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Abstract

This thesis contains the development of key features for the solution to

inverse linear problems Af = g on infinite-dimensional Hilbert space H
using projection methods. Particular attention is paid to Krylov subspace

methods. Intrinsic, key operator-theoretic constructs that guarantee the

‘Krylov solvability’ of the problem Af = g are developed and investigated

for this class of projection methods. This theory is supported by numerous

examples, counterexamples, and some numerical tests. Results for both

bounded and unbounded operators on general Hilbert spaces are considered,

with special attention paid to the Krylov method of conjugate-gradients in

the unbounded setting.
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Commonly used symbols

Symbol Description

H Abstract Hilbert space

〈·, ·〉 Scalar product on H, antilinear in the first argument

‖·‖H Metric for the Hilbert space H, ‖·‖2
H = 〈·, ·〉.

‖·‖op Operator norm

B(H) Collection of bounded operators on H
C (H) Collection of closed operators on H
A Linear, closed operator on H
A∗ Adjoint of the operator A

1 Identity on H
O Zero operator on H
ρ(A) Resolvent set for A

σ(A) Spectrum of A

R (A, ζ) Resolvent operator (ζ1− A)−1 for ζ ∈ ρ(A)

D (A) Domain of A

ranA Range of A

G (A) Graph space of A

‖·‖G(A) Graph norm of A

C(X, Y ) Continuous functions between topological spaces X and Y

Cc(X, Y ) Continuous functions between topological spaces X and Y

with compact support on X
C0(X, Y ) Continuous functions between topological spaces X and Y

that vanish at infinity
C∞(X, Y ) Smooth functions between spaces X ⊂ R or C, and

Y ⊂ R or C
C∞ (A) Space of vectors g ∈ H such that g ∈

⋂
n∈N0
D (An)

C Complex numbers

N,N0 Natural numbers, and positive integers respectively

Z Integers

R Real numbers

E (·) Spectral measure

|ψ〉 〈ψ| Rank-1 orthogonal projection onto ψ ∈ H

x



Chapter 1

Introduction and Scope

This thesis investigates the mathematical framework, key features, the dis-

cretisation setting, and the approximability of linear inverse problems in

infinite-dimensional Hilbert space. Special attention is paid to applications of

the renowned Krylov subspace methods, and in particular the issue of ‘Krylov

solvability’ of a given inverse problem.

Several convergence criteria are stated and investigated for general projec-

tion methods for linear inverse problems in the abstract operator-theoretic

setting, with particular attention devoted to the class of Krylov subspace

methods. These results combine together to give new theoretical insights

that are useful to study various classes of inverse problems, especially in

the unbounded operator setting, and give confidence that Krylov subspace

methods can be sound numerical techniques for solving said problems.

Krylov subspace methods are ubiquitous in scientific computing and have

been described as one of ‘...the 10 Algorithms with the greatest influence on

the development and practice of science and engineering in the 20th century.’

[22]. These methods are so popular that they often appear in monographs

dedicated to other numerical topics, such as finite element methods [74, 75],

that are themselves particularly useful in modelling physical systems (e.g.

[18, 60]).

Still at an informal level, the overarching objective of this work will now

be discussed, with the more structured outline and major contributions in

1
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the following sections.

The first core notion to be discussed within this thesis is the linear inverse

problem. In abstract Hilbert spaces, the preferred setting in this work, the

linear inverse problem is the problem of finding solution(s) f to

(1.1) Af = g ,

where A is a closed, densely defined, linear operator on a Hilbert space H
equipped with norm ‖·‖H and scalar product 〈·, ·〉, and g ∈ H is a vector.

The second core notion involves the numerical strategy of Krylov subspace

methods to find solution(s) f ∈ H to (1.1). Throughout this thesis, 〈·, ·〉 is

taken as antilinear in the first argument and linear in the second. In contrast

to much of the established literature on Krylov methods, here the operator A

is, without loss of generality, assumed to be a genuinely infinite-dimensional

operator. That is, as is conventional in [88, Section 1.4], A is not reduced

to A = A1 ⊕ A2 by an orthogonal direct sum decomposition H = H1 ⊕H2

where dimH1 <∞, dimH2 =∞ and A2 = O.

If there exists a solution f ∈ H to (1.1), i.e., g ∈ ranA, the problem is

called solvable. In addition, if the solution f is unique, i.e., A is injective,

the problem is called well-defined and one refers to f as the exact solution

to (1.1). Finally, if (1.1) is well-defined and the exact solution f depends

continuously on the given datum g, the problem is called well-posed.

There are several types of different Krylov subspace methods, but standard

Krylov (or simply Krylov) approximation methods search for the solution(s)

to (1.1) in the cyclic space generated by the operator A and the vector g,

i.e., the subspace generated by the linear span of the vectors g, Ag,A2g, . . . .

In fact, Krylov methods may be seen in the setting of iterative methods, or

general projection methods. Framing Krylov methods in both these forms will

be done in this thesis, using the advantages of each formulation as appropriate

in the analysis.

In the setting of solving (1.1), applications and convergence properties

of Krylov methods are now the subject of a well-established, classical area

of literature and are treated in several well-known monographs [87, 55, 25,
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41, 53]. Most of the current literature considers the linear inverse problem

formulated in finite-dimensions, i.e., when dimH < ∞. There is a smaller,

yet still significant, part of the literature on the infinite-dimensional setting,

in particular [21, 49, 64], and more recently [44, 69, 35].

In this spirit, it is worth explicitly mentioning the work of Nemirovskiy

and Polyak [64, 65] for conjugate-gradient methods as applied to bounded,

self-adjoint, positive operators A ≥ O. This work [64] definitively established

the strong convergence of the sequence of numerical approximants generated

by the algorithm at each step, i.e., (f [N ])N∈N ⊂ H, to a single solution of the

solvable problem (1.1). That is,
∥∥f [N ] − f

∥∥
H → 0 as N →∞ for some f ∈ H

a solution to the solvable problem (1.1). Moreover, the rate of convergence

presented in [64] was proven in a follow-up work [65] to be the optimal rate

for the entire class of operators considered therein.

Although there are studies of Krylov methods in the infinite-dimensional

setting, currently a systematic study of these general methods is lacking.

Moreover, many of these infinite-dimensional studies require further assump-

tions on the underlying operator such as self-adjointness or compactness, and

only examine specific Krylov methods.

Currently, there is a lack of the classification of the general operator-

theoretic mechanisms that ensure whether the treatment of (1.1) is appropriate

using these methods. An appropriate treatment of the solvable problem (1.1)

would require that there is in fact a solution f ∈ H that may be arbitrarily

well approximated by linear combinations of vectors in the Krylov subspace.

Under this setting, any solution to (1.1) f ∈ H with this property is referred

to as being a Krylov solution to problem (1.1); and more generally (1.1) is

called Krylov solvable. Informally, the Krylov solvability or lack of Krylov

solvability of (1.1) occurs when a solution exists in the closure of the associated

Krylov space or no such occurrence exists, respectively.

Most certainly, the issue of Krylov solvability is non-trivial for the solution

to a solvable linear system (1.1). For example, one may consider the case

where A is a bounded, injective operator with non-dense range, and the

solution f is perpendicular to ranA. Obviously the linear span of the vectors

g, Ag,A2g, . . . cannot approximate f within an arbitrary tolerance, as the
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Krylov space is contained in ranA. As such, still at an abstract level, there

do exist well-defined problems (1.1) such that they are not solvable using

standard Krylov methods.

In this respect, the primary aim of this thesis is to develop the appropriate

notions of numerical convergence and the suitability of using projection

methods. More specifically, operator-theoretic constructions for necessary

and sufficient conditions that ensure Krylov solvability are developed along

with convergence properties of general projection methods in their abstract

formulation. The general projection methods presented here are a suitable

generalisation outside the standard framework of Petrov-Galerkin methods,

without underlying assumptions on the density of the projection bases, and

further removing the assumption of the solvability of the truncated problem

at the finite-dimensional level. In addition to this, the convergence properties

for the class of Krylov methods known as conjugate-gradient style methods is

generalised to the setting of unbounded operators.

Krylov solvability is a major theme that will be recurrent throughout

this thesis, and is developed within the setting of standard, or polynomial,

Krylov spaces; but some aspects of Krylov solvability are also touched on

for rational Krylov spaces. The results stated herein are still suitable for

use when dimH <∞, or when the operator A is reduced with respect to a

finite-dimensional subspace H1 ⊂ H.

1.1 Thesis outline

This thesis begins with a brief background on Krylov methods in Chapter 2,

along with their associated definitions and discussion of the relevant literature.

The particular focus of the literature in this thesis is on Krylov methods in

the context of the solvable linear inverse problem (1.1), within the realm

of infinite-dimensional Hilbert spaces. In this setting, for historical and

analytical reasons, the conjugate-gradient method holds a special place and is

given extra attention. The focus in Chapter 2 remains on polynomial Krylov

methods, and the discussions of the more recent rational Krylov methods is

presented in later chapters, in context with theoretical results.
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Following this review, Chapter 3 concerns development of the theory

for the convergence of general projection methods, with attention also paid

to Galerkin and Petrov-Galerkin methods. The underlying conditions and

assumptions are explored that guarantee the strong or weak convergence of

numerically approximated solutions of (1.1) to an actual solution. This theory

is explored and developed with appropriate examples and counterexamples

presented, along with some simple numerical tests.

The case where the vector g in the solvable problem (1.1) contains some

extra ‘noise’ term is an area that shall only be lightly touched on in Chapter 3

within the context of projection methods. In fact, the process of attaining good

estimates to the true solution in the presence noise is a well-established field

known as regularisation. Some monographs that discuss this area in-depth

include [25, 42, 93].

In Chapter 4 the operator-theoretic notions of Krylov solvability of the

solvable problem (1.1) are developed for the class of bounded linear operators

on H, i.e., the algebra B(H). In particular, the operator-theoretic notion of

the ‘Krylov intersection’ is developed along with some interesting examples

and counterexamples that unmask the theoretical constructions. This Krylov

intersection construction is particularly important and is found to capture

the essence of Krylov solvability at the most general level.

Chapter 5 contains the theory of Krylov solvability extended to the

more general class of densely defined, closed linear operators on H. In this

setting, many of the theoretical results of the previous chapter are generalised,

taking into account the unavoidable (and often subtle) domain issues that

arise when considering unbounded operators. It is shown that the relevant

operator theoretic constructions of the previous section are still valid, in a

more generalised sense, further consolidating their nature as the intrinsic

mechanisms of Krylov solvability.

To the current sensibilities of the literature, this setting of unbounded

Krylov methods appears to be an area of little theoretical development for

Krylov solvability at the infinite-dimensional level. Some initial steps have

been made for linear differential operators [69, 35] particularly in the solution

to highly oscillatory integrals [70, 71]. Within Chapter 5, some of the aspects
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of rational Krylov solvability are also discussed in context with the literature.

Following this study of abstract operator-theoretic mechanisms in the

unbounded setting, Chapter 6 contains a concrete application to the conjugate-

gradient method investigated for the entire class of self-adjoint, positive

operators. In particular, a convergence result is obtained, showing that indeed

the convergence of the numerical approximates to a solution is guaranteed

under certain natural assumptions on the vector g ∈ ranA. This, of course,

has immediate applications to linear inverse problems arising from self-adjoint,

positive differential operators.

Within Chapter 7, some future perspectives are lightly touched upon.

Firstly, some future directions are given on the topic of Krylov solvability

from an auxiliary perturbed inverse linear problem Aεfε = g. In particular,

it is planned to investigate suitable conditions under which in the limit of

vanishing ε one may say that the Krylov solvability of Aεfε = g survives,

where Aε=0 = A for A ∈ B(H). Secondly, an application to unbounded linear

inverse problems is planned for Friedrichs systems. Friedrichs systems are

already treatable using finite element methods [27], however these methods

require boundary conditions that reduce the problem to that of a bounded

linear system with everywhere defined bounded inverse (i.e., coercivity). It

is planned to investigate the Krylov solvability properties of these problems

in the truly unbounded setting, also with the possibility of removing the

coercivity assumption.

Finally, after Chapter 7, there are several appendices containing the most

commonly used operators in this thesis along with their properties, some

elements of operator and spectral theory, and functional analysis miscellanea.

1.2 Main results and contributions

The key results and contributions of this thesis are presented in Chapters 3

through 6. The major results and remarks from Chapter 3 are based on the

work Caruso, Michelangeli, and Novati [17] and include the following.

• In general projection methods, there are always truncations that create
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unsolvable problems at the finite-dimensional level for every size of the

truncation. These problems are mitigated by suitable assumptions on

the method as well as the operator in question (e.g., approximability of

the ambient Hilbert space, coercivity of the operator, etc).

• At the level of compact operators and under the assumption of the

asymptotic consistency of the truncated problem, the phenomenon of

the strong vanishing of the residual results in at least the component-

wise vanishing of the error term. Weak vanishing of the error occurs

under the further assumption of uniform boundedness of the numerical

approximants.

• At the level of general bounded operators, the strong vanishing of the

error and residual terms is dependent on the asymptotic solvability

of the truncated problem coupled to the strong convergence of the

numerical approximants. As compared to compact operators, now the

control of the convergence is dependent on the stronger requirement of

the convergence of the numerical approximants rather than the mere

assumption of uniform boundedness.

The results and remarks from Chapter 4 are based on Caruso, Michelangeli,

and Novati [16] and include the following points.

• In general, the solution to a well-defined linear inverse problem Af = g

may not be said to be in the closure of the Krylov space without

further information. An explicit counter-example presented is that of

the right-shift operator on `2(Z).

• If the Krylov subspace and its orthogonal complement are invariant

under the action of the operator A (i.e., the Krylov space is reduces the

operator A), then there exists a solution to the linear inverse problem

in the closed Krylov subspace. Krylov reducibility always holds for

bounded self-adjoint operators.

• In the general class of bounded normal operators, even if the linear

inverse problem has Krylov solution, it does not guarantee Krylov
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reducibility. An explicit counter-example is provided using the multipli-

cation operator f 7→ zf on L2(Ω) for Ω ⊂ C a suitable disc.

• The general operator-theoretic mechanism of Krylov solvability for an

injective, bounded operator A, is that of the linear subspace known as

Krylov intersection. The triviality of this subspace guarantees Krylov

solvability for the linear inverse problem. The triviality of the Krylov in-

tersection is also equivalent to the Krylov solvability under the condition

that A is a bounded bijection.

• Under a lack of injectivity, should a Krylov solution exist and kerA ⊂
kerA∗, then it is guaranteed to be unique. Therefore, for all bounded,

self-adjoint operators, the linear inverse problem for has a unique Krylov

solution.

The results and remarks from Chapter 5 are the suitable generalisation of

those from Chapter 4, and are based on the work [15]. The class of operators

considered is that of the closed, densely defined operators in H. The major

findings include the following.

• Standard Krylov subspaces are ensured to be well-defined using suitably

smooth vectors g, such that they remain in all powers of the operator

A.

• Krylov reducibility still guarantees the Krylov solvability of the linear

inverse problem, under an additional regularity assumption that the

projection of the solution onto the closed Krylov subspace still remains

within the domain of A.

• Similarly, under the projection condition on the solution described above,

the triviality of the Krylov intersection still guarantees the existence

of a Krylov solution for an injective operator. This shows that this

mechanism still remains the intrinsic operator-theoretic mechanism of

the Krylov solvability, and captures the essence of the Krylov solvability

at the most general level.
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• Under conditions of the lack of uniqueness of solutions, one still has

that the uniqueness conclusions from Chapter 4 are the same.

• Owing to consequences of the possible unboundedness, one can no longer

make such general statements about Krylov solvability of self-adjoint

operators. Moreover, the Krylov reducibility may fail to hold for a

general self-adjoint operator.

• Rational Krylov methods, built using general rational functions of the

injective operator A, may exhibit Krylov solvability for the inverse

problem from self-adjoint operators A. Explicit conditions are laid out

guaranteeing the Krylov solvability that depend on the choice of the

poles of the rational functions.

The specific study of the conjugate-gradients technique in Chapter 6 is

presented in Caruso and Michelangeli [14] as applied to general unbounded,

self-adjoint, positive operators. The main findings and contributions are

summarised as follows.

• Under suitable assumptions on the regularity of the datum g, and

the initial guess for the algorithm, the conjugate-gradient method is

well-defined.

• The strong convergence of the numerical approximants to a single

solution is guaranteed and shown in the proof of the main result, Theo-

rem 6.4.1.

• The analysis is, as in the spirit of Nemirovskiy and Polyak [64], general

enough to take into account not only the conjugate-gradient method,

but all conjugate-gradient style methods that are formulated as the

minimisation of an appropriate functional

(1.2) ρθ(h) =
∥∥Aθ/2(h− PSh)

∥∥2

H ,

where θ ≥ 0 and PS is the projection onto the manifold of solutions to

(1.1), and h is taken in a space of suitably chosen vectors. Aside from
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the conjugate-gradient method (θ = 1), other notable examples include:

conjugate-gradients on the normal equations (CGNE); the least-square

QR method (LSQR); minimal residual method (MINRES) applied to

the class of unbounded, self-adjoint, positive operators; etc.

