
09 March 2020

. SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

 SISSA Digital Library

A Weighted POD Method for Elliptic PDEs with Random Inputs / Venturi, Luca; Ballarin, Francesco; Rozza, Gianluigi. -
In: JOURNAL OF SCIENTIFIC COMPUTING. - ISSN 0885-7474. - 81:1(2019), pp. 136-153.

Original

A Weighted POD Method for Elliptic PDEs with Random Inputs

Springer

Publisher:

Published
DOI:10.1007/s10915-018-0830-7

Terms of use:
openAccess

Publisher copyright

This version is available for education and non-commercial purposes.

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 20.500.11767/103642 since: 2019-10-11T12:56:55Z

This is the peer reviewd version of the followng article:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/287452127?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Weighted POD Method for Elliptic PDEs with
Random Inputs ∗

Luca Venturi †1, Francesco Ballarin 1, and Gianluigi Rozza 1

1mathLab, Mathematics Area, SISSA, Trieste, Italy

February 27, 2018

Abstract

In this work we propose and analyze a weighted proper orthogonal decompo-
sition method to solve elliptic partial differential equations depending on random
input data, for stochastic problems that can be transformed into parametric sys-
tems. The algorithm is introduced alongside the weighted greedy method. Our
proposed method aims to minimize the error in a L2 norm and, in contrast to the
weighted greedy approach, it does not require the availability of an error bound.
Moreover, we consider sparse discretization of the input space in the construction
of the reduced model; for high-dimensional problems, provided the sampling is
done accordingly to the parameters distribution, this enables a sensible reduction
of computational costs, while keeping a very good accuracy with respect to high
fidelity solutions. We provide many numerical tests to asses the performance of
the proposed method compared to an equivalent reduced order model without
weighting, as well as to the weighted greedy approach, in both low and higher
dimensional problems.

1 Introduction
Many physical models and engineering problems are described by partial differential
equations (PDEs). These equations usually depends on a number of parameters, which
can correspond to physical or geometrical properties of the model as well as to initial
or boundary conditions of the problem, and can be deterministic or subject to some
source of uncertainty. Many applications require either to compute the solutions in real
∗This work was funded by European Union Funding for Research and Innovation (project H2020

ERC CoG 2015 AROMA-CFD project 681447) and by the INDAM-GNCS project.
†Current address: Courant Institute of Mathematical Sciences, New York University, New York,

U.S. Corresponding author: venturi@cims.nyu.edu

1

time, i.e. to compute them almost instantaneously given certain input parameters, or
to compute a huge number of solutions corresponding to diverse parameters. The latter
is for example the case when we want to evaluate statistics of some features associated
to the solution. In both cases it is necessary to have methods to get very fast, and still
reliable, numerical solutions to these equations.
Reduced order models [13, 20] were developed to face this problem. The main idea of
these methods is that in many practical cases the solutions obtained for different val-
ues of the parameters belong to a lower-dimensional manifold of the functional space
they naturally belong to. Therefore, instead of looking for the solution in a high-
dimensional approximation subspace of this functional space, one could look for it in
a low-dimensional, suitably tailored, reduced order space. Obviously, this consider-
ably reduces the computational effort, once the reduced spaces are available. Different
methods have been developed to construct these sub-spaces in an efficient and reliable
way: two popular techniques are the greedy method and the Proper Orthogonal De-
composition (POD) method.
As said above, many of the parameters describing the problem at hand can be subject to
uncertainties. In several applications, keeping track of these uncertainties could make
the model more flexible and more reliable than a deterministic model. In this case we
talk about PDEs with random inputs, or stochastic PDEs. Many different methods are
available to solve such problems numerically, such as stochastic Galerkin [22], stochas-
tic collocation [1, 17, 25], as well as Monte-Carlo [22]. More recently, methods based
on reduced order models have been developed [6, 7, 8, 11, 21, 23]. In practice, they aim
to construct low-dimensional approximation subspaces in a weighted fashion, i.e. more
weight is given to more relevant values of the parameters, according to an underlying
probability distribution. Nevertheless, to our knowledge, no reduced order method for
stochastic problems based completely on the POD algorithm has been proposed so far.
In this paper we consider the case of linear elliptic PDEs with the same assumption as
in [7]. We briefly discuss the framework and introduce the weighted greedy algorithm.
The rest of the work is devoted to define a weighted proper orthogonal decomposition
method, which is the original contribution of this work. While the greedy algorithm
aims to minimize the error in a L∞ norm over the parameter space, the POD method
looks instead at the L2 norm error, which, in the stochastic case, is the mean square
error. The integral of the square error is discretized according to some quadrature rule,
and the reduced order space is found by minimizing this approximated error. From the
algorithmic point of view, this corresponds to applying a principal component analysis
to a weighted (pre-conditioned) matrix. The main difference from the greedy algo-
rithm is that our method does not require the availability of an upper bound on the
error. Nevertheless, our method requires an Offline computation of an higher number
of high-fidelity solutions, which may be costly. Therefore, to keep the computational
cost low, we adopted sparse quadrature rules. These methods allow to get the same
accuracy at a sensibly lower computational cost, especially in the case of high dimen-
sional parameter space. The resulting weighted POD method shows the same accuracy
as long as the underlying quadrature rule is properly chosen, i.e. accordingly to the

2

distribution. Indeed, since the reduced order space will be a subspace of the space
spanned by the solutions on the parameter nodes given by the quadrature rule, these
training parameters needs to be representative of the probability distribution on the
parameter space. Thus the choice of a proper quadrature rule plays a fundamental
role.
The work is organized as it follows. An elliptic PDE with random input data is set
up with appropriate assumptions on both the random coefficient and the forcing term
in Section 2. In Section 3 we describe the affinity assumptions that must be made on
our model to allow the use of the reduced basis methods; the greedy algorithm is pre-
sented in its weighted version. Our proposed method is then described as based on the
minimization of an approximated mean square error. Sparse interpolation techniques
for a more efficient integral approximation in higher dimensions are also presented.
Numerical examples (Section 4) for both a low-dimensional (N = 4) problem and its
higher dimensional counterpart (N = 9) are presented as verification of the efficiency
and convergence properties of our method. Some brief concluding remarks are made
in Section 5.

