

1

8π2
Li3(e

−2T ) +
T

4π2
Li2(e

−2T )

−
(
T 2

4π2
+

1

8

)
log
(
1− e−2T

)
− 1

4
arctanh(e−T ).

(A.26)

B Conformal blocks and topological strings

We follow the convention of [23] and write the c = 1 q-conformal blocks as

Z(u, Z, q1, q2) =
∑
λ,µ

Z |λ|+|µ|
1

Nλ,λ(1, q1, q2)Nµ,µ(1, q1, q2)Nλ,µ(u, q1, q2)Nµ,λ(u−1, q1, q2)
(B.1)

where the sum runs over all pairs (µ, λ) of Young diagrams. Moreover we use

Nλ,µ(u, q1, q2) =
∏
s∈λ

(1− uq−aµ(s)−12 q
`λ(s)
1 ) ·

∏
s∈µ

(1− uqaλ(s)2 q
−`µ(s)−1
1 ) (B.2)
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where aλ(s), lλ(s) are the arm length and the leg length of the box s ∈ λ. The leading order in
Z is obtain by considering the couples (�, 0) and (0,�) which gives

Z(u, Z, q, q−1) =
Z

(1− q)(1− q−1)
2

(1− u)(1− u−1) +O (Zu)2 (B.3)

Hence by identifying
Zu = QB, u = QF , q = eigs (B.4)

we obtain

Z(u, Z, q, q−1) =
2qQB

(1−QF )2(1− q)2 +O (QB)2 (B.5)

which corresponds to the instanton partition function (without the one loop contribution) of
topological string on local P1 × P1. Therefore we have

exp
[
JWS
P1×P1(µ, ξ, ~)

]
=

1

(Qfq, q, q)2∞
Z(Qf ,

Qb
Qf

, e4π
2i/~, e−4π

2i/~), (B.6)

where
Qb = e−

2π
~ t(µ,ξ,~), Qf = eξQb (B.7)

and t(µ, ξ, ~) is defined in (A.6).

C Some relevant shifts

We recall the dictionary (3.8)

Qb = e−
2π
~ t(µ,ξ,~), Qf = eξQb, ξ = logm =

2π

~
logmP1×P1 , q = e4π

2i/~ (C.1)

t1(~) = t(µ, ξ, ~), t2(~) = t(µ, ξ, ~)− ~
2π
ξ, (C.2)

We define

F1(µ, ξ, ~) = e
JWKB,inst

P1×P1
(µ,ξ,~)

. (C.3)

Then we have
F1(µ+ iπ, ξ, ~)F1(µ− iπ, ξ, ~)

F1(µ, ξ, ~)2
= 1,

F1(µ− 2πi, ξ−4iπ2/~, ~)F1(µ+ 2πi, ξ + 4iπ2/~, ~)

F1(µ,m, ~)2
= 1,

F1(µ− iπ, ξ−4iπ2/~, ~)F1(µ+ iπ, ξ + 4iπ2/~, ~)

F1(µ, ξ, ~)2
= 1.

(C.4)

Similarly we define

F2(µ, ξ, ~) =
(Q−1f q, q, q)∞

(Qfq, q, q)∞
. (C.5)

Then we have

F2(µ+ iπ, ξ, ~)F2(µ− iπ, ξ, ~)

F2(µ, ξ, ~)2
= − 1

Qf
,

F2(µ− 2πi, ξ−4iπ2/~, ~)F2(µ+ 2πi, ξ + 4iπ2/~, ~)

F2(µ, ξ, ~)2
= − 1

Qf
,

(C.6)

– 26 –



F2(µ− iπ, ξ−4iπ2/~, ~)F2(µ+ iπ, ξ + 4iπ2/~, ~)

F2(µ, ~, ~)2
= 1, (C.7)

where we used

(uq; q, q)∞ =
∏
i,j≥0

(
1− uqqi+j

)
= exp

−∑
s≥1

us

s
(
q
s
2 − q− s2

)2
 . (C.8)

Similarly we define
F3(ξ, ~) = exp[Ap(ξ, ~)] (C.9)

and we have
F3(ξ−4iπ2/~, ~)F3(ξ + 4iπ2/~, ~)

F3(m, ~)2
= e−ξ/4. (C.10)

Also for
F4(µ, ξ, ~) = exp[PP1×P1(µ, ξ, ~)] (C.11)

we have
F4(µ+ iπ, ξ, ~)F4(µ− iπ, ξ, ~)

F4(µ, ξ, ~)2
= eξ/2Qb,

F4(µ− 2πi, ξ−4iπ2/~, ~)F4(µ+ 2πi, ξ + 4iπ2/~, ~)

F4(µ, ξ, ~)2
= e2ξQ2

b ,

F4(µ− iπ, ξ−4iπ2/~, ~)F4(µ+ iπ, ξ + 4iπ2/~, ~)

F4(µ, ξ, ~)2
= eξ/2.

(C.12)

Moreover we have

Jnp
CS

(
2π2

~
,
1

2
ξ +

2π2i

~
+ iπ

)
+ Jnp

CS

(
2π2

~
,
1

2
ξ − 2π2i

~
+ iπ

)
= 2Jnp

CS

(
2π2

~
,
1

2
ξ + iπ

)
. (C.13)

Similarly

Jpert
CS

(
2π2

~
,
1

2
ξ +

2π2i

~
+ iπ

)
+ Jpert

CS

(
2π2

~
,
1

2
ξ − 2π2i

~
+ iπ

)
− 2Jpert

CS

(
2π2

~
,
1

2
ξ + iπ

)
=

1

4
ξ + log

(
e−ξ/2 + 1

)
.

(C.14)

D Some identities for η function

We denote

η(τ) = eiπτ/12
∞∏
n=1

(
1− e2πinτ

)
(D.1)

the Dedekind η function. The Weber modular functions are defined as

f(τ) =
η2(τ)

η(τ/2)η(2τ)
,

f1(τ) =
η(τ/2)

η(τ)
,

f2(τ) =
√

2
η(2τ)

η(τ)
.

(D.2)
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Standard identities of Weber modular functions are

f1(τ)8 + f2(τ)8 = f(τ)8, (D.3)

8j(τ) = (f1(τ)16 + f2(τ)16 + f16(τ))3, (D.4)

where j is the j-invariant:

j(τ) =
1

q̄
+ 744 + 196884q̄ +O(q̄2), q̄ = e2πiτ (D.5)
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