• The proof provided uses results from orthogonal polynomial theory in

a novel way that show the convergence of numerical approximants in

a more general setting that is not as restrictive as the original result

proved by Nemirovskiy and Polyak [64].

• Required assumptions to ensure convergence in other norms, for example

the energy (semi-)norm 〈·, A·〉 are considered and discussed.



Chapter 2

Background and Review

2.1 Introduction

Krylov subspace methods in finite-dimensional spaces is a mature and deeply

studied area [87, 55, 90, 33, 25, 41, 85]. Comparatively, this subject has

received less attention in the infinite-dimensional setting, particularly in more

recent years. Currently, there are several classical papers on the analysis

of the convergence properties of these methods in the infinite-dimensional

setting on real and complex Hilbert spaces. The background provided here is

intended to be a brief overview of the most popular standard Krylov methods

along with their most pertinent features, rather than an exhaustive discussion

of all the different methods and algorithms. The context of the methods and

analysis discussed in this Chapter refers to the solvable inverse linear problem

(2.1) Af = g , g ∈ ranA ,

where A ∈ B(H) for H an infinite-dimensional Hilbert space, and f ∈ H
a solution to (2.1). Discussion of the more recent rational Krylov methods

occurs in Chapter 5, in context with the theory presented therein.

The foundations of many of these methods, as found in the classical papers

[54, 5, 45, 72, 85, 86] for example, are formulated in the finite-dimensional

setting. In discussing Krylov subspace methods in infinite-dimensions, some

11
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formulations in setting up the methods in finite-dimensions may be adapted

to the appropriate infinite-dimensional complex Hilbert space setting with

minor modifications. Similarly, some of the convergence theory may also

be suitably generalised to the infinite-dimensional setting. This background

begins with some practical aspects, and descriptions of relevant algorithms.

Then some of the most popular and well-known Krylov techniques, along with

their salient features, are discussed. These aspects are discussed in regard to

the linear inverse problem (2.1), unless explicitly noted.

At this level, an informal notion of a Krylov subspace, or cyclic vector

space, is introduced to facilitate the discussion in this review; along with

the error and residual term. These notions will be repeated and made more

formal in the following chapters.

Definition 2.1.1. The N -th order Krylov subspace with respect to the

operator A and some g ∈ H is

(2.2) KN (A, g) := span {Ang |n ∈ {0, 1, . . . , N − 1}} ,

with a (possibly) infinite-dimensional counterpart

(2.3) K (A, g) := lim
N→∞

KN (A, g) .

Informally, these subspaces are referred to in this review as ‘the Krylov

(sub)space’ where no confusion arises.

For the numerical approximate, or ‘iterate’, at the N -th step of a method,

the preferred notation for this vector is f [N ] ∈ H; with associated residual

(2.4) RN := g − Af [N ] .

Under the condition that (2.1) has a unique solution f , the error is

(2.5) EN := f − f [N ] .
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2.2 Some orthornomalisation algorithms

Over many years there have several orthonormalisation algorithms that have

been developed. Some of these algorithms have been developed with specific

operator classes in mind (e.g., self-adjoint operators), all with the goal to find

an orthonormal basis for the Krylov subspace in a numerically stable way.

Informally speaking, a numerically stable procedure is one whose output is

not significantly affected by small errors in inputs. Two of the most popular

methods are presented within this Section, namely the Arnoldi and Lanczos

algorithms, and how they approximate the infinite-dimensional operator A

as a finite-dimensional one. At this point, it should be stressed that these

algorithms themselves only construct the Krylov ‘search space’ (i.e., the space

in which one searches for solution(s)) for the Krylov projection method. A

brief survey of these algorithms, and some methods that use them, may be

found in [87, 55, 33].

Arnoldi algorithm

This algorithm, as first proposed by Arnoldi [5], is a modified Gram-Schmidt

process, and it is the algorithm underpinning the procedure used in the

GMRES method [86]. The algorithm is formulated so that it is numerically

stable as the iterations proceed. Generally speaking, this algorithm factorises

the operator to a matrix, known as the upper Hessenberg matrix, with non-

zero entries in the first ‘sub-diagonal’. The Arnoldi algorithm (Algorithm 1)

works by taking an initial vector u ∈ H and finds and orthonormal basis for

KN (A, u).

The resulting upper Hessenberg matrix is

(2.6) HN+1,N =



h1,1 h1,2 h1,3 · · · h1,N

h2,1 h2,2 h2,3 · · · h2,N

0 h3,2 h3,3 · · · h3,N

...
. . . . . . . . .

...

0 0 0 hN−1,N hN,N

0 0 0 0 hN+1,N


,
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Algorithm 1: Arnoldi Algorithm [55]

Data: Operator A, vector u.
Result: At each step N : orthonormal basis vectors v1, . . . , vN for

KN (A, u), Hessenberg matrix HN+1,N .
Initialisation: v1 = u/ ‖u‖H;
while KN (A, u) ( KN+1 (A, u) do

ṽ = AvN −
∑N

i=1 hi,Nvi where hi,N = 〈vi, AvN〉;
hN+1,N = ‖ṽ‖H;
if hN+1,N = 0 then

break;
else

vN+1 = ṽ/hN+1,N ;
end

end

where HN+1,N ∈ C(N+1)×N . One may see that the algorithm terminates if

hN+1,N = 0, so that KN+1 (A, u) = KN (A, u) indicating that the N -th order

Krylov subspace is invariant under the action of A. Algorithm 1 gives the

following factorisation of the operator A.

(2.7) AVN = VN+1HN+1,N ,

where the partial isometry VN : CN → H is constructed using the orthonormal

basis vectors found from the algorithm for KN (A, u) as its columns, VN =(
v1 v2 · · · vN

)
. This explicitly reveals that the upper Hessenberg matrix

is a factorisation that may be seen as a projection of A onto finite-dimensional

Krylov subspaces.

Lanczos algorithm

The Lanczos algorithm [54] is only applicable to self-adjoint operators, and is

mathematically equivalent to the Arnoldi algorithm in this case. Sometimes

the Lanczos algorithm is referred to as the symmetric Lanczos algorithm.

Here, the orthonormalisation procedure simplifies considerably to a three term

recurrence, which is advantageous for numerical calculations. The operator is

factorised to a tridiagonal matrix that is perfectly suited to sparse numerical
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operations. This algorithm, and its variants, underlie the procedures used

in conjugate-gradient style methods. The Lanczos algorithm (Algorithm 2)

takes an initial vector u ∈ H and finds and orthonormal basis for KN (A, u).

Algorithm 2: Lanczos Algorithm [55]

Data: Operator A, vector u.
Result: At each step N : orthonormal basis vectors v1, . . . , vN for

KN (A, u), tridiagonal matrix TN+1,N .
Initialisation: v0 = 0, δ1 = 0, v1 = u/ ‖u‖H;
while KN (A, u) ( KN+1 (A, u) do

ṽ = AvN − δNvN−1;
v̂N+1 = ṽ − γNvN where γN = 〈vN , ṽ〉;
δN+1 = ‖v̂N+1‖H;
if δN+1 = 0 then

break;
else

vN+1 = v̂N+1/δN+1;
end

end

At the (N + 1)-th step, the orthogonality of the vector ṽ to vN and vN−1

is enough to guarantee orthogonality to all the other vectors in KN (A, u), as

A is self-adjoint [55]. The resulting ‘tridiagonal’ matrix is

(2.8) TN+1,N =



γ1 δ2 0 · · · · · · 0

δ2 γ2 δ3
. . . · · · 0

0 δ3 γ3
. . . . . . 0

...
. . . . . . . . . . . .

...

0 0 0 δN−1 γN−1 δN

0 0 0 0 δN γN

0 0 0 0 0 δN+1


,

where TN+1,N ∈ C(N+1)×N . Again, one has the following factorisation of A

(2.9) AVN = VN+1TN+1,N ,
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where the partial isometry VN : CN → H is constructed using the orthonor-

mal basis vectors found from the algorithm for KN (A, u) as its columns,

VN =
(
v1 v2 · · · vN

)
. Again, this reveals that the tridiagonal matrix is a

factorisation that may be seen as a projection of A onto finite-dimensional

Krylov subspaces.

2.3 Short review of popular Krylov subspace

methods in infinite-dimensions

The issue of convergence of Krylov subspace methods has been a constant topic

of research, especially as there are a plethora of different methods available

(see [87, 46, 85] for short overviews). Informally speaking, the convergence

of an iterative technique is the vanishing of the error term EN in some sense

(i.e., strongly, weakly, etc), or at the very least the vanishing of the residual

RN . This topic has been markedly less explored in the infinite-dimensional

setting, with a large portion of the literature focusing on problems posed in

finite-dimensional settings. This Section is devoted to a presentation of the

main analysis and results in infinite-dimensions, of course with references to

finite-dimensional theory where appropriate.

Historically, most analysis has been devoted to the conjugate-gradient

method and its mathematical equivalents, e.g., LSQR [72]. As such, the

focus herein remains on the conjugate-gradient method, but also its popular

alternative, the generalised minimal residual method (GMRES).

While there is a general convergence theory for conjugate-gradient like

methods in infinite-dimensions [64], for the GMRES method there does not

appear to be a comparatively general convergence analysis to date. There

have been some attempts made for subclasses of operators under particular

assumptions that shall be mentioned throughout.

In particular, an attractive playground for convergence analysis is presented

by the fixed point problem (called as such for when the vector g = 0) [66]

(2.10) f = Kf + g ,
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for K ∈ B(H) and g ∈ ran(1−K). Also attractive for convergence analysis

is the variation on (2.10)

(2.11) (ζ1−K)f = g , g ∈ ran(ζ1−K) ,

where ζ ∈ ρ(K). Essentially this is just (2.1) where A = ζ1 − K. These

problems are attractive for convergence analysis because, in the scenario K is

a compact operator on separable Hilbert space, it has a discrete spectrum.

The operator A then has a cluster of eigenvalues near the point ζ ∈ C, say

within a disc centred at z = ζ with given radius r, and a finite number of

points outside the disc. This makes the convergence analysis simpler when

using the general functional calculus, as the spectrum is split into these two

distinct parts, of which the eigenvalues in the disc are paramount for the

asymptotic convergence properties (e.g., see [12]).

2.3.1 Conjugate-gradient methods

The conjugate-gradient method is now a well-studied and understood Krylov

subspace method that is historically one of the most significant. It was

first introduced by Hestenes and Stiefel [45] and applies to systems (2.1) for

positive operators, i.e., where 〈ψ, Aψ〉 ≥ 0 for all ψ ∈ H.

Conjugate-gradient style methods solve minimisation problems using the

N -th order Krylov subspace to approximate the solution. An initial guess

to the solution is chosen, f [0], and the Krylov subspace associated with the

initial residual is built, namely KN (A, R0). Owing to possible non-injectivity

of A, the (possibly) affine solution manifold to the linear inverse problem

S(A, g) for a given operator A and datum g is defined as follows

(2.12) S(A, g) := {f ∈ H |Af = g} .

This manifold is non-empty (as g ∈ ranA), closed and convex (as kerA

is closed and linear). There exists a projection operator PS : H → H
that maps elements f ∈ H to the unique element f̃ ∈ S(A, g) such that

f̃ = arginfv∈S(A,g) ‖v − f‖H [10, Chapter 5].
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The N -th iterate is then chosen by solving the minimisation in the affine

space {f [0]}+KN (A, R0)

(2.13) f [N ] = argmin
h∈{f [0]}+KN (A,R0)

∥∥∥A ξ
2 (h− PSf [0])

∥∥∥
H

where PSf [0] is a solution to the solvable problem (2.1) that is closest in

H-norm to the initial guess f [0]. The cases of practical interest are ξ = 1 or 2.

ξ = 1 corresponds to error minimisation in the ‘energy’ (semi-)norm, i.e.

(2.14) ‖·‖2
A := 〈·, A·〉 ,

over the affine space {f [0]} + KN (A, R0) [55, 87]. ξ = 2 corresponds to

residual minimisation in the H-norm over {f [0]}+KN (A, R0). In fact, when

ξ = 2, this becomes mathematically equivalent to the MINRES technique of

[72] when applied to positive systems. For the conjugate-gradient method,

ξ = 1.

The solution of the minimisation problem (2.13) for the conjugate-gradient

method is equivalent to considering the following projection problem at step

N [55]

(2.15) QN(Af [N ] − g) = 0 ,

where QN is the orthogonal projection operator onto the test space

KN (A, R0), and f [N ] ∈ {f [0]}+KN (A, R0) is a solution to (2.15).

Clearly, the conjugate-gradient algorithm is also a projection method at

each step N , not just an iterative procedure. In the case ξ = 2, the test

space in equation (2.15) for the projection QN is AKN (A, g) instead, while

the solution space remains KN (A, g). More precise definitions and aspects of

projection methods will be discussed in Chapter 3.

Some of the beginnings of the study in infinite-dimensions of conjugate-

gradient methods in real Hilbert spaces are presented by Karush [50]. In [50]

the author uses the Lanczos algorithm to consider the approximation of the
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eigenvalue and eigenvector, λ and ϕ respectively, in equations of the type

(2.16) Aϕ = λϕ ,

and the solution f ∈ H to the following linear inverse problem

(2.17) (A− ζ1)f = g ,

where ζ is a given number and g ∈ H is a given vector. The assumptions in

[50] state that A is a compact, self-adjoint operator, and that as K (A, g) is

A invariant it may be considered as a mapping A : K (A, g)→ K (A, g).

The study [50] constructed the sequence of approximate eigenvalues

(λjN)j≤N in decreasing order, with corresponding eigenvectors (ϕjN)j≤N as

the eigenvalue-eigenvectors of the operator QNA, where QN is the orthogo-

nal projection onto KN (A, g). λjN , ψjN are the N -th step approximate to

the j-th eigenvalue and eigenvector respectively. In addition, the following

assumption on the eigenvectors is made

(2.18) ‖ϕjN‖H = 1 , 〈ϕjN , g〉 > 0 .

It should be stressed at this point that the work in [50] considers indefinite

self-adjoint operators on not necessarily separable Hilbert spaces. To derive

the first convergence result, Karush [50] uses an assumption that the spectrum

σ(A) may be written as the union of disjoint sets σ1(A) and σ2(A), where

σ1(A) contains a finite number of isolated eigenvalues,

λ1 > λ2 > · · · > λm

for some m ≥ 1; and σ2(A) contains spectral values less than λm. This

assumption is true for compact operators in separable Hilbert space (e.g. see

[51, 77]). Under these conditions [50, Theorem 1] states that for fixed j ≤ m;

(λjN)j≤N is monotonically increasing and λjN → λj as N → ∞. Similarly,

‖ϕjN − ϕj‖H → 0 as N →∞.

The analysis was expanded to include also estimates on the rate of the
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convergence of the eigenvalues of A. The convergence of eigenvalues and

eigenvectors for a fixed j is faster than any geometric sequence with positive

ratio for sufficiently large N [50]. As this result is for a fixed j, it remains

unclear if the convergence rate is uniform for eigenvalue-eigenvector pairs.

Similar convergence results were derived for the numerical approximants to

(2.17), using the method in [54], to the true solution f ∈ H under the condition

ζ /∈ σ(A). In fact, Karush [50] again shows that the rate of convergence of

the error is faster than any geometric sequence. This fact is re-proven in a

later study by Daniel [21].

The study [50] thus reveals some of the beginnings of the study of infinite-

dimensional theory for Krylov subspace methods, in particular when applied

to compact, self-adjoint operators.

Future studies have moved onto the conjugate-gradient method in real

Hilbert space. Some earlier works in this direction include [61, 21, 49], while

later studies include [97, 64, 65, 9, 56, 44]. The works by [61, 21] are some of

the earliest studies that reveal convergence properties of iterative methods in

infinite-dimensional Hilbert space. Furthermore, both these studies present a

suitably generalised analysis of these methods to non-linear operator equations

in the infinite-dimensional setting. Of the two studies by Daniel [21] and

Nashed [61], [21] contains a dedicated, in-depth analysis of the conjugate-

gradient method.

In the analysis of linear equations of type (2.1), Daniel [21] constructs

the convergence theory using the class of positive definite operators A > O
with everywhere defined, bounded inverse on a real separable Hilbert space

H. Under these conditions, Daniel [21] shows that the sequence of iterates

f [N ] in (2.13) for conjugate-gradients approaches the true solution f to (2.1)

with geometrically fast rate. In fact, the exact convergence formula derived is

as follows.

Theorem 2.3.1 (Theorem 1.2.2 [21]). Consider the linear inverse prob-

lem (2.1) on a real Hilbert space H for A : H → H a bounded posi-

tive definite operator with everywhere defined bounded inverse. Let κ :=

(supλ∈σ(A) λ)/(infλ∈σ(A) λ), and f [0] be an initial guess to the solution f . Then
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the error energy functional, as defined in (2.14), decays as follows.