2 Problem setting
Let (Ω,F , P) be a complete probability space, where Ω is the set of possible outcomes,
F is the σ-algebra of events and P is the probability measure. Moreover, let D ⊆ Rd

(d = 1, 2, 3) be an open, bounded and convex domain with Lipschitz boundary ∂D.
We consider the following stochastic elliptic problem: find u : Ω ×D → R, such that
it holds for P -a.e. ω ∈ Ω that

−∇ · (a(ω, x) · ∇u(ω, x)) = f(ω, x), x ∈ D, (1)
u(ω, x) = 0, ∈ ∂D.

Here a is a strictly positive random diffusion coefficient and f is a random forcing term;
the operator ∇ is considered w.r.t. the spatial variable x. Motivated by the regularity
results obtained in [7], we make the following assumptions:

1. The forcing term f is square integrable in both variables, i.e.

‖f‖2
L2
P (Ω)⊗L2(D)

.
=

∫
Ω×D

f 2(ω, x) dP (ω)dx <∞.

2. The diffusion term is P -a.s. uniformly bounded, i.e. there exist 0 < amin <
amax <∞ such that

P (a(·, x) ∈ (amin, amax)∀x ∈ D) = 1.

If we introduce the Hilbert space H = L2
P (Ω) ⊗ H1

0 (D), we can consider the weak
formulation of problem (1): find u ∈ H s.t.

A(u, v) = F(v), for every v ∈ H, (2)

3

where A : H×H→ R and F : H→ R are, respectively, the bilinear and linear forms

A(u, v) =

∫
Ω×D

a∇u · ∇v dP (ω)dx, F(v) =

∫
Ω×D

v · f dP (ω)dx.

The above is called weak-weak formulation. Thanks to assumption i.-ii., the Lax-
Milgram theorem [5] ensures us the existence of a unique solution u ∈ H.

More than the solution itself, we will be interested in statistics of values related to
the solution, e.g., the expectation E[s(u)], where s(u) is some linear functional of the
solution. In particular, the numerical experiments in the following are all performed
for the computation of E[u].

2.1 Weak-strong formulation

To numerically solve problem (2) we first need to reduce (Ω,F , P) to a finite dimen-
sional probability space. This can be accomplished up to a desired accuracy through,
for example, the Karhunen-Loéve expansion [15]. The random input is in this case
characterized by K uncorrelated random variables Y1(ω), . . . , YK(ω) so that we can
write

a(ω, ·) = a(Y(ω), ·), f(ω, ·) = f(Y(ω), ·),
and hence (thanks to the Doob-Dynkin lemma [19])

u(ω, ·) = u(Y(ω), ·),

where Y(ω) = (Y1(ω), . . . , YK(ω)). We furthermore assume that Y has a continuous
probability distribution with density function ρ : RK → R+ and that Yk(Ω) ⊆ Γk for
some Γk ⊂ R compact sets, k = 1, . . . , K. In case the initial probability density is not
compactly supported, we can easily reduce to this case by truncating the function ρ
on a compact set up to a desired accuracy. Our problem can be reformulated in terms
of a weighted parameter y ∈ Γ

.
=
∏K

k=1 Γk: find u : Γ→ V .
= H1

0 (D) such that

A(u(y), v; y) = F (v; y) for all v ∈ V, (3)

for a.e. y ∈ Γ, where A(·, ·; y) and F (·; y) are, respectively, the parametrized bilinear
and linear forms defined as

A(u, v; y) =

∫
D

a(y, x)∇u(x) · ∇v(x) dx, F (v; y) =

∫
D

v(x)f(y, x) dx,

for k = 1, . . . , K. The parameter y is distributed according to the probability measure
ρ(y)dy. Problem (3) is called the weak-strong formulation of problem (2). Again, the
existence of a solution is guaranteed by the Lax-Milgram theorem.

Given an approximation space Vδ ⊆ V (typically a finite element space), with
dim(Vδ) = Nδ < ∞, we consider the approximate problem: find uNδ : Γ → Vδ such
that

A(uNδ(y), v; y) = F (v; y) for all v ∈ Vδ, (4)

4

for a.e. y ∈ Γ. We refer to problem (4) as the truth (or high dimensional) problem
and uNδ as the truth solution. Consequently we approximate the output of interest as
sNδ = s(uNδ) ' s(u) and its statistics, e.g. E[sNδ] ' E[s(u)].

2.2 Monte-Carlo methods

A typical way to numerically solve problem (3) is to use a Monte-Carlo simulation.
This procedure takes the following steps:

1. generate M (given number of samples) independent and identically distributed
(i.i.d.) copies of Y, and store the obtained values yj, j = 1, . . . ,M ;

2. solve the deterministic problem (3) with yj and obtain solution uj = u(yj), for
j = 1, . . . ,M ;

3. evaluate the solution statistics as averages, e.g.,

E[u] ' 〈u〉 =
1

M

M∑
j=1

uj or E[s(u)] ' 〈s(u)〉 =
1

M

M∑
j=1

s(uj)

for some suitable output function s.

Although the convergence rate of a Monte Carlo method is formally independent of
the dimension of the random space, it is relatively slow (typically 1/

√
M). Thus,

one requires to solve a large amount of deterministic problems to obtain a desired
accuracy, which implies a very high computational cost. In this framework reduced
order methods turn out to be very useful in order to reduce the computational cost, at
cost of a (possibly) small additional error.

3 Weighted reduced order methods
Given the truth approximation space Vδ, reduced order algorithms look for an approx-
imate solution of (4) in a reduced order space VN ⊆ Vδ, with N � Nδ. Reduced order
methods consist of an offline phase and an online phase.

During the offline phase, an hierarchical sequence of reduced order spaces V1 ⊆
· · · ⊆ VNmax is built. These spaces are sought in the subspace spanned by the solutions
for a discrete training set of parameters Ξt = {y1, . . . , ynt} ⊆ Γ, according to some
specified algorithm. In this work we focus on the greedy and POD algorithm, as we
will detail in Sections 3.2 and 3.3, respectively.

During the online phase, the reduced order problem is solved: find uN : Γ → VN

such that
A(uN(y), v; y) = F (v; y) for all v ∈ VN , (5)

for a.e. y ∈ Γ. At this point, we can approximate the output of interest as sN =
s(uN) ' s(u) and its statistics, e.g. E[sN] ' E[s(u)]. In the stochastic case, we would

5

also like to take into account the probability distribution of the parameter y ∈ Γ.
Weighted reduced order methods consist of slight modifications of the offline phase
so that a weight w(yi) is associated to each sample parameter yi, according to the
probability distribution ρ(y)dy. As we will discuss, another crucial point is the choice
of the training set Ξt.

For sake of simplicity, from now on we omit the indexes δ, Nδ and we assume that
our original problem (3) coincides with the truth problem (4).

3.1 Affine Decomposition assumption

In order to ensure efficiency of the online evaluation, we need to assume that the bilinear
form A(·, ·; y) and linear form F (·; y) admit an affine decomposition. In particular, we
require the diffusion term a(y, x) and the forcing term f(y, x) to have the following
form:

a(x, y) = a0(x) +
K∑
k=1

ak(x)yk,

f(x, y) = f0(x) +
K∑
k=1

fk(x)yk,

where ak ∈ L∞(D) and fk ∈ L2(D), for k = 1, . . . , K, and y = (y1, . . . , yK) ∈ Γ. Thus,
the bilinear form A(·, ·; y) and linear form F (·; y) can be written as

A(u, v; y) = A0(u, v) +
K∑
k=1

ykAk(u, v), F (u, v; y) = F0(u, v) +
K∑
k=1

ykFk(u, v) (6)

with
Ak(u, v) =

∫
D

ak∇u · ∇v dx, Fk(v) =

∫
D

vfk dx,

for k = 1, . . . , K. In the more general case that the functions a(·; y), f(·; y) do not de-
pend on y linearly, one can reduce to this case by employing the empirical interpolation
method [3]. A weighted version of this algorithm has also been proposed in [9].

3.2 Weighted greedy algorithm

The greedy algorithms ideally aims to find the N -dimensional subspace that minimizes
the error in the L∞(Γ) norm, i.e. VN ⊆ V such that the quantity

sup
y∈Γ
‖u(y)− uN(y)‖V. (7)

is minimized. The reduced order spaces are build hierarchically as

VN = span{u(y1), . . . , u(yN)},

6

Algorithm 1 Weighted greedy algorithm
1: sample a training set Ξt ⊆ Γ;
2: choose the first sample parameter y1 ∈ Ξt;
3: solve problem (4) at y1 and construct V1 = span{u(y1)};
4: for N = 2, . . . , Nmax do
5: compute the weighted error estimator η̂N(y), for all y ∈ Ξt;
6: choose yN = arg supy∈Ξt η̂N(y);
7: solve problem (4) at yN and construct VN = VN−1 ⊕ span{u(yN)};
8: end for

for N = 1, . . . , Nmax, where the parameters yN are sought as solution of an L∞ opti-
mization problem in a greedy way:

yN = arg sup
y∈Γ

‖u(y)− uN−1(y)‖V.

To actually make the optimization problem above computable, the parameter domain
Γ is replaced with the training set Ξt. The greedy scheme is strongly based on the
availability of an error estimator ηN(y) such that

‖u(y)− uN(y)‖V ≤ ηN(y).

Such an estimator needs to be both sharp, meaning that there exists a constant c
(possibly depending onN) as close as possible to 1 such that ‖u(y)−uN(y)‖V ≥ c·ηN(y),
and efficiently computable. An efficient way to compute ηN is described in detail e.g.
in [13] (the affine decomposition (6) plays an essential role here). The greedy scheme
actually looks for the maximum of the estimator ηN instead of the quantity in (7) itself.
In the case of stochastic parameter y ∈ Γ, the idea is to modify ηN(y), multiplying it
by a weight w(y), chosen accordingly to the distribution ρ(y)dy. The estimator ηN(y)
is thus replaced by η̂N(y)

.
= w(y)ηN(y) in the so called weighted scheme. Weighted

greedy methods have been originally proposed and developed in [6, 7, 8, 10, 11]. An
outline of the weighted greedy algorithm for the construction of the reduced order
spaces is reported in Algorithm 1. A greedy routine with estimator η̂N hence aims
to minimize the distance of the solution manifold from the reduced order space in a
weighted L∞ norm on the parameter space. Now, depending on what one wants to
compute, different choices can be made for the weight function w. For example, if we
are interested in a statistics of the solution, e.g., E[u], we can choose w(y) = ρ(y).
Thus, for the error committed computing the expected value using the reduced basis,
the following estimates holds:∥∥E[u]− E[uN]

∥∥
V ≤

∫
Γ

‖u(y)− uN(y)‖Vρ(y) dy ≤ |Γ| sup
y∈Γ

η̂N(y).

7

If we are interested in evaluating the expectation of a linear output s(u), E[s(u)], using
the same weight function, we get the error estimate:∣∣E[s(u)]− E[s(uN)]

∣∣ ≤ ∫
Γ

‖s‖V′‖u(y)− uN(y)‖Vρ(y) dy ≤ ‖s‖V′ · |Γ| sup
y∈Γ

η̂N(y).