(2.19)
∥∥f [N ] − f

∥∥
A
≤ 2

∥∥f [0] − f
∥∥
A

(√
κ− 1√
κ+ 1

)N
.

Moreover, as ‖A−1‖op <∞, the error also converges at least with the same

geometric rate in (2.19).

This is now a classical and well understood result for conjugate-gradient

methods, and has been reproduced in several monographs, e.g., [87]. It has

even recently been reformulated, under particular assumptions, in terms of an

unbounded, strictly positive definite, second order differential operator [35].

Daniel [21] also noted that under particular circumstances, a more rapid

rate of convergence may occur. The following theorem from [21] showed that

a rate faster than any geometric sequence is possible, much the same as what

was proven in [50]. This was later independently investigated and expanded

by Winther [97].

Theorem 2.3.2 (Corollary 1 [21]). If there exists some ζ > 0 such that

A− ζ1 is a compact operator, for A as described in Theorem 2.3.1, then the

error for the conjugate-gradient method converges faster than any geometric

sequence with positive ratio.

The exact same result was later derived in [97, Remark 2.1]. Under

the extra assumption that A − 1 is a p-nuclear operator (see [77]) with

p ∈ [1,∞), Winther [97] proves the residual decay rate ‖RN‖H ≤ cNN‖R0‖H,

for cN ∼ (1/N)1/p.

To describe better different convergence rates, the following definition is

in order.

Definition 2.3.3 ([44]). Let (ek)k∈N be a sequence of non-negative real

numbers converging to zero. Then

(i) The convergence rate is Q-linear if there exists some q ∈ (0, 1) such

that ek+1 ≤ qek for k ≥ k0 ∈ N.
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(ii) The convergence rate is Q-superlinear if there exists a non-negative

sequence (εk)k∈N converging to zero such that ek+1 ≤ εkek for k ≥ k0 ∈
N.

(iii) The convergence rate is R-linear if lim supk→∞ e
1/k
k = r for some r ∈

(0, 1).

(iv) The convergence rate is R-superlinear if limk→∞ e
1/k
k = 0.

Informally, one may not distinguish between the ‘Q-’ and ‘R-’ prefixes,

and just refer to linear or superlinear convergence. Theorem 2.3.1 therefore

contains a result of linear convergence, while Theorem 2.3.2 contains a re-

sult for superlinear convergence. In fact, under the the same conditions of

Theorem 2.3.2 as described in [97], the convergence is R-superlinear.

The monograph [66] contains a very detailed general analysis of different

convergence behaviour in infinite-dimensions for a variety of iterative tech-

niques, with particular emphasis on the fixed point problem (2.10). For a

modern survey on linear and superlinear convergence results for the conjugate-

gradient and MINRES methods in real Hilbert spaces (also see [44]).

Daniel [21] also studied the conjugate-gradient method applied to non-

linear equations. In [21] within the setting of a continuous non-linear operator

J : H → H, f 7→ J(f) on a real Hilbert space, with a bounded Frechet

derivative J
′

f of rangeH, the conjugate-gradient method was suitably modified

to solve the equation J(f) = 0 under the additional assumptions that J
′

f is self-

adjoint and coercive (see [21, Section 2.0] for details). Under these conditions,

[21, Theorem 2.0.1] shows that the sequence of iterates f [N ] generated by the

method converges strongly to the unique solution f to J(f) = 0. Some of

these assumptions are then relaxed and assumed to hold only in a convex

domain in H (see [21, Sect. 2.1] for more details). According to Gilles and

Townsend [35], these studies by Daniel [21] form some of the first attempts

to develop Krylov methods for unbounded differential operators.

A seminal work on conjugate-gradient methods by Kammerer and Nashed

[49] was applied to operator equations of the following type

(2.20) Tf = g , g ∈ H2
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for T : H1 → H2 a bounded linear operator between two real Hilbert spaces.

In this scenario, Kammerer and Nashed [49] considered finding a solution

f ∈ H1 to (2.20) as a minimiser of the residual

(2.21) f = argmin
f̃∈H1

∥∥∥T f̃ − g∥∥∥
H2

,

should such a solution exist, known as a ‘best approximate’ solution. In order

solve this system using a conjugate-gradient method, [49] directly worked

with T ∗Tf = T ∗g, instead of (2.20). The study includes a preliminary result

under the condition of the closed range of T .

Theorem 2.3.4 (Theorem 4.1 [49]). Let H1 and H2 be two Hilbert spaces

over the real field and let T : H1 → H2 be a bounded linear operator. If

ranT = ranT , then the conjugate-gradient method applied to T ∗Tf = T ∗g

(see [49]) converges monotonically to a single best approximate solution f of

Tf = g. Moreover, if m and M are the greatest lower and least upper spectral

bounds, respectively, of the domain restricted operator T ∗T |ranT ∗, then

(2.22)
∥∥f [N ] − f

∥∥2

H1
≤ C0

m

(
M −m
M +m

)2N

,

where C0 is a constant depending on the initial guess f [0].

This theorem is analogous to Theorem 2.3.1 from [21], however more

general as it is not assumed that T ∗T has an everywhere defined bounded

linear inverse.

Removing the restriction of closed range of T in Theorem 2.3.4, it was

again shown that the sequence of errors (EN )N∈N0 monotonically approaches 0

in the strong topology, for f a particular best approximate solution to Tf = g

(see [49, Theorem 5.1] for details).

Over a decade later, this work by [49] inspired both Louis [56] and Brakhage

[9] to consider the solution to the system (2.20) over complex separable Hilbert

spaces for T a compact linear operator. In particular [56] built on the work

in [9] and found that the convergence rate of the residual and error terms

were related to the singular values of T ∗T .
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Theorem 2.3.5 (Lemma 3.1 and Theorem 3.3 [56]). Consider equation (2.20)

such that it has a solvable counterpart T ∗Tf = T ∗g for T compact. Under the

conditions that (T ∗T )νu = f is solvable for ν < 0, and the initial guess in the

conjugate-gradient method f [0] is 0, the residual and error terms decay as:

(2.23)

∥∥T (f − f [N ])
∥∥
H2
≤ σ−2ν+1

N+1 ‖RN(T ∗T )νf‖H1∥∥f − f [N ]
∥∥
H1
≤ σ−2ν

N+1 ‖RN(T ∗T )νf‖−2ν/(1−2ν)
H1

∥∥(T ∗T )2ν
∥∥1/(1−2ν)

H1
,

where the sequence (σn)n∈N are the singular values of T in decreasing order.

Here RN : H1 → H1 is a bounded linear operator with the property that for

any u ∈ H1, ‖RNu‖H1 → 0 as N →∞, defined by the projection

(2.24) RNu =
∞∑

n=N+1

〈ϕn, u〉ϕn ,

where (ϕn)n∈N is the orthonormal system of canonical basis vectors for the

operator T ∗T .

It was observed in [56] that the decay rate presented in Theorem 2.3.5 may

not be sharp with respect to the singular value decay rates, due to the extra

term involving the operator RN that also decays. It is worth emphasising

that the works by [56, 9, 49] rely on g ∈ ranT ⊕ ranT⊥ for their convergence

estimates. Aspects of the regularising properties of the conjugate-gradient

method are pointed out in the monographs [41, 25] and in the papers [63, 24]

among others.

Although the aforementioned studies have significantly built and improved

on previous works, perhaps the most profound study on the conjugate-gradient

method was published in two parts by Nemirovskiy and Polyak [64] and

[65], and reproduced in the monographs by Hanke [41] and Engl, Hanke,

and Neubauer [25]. These two works [64, 65] definitively showed that for

a bounded, self-adjoint, positive operator on complex Hilbert space, the

numerical approximants from the conjugate-gradient method converge to

a single solution to (2.1). Moreover, in [65] the authors showed that it is

impossible to improve the convergence rate estimates among the whole class
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of bounded, self-adjoint, positive operators, where 0 ∈ σ(A) is not an isolated

point. This shows the optimality or sharpness of the convergence results

in [64]. Under the specific assumption of A as a compact operator, the

convergence rates stated in [64] are sharper than the results derived in [56].

To date, [64, 65] appear to be the most general studies of the convergence

properties of the conjugate-gradient method. Although the analysis in [64]

contains general constructions and convergence rate estimates for several

iterative techniques, the focus here remains on the convergence estimates for

the conjugate-gradient method.

Nemirovskiy and Polyak [64] begins by considering (2.1) for a self-adjoint,

positive operator, possibly with 0 ∈ σ(A). Here, PS is the projection operator

as defined for the solution manifold (2.12).

Theorem 2.3.6 (Theorem 7 [64]). Consider the problem (2.1) with A = A∗

and 〈x, Ax〉 ≥ 0 for all x ∈ H. Consider the sequence of iterates (f [N ])N∈N0

in H defined by (2.13) for ξ = 1. Then one has that

(2.25)
∥∥f [N ] − PSf [0]

∥∥
H

N→∞−−−→ 0

and moreover, for every ν < 0

(2.26)
∥∥f [N ] − PSf [0]

∥∥
H ≤

(
Cf [0],ν

2N + 1

)−2ν

,

for a constant Cf [0],ν > 0 depending on the initial guess f [0] and ν < 0,

provided that A−νu = f [0] − PSf [0] has a solution u ∈ H.

In fact, the original work [64] contains a more general statement, however

the above theorem suffices for error convergence rates. Also of interest is the

case under the assumption that σ(A) is the closure of a decreasing sequence

(σn)n∈N ⊂ R+, such as the case when A is a compact operator as considered

in [56]. In this event, the following corollary holds.

Corollary 2.3.7 (Equation 3.13′ [64]). Under the conditions stated in Theo-

rem 2.3.6 in addition with the spectrum of A being the closure of a sequence

of decreasing positive real numbers (σn)n∈N, the following estimate holds for
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the error in the approximation.

(2.27)
∥∥f [N ] − PSf [0]

∥∥
H ≤ Cf [0],ν min

0≤k≤N

{
σ−2ν
k+1(N − k + 1)4ν

}
.

Corollary 2.3.7 provides a sharper estimate than immediately available

from Theorem 2.3.5 provided by [56] for compact operators.

2.3.2 Generalised minimal residual (GMRES) meth-

ods

Compared to conjugate-gradients, GMRES was first formulated decades later

by Saad and Schultz [86]. It has become a widely used and well-studied

Krylov subspace method. Much of the analysis of this method has occurred

in the finite-dimensional setting (see [85, 86] for some general overviews). The

analysis of this method in the infinite-dimensional setting, particularly on

the Krylov solvability of the linear inverse problem, remains elusive, although

some studies present results under specific assumptions on the operator [32,

66, 12, 57], and more recently [68, 67]. In particular, the monograph [66]

contains a number of approximation results for GMRES residual polynomials,

with the particular focus being the fixed point problem. The monograph [53]

also contains general remarks and results for minimal residual methods in

infinite-dimensions. More recently, the analysis of the GMRES method has

been extended to a sub-class of unbounded differential operators [69, 70, 71],

known therein as ‘differential GMRES’.

As the conjugate-gradient method applies to a subclass of self-adjoint

operators, the tools of the spectral integral are immediately available (see [88,

Chapters 4 & 5] or Appendix B for details) and underpin much of the theory

presented in Section 2.3.1. Now, the theory of the functional calculus is only

available in the algebra B(H) as a Cauchy integral (see [51] and [76, Chapter

XI] for details). In the case where A is self-adjoint, the GMRES method

applied to (2.1) is mathematically equivalent to the MINRES method of [72].

The iterates (f [N ])N∈N of the GMRES method are the solutions to the
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following minimisation problem at each step N , where f [0] is an initial guess,

(2.28) f [N ] = argmin
h∈{f [0]}+KN (A,R0)

‖Ah− g‖H .

Again, this may be posed in the same form as (2.15), except that QN is now

the orthogonal projection operator onto the subspace AKN (A, R0).

An interesting comment regarding the convergence behaviour of the GM-

RES method may immediately be made at the finite-dimensional level. In a

series of articles [37, 38, 4] it was shown that information on the eigenvalues

of a matrix is not enough to determine the convergence behaviour of the

residual. In fact, in Arioli, Pták, and Strakoš [4] the authors show that the

convergence behaviour of the algorithm is independent on the eigenvalues of

the matrix system. For infinite-dimensional GMRES systems, heuristically

speaking [66, Section 1.8] makes the comment that the convergence curve can

‘...look like almost any curve by tailor making a strange operator and initial

residual.’

Theorem 2.3.8 (Theorem 2.1 [4]). Consider the finite-dimensional Hilbert

space Cm for some m ∈ N. Suppose that (λN)N≤m ⊂ C is a set of non-zero

numbers, and that g ∈ Cm a non-trivial m-dimensional vector. Let (lN)N≤m

be a monotonically decreasing sequence such that lm = 0. Then, there exists a

matrix A ∈ Cm×m with eigenvalues (λN)N≤m such that the GMRES method

applied to the linear inverse problem (2.1) generates a sequence of residuals

(‖RN‖Cm)N≤m such that ‖RN‖Cm = lN .

General convergence analysis of the GMRES method in finite-dimensions

may be found in [86, 96, 11, 73, 12], and in particular the monograph [87,

Sect. 6.11.4]. The case when the operator A is a diagonalisable matrix is of

particular interest as follows.

Theorem 2.3.9 (Corollary 6.1 [87]). Consider the linear inverse prob-

lem (2.1) in Cm for m finite and equipped with the standard dot scalar

product. Let A ∈ Cm×m be a diagonalisable matrix A = XΛX−1, where

Λ = diag{λ1, λ2, . . . , λm} is the matrix of eigenvalues. Assume that all the

eigenvalues of A are located in an ellipse E(c, d, a), centred at c with focal
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distance d and semi-major axis a, that excludes the origin. Then the residual

norm achieved at the N-th step of GMRES satisfies the inequality

(2.29) ‖RN‖Cm ≤ ‖X‖op

∥∥X−1
∥∥

op

(
CN(a/d)

CN(c/d)

)
‖R0‖Cm ,

where Ck(z) = (1/2)(wk + w−k) and z = (1/2)(w + w−1).

The analysis available in the published literature on the GMRES method

in the infinite-dimensional setting is also restricted to certain operator classes.

Of course, general aspects of convergence and polynomial methods may be

found (e.g. [66]), and some attempts to characterise the Krylov solvability

of (2.1) and convergence behaviour of the GMRES method [12, 13, 32, 69,

57] have been made. The focus is primarily on the convergence behaviour of

GMRES rather than operator-theoretic notions of Krylov solvability.

In two papers, [12] and [13], the GMRES method was analysed in infinite-

dimensional Hilbert space. Under some assumptions on the structure of

the operator A, the solution to (2.1) using GMRES was shown to exhibit

superlinear convergence in the residual. The study [12] first considered the

situation under which A is in the finite-dimensional setting, and then extended

the result to the infinite-dimensional setting. The finite-dimensional results

in [12] derive superlinear convergence rates by considering clustering of the

eigenvalues of the operator A, and the minimal polynomial of the eigenvalues

outside the cluster. This is analogous to the proof in [50] for self-adjoint

operators.

For completeness it is appropriate to define the minimal polynomial at

the present moment, in particular as it is a tacitly used concept at the

finite-dimensional level.

Definition 2.3.10 (Definition 2.8.1 and 2.8.4 [66]). A polynomial p : C→ C

p(z) = zn + α1z
n−1 + · · ·+ αn

is called a minimal polynomial for the bounded linear operator A : H → H
if p(A) = 0 and p̃(A) 6= 0 for any non-trivial polynomial p̃ of lower degree
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than p. An operator is said to be algebraic of degree n if it has a minimal

polynomial of degree n.

The extension of the finite-dimensional analysis by Campbell et al. [12]

leads to the following proposition that shows the R-superlinear convergence

of GMRES.

Proposition 2.3.11 (Proposition 6.1 [12]). Consider the linear inverse prob-

lem (2.1) such that A = 1 + K has 0 ∈ ρ(A) and K is a compact linear

operator on H. Consider some α > 0 and define the ‘cluster’ to be the set

{z ∈ C; |z − 1| < α}. Consider the finite collection of outlier eigenvalues

(λj)1≤j≤M of A, such that they do not belong to the cluster. Define the

‘distance’ between the outliers and the cluster as

δ := max
|z−1|=α

max
1≤j≤M

|λj − z|
|λj|

.

Then for any g ∈ H and any f [0], one has

(2.30) ‖Rd+k‖H ≤ Cαk ‖R0‖H ,

where d is the degree of the minimal polynomial of the outliers, and C is a

constant dependent on d, and δ and is independent of k.

Proposition 2.3.11 shows that lim supk→∞ ‖Rk‖1/k
H ≤ α. As α > 0 is

arbitrary, this implies that limk→∞ ‖Rk‖1/k
H = 0 so that the convergence is

R-superlinear.