Instead, taking w(y) =
√
ρ(y) one gets the estimate for the quadratic error:

‖u(Y)− uN(Y)‖2
H = E‖u− uN‖2

V ≤ |Γ| sup
y∈Γ

η̂N(y)2. (8)

3.3 Weighted POD algorithm

The Proper Orthogonal Decomposition is a different method to build reduced order
spaces, which does not require the evaluation of an error bound. The main idea in the
deterministic (or uniform, i.e. when ρ ≡ 1) case is to find the N -dimensional subspace
that minimizes the error in the L2(Γ) norm, i.e. VN ⊆ V such that the quantity∫

Γ

‖u(y)− uN(y)‖2
V dy. (9)

is minimized. As with the greedy algorithm, the method does not aim to minimize the
quantity (9) directly, but a discretization of it, namely∑

y∈Ξt

‖u(y)− uN(y)‖2
V =

nt∑
i=1

‖ϕi − PN(ϕi)‖2
V,

where ϕi = u(yi), i = 1, . . . , nt, and PN : V → VN the projection operator associated
with the subspace VN . One can show (see e.g. [13]) that the minimizing N -dimensional
subspace VN is given by the subspace spanned by the N leading eigenvectors of the
linear map

c : V→ V, v 7→ c(v) =
nt∑
i=1

〈v, ϕi〉V · ϕi,

where 〈·, ·〉V denotes the inner product in V. Computationally, this is equivalent to
find the N leading eigenvectors of the symmetric matrix C ∈ Rnt×nt defined as Cij =
〈ϕi, ϕj〉V. In the case of stochastic inputs we would rather like to find theN -dimensional
subspace that minimizes the following error

‖u(Y)− uN(Y)‖2
H =

∫
Γ

‖u(y)− uN(y)‖2
Vρ(y) dy. (10)

Based on this observation, we propose a weighted POD method, which is based on the
minimization of a discretized version of (10), namely∑

y∈Ξt

w(y)‖u(y)− uN(y)‖2
V =

nt∑
i=1

wi‖ϕi − PN(ϕi)‖2
V, (11)

8

Algorithm 2 Weighted POD algorithm
1: choose a training set Ξt = {y1, . . . , ynt} ⊆ Γ and a weight function w according to

some quadrature method;
2: compute the solutions ϕi by solving problem (4) at yi, i = 1, . . . , nt;
3: assemble the matrix Ĉij = wi〈ϕi, ϕj〉V and compute its N maximum eigenvectors
n1, . . . , nj;

4: compute N maximal eigenvectors ξ1, . . . , ξN ∈ V as ξi =
∑nt

j=1 n
i
jϕj and construct

VN = span{ξ1, . . . , ξN};

where w : Ξt → [0,∞) is a weight function prescribed according to the parameter
distribution ρ(y)dy, and wi = w(yi), i = 1, . . . , nt. Again, this is computationally
equivalent to finding the N maximum eigenvectors of the preconditioned matrix Ĉ .

=
P · C, where C is the same as defined before and P = diag(w1, . . . , wnt). We note
that the matrix Ĉ is not symmetric in the usual sense, but it is with respect to the
scalar product induced by the matrix C (i.e. it holds that ĈTC = CĈ). Thus, spectral
theorem still holds and there exists an orthonormal basis of eigenvectors, i.e., Ĉ is
diagonalizable with an orthogonal change of basis matrix. The discretized parameter
space Ξt can be selected with a sampling technique, e.g., using an equispaced tensor
product grid on Γ or taking M realizations of a uniform distribution on Γ. Note that
if we build Ξt as the set of M realizations of a random variable on Γ with distribution
ρ(y)dy, and we put w ≡ 1, the quantity (11) we minimize is just a Monte Carlo
approximation of the integral (10). Following this observation, a possible approach
would be to select Ξt and w as the nodes and the weights of a quadrature rule that
approximates the integral (10). That is, if we consider a quadrature operator U , defined
as

U(f) =
nt∑
i=1

ωif(xi)

for every integrable function f : Γ → R, where {x1, . . . , xnt} ⊂ Γ are the nodes of the
algorithm and ω1, . . . , ωnt the respective weights, then we can take Ξt = {x1, . . . , xnt}
and1 wi = ωiρ(xi). Therefore, varying the quadrature rule U used, one obtain diverse
ways of (at the same time) sampling the parameter space and preconditioning the
matrix C. An outline of the weighted POD algorithm for the construction of the
reduced order spaces is reported in Algorithm 2.
Since the proposed weighted POD method requires to perform nt truth solve and

compute the eigenvalues of a nt × nt matrix, the dimension nt of Ξt should better not
be too large. A possible way to keep the sample size nt low is to adopt a sparse grid
quadrature rule, as we describe in the following.

1We assume that U is a quadrature rule for integration with respect to dy. If a quadrature rule
Uρ for integration with respect to the weighted measure ρdy is used instead, that is suffices to take
wi = ωi.

9

3.4 Sparse grid interpolation

In order to make the weighted POD method more efficient as the dimension of the pa-
rameter space increases, we use Smolyak type sparse grid instead of full tensor product
ones for the quadrature operator U . These type of interpolation grids have already
been used in the context of weighted reduced order methods [6, 8] as well as of other
numerical methods for stochastic partial differential equations, like e.g. in stochastic
collocation [17, 25]. Full tensor product quadrature operator are simply constructed as
product of univariate quadrature rules. If Γ =

∏K
k=1 Γk and {U (k)

i }
∞
i=1 are sequences of

univariate quadrature rules on Γk, k = 1, . . . , K, the tensor product multivariate rule
on Γ of order q is given by

UKq
.
=

K⊗
k=1

U (k)
q =

∑
|α|∞≤q
α∈NK

K⊗
k=1

∆(k)
αk
,

where we introduced the differences operators ∆
(k)
0 = 0, ∆

(k)
i+1 = U (k)

i+1 − U
(k)
i for i ≥ 0.