This result from [12] shows analogous conditions and behaviour to the

previously mentioned results of [50, 21, 97] for Lanczos or conjugate-gradient

based methods. These types of results are well known under assumptions on A

as in Proposition 2.3.11. Heuristically speaking, the GMRES method initially

‘sees’ the eigenvalue outliers, and after finitely many iterations ‘removes’ this

area of the spectrum [66]. Then the algorithm proceeds to investigate the

tight cluster, where the convergence is faster. This can be seen very clearly

in the analysis contained in [12] as well as numerous comments and results

presented [66].
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In a related follow-up Campbell et al. [13] considered similar operators as

in Proposition 2.3.11. In this setting, however, the authors also considered the

discretisation of the method. It was then shown that the performance of the

GMRES method becomes independent of the resolution of the discretisation

if it is sufficiently fine. In fact the main theorem in [13] is a similar statement

to Proposition 2.3.11, except that as under stated extra assumptions, the

convergence of the GMRES method is R-superlinear and independent of the

resolution of discretisation [13, Theorem 1.1].

Proposition 2.3.11 from [12], as well as the results on discretisation in-

dependence in [13], are in stark contrast to Theorem 2.3.8. The studies

[12, 13] reveal that the infinite-dimensional nature of the problem gives an

asymptotic result that is clearly not accessible at the finite-dimensional level.

The conclusions reached in [4] and presented in Theorem 2.3.8, especially

about the independence on the eigenvalue distribution, are therefore strictly

limited to the finite-dimensional setting.

A short note on the GMRES method by Moret [57] found that in some

instances the convergence is Q-superlinear. Moret [57] considered the linear

inverse problem (2.1) where A = ζ1+K with 0 ∈ ρ(A), and where K : H → H
is a compact linear operator and ζ 6= 0. Under these conditions the residuals

generated from the algorithm converge Q-superlinearly [57, Theorem 1]. In

addition to previous works on the issue, in [57] it was found that the residual

convergence rate is related to the product of the singular values of the operator

K.

More recently, [32] considered the inverse linear problem (2.1) under

the conditions that A is an algebraic operator. It is well known that the

assumption of an operator being algebraic at the finite-dimensional level is

trivial, but this is not so at the infinite-dimensional level [66]. In any case, this

assumption immediately guarantees the Krylov solvability in the case that

g ∈ ranA. The authors investigate the circumstances under which the Arnoldi

algorithm may break down as well as cases where A is not injective, and

g /∈ ranA. A result on Krylov solvability is stated in the following theorem.

Theorem 2.3.12 (Theorem 4.1 [32]). Let A ∈ B(H) be an algebraic operator

of degree n0 > 0. Then the inverse linear problem (2.1) (where g ∈ ranA) has
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a solution in the affine space {f [0]}+Kn0 (A, R0) if and only if g ∈ ranAn0.

In this case, the Krylov solution is unique, and GMRES computes this unique

solution.

Under the case where g /∈ ranA, it was shown in [32] that under some

restrictions, the GMRES algorithm is capable of calculating a ‘least squares

solution’ [32, Theorem 3.1]. A ‘least squares solution’ being an approximate

solution f̃ ∈ H to the linear inverse problem that minimises
∥∥∥A∗g − A∗Af̃∥∥∥

H
.

2.4 Further remarks

Even from this relatively short review, one can see that Krylov based methods

in infinite-dimensional Hilbert spaces has a history in numerical analysis

dating back to the 1950s when various algorithms were initially proposed.

There are attractive results for particular classes of problems, for example

fixed point and similar problems as in equations (2.10) and (2.11) respectively.

The convergence behaviour of both the conjugate-gradient and its related

methods is quite well documented, particularly due to the general analysis

contained in [64, 65]. The GMRES method on the other hand exhibits

rigorously proven convergence behaviour, but the focus is mainly on operators

with structure A = ζ1 +K, K is compact and ζ ∈ ρ(A). This allows one to

focus on the relationship between convergence and the eigenvalues in a disc

of arbitrary radius about ζ. Presently, there does not appear to be a general

discussion of under what conditions, or exactly what qualifies when a solution

is approximable by this method. More generally speaking, a systematic study

of when there exists a solution to (2.1) in the Krylov subspace, is missing at

the level of closed (possibly unbounded) operators.
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Chapter 3

Truncation and Convergence

Issues in Hilbert Space

3.1 Introduction

Scientific computing demands a suitable discretisation of the linear inverse

problem (1.1). There are certain features, discussed within this Chapter,

that appear at the infinite-dimensional level which may become absent at

the finite-dimensional level, and yet are relevant to the problem. Of an

immediate interest is how close the solution(s) to the discretised problem are

to the exact solution(s) of the linear inverse problem. This Chapter, based

on the paper [17], focuses on the behaviours of sequences of the appropriately

truncated, finite-dimensional problem from the discretisation of the original

infinite-dimensional problem.

Recall that the infinite-dimensional linear inverse problem is the problem,

given a linear operator A ∈ B(H) acting on a Hilbert space H and some

g ∈ H, to find the solution(s) f ∈ H to the linear equation

(3.1) Af = g .

If g ∈ ranA, then (3.1) is called solvable; if in addition A is injective, then

(3.1) is called well-defined ; and finally if in addition, the solution f ∈ H is

continuously dependent on the datum g, then the problem is well-posed.

33
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For certain classes of infinite-dimensional linear inverse problems the

theoretical aspects of truncation and convergence issues are already well-

established (see, for example [28, 20, 75, 74, 53]). Here, the discussion turns

to generic truncations of the linear inverse problem, in the sense of general

projection methods. Under the framework of ‘general projection methods’,

some relaxations of the well-established theory are made to encompass a

broader set of algorithms and solution techniques. The aim of this Chapter

is not to develop a comprehensive classification of theoretical and practical

phenomena and difficulties occurring from such methods, but to discuss some

of the more general features that are unavoidable at a high level of generality.

Several model examples, and counter-examples, are developed that illustrate

some of the theoretical concepts and challenge the common intuition.

In particular, the errors and residuals arising from the solution of a succes-

sively truncated linear inverse problem are discussed. A view to controlling

these quantities and their convergence is developed in a weaker sense rather

than the typical strong topological norm convergence in the Hilbert space.

At an abstract level, sufficient conditions are developed that guarantee the

error or residual to be small in this more generalised sense.

3.2 Definitions and comments

To begin with, certain notations are laid out to maintain clarity in the following

work, and avoid unnecessary confusion. Afterwards, the exact framework of

the truncations that will be considered is described, namely general projection

methods.

The following terminology concerns the formalism that is used within

this thesis when studying suitably truncated, or discretised, linear inverse

problems. One considers the orthonormal systems (un)n∈N and (vn)n∈N. These

collections need not form a basis for the entire space H, however in doing so

it is desirable for the ‘goodness’ of the approximation of the linear inverse

problem. Practically speaking, the two sets (un)n∈N and (vn)n∈N are a-priori

known sets of orthonormal vectors that are to be used in the numerical

truncation, or discretisation. This is unlike, for example, the singular value
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decomposition of a compact operator on H, as the basis vectors may not be

explicitly known.

A choice regarding (un)n∈N and (vn)n∈N is dependent on the numerical

scheme chosen. For example, in finite element methods these may be taken

as a space of orthogonal, piecewise linear elements on a mesh [28, Chapter 1].

In Krylov subspace methods they are taken from the spanning vectors of the

Krylov subspace [55, Chapter 2].

Definition 3.2.1. Let (un)n∈N and (vn)n∈N be two orthonormal systems of

vectors. Given some N ∈ N, then the orthonormal projections in H onto

span {u1, . . . , uN} and span {v1, . . . , vN} are defined as

(3.2) PN :=
N∑
n=1

|un〉 〈un| , QN :=
N∑
n=1

|vn〉 〈vn|

respectively.

The framework of the concept of general projection methods will be defined

in what follows. Herein the definition is given for the class of bounded linear

operators on Hilbert space. Of course, with minor modifications, the definition

may be suitably modified to encompass general unbounded linear operators

on Banach spaces (see [53] for the appropriate generalisation of the Galerkin

and Petrov-Galerkin methods).

Definition 3.2.2. Let A : H → H be a bounded linear operator on Hilbert

space H and consider the solvable linear inverse problem (3.1). Consider two

sequences (un)n∈N and (vn)n∈N of orthonormal vectors in H, with associated

projections given by (3.2), and the approximation of the solvable problem

(3.1) by the following linear inverse problem

(3.3) QNAPN f̂ (N) = QNg .

Then the construction of a sequence of solutions to (3.3), (f̂ (N))N∈N, or

approximations (f̂ (N))N∈N to (3.3) in the sense QNAPN f̂ (N) = QNg + ε̂(N),

for some discrepancy ε̂(N) ∈ H, is known as the general projection method.

In the case where un = vn for all n ∈ N the projection method is known as
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an othogonal projection method, otherwise it is termed an oblique projection

method.

Remark 3.2.3. In Definition 3.2.2, it is not guaranteed that (3.3) is solvable.

As such, the general projection method permits one to relax assumptions on

the solvability of (3.3) and search for approximate solutions to the problem

instead. This notion is again formulated in the following Section (see (3.12))

at the truncated level.

In (3.3), QNg =
∑N

n=1 〈vn, g〉 vn is the datum and f̂ (N) =∑N
n=1

〈
un, f̂ (N)

〉
un is the unknown. The compression QNAPN is only non-

trivial as a map from PNH to QNH. The kernel space of the compression

QNAPN contains at least the infinite-dimensional space (1−PN )H. Normally

one has that (un)n∈N and (vn)n∈N are orthonormal bases of the Hilbert space

H. In the case of (un)n∈N and (vn)n∈N being bases for the Hilbert space H,

this is known as the approximability condition [28, Definition 2.14].

Clearly, the general projected problem (3.3) is a truncation, or discretisa-

tion, of the linear inverse problem (3.1). For convenience of computation, this

is cast in terms of a finite-dimensional matrix system on CN in what follows.

The finite-dimensional spaces PNH and QNH, contained in the ambient

Hilbert space H, are identified with CN , i.e., PNH ∼= CN ∼= QNH. In this

way, the vectors PNf ∈ H and QNg ∈ H are canonically identified with the

following finite-dimensional vectors in CN

(3.4) fN =


〈u1, f〉

...

〈uN , f〉

 ∈ CN , gN =


〈v1, g〉

...

〈vN , g〉

 ∈ CN .

From the above description, one now has that the compression QNAPN on

Hilbert space H is identified with a CN → CN linear map represented by the

matrix AN ∈ CN×N whose i, j-th entries are given by

(3.5) AN ;ij = 〈vi, QNAPNuj〉 .
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The inverse linear problem

(3.6) ANf
(N) = gN

with datum gN ∈ CN , unknown f (N) ∈ CN , and matrix AN described by

(3.5) is referred to as the N-dimensional truncation of the original problem

Af = g.

At this point, the meaning of the notation is stressed to avoid possible

confusion.

(i) QNAPN , PNf and QNg are all objects referred to in the whole Hilbert

space H, whereas AN , f (N), fN and gN are the analogues referred to in

the space CN .

(ii) The subscript N in the objects AN , fN , and gN indicate that that the

components of these objects are precisely the corresponding components

(up to order N) respectively of A, f , and g, with respect to the declared

orthonormal systems (un)n∈N and (vn)n∈N, via (3.4) and (3.5).

(iii) The superscript (N) in f (N) indicates that the components of the CN -

vector f (N) are not necessarily understood to be the first N components

of the H-vector f with respect to the system (un)n∈N. In particular,

for N1 < N2, the components of f (N1) are not necessarily equal to the

first N1 components of f (N2). From counterexamples, it is known that if

f ∈ H is a solution to Af = g, in general the truncations AN , fN and

gN do not satisfy the identity ANfN = gN . Therefore, it is essential

that the notation f (N) is used for the CN -vector representation of the

unknown in (3.6).

(iv) Lastly, for the CN -vector f (N), the notation with the wide-hat symbol,

f̂ (N), indicates a vector in H whose first N components with respect to

the orthonormal system (un)n∈N are precisely those of f (N), such that

f̂ (N) has no vector support in the space span {u1, . . . , uN}⊥. Therefore

f (N) = (f̂ (N))N and fN = (f̂N)N . In general f 6= f̂N .
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In the following, two important subclasses of general projection methods

are described, namely the Galerkin and Petrov-Galerkin methods [53].

Definition 3.2.4. Let (un)n∈N and (vn)n∈N be two orthonormal bases in the

Hilbert space H, and define the projection operators PN and QN as in (3.2).

Consider the approximation of the well-defined linear system (3.1) as follows.

(3.7) QN(Af̂ (N) − g) = 0 ,

where f̂ (N) is the unique solution to the well-defined system (3.7) in the

space PNH. Then the construction of the sequence of approximate solutions

(f̂ (N))N∈N to the inverse problem Af = g using (3.7), along with suitable

assumptions on A and the truncation bases to guarantee norm convergence

f̂ (N) N→∞−−−→ f , is called the Petrov-Galerkin projection method. Moreover, if

un = vn for all n ∈ N, then this is known as the Galerkin projection method.

In this definition of Petrov-Galerkin methods, there exists a unique solution

f̂ (N) ∈ PNH for the projected problem at every step N , and both (un)n∈N and

(vn)n∈N are complete orthonormal systems in H. Moreover, there are extra

conditions that guarantee the strong convergence of the sequence of numerical

approximants to the solution of the linear inverse problem Af = g. These

assumptions are not considered in the general projection method definition.

In the standard Petrov-Galerkin nomenclature, the un’s and vn’s span the

solution space (or search space) and the trial space, respectively [28, 74].

The framework of Galerkin or Petrov-Galerkin methods is already very

well-studied and a classical area of numerical analysis, especially in finite

element methods [28, 20]. For certain classes of boundary value problems on

L2(Ω) for some domain Ω ⊂ Rn, the properties and convergence results of the

error for these methods are well-established. In these cases, the operator A is

of differential type, hence unbounded on L2(Ω), but also typically elliptic [28,

Chapter 3], [74, Chapter 4], or also possibly Friedrichs type [28, Section 5.2], [3,

2, 29], or parabolic type [28, Chapter 6], [74, Chapter 5], etc. Hence a typical

assumption on such operators is that they satisfy some additional coercivity



3.2. DEFINITIONS AND COMMENTS 39

condition, or possibly some other condition among various classical ones

that ensure (3.1) is well-posed (e.g., the Banach-Nec̆as-Babuška Theorem).

Usually, the discretised system too satisfies the Lax-Milgram lemma, or more

generally the Banach-Nec̆as-Babuška Theorem, at the discrete level; or has

assumptions guaranteeing the solution to the discretised finite-dimensional

linear inverse problem [28, 75].

Again, to stress the contrast, this is not assumed in the general projection

framework studied in this Chapter. It may well be the case that the linear

inverse problem at the finite-dimensional discretised level does not have a

solution at a given step N in the discussions that follow. Moreover, the

assumption of the density of the search and test spaces in the ambient

Hilbert space are not generally assumed to hold. That is, to say, that the

‘approximability’ of H need not hold in general. An example would be the

case of a Krylov projection method where the underlying Krylov subspace,

i.e., the search space, is not dense in H. In summary, the theory in this

Chapter moves outside the Petrov-Galerkin framework in the sense that

(i) (3.1) is only considered to be solvable,

(ii) generally, the orthonormal systems (un)n∈N and (vn)n∈N are not assumed

to form bases of H,

(iii) the truncated problem (3.3) is not guaranteed to be well-defined, let

alone solvable,

(iv) additional assumptions guaranteeing the strong vanishing of the error

and/or the residual (see Definition 3.2.5) are not assumed a-priori.

Definition 3.2.5. Consider the linear inverse problem (3.1), and a sequence

of approximants (f̂ (N))N∈N in the ambient Hilbert space H, to a solution

f ∈ H of (3.1). The infinite-dimensional error of the approximation at the

N -th step is defined as

(3.8) EN := f − f̂ (N) ,
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and the infinite-dimensional residual of the approximation at the N -th step

is defined as

(3.9) RN := g − Af̂ (N) .

When no confusion arises, the additional term of ‘infinite-dimensional’

is dropped when describing error and residual terms. The term ‘infinite-

dimensional’ is only used to distinguish these quantities from the error and

residual terms for the finite-dimensional truncated system at fixed N , which

may be indexed by the number of steps performed in an iterative algorithm

to solve said truncated problem.

3.3 Finite-dimensional truncations

3.3.1 Singularity of the truncated problem

The question of the singularity of the truncated problem (3.3) makes sense

eventually in N , i.e., for all N ’s large enough. Certainly, for a fixed value of

N , the truncation may alter the problem such as to make it uninformative

compared to Af = g, with such an aberration disappearing for larger values

of N .

But even when the solvability of ANf
(N) = gN is inquired eventually in

N , the answer is generally negative as the following simple example shows.