Given this, the Smolyak quadrature rule of order q is defined as

QKq
.
=
∑
|α|1≤q
α∈NK

K⊗
k=1

∆(k)
αk
.

Therefore, Smolyak type rules can be seen as delayed sum of ordinary full tensor
product rules. One of their main advantage is that the number of evaluation points is
drastically reduced as K increases. Indeed, if X(k)

i is the set of evaluation points for
the rule U (k)

i , then the set of evaluation points for the rule UKq is given by

Θq,K
F = X(1)

q × · · · ×X(K)
q ,

while the set of evaluation points for the rule QKq is given by

Θq,K
S =

⋃
|α|1=q

α∈Nn, α≥1

X(1)
α1
× · · · ×X(n)

αn .

In practice, for K large, one has that |Θq,K
S | grows much slower as q increases w.r.t.

|Θq,K
F |, which has an exponential behavior (see Fig. 1 for a comparison using a

Clenshaw-Curtis quadrature rule). This implies that the adoption of Smolyak quadra-
ture rules has a much lower computational cost than common full tensor product rules
for high dimensional problem. Moreover, the performance of Smolyak quadrature rules
are comparable with standard rules. For more details about error estimates and com-
putational cost of Smolyak rules we refer e.g. to [4, 12, 14, 18, 24].

10

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: Two dimensional grids based on nested Clenshaw-Curtis nodes for q = 6. The left
one is based on a Smolyak rule (145 nodes), while the right one on a full tensor product rule
(1089 nodes).

4 Numerical tests
We tested and compared the weighted greedy algorithm and the weighted POD algo-
rithm for the solution of problem (1) on the unit square domain D = [0, 1]2. To solve
the below problems we used the RBniCS library [2], built on top of FEniCS [16].

4.1 Thermal block problem

In this section we describe the test case we considered to asses the numerical perfor-
mance of the diverse algorithms. Let D = [0, 1]2 = ∪Kk=1Ωk be a decomposition of the
spatial domain. We consider problem (1) with f ≡ 1 and

a(x; y) =
K∑
k=1

yk1Ωk(x), for x ∈ D

and y = (y1, . . . , yK) ∈ Γ = [1, 3]K . In other words, we are considering a diffusion
problem on D, where the diffusion coefficient is constant on the elements of a partition
of D in K zones. We study the case of a stochastic parameter Y = (Y1, . . . , YK) where
Yk’s are independent random variables with a shifted and re-scaled Beta distribution:

Yk ∼ 2 · Beta(αk, βk) + 1,

for some positive distribution parameters αk, βk, k = 1, . . . , K. We consider a uniform
decomposition of the domain D for either K = 4 (low-dimensional case) or K = 9
(higher-dimensional case), as illustrated in Figure 2.

11

Figure 2: The considered decompositions of the spatial domain D = [0, 1]2.

4.2 Weighted reduced order methods

We implemented the standard (non-weighted) and the weighted greedy algorithm for
construction of reduced order spaces. We took ω =

√
ρ in the weighted case (this

choice being motivated by (8)) and we sampled Ξt using diverse techniques:

• sampling from uniform distribution;

• sampling from equispaced grid;

• sampling from the (Beta) distribution.

We choose y1 = (2, . . . , 2) ∈ RK as first parameter in Algorithm 1 (the mode of the
distribution Y). The size of the training set was chosen to be nt = 1000 for the case
K = 4 and nt = 2000 for the case K = 9.

Furthermore, we implemented diverse versions of the weighted POD algorithm and
we compared their performance. As explained above, different version of the weighted
POD algorithm are based on different quadrature formulae. Each formula is specified
by a set of nodes Ξt = {y1, . . . , ynt} and a respective set of weights wi (note that these
can be different from the weights ωi of the quadrature formula; below we also denote
ρi = ρ(yi)). In particular, we experimented the following weighted variants of the POD
algorithm with non-sparse grids:

• Uniform Monte-Carlo: the nodes are uniformly sampled and the weights are given
by wi = ρi/nt;

• Monte-Carlo: the nodes are sampled from the distribution of Y and uniformly
weighted;

• Clenshaw-Curtis (Gauss-Legendre, respectively): the nodes are the ones of Clen-
shaw-Curtis (Gauss-Legendre, resp.) tensor product quadrature formula and the
weights are given by wi = ρiωi;

12

wi
K = 4 K = 9

n1
t n2

t nt

Standard 1/nt 100 500 500

Monte-Carlo 1/nt 100 500 500

Uniform Monte-Carlo ρi/nt 100 500 2000

Clenshaw-Curtis ωiρi 1296 2401 −
Gauss-Legendre ωiρi 256 625 512

Gauss-Jacobi ωi 256 625 512

Sparse Gauss-Legendre ωiρi − − 181

Sparse Gauss-Jacobi ωi − − 181

Table 1: Weights and sizes of training sets in the diverse weighted POD variants tested.

• Gauss-Jacobi: the nodes are the ones of the Gauss-Jacobi tensor product quadra-
ture formula and the weights are given by wi = ωi.