Example 3.3.1. The matrix AN may remain singular for all N ∈ N, even

for an injective operator. For example, consider the weighted (compact)

right-shift operator (see Appendix A) on `2(N), and truncate with respect to

the canonical basis (en)n∈N. Indeed,

(3.10) RN =



0 · · · · · · · · · 0

σ1 0 · · · · · · 0

0 σ2 0 · · · 0
...

...
. . . . . . 0

0 0 · · · σN−1 0


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is always singular, irrespective of N , with kerRN = span {eN}.
Variations on this example where the matrix AN is alternating between

singular and non-singular as N → ∞ are not difficult to construct. If

one were to consider, for example, the following operator on `2(N), A =∑
n∈N (|en+1〉 〈en|+ |e2n〉 〈e2n|), then this would do the trick.

Remark 3.3.2. It is worth noting that when one considers the weighted right-

shift R, now over `2(Z), with weights of all of unit value, a truncation scheme

using the subset of canonical basis vectors (en)−N≤n≤N of `2(Z) produces a

phenomenon known as spectral pollution. This is the occurrence of erroneous

eigenvalues at the truncated level that do not converge to any point in the

spectrum in the limit N →∞. This is equivalent to saying that the sequence

of truncated operators does not converge to the operator in the resolvent

sense (see [51, Chapter IV]). Indeed, the only spectral point in the truncated

system is 0 for all N ∈ N, while the spectrum of R is the unit circle.

Example 3.3.3. On the other hand, it may well be the case that the truncated

matrix AN is always non-singular. For example, the truncation, with respect

to the canonical basis (en)n∈N of the multiplication operator on `2(N) with

weights σn = 1/n (see Appendix A) gives

(3.11) MN =



1 · · · · · · · · · 0

0 1
2
· · · · · · 0

0 0 1
3
· · · 0

...
...

. . . . . . 0

0 0 · · · 0 1
N


,

which is a CN → CN bijection for all N ∈ N.

For general projection methods, choosing ‘bad’ truncations is always

possible as the following lemma shows.

Lemma 3.3.4. Let H be a separable Hilbert space with dimH =∞, and let

A ∈ B(H). There always exist two orthonormal systems (un)n∈N and (vn)n∈N

of H such that the corresponding truncated matrix AN defined as in (3.5) is

singular for every N ∈ N.
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Proof. Pick an arbitrary orthonormal basis (or less restrictively, an orthonor-

mal system) (un)n∈N so that one may then construct the other orthonormal

system (vn)n∈N inductively.

When N = 1, it suffices to choose v1 such that v1 ⊥ Au1 and ‖v1‖H = 1.

Now let (vn)n∈{1,...,N−1} be an orthonormal system in H satisfying the thesis

up to the order N − 1. Then there exists a choice of vN such that the final

row of the matrix AN has all zero entries, as will now be shown. In fact,

(AN)ij = (QNAPN)ij = 〈vi, Auj〉 for i ∈ {1, . . . , N − 1} and j ∈ {1, . . . , N}.
In order for 〈vN , Auj〉 = 0 for j ∈ {1, . . . , N}, it suffices to take

vN ⊥ ran(APN) , vN ⊥ ranQN−1 , ‖vN‖H = 1 ,

where PN and QN−1 are the orthogonal projections defined by (3.2). Since

the spaces ran(APN) and ranQN−1 are finite-dimensional subspaces of H,

there must exist a vector vN ∈ H with the above stated properties.

Although this lemma is stated for general projection methods, Exam-

ple 3.3.1 shows a typical case of this occurring under the condition that

(un)n∈N and (vn)n∈N are orthonormal bases of H (and moreover un = vn).

Surely then, the question of when bad truncations occur is not so ‘trivial’

a question to be asked at such a high level of generality. In the standard

framework of (Petrov-)Galerkin schemes the occurrence of such phenomena

is prevented by suitable additional assumptions on the operator A, typically

from coercivity of the operator [28, 20, 75, 74].

In the entirety of the following discussion, such occurrences as described by

Lemma 3.3.4 and discussed in the previous examples are not a-priori excluded.

Therefore the vector f (N) ∈ CN must be regarded as an approximate solution

to the finite-dimensional truncated problem in the following sense

(3.12) ANf
(N) = gN + ε(N) , for some ε(N) ∈ CN .

As a notational matter, the symbol ε(N) is used rather than εN to em-

phasise there is no reason whatsoever that the residual vector ε(N) in the

N -dimensional problem is a truncation for every N of the same infinite-
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dimensional vector ε ∈ H. It may well be that ε(N) = 0 for some values of N ,

namely where a solution f (N) ∈ CN exists to the problem (3.6), whereas for

other values of N , ε(N) 6= 0. This is typical of the case where AN alternates

between a non-singular and singular matrix respectively.

It is desirable to assume that ε(N) is small and asymptotically vanishes

with N , or even that ε(N) = 0 for N large enough. The condition that ε(N)

vanishes as N →∞ is analogous to the assumption of asymptotic consistency

for the weak formulation Galerkin projection methods in finite-element theory

[28, Definition 2.15]. In the adaptation to this work, the term ‘asymptotic

consistency’ is used to describe the situation in which ε(N) N→∞−−−→ 0. This is

motivated by the following lemma.

Lemma 3.3.5. Let A ∈ B(H) and g ∈ ranA. Let AN and gN be defined as

in (3.5) and (3.4) respectively, for (un)n∈N and (vn)n∈N orthonormal bases of

H. Then there always exists a sequence (f (N))N∈N such that

f (N) ∈ CN and lim
N→∞

∥∥ANf (N) − gN
∥∥
CN = 0 .

In other words, there exist approximate solutions (f (N))N∈N to (3.12) that

satisfy the assumption of asymptotic consistency, i.e.
∥∥ε(N)

∥∥
CN

N→∞−−−→ 0.

Proof. Let f be a solution to Af = g. Then the sequence (f (N))N∈N defined

by

f (N) := (PNf)N = fN ,

that is, f̂ (N) = PNf , does the trick. To show this claim, it suffices to note that

QNAPN → A in the strong operator topology (see Lemma 3.5.1). Therefore,

by adding and subtracting Af = g,

∥∥ANf (N) − gN
∥∥
CN =

∥∥∥QNAPN f̂ (N) −QNg
∥∥∥
H

= ‖QNAPNf − Af + Af −QNg‖H
≤ ‖(QNAPN − A)f‖H + ‖Af −QNg‖H
= ‖(QNAPN − A)f‖H + ‖g −QNg‖H
= ‖(QNAPN − A)f‖H + ‖(1−QN)g‖H .
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Taking N →∞, the strong limit yields the conclusion.

3.3.2 Error and residual convergence of the truncated

problem

The major question concerning approximate solutions to infinite-dimensional

linear inverse problems is the ‘goodness’ of the approximation by the method.

That is to say, whether natural indicators of the difference between the infinite-

dimensional inverse linear problem and its finite-dimensional truncation,

namely the error (3.8) and residual (3.9), converge in some sense to zero as

N →∞.

The most obvious obstruction to EN vanishing in the limit N → ∞, is

when the orthonormal system (un)n∈N does not possess the approximability

property, i.e. span {un |n ∈ N} is not dense in H. The following simple

example illustrates such an issue.

Example 3.3.6. Consider the weighted (compact) right shift operator R on

`2(N) (see Appendix A). If this is truncated with respect to the orthonormal

system

(un)n∈N = (en)n≥2 , (vn)n∈N = (en)n∈N

and the inverse linear problem is Rf = g = e2, then the exact solution is

f = 1
σ1
e1. But, the truncated problem produces the approximate solutions

f̂ (N) ∈ span {e2, e3, . . .} ,

so that f ⊥ f̂ (N) for all N ∈ N and so
∥∥∥f̂ (N) − f

∥∥∥
H
≥ 1

σ1
.

Although the above example, and other similar situations where one does

not truncate with a complete basis of H, appears unwise, in certain contexts it

is natural. For example, within the framework of Krylov subspace projection

methods (see Chapters 2 and 4 for more details) it is not a-priori guaranteed

that the vectors spanning the search space, here the Krylov subspace, are

dense in H. It may well happen that K (A, g) ( H. Recall that, as defined in

Chapter 2, the Krylov subspace with respect to the operator A and a vector
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g is

K (A, g) := span {Ang |n ∈ N0} .

Below are some simple examples revealing when the Kyrlov subspace may

or may not be all of H, that is to say, when the orthonormal system (un)n∈N

forms a basis or not for H.

Example 3.3.7. (i) For the right-shift operator R on `2(N) (Appendix A)

and the vector g = em+1 (given some m ∈ N) one has K (R, g) =

span {e1, . . . , em}⊥ (c.f. Example 4.4.1 (iv)). Clearly then K (R, g) is a

proper subspace of `2(N) if m > 1, and all of `2(N) when m = 1. The

exact solution to the inverse linear problem Rf = g for g ∈ ranR is not

solvable using projection methods based on Krylov subspaces.

(ii) For the Volterra operator on L2[0, 1] (Appendix A), and the function

g = 1, it follows that K (V, g) = L2[0, 1] (see Example 4.2.2 (iii)). A

projection method using this subspace as the search and trial space

would then possess the approximability property.

Of course, from Definition 3.2.4, the lack of the approximability property

is ruled out as both (un)n∈N and (vn)n∈N must be orthonormal bases of the

space H.

3.4 Compact linear inverse problems

A natural class of inverse problems to investigate with the theoretical frame-

work laid out so far, are the compact linear inverse problems. Compact

operators in a separable Hilbert space H can be approximated in the op-

erator norm by finite rank operators, also known as degenerate operators

(see Lemma 3.4.1 below). In general Hilbert spaces, the space of compact

operators is closed in the space of bounded operators equipped with the

operator norm topology [51]. Also, the space of degenerate operators is a

linear manifold contained within the space of compact operators, but in

general it is not closed [51].
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A compact operator A on a separable Hilbert space H admits the follow-

ing canonical decomposition, known as the singular value decomposition or

canonical expansion [51, Chapter V, equation (2.23)]

(3.13) A =
∑
n∈J

σn |ψn〉 〈ϕn| ,

where n runs over J ⊂ N, with supJ < ∞ or supJ = ∞, σn ≥ σn+1 > 0

for all n ∈ J , σn
n→∞−−−→ 0, and (ψn)n and (ϕn)n are two orthonormal systems

of H. The series (3.13) converges in operator norm.

Injectivity (respectively dense range in H) of the operator A is equivalent

to (ϕn)n∈N (respectively (ψn)n∈N) forming an orthonormal basis of H.

Given that dimH =∞, the compactness of an injective A ensures that

A−1 exists only on the range, and may not have an everywhere defined,

bounded inverse. ranA may be dense in H, for example the Volterra operator

on L2[0, 1] (see Appendix A), but ranA may never be the entire Hilbert space

H. It may also be that ranA is dense in a closed subspace of the ambient

Hilbert space, for example the weighted right-shift operator on `2(N).

The following lemma reveals that the compression of the compact operator

A, namely QNAPN (as in (3.3)), is close to the operator A in operator norm.

Lemma 3.4.1. Let H be an infinite-dimensional separable Hilbert space, let

A : H → H be a compact linear operator, and let (un)n∈N and (vn)n∈N be two

orthonormal bases for H. Then

(3.14) ‖A−QNAPN‖op

N→∞−−−→ 0 ,

where QN and PN are the orthogonal projections defined by (3.2).

Proof. Split the term A−QNAPN as follows

A−QNAPN = (A−QNA) +QN(A− APN) ,

so that it suffices only to prove that ‖A−QNA‖op → 0 and ‖A− APN‖op → 0

as N →∞. For now the focus will remain on the term A− APN .
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To this end, it is trivial to see that any compact operator A in H, as given

by (3.13), is arbitrarily well approximated in the operator norm by a finite

rank operator Ã, say

Ã =
M∑
n=1

σn |ψn〉 〈ϕn| ,

for some M ∈ N, where σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0, and (ψn)Mn=1 and (ϕn)Mn=1

are the appropriate orthonormal systems from (3.13). Therefore, one has

A− APN = A− Ã+ Ã− ÃPN + ÃPN − APN
= (A− Ã) + (Ã− ÃPN)− (A− Ã)PN ,

and from the triangle inequality one has

‖A− APN‖op ≤
∥∥∥A− Ã∥∥∥

op
+
∥∥∥Ã− ÃPN∥∥∥

op
+
∥∥∥A− Ã∥∥∥

op
‖PN‖op

≤ 2
∥∥∥A− Ã∥∥∥

op
+
∥∥∥Ã− ÃPN∥∥∥

op
.

As the approximation between Ã and A is arbitrarily small, the focus is

now to show that
∥∥∥Ã− ÃPN∥∥∥

op
vanishes in the limit N →∞. Taking some

generic ξ =
∑∞

k=1 ξnun ∈ H such that ‖ξ‖H = 1 one has that

∥∥∥(Ã− ÃPN)ξ
∥∥∥2

H
=

∥∥∥∥∥
M∑
n=1

σn

(
∞∑

k=N+1

ξk 〈ϕn, uk〉

)
ψn

∥∥∥∥∥
2

H

=
M∑
n=1

σ2
n

∣∣∣∣∣
∞∑

k=N+1

ξk 〈ϕn, uk〉

∣∣∣∣∣
2

≤
M∑
n=1

σ2
n ‖(1− PN)ϕn‖2

H ,

and so ∥∥∥Ã− ÃPN∥∥∥2

op
≤Mσ2

1 max
n∈{1,...,M}

‖(1− PN)ϕn‖2
H

N→∞−−−→ 0 ,

since the maximum is taken over M finitely many quantities, each of which

vanishes in the limit as N →∞.

The vanishing of ‖A−QNA‖op is proven in much the same way. Splitting
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as follows

A−QNA = (A− Ã) + (1−QN)Ã−QN(A− Ã) ,

so that ‖A−QNA‖op ≤ 2
∥∥∥A− Ã∥∥∥

op
+
∥∥∥(1−QN)Ã

∥∥∥
op

. Controlling the

vanishing of (1−QN )Ã in the operator norm immediately gives the required

convergence result. Again, suppose ξ =
∑

n∈N ξnϕn ∈ H is such that ‖ξ‖H = 1.

As Ãξ is a vector in H and is independent of N ,

∥∥∥(1−QN)Ãξ
∥∥∥2

H
=

∥∥∥∥∥
∞∑

k=N+1

M∑
n=1

σnξn 〈ψn, vk〉 vk

∥∥∥∥∥
2

H

,

so that as above, eventually one has

∥∥∥(1−QN)Ã
∥∥∥2

op
≤

∞∑
k=N+1

M∑
n=1

σ2
n |〈ψn, vk〉|

2

≤Mσ2
1 max
n∈{1,...,M}

‖(1−QN)ψn‖2
H → 0 ,

as N →∞.

An alternative form of the proof of Lemma 3.4.1 is provided by [53,

Chapter 4, Lemma 15.4].

The following result describes the generic convergence behaviour of the

well-defined compact inverse problem under a projection method.

Theorem 3.4.2. Consider the linear inverse problem Af = g in a separable

Hilbert space H for some compact and injective operator A : H → H and

some g ∈ ranA; and the associated finite-dimensional truncation AN obtained

by compression with respect to the orthonormal bases (un)n∈N and (vn)n∈N of

H.

Let (f (N))N∈N be a sequence of approximate solutions to the truncated

problem in the quantitative sense

ANf
(N) = gN + ε(N) f (N), ε(N) ∈ CN

∥∥ε(N)
∥∥
CN

N→∞−−−→ 0
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for every (sufficiently large) N . If f̂ (N) is H-norm uniformly bounded in N ,

then

‖RN‖H → 0 and EN ⇀ 0

as N →∞.

Remark 3.4.3. Although the vectors used to construct the compression of

the operator form an orthonormal basis of the underlying Hilbert space, the

theorem does not generally assume that the truncated finite-dimensional

problem posed in CN is solvable at every N , and hence one is no longer in

the Petrov-Galerkin scheme, but rather in the scheme of general projection

methods.

Proof of Theorem 3.4.2. Split Af̂ (N) − g as follows

(*) Af̂ (N) − g = (A−QNAPN)f̂ (N) +QNAPN f̂ (N) −QNg +QNg − g .

By assumption ‖QNg − g‖H
N→∞−−−→ 0 and∥∥∥QNAPN f̂ (N) −QNg

∥∥∥
H

=
∥∥ANf (N) − gN

∥∥
CN

=
∥∥ε(N)

∥∥
CN

N→∞−−−→ 0 .

Lemma 3.4.1 and the assumption of uniform boundedness with N of the

sequence (f̂ (N))N∈N, imply that∥∥∥(A−QNAPN)f̂ (N)

∥∥∥
H
≤ ‖A−QNAPN‖op

∥∥∥f̂ (N)

∥∥∥
H

N→∞−−−→ 0 .

Using this information and the triangle inequality in (*), one immediately

obtains that ‖RN‖H → 0 as N →∞.

Now, exploiting the singular value decomposition (3.13) of A, where

(ϕn)n∈N is an orthonormal basis of H and (ψn)n∈N is a orthonormal system of

H, and 0 < σn+1 ≤ σn ∀n ∈ J , then

f̂ (N) =
∑
n∈N

f (N)
n ϕn , f =

∑
n∈N

fnϕn ,
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from which

0 = lim
N→∞

∥∥∥Af̂ (N) − g
∥∥∥2

H
= lim

N→∞

∑
n∈J

σ2
n

∣∣f (N)
n − fn

∣∣2 .
Then it is obvious that f̂ (N) converges to f component-wise, i.e., EN  0, as

J = N due to injectivity.

By assumption, f̂ (N) remains uniformly bounded in H, thus f̂ (N) ⇀ f

(Lemma C.1.3).

Theorem 3.4.2 provides sufficient conditions for some form of vanishing of

the error and residual. The key assumptions are: injectivity of A, asymptotic

consistency of the truncated problems, and uniform boundedness of the

approximate solutions. In fact, injectivity was only used to ensure the

convergence of the error term, however the residual converges regardless of

this assumption. From the iterates (f̂ (N))N∈N there exists another sequence in

the Hilbert space made from convex combinations of the f̂ (N)’s that converges

strongly to the solution f [10, Corollary 3.8].

Theorem 3.4.2 is analogous to a result known as the ‘Fundamental Con-

vergence Theorem’ ([53, Chapter 4, Theorems 15.1 and 15.2]), which gives

necessary and sufficient conditions for the convergence of the residual term

for Petrov-Galerkin projection methods.

Remark 3.4.4. Under the conditions of Theorem 3.4.2, the strong vanishing

of the residual RN and the weak vanishing of the error EN is a generic

behaviour. For example, the compact inverse problem Rf = 0 in `2(N)

associated with the weighted right-shift R, with σn 6= 0 for all n, has exact

solution f = 0. The truncated problem RNf
(N) = 0 with respect to the

same basis (en)n∈N, RN being the matrix in (3.10), is solved by CN -vectors

whose first N − 1 components are zero, f̂ (N) = eN . The sequence (f̂ (N))N∈N

converges weakly to zero in `2(N), so indeed EN ⇀ 0, and also by compactness

RN → 0. But ‖EN‖H = 1 for all N , so the error cannot vanish in the strong

topology.

Remark 3.4.5. From the example in Remark 3.4.4 one may see how it

may happen that the solutions selected are ‘bad’ approximate solutions
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so that
∥∥f (N)

∥∥
CN =

∥∥∥f̂ (N)

∥∥∥
H
→ ∞, even though the ‘good’ property∥∥ANf (N) − gN

∥∥
CN vanishing to 0 is preserved. For instance, if one should

choose the solution f̂ (N) = σ
− 1

2
N eN . From compactness of R it is known

that σN → 0, and one has that RNf
(N) = 0 along with Rf̂ (N) = σ

1
2
NeN so

that RN → 0. Yet,
∥∥∥f̂ (N)

∥∥∥
H
→ ∞. Therefore, the assumption of uniform

boundedness of the approximate solutions in Theorem 3.4.2 is not redundant.

This small example also shows that, although by compactness f̂ (N) ⇀ f

implies
∥∥∥Af̂ (N) − Af

∥∥∥
H
→ 0, the opposite implication is generally false.

Remark 3.4.6. Even if the genericity in Remarks 3.4.4 and 3.4.5 is referred to

compact injective operators without dense range, requiring ranA = H does not

improve the convergence in general. For example, the compact inverse problem

associated to the right-shift R in `2(Z) (Appendix A) involves a compact,

injective operator with dense range. But, again the compression with QN :=

PN :=
∑n=N

n=−N |en〉 〈en| produces for every N ∈ N a (2N+1)×(2N+1) square

matrix that is singular, and therefore the considerations of Remarks 3.4.4 and

3.4.5 may be repeated verbatim.

Remark 3.4.7. In Lemma 3.3.4 it is shown that ‘bad’ truncation schemes are

always possible, i.e., truncations that lead to matrices AN that are, eventually

in N , always singular. On the other hand, there always exists a ‘good’ choice

for the truncation which makes the infinite-dimensional residual and error

vanish in a stronger sense that given in Theorem 3.4.2 (although this choice

may not always be explicitly identifiable). Moreover, this choice of truncation

scheme does not require the extra assumption of the uniform boundedness of

the approximate solutions f̂ (N). For instance, in terms of the singular value

decomposition (3.13) of A, it suffices to choose

(un)n∈N = (ϕn)n∈N (vn)n∈N = (ψn)n∈N ,

so that QNAPN =
∑N

n=1 σn |ψn〉 〈ϕn| and AN = diag(σ1, . . . , σN). So for

given g =
∑

n∈N gnψn ∈ ranA, one has f̂ (N) =
∑N

n=1
gn
σn
ϕn, where the sequence
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gn
σn

)
n∈N
∈ `2(N) as g ∈ ranA. So

∥∥∥f − f̂ (N)

∥∥∥2

H
=

∞∑
n=N+1

∣∣∣∣ gnσn
∣∣∣∣2 N→∞−−−→ 0 .

In addition to Remark 3.4.7, a particular projection method that does

result in a good truncation scheme for the compact inverse problem is the

conjugate-gradient method. The strong vanishing of the error term is guaran-

teed under the assumption that g ∈ ranA (see Theorem 2.3.6 in Chapter 2).

3.5 Bounded linear inverse problems

This Section serves as a comparison between the findings for the compact

inverse problem and the more general case of the bounded linear inverse

problem.

The first result presented here is that, unlike the case for compact linear

operators, the convergence of the compression QNAPN to the operator A is

no longer controlled in the operator norm when dimH =∞, but is controlled

in the strong operator topology. That is to say, given a vector in ψ ∈ H, the

H-norm vanishing of (QNAPN − A)ψ occurs.

Lemma 3.5.1. Let H be a separable Hilbert space, and let A ∈ B(H).

Let (un)n∈N and (vn)n∈N be orthonormal bases of H, and define the orthog-

onal projection operators QN and PN as in (3.2). Then QNAPN → A as

N → ∞ in the strong operator topology, i.e., given some ψ ∈ H one has

‖(QNAPN − A)ψ‖H
N→∞−−−→ 0.

Proof. Consider that one may write

(QNAPN − A)ψ = (QNA− A)ψ + (QNAPN −QNA)ψ

= (QN − 1)Aψ +QNA(PN − 1)ψ ,

so that ‖(QNAPN − A)ψ‖H ≤ ‖(QN − 1)Aψ‖H + ‖A‖op ‖(PN − 1)ψ‖H for

any ψ ∈ H. Clearly then ‖(QNAPN − A)ψ‖H
N→∞−−−→ 0.
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The lack of operator norm convergence is obvious by considering, for

instance, the compression of the identity operator on H. The operator norm

limit of degenerate (finite-rank) operators can only be compact.

Therefore, the control of the infinite-dimensional linear inverse problem

in terms of finite dimensional truncations is, in general, less strong than the

compact inverse problem counterpart.

The following theorem presents a counterpart result to Theorem 3.4.2 for

the generic behaviour of well-defined bounded inverse problems.

Theorem 3.5.2. Consider the linear inverse problem Af = g in a separable

Hilbert space H for some bounded and injective A : H → H and some g ∈ H,

and the finite-dimensional truncation AN obtained by compression with respect

to the orthonormal bases (un)n∈N and (vn)n∈N of H.

Let (f (N))N∈N be a sequence of approximate solutions to the truncated

problems in the quantitative sense

ANf
(N) = gN + ε(N) , f (N), ε(N) ∈ CN ,

∥∥ε(N)
∥∥
CN

N→∞−−−→ 0

for every (sufficiently large) N . Assume further that f̂ (N) converges strongly

in H, equivalently, that
∥∥f (N) − f (M)

∥∥
Cmax{N,M}

N,M→∞−−−−−→ 0. Then

‖EN‖H → 0 and ‖RN‖H → 0 as N →∞ .

Proof. Splitting Af̂ (N) − g as follows

Af̂ (N) − g = (A−QNAPN)f̂ (N)

+QNAPN f̂ (N) −QNg

+QNg − g ,

(**)

and by assumption ‖QNg − g‖H
N→∞−−−→ 0 and∥∥∥QNAPN f̂ (N) −QNg
∥∥∥
H

=
∥∥ANf (N) − gN

∥∥
CN

=
∥∥ε(N)

∥∥
CN

N→∞−−−→ 0 ,
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so the strong vanishing of Af̂ (N) − g is the same as the strong vanishing of

(A−QNAPN)f̂ (N).

By assumption,
∥∥∥f̂ (N) − f̃

∥∥∥
H

N→∞−−−→ 0 for some f̃ ∈ H, so

∥∥∥(A−QNAPN)f̂ (N)

∥∥∥
H

=
∥∥∥(A−QNAPN)f̃ + (A−QNAPN)(f̂ (N) − f̃)

∥∥∥
H

≤
∥∥∥(A−QNAPN)f̃

∥∥∥
H

+ ‖A−QNAPN‖op

∥∥∥f̂ (N) − f̃
∥∥∥
H

≤
∥∥∥(A−QNAPN)f̃

∥∥∥
H

+ 2 ‖A‖op

∥∥∥f̂ (N) − f̃
∥∥∥
H

so that
∥∥∥(A−QNAPN)f̂ (N)

∥∥∥
H

N→∞−−−→ 0 from Lemma 3.5.1 combined with

the strong convergence of f̂ (N). Therefore, (**) implies that ‖RN‖H → 0 as

N →∞.

Furthermore, as Af̂ (N) → g, and Af̂ (N) → Af̃ due to continuity of A, so

Af̃ = g = Af and by injectivity one has f = f̃ . Therefore ‖EN‖H → 0 as

N →∞.

In the proof of Theorem 3.5.2, injectivity is only used to show that the

error term strongly vanishes, but this information is not needed to prove the

strong vanishing of the residual.

In comparing Theorem 3.4.2 with Theorem 3.5.2, injectivity and asymp-

totic solvability of the truncated problems are common assumptions to these

theorems. Injectivity merely ensures the solution to Af = g is unique, and

yet the asymptotic solvability of the truncated problem is quite a natural as-

sumption too, by virtue of Lemma 3.3.5. But, when passing from the compact

case to the general bounded case, one must strengthen the assumption on the

f̂ (N)’s, namely from being uniformly bounded in N (compact inverse problem)

to being strongly convergent (generic bounded inverse problem), to ensure

strong vanishing of the residual. As a by-product of the strong convergence

of the f̂ (N)’s in Theorem 3.5.2, the error term also vanishes strongly.

The proof of Theorem 3.5.2 elucidates the notion that, when A is injective

and the truncated problems are asymptotically solvable, the strong, weak or



3.5. BOUNDED LINEAR INVERSE PROBLEMS 55

component-wise vanishing occurs if and only if so too does (A−QNAPN )f̂ (N).

Yet in the compact case, A−QNAPN → O in operator norm (Lemma 3.4.1)

so that it suffices that the f̂ (N)’s are uniformly bounded (or at least have

increasing norm ‖f̂ (N)‖H compensated by the vanishing of ‖A−QNAPN‖op)

to ensure that ‖RN‖H → 0. The general bounded case though is controlled

by the vanishing of ‖(A−QNAPN )f̂ (N)‖H by the additional requirement that

the f̂ (N)’s converge strongly.

Should strong convergence of the f̂ (N)’s not occur, then one should expect

that the residual converges only in some weaker sense, which also prevents the

error from strong vanishing (otherwise ‖EN‖H → 0 would imply ‖RN‖H → 0).

The following example now reveals a possibility where one only has weak

vanishing of the residual term.

Example 3.5.3. Consider the right-shift operator R on `2(N) (Appendix A).

This is an injective operator, and the inverse problem Rf = g = 0 admits the

unique solution f = 0. The truncated finite-dimensional problem induced by

the bases (un)n∈N = (vn)n∈N = (en)n∈N where (en)n∈N is the canonical basis

of `2(N), is governed by the subdiagonal matrix

RN =



0 · · · · · · · · · 0

1 0 · · · · · · 0

0 1 0 · · · 0
...

...
. . . . . . 0

0 0 · · · 1 0


.

If one were to consider the sequence of approximate solutions (f̂ (N))N∈N with

f̂ (N) := eN for each N , then

(i) RNf
(N) = 0 = gN so the truncated problems are solved exactly,

(ii) f̂ (N) ⇀ 0 (weak, not strong, convergence of the approximations),

(iii) RN = g − Rf̂ (N) = −eN+1 ⇀ 0 (weak, not strong, vanishing of the

residual).
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3.6 Some remarks on linear inverse problems

with noise

In many typical applications the linear inverse problem is often plagued by

noise, or some sort of error, in the datum g. This Section contains some

collected remarks on this topic, within the framework of the theory in the

previous sections.

Within the modelling framework of a phenomenon, the linear inverse

problem Af = g is well-defined (possibly well-posed), and therefore there is

a unique ‘input’ f for a given ‘output’ g, with an explicitly known mapping

f
A7−→ g. But the knowledge of g obtained from measurement is uncertain, and

polluted by some noise.

Consequently, Af = g cannot be studied directly, and one often deals

with the possibly ill-defined problem

(3.15) Af̃ = g̃ ,

where A : H → H is a bounded linear operator on Hilbert space, f̃ is an

unknown for the given (measured) ‘noisy’ term g̃ := g + ν ∈ H, where the

‘noise’ vector ν ∈ H is typically small, but is not known a-priori (although a

bound on ‖ν‖H may be known).

If ν (and g) belongs to ranA, so too does g̃, and there will exist an actual

solution f̃ to (3.15). Immediately, Theorems 3.4.2 and 3.5.2 are applicable to

this setting (replacing g with g + ν) and analogously one may speak of an

approximate solution f (N) ∈ CN such that

(3.16) ANf
(N) = gN + νN + ε(N) ,

∥∥ε(N)
∥∥
CN

N→∞−−−→ 0 .

Within this framework, Theorems 3.4.2 and 3.5.2 are able to produce a control

on the convergence of the “residual plus noise” (g+ ν)−Af̂ (N) and the “error

plus noise” f̃ − f̂ (N) terms. But, this framework only determines convergence

properties to the “solution plus noise” term f̃ and not the exact solution

f . Yet, this can still be informative should ν be sufficiently small. For
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example, if A ∈ B(H) and A−1 ∈ B(H), then f̃ = A−1(g + ν), from which

‖f̃ − f‖H ≤ ‖A−1‖op ‖ν‖H, so that smallness of ‖ν‖H in terms of ‖A−1‖op

ensures f̃ is a good estimate of f .

On the other hand, when ν /∈ ranA and g ∈ ranA, the problem (3.15)

loses solvability, i.e., there is no exact solution to (3.15), and one may only

have an approximate solution f̃ satisfying Af̃ ≈ g̃ (and also Af̃ ≈ g as ν is

small).

Following this, some comments will be made on the behaviour of the

residual and error associated with f , f̂ (N), g for the case of a compact and

injective operator A : H → H, with g ∈ ranA.

3.6.1 Typical residual behaviour with noise for com-

pact inverse problems

When the truncated linear inverse problem is solved in the approximate sense

by (3.16) and the f̂ (N)’s are uniformly bounded in H, then one has that

(3.17) ‖RN‖H =
∥∥∥Af̂ (N) − g

∥∥∥
H

N→∞−−−→ ‖ν‖H .

This is seen by splitting RN as follows

RN = (QNAPN − A)f̂ (N) + (QNg −QNAPN f̂ (N)) + (g −QNg) ,

and noting that
∥∥∥(QNAPN − A)f̂ (N)

∥∥∥
H
≤ ‖QNAPN − A‖op

∥∥∥f̂ (N)

∥∥∥
H
→ 0

(Lemma 3.4.1), ‖g −QNg‖H → 0, and∥∥∥QNg −QNAPN f̂ (N) − ν
∥∥∥
H
≤
∥∥ANf (N) − gN − νN

∥∥
CN + ‖(1−QN)ν‖H

=
∥∥ε(N)

∥∥
CN + ‖(1−QN)ν‖H → 0 ,

as N →∞, and therefore one has

(3.18) ‖RN − ν‖H → 0

as N →∞. So, the residual vanishes up to the noise threshold.
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3.6.2 Typical error behaviour with noise for compact

inverse problems

In the presence of noise one can no longer expect that f̂ (N) converges to

f even component-wise. In particular, the possibility EN → 0 or EN ⇀ 0

immediately violates (3.18).

Therefore, ‖EN‖H stays strictly above zero uniformly in N . The typical

(but not general) behaviour of ‖EN‖H is that it initially decreases for N not

too large, reaches a minimum, and then increases (possibly blowing up) for

larger N . This phenomenon is typically known as the ‘semi-convergence’ of

the error. The behaviour is in contrast to that of ‖RN‖H which typically

monotonically decreases to the noise threshold. Clearly then, the value N0 ∈ N
when ‖EN‖H attains its minimum value provides the best approximant of f

in H, namely f̂ (N0).