In the low-dimensional case (K = 4) we tested the methods for two different values
of the training set size, n1

t and n2
t . In the first test we chose Ξt = Ξ1

t to be the smallest2
possible set such that |Ξ1

t \ ∂Γ| ≥ 100 and in the second test we chose Ξt = Ξ2
t to be

the smallest possible set such that |Ξ2
t \ ∂Γ| ≥ 500. For the higher-dimensional case

(K = 9), the sizes of the sets of nodes of Gauss-Legendre and Gauss-Jacobi rules was
nt = 29 = 512; indeed, the next possible choice nt = 39 = 19683 was computationally
impracticable. Moreover, Clenshaw-Curtis formula was not test, because a very large
training set would have been required as |Ξt∩Γ̊| = 1 for (the already impractible choice)
nt = 39. In this case, the use of sparse Gauss-Legendre/Gauss-Jacobi quadrature rules
provided a more representative set of nodes consisting of just nt = 181 nodes. A
summary of the formulae and training set sizes used is reported in Table 1.

4.3 Results

We compared the performance of the weighted greedy and weighted POD algorithms
for computing the expectation of the solution. In particular, we computed the error
(10) using a Monte Carlo approximation, i.e.,

‖u(Y)− uN(Y)‖2
H '

1

M

M∑
m=1

‖u(ym)− uN(ym)‖2
V, (12)

2When using tensor product quadrature rule, we can not impose the cardinality of Ξt a priori.
We also note that when we use the Clenshaw-Curtis approximation, the majority of the points in Ξt
lies on ∂Γ: these point are completely negligible, since ρ|∂Γ ≡ 0. So, in this case, we need to take a
considerably larger value for nt to reach the desired cardinality of nodes in the interior Γ̊.

13

where y1, . . . , yM are M independent realizations of Y. For truth problem solutions,
we adopted Vδ to be the classical P1-FE approximation space. Three cases were carried
out:

1. distribution parameters (αi, βi) = (10, 10), for i = 1, . . . , K = 4;

2. distribution parameters (αi, βi) = (10, 10), for i = 1, . . . , K = 9;

3. distribution parameters (αi, βi) = (75, 75), for i = 1, . . . , K = 9, resulting in a
more concentrated distribution than case 2.

Figures 3–11 show the graphs of the error (12) (in a log10 scale), as a function of
the reduced order space dimension N , for different methods. In particular, Figs 3–5
collect the results for case 1, as well as Figs. 6–8 those of case 2, while results for case
3 are shown in Figs 9–11. From these plots, we can gather the following conclusions:

• Weighted vs standard. The weighted versions of the POD and greedy algorithms
outperform the performance of their standard counter-parts in the stochastic
setting, see Figures 3 (POD) and 5 (Greedy) for case 1. Such a difference is even
more evident in for higher parametric dimension (compare Figure 3 to Figure 6
for the POD case) or in presence of higher concentrated parameters distributions
(compare Figure 6 to Figure 9 for the POD case, and see Figures 10 and 11 for
the greedy case).

• Importance of representative training set. The Monte-Carlo and Gauss-Jacobi
POD algorithms outperform the other weighted POD variants (Figures 4 for
case 1, as well as Figures 6 and 7 for case 2). In the low-dimensional case 1, we
can still recover the same accuracy also with the other weighted variants, at the
cost of using a larger training set Ξt (Figure 4). However, for the higher dimen-
sional case 2, the choice of the nodes plays a much more fundamental role (see
Figures 6 and 7). Monte-Carlo and Gauss-Jacobi methods perform significantly
better because the underlying quadrature rule is designed for the specific distribu-
tion ρ(y) dy (a Beta distribution). For more concentrated distributions, methods
lacking a representative training set may eventually lead to a very inaccurate
sampling of the parameter space, even resulting in numerically singular reduced
order matrices despite orthonormalization of the snapshots. This is because the
subspace built by the reduced order methods is a subspace of {u(y) : y ∈ Ξt}.
Thus, if Ξt contains only points y with low probability P{Y = y}, adding a
linear combination of solutions {u(y) : y ∈ Ξt} to the reduced space does not in-
crease the accuracy of the computed statistics. Instead the weighting procedure
tends to neglect such solutions, resulting in linearly dependent vectors defining
the reduced order subspace. This is can also be observed for the weighted greedy
algorithm (Figure 10).

• Breaking curse of dimensionality through sparse grids. The presented algorithms
also suffer from the fact that for increasing parameter space dimensions K, the

14

number of nodes, nt, increases exponentially. In the weighted POD algorithm
we can mitigate this problem by adopting a sparse quadrature rule. Figure 8
shows the performances of the (tensor product) Gauss-Jacobi POD versus its
sparse version. Not only does the use of sparse grids make the method much
more efficient, reducing significantly the size of the training set used (in our
specific case, from nt = 512 to nt = 181), but it also results in a negligibly higher
accuracy. On the other hand, the importance of a well-representative training
set is highlighted by the use of sparse grids. Sparse Gauss-Legendre results in
numerically singular matrices at lower N (than its tensor product counter-part);
sparsity makes its associated training set less representative. For this reason, the
plots of the error obtained with this method were not reported.

• Weighted POD vs weighted greedy. The weighted POD seems to work slightly
better than the weighted greedy (see Figure 5 (right) for case 1 and Figure 11
for case 3). This is because weighted POD is designed to minimize (in some
sense) the quantity (10); however, the difference in terms of the error is practi-
cally negligible. The main difference in the two algorithms lies in the different
training procedure. Thanks to the availability of an inexpensive error estimator,
we are able to use large training sets for greedy algorithms, while still requiring
a moderate computational load during the training phase. On the flip side, the
availability of different techniques for the POD algorithms also allows control of
the computational cost of this algorithm, which does not require the construction
of an ad-hoc error estimator, making it more suitable to study problems for which
such error estimation procedure is not yet available.