For concreteness, the Petrov-Galerkin projection method giving (3.16)

(where ε(N) = 0 for all N) is performed with the same bases of the canonical

singular value decomposition of A (3.13), namely (ϕn)n∈N and (ψn)n∈N).

The condition ν ∈ ranA is also assumed (where the generalisation to the

condition ν /∈ ranA is straightforward). These simplifications guarantee that

for all N , the matrix AN = diag(σ1, . . . , σN) is non-singular on CN , as now

QNAPN =
∑N

n=1 σn |ψn〉 〈ϕn|, and (3.16) is solved exactly by

f̂ (N) =
N∑
n=1

gn + νn
σn

ϕn ,

where

ν =
∑
n∈N

νnψn , g =
∑
n∈N

gnψn , f =
∑
n∈N

fnϕn , gn = σnfn .

So now ANf
(N) = gN + νN (where ε(N) = 0 for all N owing to the use of a

Petrov-Galerkin method). Straightforward computations of the residual and
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error yield

‖RN‖2
H =

∥∥∥g − Af̂ (N)

∥∥∥2

H
=

N∑
n=1

|νn|2 +
∞∑

n=N+1

|gn|2
N→∞−−−→ ‖ν‖2

H ,

‖EN‖2
H =

∥∥∥f − f̂ (N)

∥∥∥2

H
=

N∑
n=1

|νn|2

σ2
n

+
∞∑

n=N+1

|fn|2 = α(N) + β(N) ,

where α(N) :=
∑N

n=1
|νn|2
σ2
n

and β(N) :=
∑∞

n=N+1 |fn|2.

It is clear that β(N) monotonically decreases to zero as N → ∞, but

α(N) is monotonically increasing with N . This competing behaviour can

produce the phenomenon of semi-convergence in ‖EN‖H. For example, when

f is mainly supported on low modes ϕn’s and ν has a long tail on high modes

ψn’s, the initial decrease is observed as α(N) does not change much, however

β(N) decreases substantially. When N is larger, α(N) increases, while β(N)

remains more or less around zero. Having assumed that ν ∈ ranA, necessarily

α(N)→ ‖A−1ν‖2
H and thus the error term does not explode. If, on the other

hand, ν /∈ ranA, one would then have that the series defining α(N) diverges.

This behaviour is illustrated with a simple example.

Example 3.6.1. For all n ∈ N, take

σn = n−1 , gn = n−2 , νn = n−
3
2 .

So A is an injective operator, ‖ν‖2
H = ζ(3) ' 1.20 (where ζ(x) denotes the

Riemann zeta function), and ν /∈ ranA. Then fn = n−1, ‖f‖2
H = β(0) = π2

6
,

and

β(N) ≤ (N + 1)−2 → 0 , α(N) ∼ log(N)→∞ .

The typical behaviour is displayed in Figure 3.1.
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Figure 3.1: Typical behaviour of the error ‖EN‖2
H (left) and the residual

‖RN‖2
H (right) with the increasing size of the finite-dimensional truncation,

for the problem Af = g considered in Example 3.6.1, and the choice σn = n−1,
gn = n−2, and νn = 0.4n−3/2.

3.7 Numerical tests & effects of changing

truncation basis

Some of the features discussed theoretically in this Chapter will be examined

through a few numerical tests concerning different choices of the truncation

bases. The bases are Legendre, complex Fourier, and a Krylov basis, that are

used to truncate the test problems.

The two model operators considered are the Volterra operator V in L2[0, 1]

(Appendix A) and the self-adjoint multiplication operator M : L2[1, 2] →
L2[1, 2], ψ 7→ xψ. The following two linear inverse problems were examined,

namely

1. V f1 = g1, with g1(x) = 1
2
x2.

The problem has unique solution

(3.19) f1(x) = x , ‖f1‖L2[0,1] =
1√
3
' 0.5774

and f1 is a Krylov solution, i.e., f1 ∈ K (V, g), although f1 /∈ K (V, g)

(see Chapter 4, Example 4.4.1 (vii)).

2. Mf2 = g2, with g2(x) = x2.
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The problem has unique solution

(3.20) f2(x) = x , ‖f2‖L2[1,2] =

√
7

3
' 1.5275

and f2 is a Krylov solution. Indeed,

K (M, g) = {x2p | p ∈ P[1,2][x]}

and K (M, g) = {x2h(x) |h ∈ L2[1, 2]} = L2[1, 2], due to the density

of the polynomials in L2[1, 2], from which f2 ∈ K (M, g) and f2 /∈
K (M, g).

Both problems were treated with three different orthonormal bases: the

Legendre polynomials and the complex Fourier modes (on the intervals [0, 1] or

[1, 2], depending on the problem) solved using the QR factorisation algorithm,

and the Krylov basis generated using the GMRES algorithm (with g as the

generating vector for the Krylov space).

Computationally speaking, generating accurate representations of the

Legendre polynomials is very demanding, and accuracy can be lost rather

soon due to their high oscillatory nature (particularly at end points). For this

reason, the investigation has been limited to N = 100 when considering the

Legendre basis, but N = 500 when considering the complex Fourier basis. It is

expected that there is no significant numerical error from the computation of

the Legendre basis, as the L2[0, 1] and L2[1, 2] norms of the basis polynomials

have less than 1% error compared to their exact unit value.

For each problem and each choice of basis, monitoring of the norm of

the infinite-dimensional error ‖EN‖L2 = ‖f − f̂ (N)‖L2 (for f = f1 or f2) and

the infinite-dimensional residual ‖RN‖L2 = ‖g − Af̂ (N)‖L2 (for g = g1 or

g2; A = V or M), and the approximated solution ‖f̂ (N)‖L2 =
∥∥f (N)

∥∥
CN was

performed.

Figures 3.2 and 3.4 highlight the difference between the computation in

the three bases for the Volterra operator.

(i) In the Legendre basis, ‖EN‖L2 and ‖RN‖L2 are almost zero. ‖f̂ (N)‖L2

stays bounded and constant with N and matches the expected value
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(3.19).

(ii) In the complex Fourier basis, both ‖EN‖L2 and ‖RN‖L2 are some orders

of magnitude larger than in the Legendre basis and decrease mono-

tonically with N . In fact, ‖EN‖L2 and ‖RN‖L2 display an evident

convergence to zero, however attaining values that are more than ten

orders of magnitude larger than the corresponding error and residual

norms for the same N is the Legendre case. ‖f̂ (N)‖L2 , on the other

hand, increases monotonically and appears to approach the theoretical

value (3.19). These quite stringent differences in the error and residual

may be attributable to the Gibbs phenomenon. In fact, reconstructing

f1 using the complex Fourier approximated solutions produces a vector

that shows highly oscillatory behaviour near the end points, confirming

the presence of Gibbs phenomenon.

(iii) In the Krylov basis ‖EN‖L2 and ‖RN‖L2 decrease monotonically, rela-

tively fast for small N ’s, then rather slowly with N . These quantaties

are smaller than in the complex Fourier basis. ‖f̂ (N)‖L2 displays some

initial highly oscillatory behaviour, but quickly approaches the theoreti-

cal value (3.19). On the other hand, the reconstruction appears to be

quite good with some noticeable oscillations near the end points.

Thus, among the considered truncations the Legendre basis yields the

most accurate reconstruction and the complex Fourier basis yields the least

accurate reconstruction of the exact solution.

In contrast, Figures 3.3 and 3.5 highlight the difference between the

computation in the three bases for the M -multiplication operator.

(i) In the Legendre basis, ‖EN‖L2 and ‖RN‖L2 are again almost zero.

‖f̂ (N)‖L2 is constant with N at the expected value (3.20). The approx-

imated solutions reconstruct the exact solution f2 at any truncation

number.

(ii) In the Fourier basis the behaviour of the above indicators is again

qualitatively the same, again with a much milder convergence rate in N
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to the asymptotic values as compared with the Legendre case. ‖EN‖L2

and ‖RN‖L2 still display an evident convergence to zero. Again the

higher error compared to the Legendre case is likely due to the nature

of the approximation of the exact solution f2 by oscillatory functions

and the Gibbs phenomenon.

(iii) The Krylov basis displays a fast initial decrease of both ‖EN‖L2 and

‖RN‖L2 to the tolerance level of 10−10 that was set for the residual.

Also the magnitude of ‖f̂ (N)‖L2 increases rapidly and remains constant

at the expected value (3.20). The reconstruction of the solution is

excellent, but still not quite as good as the Legendre case.

All this gives numerical evidence that the choice of the truncation basis

does affect the sequence of solutions. The Legendre basis is best suited to

these problems as f1, f2, g1 and g2 are perfectly representable by the first few

basis vectors.
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Figure 3.2: Norm of the infinite-dimensional error and residual, and of the
approximated solution, for the Volterra inverse problem truncated with the
Legendre, complex Fourier, and Krylov bases.
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Figure 3.3: Norm of the infinite-dimensional error and residual, and of the
approximated solution, for the M -multiplication inverse problem truncated
with the Legendre, complex Fourier, and Krylov bases.
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Figure 3.4: Reconstruction of the exact solution f1(x) = x from the approxi-
mate solutions for the problem V f1 = g1. The complex Fourier basis produces
an incaccurate reconstruction due to high oscillations, resulting in higher
errors.
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Figure 3.5: Reconstruction of the exact solution f2(x) = x from the approxi-
mate solutions for the problem Mf2 = g2. Again, the complex Fourier basis
produces the least accurate reconstruction.
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Chapter 4

Krylov Solutions in Hilbert

Space for Bounded Inverse

Problems

4.1 Introduction

Krylov subspace methods are some of the most popular algorithms in nu-

merical analysis, especially due to their speed. The framework surrounding

Krylov methods in finite-dimensions is a well-studied and deeply understood

area. Although there is some analysis for these methods in infinite-dimensions

(see Chapter 2 for an overview), currently there is no systematic study. In

fact, many of the studies in infinite-dimensions concern particular classes of

operator equations and particular methods. A nice example is the conjugate-

gradient method. Although this method is restricted to the class of self-adjoint,

bounded, positive operators on Hilbert space; it is known always to converge

strongly to a solution to the linear inverse problem [64].

This Chapter, based on the work [16], focuses on the infinite-dimensional

setting for the solution to inverse linear problems using Krylov subspace

methods. Operator theoretic notions, with necessary and sufficient conditions,

are developed to ensure that a solution to the linear inverse problem is

arbitrarily well approximated by vectors in the Krylov subspace.

71
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The problem to be considered in this Chapter is the linear inverse problem

on a Hilbert space H where dimH =∞. Recall that

(4.1) Af = g ,

for A ∈ B(H), g ∈ H a vector, and f ∈ H a (possible) solution(s) to the

problem. At this point it is stressed that A is a bounded linear operator.

Unbounded operators are considered later in Chapters 5 and 6. Recall that

(4.1) is called: solvable if there exists some f ∈ H that satisfies (4.1) (i.e.

g ∈ ranA); well-defined if additionally the solution is unique (i.e. A is

injective); and well-posed if there exists a unique f ∈ H satisfying (4.1) that

depends continuously on the datum g (i.e. A has an everywhere defined

bounded inverse).

Krylov subspace methods use linear combinations of the vectors

g, Ag,A2g, . . . spanning the Krylov space K (A, g) to approximate solutions

to the linear inverse problem (4.1). If a solution f ∈ H to (4.1) can be

arbitrarily well approximated by linear combinations of these vectors, then f

is called a Krylov solution and the problem (4.1) is termed Krylov-solvable.

That is to say, f ∈ H is a Krylov solution to the solvable (4.1) if f ∈ K (A, g),

where the closure is taken in the H-norm topology on H.

Although aspects of Krylov solutions and Krylov-solvability are trivial in

the finite-dimensional setting, this theory is not so obvious once one moves

to general Hilbert spaces. For example, K (A, g) may not be dense in the

ambient Hilbert space H, and as such the approximability characteristic in

the Petrov-Galerkin projection method may be lost. Moreover, the question

as to the uniqueness of solution(s), should they exist, in the Krylov space is

important.

This Chapter begins with some formal definitions of the Krylov space

and general comments. Then the important operator-theoretic aspects of

Krylov reducibility and Krylov intersection are introduced, along with some

examples of Krylov solvability (or lack thereof), and finally general conditions

for Krylov solvability are considered. The theory developed here is supported

with some simple numerical tests.
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4.2 Definitions and comments

In finite-dimensional space Cm with a matrix A ∈ Cm×m and vector g ∈ Cm,

the N -th order Krylov space associated with A and g is given by

KN (A, g) := span
{
g, Ag,A2g, . . . , AN−1g

}
.

Clearly, 1 ≤ dimKN (A, g) ≤ m, and there always exists some m0 ≤ m such

that Km0 (A, g) = KN (A, g) for all N ≥ m0. This idea is now extended

to the infinite-dimensional setting, where the relevant terminology is still

applicable in the finite-dimensional setting.

Definition 4.2.1. Let H be a Hilbert space, let A : H → H be a bounded

linear operator on H, and consider some g ∈ H. Then the N -th order Krylov

subspace associated with A and g is

(4.2) KN (A, g) := span {Ang |n ∈ N0, n ≤ N − 1} ,

and the Krylov subspace associated with A and g is defined as

(4.3) K (A, g) := span {Ang |n ∈ N0} ,

where span {·} refers to the set of finite linear combinations of its arguments.

One always has that supN dimKN (A, g) = dimK (A, g), however

dimK (A, g) = ∞ is possible when dimH = ∞. When one has that

dimK (A, g) = ∞, it is evident that the Krylov space is not closed, but

also not open. The closure of K (A, g) may be a proper subspace of H or the

entire Hilbert space.

Example 4.2.2. (i) The right shift operator R : `2(Z) → `2(Z) (see

Appendix A) with the vector g = em+1 for some m ∈ Z, generates the

Krylov space

K (R, g) = span {em+1, em+2, . . .} = span {en; n ≤ m}⊥

which is always a proper subspace of `2(Z).
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(ii) The right shift operator R : `2(N) → `2(N) with the vector g = em+1

for some m ∈ N, generates the Krylov spaces as mentioned above. Here,

K (A, g) = H when one has that g = e1.

(iii) Consider the Volterra operator V : L2[0, 1] → L2[0, 1], f(x) 7→∫ x
0
f(y) dy (see Appendix A), and the constant function g = 1. Then it

follows that the powers of V applied to g give multiples of the polyno-

mials, so that

K (V, 1) = span
{

1, x, x2, . . .
}
.

is the space of all polynomials on [0, 1]. A consequence of the Stone-

Weierstrass theorem (Theorem C.2.3) shows that one has that the space

of polynomials on [0, 1] is dense in L2[0, 1], so therefore K (V, 1) =

L2[0, 1].

These examples highlight an interesting theoretical concept, namely that of

cyclicity. In purely operator-theoretical terms, the Krylov subspace K (A, g) is

referred to as the cyclic space of A relative to the vector g, and g, Ag,A2g, . . .

form the orbit of g under A. Density of K (A, g) in the ambient Hilbert space

is called the cyclicity of the vector g, in which case one calls g a cyclic vector

and A a cyclic operator.

Remark 4.2.3. Interesting properties and well known results of cyclic oper-

ators are summarised in the monograph by Halmos [40], and are listed here

for completeness.

1. In non-separable Hilbert space, there are no cyclic vectors.

2. If the operator A ∈ B(H) is non-scalar and commutes with a backward

(i.e., left) shift on H, then A is cyclic with an A-invariant, dense vector

manifold of cyclic vectors [36].

3. The set of bounded cyclic operators is not dense in B(H) with respect

to ‖·‖op when dimH =∞. On the other hand, when dimH <∞, then

the set of bounded cyclic operators is dense in B(H) with respect to

‖·‖op.
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4. The set of cyclic operators is open in B(H) when dimH < ∞; and

when dimH =∞, the set of cyclic operators is not closed.

5. If dimH =∞ and H is separable, then the set of non-cyclic operators

on H is dense in B(H).

6. It is unknown whether there exists a cyclic operator on a separable

Hilbert space H such that every non-trivial vector in H is a cyclic vector.

Such an operator would be a counter example to the famous invariant

subspace problem (see Remark 4.3.2).

7. The set of cyclic vectors for a bounded linear operator A on H is either

empty or a dense subset of H [34]. If v ∈ H is a cyclic vector of A, then

so too is v(n) = (1− αA)nv, for all |α| ∈ (0, ‖A−1‖op) and for all n ∈ N.

Clearly then, the v(n)’s span H.

8. A bounded linear operator A ∈ B(H) is cyclic if and only if there

exists some orthonormal basis (en)n∈N such that 〈ei, Aej〉 is non-zero

for j = i+ 1, and zero for all i > j + 1.