5 Conclusion and Perspectives
In this work we developed a weighted POD method for elliptic PDEs. The algorithm is
introduced alongside the previously developed weighted greedy algorithm. While the
latter aims to minimize the error in the L∞ norm, the former minimizes an approx-
imation of the mean squared error, which is of better interpretation when weighted.
Differently from the greedy, the introduced algorithm does not require the availability
of error estimation. It is instead based on a quadrature rule, which can be chosen ac-
cordingly to the parameter distribution. In particular, this allows to implement sparse
quadrature rules to reduce the computational cost of the offline phase as well.
A numerical example on a thermal block problem was carried out to test the proposed
reduced order method, for either a low dimensional parametric space or two higher di-
mensional space of parameters. For this problem, we assessed that the weighted POD
method is an efficient alternative to the weighted greedy algorithm. The numerical
tests also highlighted the importance of a training set which is representative of the
underlying parameter distribution. In case of a representative rule, the sparse quadra-
ture rule based algorithm showed to perform better for what concerns accuracy and a

15

0 1 2 3 4 5 6 7 8 9
N

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0
lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first trial
POD - Uniform
POD - Distribution
Weighted POD - Uniform

0 1 2 3 4 5 6 7 8 9
N

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: second trial
POD - Uniform
POD - Distribution
Weighted POD - Uniform

Figure 3: Low-dimensional case (K = 4). Plots of the error (12) obtained using standard
(POD - uniform), uniform Monte-Carlo (Weighted POD - Uniform) and Monte-Carlo (POD
- distribution) POD algorithms. Left: Ξ1

t . Right: Ξ2
t .

0 1 2 3 4 5 6 7 8 9
N

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first trial
QWPOD - ClenshawCurtis
QWPOD - GaussLegendre
QWPOD - GaussJacobi

0 1 2 3 4 5 6 7 8 9
N

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: second trial
QWPOD - ClenshawCurtis
QWPOD - GaussLegendre
QWPOD - GaussJacobi

Figure 4: Low-dimensional case (K = 4). Plots of the error (12) obtained using Clenshaw-
Curtis, Gauss-Legendre and Gauss-Jacob POD algorithms. Left: Ξ1

t . Right: Ξ2
t .

0 1 2 3 4 5 6 7 8 9
N

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison
Standard Greedy
Weighted Greedy - Uniform
Weighted Greedy - Distribution

0 1 2 3 4 5 6 7 8 9
N

−6.0

−5.5

−5.0

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison
Standard Greedy
Weighted Greedy
Standard POD
Gauss-Jacobi POD

Figure 5: Low-dimensional case (K = 4). Left: Plots of the error (12) obtained using stan-
dard greedy algorithm and weighted greedy algorithm with uniform sampling and sampling of
the distribution. Right: Plots of the error (12) obtained using standard and weighted greedy
and standard and Gauss-Jacobi POD algorithms.

16

0 2 4 6 8 10 12 14
N

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0
lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first parameter
Standard POD
Monte-Carlo POD
Uniform Monte-Carlo POD

0 2 4 6 8 10 12 14
N

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: second parameter
Standard POD
Monte-Carlo POD
Uniform Monte-Carlo POD

Figure 6: Higher-dimensional case (K = 9). Plots of the error (12) obtained using standard,
uniform Monte-Carlo and Monte-Carlo POD algorithms. Left: αi = βi = 10. Right: αi =
βi = 75.

0 2 4 6 8 10 12 14
N

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first parameter
Gauss-Legendre POD
Gauss-Jacobi(10,10) POD

0 2 4 6 8 10 12 14
N

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: second parameter
Gauss-Legendre POD
Gauss-Jacobi(75,75) POD

Figure 7: Higher-dimensional case (K = 9). Plots of the error (12) obtained using (tensor
product) Gauss-Legendre and Gauss-Jacobi POD algorithms. Left: αi = βi = 10. Right:
αi = βi = 75.

0 2 4 6 8 10 12 14
N

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first parameter
Gauss-Jacobi(10,10) POD
Sparse Gauss-Jacobi(10,10) POD

0 2 4 6 8 10 12 14
N

−4.5

−4.0

−3.5

−3.0

−2.5

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: second parameter
Gauss-Jacobi(75,75) POD
Sparse Gauss-Jacobi(75,75) POD

Figure 8: Higher-dimensional case (K = 9). Plots of the error (12) obtained using Gauss-
Legendre POD and sparse Gauss-Legendre POD algorithms. Left: αi = βi = 10. Right:
αi = βi = 75.

17

0 2 4 6 8 10 12 14
N

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0
lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first parameter
Standard POD
Monte-Carlo POD
Gauss-Jacobi(10,10) POD

0 2 4 6 8 10 12 14
N

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: second parameter
Standard POD
Monte-Carlo POD
Gauss-Jacobi(75,75) POD

Figure 9: Higher-dimensional case (K = 9). Plots of the error (12) obtained using standard,
Monte-Carlo and Gauss-Jacobi POD algorithms. Left: αi = βi = 10. Right: αi = βi = 75.

0 2 4 6 8 10 12 14
N

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

lo
g 1

0
(E

[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first parameter
Standard Greedy
Weighted Greedy - Uniform
Weighted Greedy - Distribution

0 2 4 6 8 10 12 14
N

−4.5

−4.0

−3.5

−3.0

−2.5

lo
g 1

0
(E

[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first parameter
Standard Greedy
Weighted Greedy - Uniform
Weighted Greedy - Distribution

Figure 10: Higher-dimensional case (K = 9). Plots of the error (12) obtained using standard
and weighted greedy algorithms with uniform sampling and from the distribution. Left:
αi = βi = 10. Right: αi = βi = 75.

0 2 4 6 8 10 12 14
N

−3.6

−3.4

−3.2

−3.0

−2.8

−2.6

−2.4

−2.2

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: first parameter
Standard Greedy
Weighted Greedy
Standard POD
Monte-Carlo POD

0 2 4 6 8 10 12 14
N

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

lo
g 1

0(
E
[∥
u
N
δ
(Y

)−
u
N
(Y

)
∥2 H

1 0
(Ω

)]
)

error comparison: second parameter
Standard Greedy
Weighted Greedy
Standard POD
Monte-Carlo POD

Figure 11: Higher-dimensional case (K = 9). Plots of the error (12) obtained using standard
and weighted Greedy and standard and Monte-Carlo POD algorithms. Left: αi = βi = 10.
Right: αi = βi = 75.

18

lower number of training snapshots.
Possible future investigations could concern applications to problems with more in-
volved stochastic dependence, as well as non-affinely parametrized problems. The
latter ones could require the use of an ad-hoc weighted empirical interpolation tech-
nique [9]. Another extension, especially in the greedy case, would be that of providing
accurate estimation for the error. Such estimation were obtained for linear elliptic co-
ercive problems in [7], but it would be useful to generalize them to different problems.
Finally, the proposed tests and methodology could also be used as the first step to
study non-linear problems.

Acknowledgements We acknowledge the support by European Union Funding for
Research and Innovation - Horizon 2020 Program - in the framework of European Re-
search Council Executive Agency: H2020 ERC Consolidator Grant 2015 AROMA-CFD
project 681447 “Advanced Reduced Order Methods with Applications in Computa-
tional Fluid Dynamics”. We also acknowledge the INDAM-GNCS projects “Metodi nu-
merici avanzati combinati con tecniche di riduzione computazionale per PDEs parame-
trizzate e applicazioni” and “Numerical methods for model order reduction of PDEs”.
The computations in this work have been performed with RBniCS [2] library, developed
at SISSA mathLab, which is an implementation in FEniCS [16] of several reduced order
modelling techniques; we acknowledge developers and contributors to both libraries.

References
[1] Joakim Bäck, Fabio Nobile, Lorenzo Tamellini, and Raul Tempone. Stochastic

Spectral Galerkin and Collocation Methods for PDEs with Random Coefficients:
A Numerical Comparison, pages 43–62. Springer Berlin Heidelberg, 2011.

[2] F. Ballarin, A. Sartori, and G. Rozza. RBniCS - reduced order modelling in
FEniCS. http://mathlab.sissa.it/rbnics, 2015.

[3] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An ‘empirical inter-
polation’ method: application to efficient reduced-basis discretization of partial
differential equations. Comptes Rendus Mathematique, 339(9):667–672, 2004.

[4] V. Bathelmann, E. Novak, and K. Ritter. High dimensional polynomial interpo-
lation on sparse grids. Advances in Computational Mathematics, 4(12):273–288,
2000.

[5] H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer, 2010.

[6] P. Chen. Model Order Reduction Techniques for Uncertainty Quantification Prob-
lems. PhD thesis, École polytechnique fédérale de Lausanne EPFL, 2014.

19

[7] P. Chen, A. Quarteroni, and G. Rozza. A weighted reduced basis method for
elliptic partial differential equations with random input data. SIAM Journal on
Numerical Analysis, 51(6):3163–3185, 2013.

[8] P. Chen, A. Quarteroni, and G. Rozza. Comparison between reduced basis and
stochastic collocation methods for elliptic problems. Journal of Scientific Com-
puting, 1(59):187–216, 2014.

[9] P. Chen, A. Quarteroni, and G. Rozza. A weighted empirical interpolation method:
a priori convergence analysis and applicationsa. SESAIM: Mathematical Modelling
and Numerical Analysis, 4(48):943–953, 2014.

[10] P. Chen, A. Quarteroni, and G. Rozza. Multilevel and weighted reduced basis
method for stochastic optimal control problems constrained by stokes equations.
Numerische Mathematik, 1(133):67–102, 2016.

[11] Peng Chen, Alfio Quarteroni, and Gianluigi Rozza. Reduced basis methods for
uncertainty quantification. SIAM/ASA Journal on Uncertainty Quantification,
5(1):813–869, 2017.

[12] T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numerical
Algorithms, 3-4(18):209–232, 1998.

[13] J.S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for
Parametrized Partial Differential Equations. Springer, 2016.

[14] M. Holtz. Sparse Grid Quadrature in High Dimensions with Applications in Fi-
nance and Insurance. Springer, 2010.

[15] M. Loève. Probability theory. Springer-Verlag, 1978.

[16] Anders Logg, Kent-Andre Mardal, and Garth Wells. Automated solution of dif-
ferential equations by the finite element method: The FEniCS book, volume 84.
Springer Science & Business Media, 2012.

[17] F. Nobile, R. Tempone, and C. G. Webster. A sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM Journal
on Numerical Analysis, 5(46):2309–2345, 2008.

[18] E. Novak and K. Ritter. High dimensional integration of smooth functions over
cubes. Numerische Mathematik, 1(75):79–97, 1996.

[19] B. Oksendal. Stochastic Differential Equations. An Introduction with Applications.
Springer-Verlag, 1998.

[20] Alfio Quarteroni, Gianluigi Rozza, and Andrea Manzoni. Certified reduced basis
approximation for parametrized partial differential equations and applications.
Journal of Mathematics in Industry, 1(1):3, 2011.

20

[21] Christopher Spannring, Sebastian Ullmann, and Jens Lang. A weighted re-
duced basis method for parabolic pdes with random data. arXiv preprint
arXiv:1712.07393, 2017.

[22] T. Sullivan. Introduction to Uncertainty Quantification. Springer, 2015.

[23] Davide Torlo, Francesco Ballarin, and Gianluigi Rozza. Stabilized weighted re-
duced basis methods for parametrized advection dominated problems with random
inputs. arXiv preprint arXiv:1711.11275, 2017.

[24] G. W. Wasilkowski. Explicit cost bounds of algorithms for multivariate tensor
product problems. Journal of Complexity, 1(11):1–56, 1995.

[25] D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equa-
tions with random inputs. SIAM Journal on Scientific Computing, 3(27):1118–
1139, 2006.

21