4.3 Krylov reducibility and Krylov intersec-

tion

The concepts of Krylov reducibility and Krylov intersection are some of the

fundamental operator-theoretic mechanisms that are studied in this, and the

next, chapter. For a given operator A ∈ B(H) and g ∈ H, there exists the

orthogonal decomposition [10, Chapter 5]

(4.4) H = K (A, g)⊕K (A, g)⊥ ,

that is referred to as the Krylov decomposition of H relative to A and g. It

is immediate from the definition of the Krylov subspace that it is invariant

under the action of A. In addition, the space K (A, g)⊥ is closed and invariant

under the action of the adjoint operator A∗. One has the following lemma.
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Lemma 4.3.1. Given A ∈ B(H) and g ∈ H, the following results regarding

the invariance of the Krylov subspace and its perpendicular complement hold

(4.5) AK (A, g) ⊂ K (A, g) , A∗K (A, g)⊥ ⊂ K (A, g)⊥ .

Proof. The inclusion AK (A, g) ⊂ K (A, g) is obvious from the definition of

the Krylov subspace.

For any continuous function between topological spaces X and Y , h :

X → Y and any subset V ⊂ X, one has [59, Chapter 2, Section 18]

(4.6) h(V) ⊂ h(V) ⊂ h(V) ,

and moreover if h is a homeomorphism

(4.7) h(V) = h(V) .

The first inclusion in (4.5) immediately follows from (4.6). When h = A and

X = Y = H, the conditions for (4.6) to be true merely require A ∈ B(H).

While for (4.7) to be true, one additionally requires that A−1 ∈ B(H).

The second inclusion follows from the fact that 〈A∗w, z〉 = 〈w, Az〉 = 0

for all z ∈ K (A, g), where w is any vector in K (A, g)⊥. Taking limiting

sequences of vectors in K (A, g), one has 〈A∗w, z〉 = 〈w, Az〉 = 0 for all

z ∈ K (A, g), where w ∈ K (A, g)⊥.

Remark 4.3.2. The invariance of the Krylov subspace under the action of

the operator A is in some sense related to the famous invariant subspace

problem [6]. The question asks whether every A ∈ B(H) has a non-trivial,

i.e., neither {0} nor H, closed invariant subspace V ⊂ H. On Hilbert spaces

the answer to this question is still unknown.

The next concept is one that is core in discussing the Krylov-solvability

of certain classes of problems, namely that of Krylov reducibility.

Definition 4.3.3. Given A ∈ B(H) and g ∈ H, one says that the operator

A is reduced by the Krylov decomposition (4.4), or A is K (A, g)-reduced, if
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K (A, g) and K (A, g)⊥ are invariant under A. This feature of A is referred

to as K (A, g)-reducibility, or Krylov reducibility where no confusion arises.

It is immediate that if A is K (A, g)-reduced, then so is A∗, and visa-versa.

Lemma 4.3.4. If A ∈ B(H) and V ⊂ H is a closed subspace of H, then (i)

and (ii) below are equivalent:

(i) AV ⊂ V and AV⊥ ⊂ V⊥,

(ii) A∗V ⊂ V and A∗V⊥ ⊂ V⊥.

Proof. Assume that (i) is true. Then take any w ∈ V⊥ and any z ∈ V.

Immediately, 0 = 〈w, Az〉 = 〈A∗w, z〉. So A∗w ⊥ z for all z ∈ V . As w ∈ V⊥

is arbitrary, it follows that A∗V⊥ ⊂ V⊥. Similarly, one has 0 = 〈z, Aw〉 =

〈A∗z, w〉 and by the same argument as above, A∗V ⊂ V .

The converse statement that (ii) =⇒ (i) is similar, and can be seen by

interchanging the role of A and A∗.

Remark 4.3.5. For a general A ∈ B(H) and g ∈ H, A may not be K (A, g)-

reduced (see Example 4.3.9), however all bounded self-adjoint operators A

are K (A, g)-reduced due to (4.5) and Lemma 4.3.4. This Krylov reducibility

feature is not restricted just to the class of self-adjoint operators as the next

example reveals.

Example 4.3.6. Consider two operators A,B ∈ B(H), and define a new

operator Ã : H̃ → H̃ on the Hilbert space H̃ = H ⊕ H, with Ã := A ⊕ B.

Let g ∈ H be a cyclic vector for A in H, and take g̃ := g ⊕ 0. Then

K
(
Ã, g̃

)
= H ⊕ {0}, so K

(
Ã, g̃

)⊥
= {0} ⊕ H. Therefore, Ã is K

(
Ã, g

)
-

reduced, and yet Ã is self-adjoint on H̃ if and only if both A and B are

self-adjoint on H.

The characterisation of Krylov reducibility may be a non-trivial task for

general operators. Normal operators on the other hand, have the following

equivalent characterisation of the Krylov reducibility.

Proposition 4.3.7. Let A ∈ B(H) be a normal operator, and g ∈ H. Then

A is K (A, g)-reduced if and only if A∗g ∈ K (A, g).
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Proof. If A is K (A, g)-reduced, then K (A, g) is invariant under A∗ (Lemma

4.3.4). In particular, A∗g ∈ K (A, g).

Conversely, let A∗g ∈ K (A, g). Then from Lemma 4.3.1,

K (A, A∗g) = span {AnA∗g |n ∈ N0} ⊂ K (A, g) ,

and since A is normal, A∗K (A, g) = K (A, A∗g); so using (4.6)

A∗K (A, g) ⊂ K (A, A∗g) ⊂ K (A, g) .

This property together with (4.5) implies that A∗ is K (A, g)-reduced, and

therefore so is A (Lemma 4.3.4).

Following these results, a core concept known as the Krylov intersection

is defined below. As shall be seen, this is the operator-theoretic notion that

captures the essence of Krylov-solvability in a general sense.

Definition 4.3.8. Given a bounded linear operator A on Hilbert space H
and a vector g ∈ H, the intersection

(4.8) K (A, g) ∩ (AK (A, g)⊥) ,

is called the Krylov intersection with respect to A and g, and is denoted by

IK (A, g).

For A ∈ B(H) and g ∈ H, a consequence of A being Krylov reducible is

that the Krylov intersection is trivial, i.e., IK (A, g) = {0}. The converse is

not true in general.

Example 4.3.9. The Krylov intersection may still be trivial, even in the

absence of Krylov reducibility. This information is immediately clear even

just at the finite-dimensional level for matrices. For example, taking in the

Hilbert space C2

Aθ =

(
1 cos θ

0 sin θ

)
θ ∈ (0, π

2
] , g =

(
1

0

)
,



4.4. KRYLOV SOLVABILITY 79

one sees that Aθ is K (Aθ, g)-reduced only in the case when θ = π
2
, while

IK (Aθ, g) = {0} for any θ ∈ (0, π
2
].

4.4 Krylov Solvability

In this Section we revisit the linear inverse problem (4.1) and consider the

question of Krylov solvability. Given some A ∈ B(H) and g ∈ ranA, one

searches for solution(s) f ∈ H to (4.1); more specifically one asks: when does

a solution f to Af = g admit arbitrarily close approximants in the space

K (A, g)? These approximants are, of course, formed by finite linear combi-

nations of vectors in K (A, g), and so are suitable for numerical calculations.

Therefore one would like that f ∈ K (A, g) to have a sound numerical scheme.

Recall that a solution f ∈ H to (4.1) belonging to the space K (A, g) is

called a Krylov solution, and a linear inverse problem that has solution(s)

with this property is called Krylov solvable. Informally, one may use the

expression Krylov solvability to describe a linear inverse problem that exhibits

such solution(s).

4.4.1 Examples of Krylov solvability (or lack of)

Although the examples presented here require an analysis specific to the

chosen operator A and vector g in (4.1), they serve an informative purpose

in unmasking the general theory.

Example 4.4.1. (i) The self-adjoint multiplication operator Mx :

L2[1, 2] → L2[1, 2] with action φ 7→ xφ is bounded and invertible

with an everywhere defined bounded inverse M−1
x : L2[1, 2]→ L2[1, 2],

φ 7→ 1
x
φ. The solution to Mxf = 1 is the function f(x) = 1

x
. One

has K (Mx, 1) = {p(x) | p ∈ P[1,2][x]}, where P[1,2][x] denotes the space

of polynomials on the domain [1, 2]. As the polynomials are dense on

L2[1, 2] (a consequence of Theorem C.2.3), immediately one has that f

is a Krylov solution.

(ii) The multiplication operator Mz : L2(Ω) → L2(Ω), f 7→ zf on the
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domain Ω := {z ∈ C; |z − 3
4
| < 1

4
} (Appendix A) is a normal, bounded

bijection on L2(Ω). The solution f to Mzf = g for a given g ∈ L2(Ω) is

the function f(z) = z−1g(z), so M−1
z is the map defined by g 7→ z−1g for

g ∈ L2(Ω). The Krylov space is given by K (Mz, g) = {pg | p ∈ PΩ[z]}
where PΩ[z] denotes a polynomial in z on Ω. Certainly one has that z−1

is holomorphic in Ω and that there exists a power series (e.g., the Taylor

expansion of z−1 about z = 3
4
) that converges uniformly to z−1 on Ω [79].

In fact, f ∈ K (Mz, g) and hence the problem Mzf = g is always Krylov

solvable. Indeed, choosing a sequence of L∞-approximants among the

polynomials on Ω, (pn)n, one has

‖f − png‖L2(Ω) =
∥∥(z−1 − pn)g

∥∥
L2(Ω)

≤
∥∥z−1 − pn

∥∥
∞ ‖g‖L2(Ω)

n→∞−−−→ 0 .

(iii) The left-shift operator L on `2(N0) (Appendix A) is bounded, non-

injective, with range ranL = `2(N0). In fact, this operator is cyclic

owing to the properties described in Remark 4.2.3. The solution to

Lf = g with g :=
∑

n∈N0

1
n!
en is f =

∑
n∈N0

1
n!
en+1. K (L, g) is dense

in `2(N0) so clearly f is a Krylov solution. To reveal the density of

K (L, g), one may see that the vector e0 ∈ K (L, g) because

∥∥k!Lkg − e0

∥∥2

`2(N0)

=

∥∥∥∥(1,
1

k + 1
,

1

(k + 2)(k + 1)
, · · · )− (1, 0, 0, · · · )

∥∥∥∥2

`2(N0)

=
∞∑
n=1

(
k!

(n+ k)!

)2
k→∞−−−→ 0 .

So, (0, 1
k!
, 1

(k+1)!
, · · · ) = Lk−1g − (k − 1)!e0 ∈ K (L, g), and so the vector

e1 also belongs to K (L, g) because

∥∥k!(Lk−1g − (k − 1)!e0)− e1

∥∥2

`2(N0)
=
∞∑
n=1

(
k!

(n+ k)!

)2
k→∞−−−→ 0 .
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This argument can then be repeated for any en by induction, so that

en ∈ K (L, g) for all n ∈ N0.

(iv) The right-shift operator R on `2(N) (see Appendix A) is bounded and

injective, with non-dense range. The solution to Rf = e2 is f = e1. But,

f is not a Krylov solution, as K (R, e2) = span {e2, e3, . . .}. Therefore

the problem Rf = e2 is not Krylov solvable.

(v) The compact, or weighted, right-shift operator R on `2(Z) (see Ap-

pendix A) is normal, injective, and has dense range. The solution

to Rf = σ1e2 is f = e1. However, f is not a Krylov solution, as

K (R, e2) = span {e2, e3, . . .}. Again, the problem Rf = σ1e1 is not

Krylov solvable. The same may also be said about the unweighted

right-shift of Example 4.2.2.

(vi) Let A be a bounded injective operator on a Hilbert space H with

cyclic vector g ∈ ranA. Let ϕ0 ∈ H \ {0}, and let f ∈ H be the

solution to Af = g. Consider the Hilbert space H̃ = H ⊕H and the

operator Ã := A⊕ |ϕ0〉 〈ϕ0|. Obviously Ã has an infinite-dimensional

kernel ker Ã = {0} ⊕ span {ϕ0}⊥. One possible solution to the problem

Ãf̃ = g̃ := g ⊕ 0 is f̃ = f ⊕ 0, and f̃ ∈ H ⊕ {0} = K
(
Ã, g̃

)
. Another

possibility is that f̃ξ = f ⊕ ξ where ξ ∈ H\{0} and ξ ⊥ ϕ0. Obviously,

f̃ξ /∈ K
(
Ã, g̃

)
. This operator therefore exhibits Krylov solutions, but

also an infinite amount of solutions that are not in the closed Krylov

space.

(vii) If V is the Volterra operator on L2[0, 1] (Appendix A) and g(x) = 1
2
x2,

then f(x) = x is the unique solution to V f = g. Considering the Krylov

space K (V, g), it is spanned by the monomials x2, x3, . . . , from which

K (V, g) = {x2p(x) | p ∈ P[0,1][x]} .

Clearly then, f /∈ K (V, g), as f(x) = x2 · 1
x

and 1
x
/∈ L2[0, 1]. But

interestingly, K (V, g) is dense in L2[0, 1], so that f ∈ K (V, g). Indeed,
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consider some h ∈ K (V, g)⊥, then
∫ 1

0
h(x)x2p(x) dx = 0 for any polyno-

mial p. The L2 density of polynomials on [0, 1] implies that x2h(x) = 0

a.e., from which h = 0 a.e.. This shows that K (V, g)⊥ = {0} and hence

K (V, g) = L2[0, 1].

4.4.2 General conditions for Krylov solvability

Example 4.4.1 reveals that even stringent assumptions on the operator A, such

as the simultaneous occurrence of normality, injectivity, density of the range,

compactness, or even bounded invertibility, do not guarantee, in general, that

the solution to Af = g, for g ∈ ranA, is a Krylov solution. This is quite

contrary to the finite-dimensional situation, whereby the invertibility alone of

the (matrix) operator A ∈ Cm×m is enough to guarantee f ∈ Km (A, g) for

the linear inverse problem.

A necassary condition for the solution to a well-defined linear inverse

problem, that becomes necessary and sufficient if A is a bounded bijection

(i.e. a homeomorphism), is stated in the following proposition.

Proposition 4.4.2. Let A be a bounded and injective operator on a Hilbert

space H, and let f be the solution to Af = g, given g ∈ ranA. One has the

following.

(i) If f ∈ K (A, g), then AK (A, g) is dense in K (A, g).

(ii) Assume further that A is invertible with an everywhere defined, bounded

inverse on H. Then f ∈ K (A, g) if and only if AK (A, g) is dense in

K (A, g).

Proof. It is obvious that AK (A, g) ⊃ AK (A, g) = span
{
Akg | k ∈ N0

}
,

owing to definition 4.2.1 and (4.6). If f ∈ K (A, g), then Af = g ∈ AK (A, g)

so that one has AK (A, g) ⊃ span
{
Akg | k ∈ N0

}
; the latter implying that

K (A, g) ⊃ AK (A, g) ⊃ K (A, g) by (4.6) and (4.5), from which one has

AK (A, g) = K (A, g). This proves part (i), and the ‘only if’ implication in

part (ii).

For the converse in part (ii), consider that A−1 ∈ B(H) and that AK (A, g)

is dense in K (A, g). Let (Avn)n∈N be a sequence in AK (A, g) that tends to
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g ∈ K (A, g), for some vn’s in K (A, g). Since A−1 is bounded on H, one has

that (vn)n∈N is a Cauchy sequence, as (Avn)n∈N is Cauchy so ‖vn − vm‖H ≤
‖A−1‖op ‖Avn − Avm‖H → 0 as n,m→∞. Therefore, vn → v ∈ K (A, g) as

n → ∞. From continuity, Af = g = limn→∞Avn = Av, and by injectivity

one has that f = v ∈ K (A, g).

A sufficient condition to ensure Krylov solvability of the well-defined

linear inverse problem is that A is K (A, g)-reduced.

Proposition 4.4.3. Let A be a bounded and injective operator on a Hilbert

space H, and let f ∈ H be the solution to Af = g, given g ∈ ranA. If A is

K (A, g)-reduced, then f ∈ K (A, g). In particular, if A is bounded, injective

and self-adjoint, then Af = g implies f ∈ K (A, g).

Proof. Let PK : H → H be the orthogonal projection onto K (A, g). Immedi-

ately Af = g ∈ K (A, g) and owing to the invariance relation (4.5) one has

APKf ∈ K (A, g). As Af = g = APKf +A(1− PK)f , it immediately follows

that A(1− PK)f ∈ K (A, g).

But, owing to A being K (A, g)-reduced, one has A(1−PK)f ∈ K (A, g)⊥.

Necessarily, A(1 − PK)f = 0 and by injectivity f = PKf ∈ K (A, g). By

Remark 4.3.5 the self-adjoint case immediately follows.

Krylov solvability for bounded, self-adjoint operators can be concluded

through the following alternative route.

Proposition 4.4.4. Let A be a bounded, self-adjoint operator on a Hilbert

space H with spectrum σ(A). Let E (t) be the spectral measure for A, with the

associated scalar measure µg (t) := 〈g, E (t) g〉 associated to a given g ∈ ranA.

Then for any h ∈ L2(σ(A), µg) one has that h(A)g ∈ K (A, g). In addition,

if A is injective, then the solution f to Af = g for g ∈ ranA is in K (A, g).

Proof. Observe preliminarily that σ(A) ⊂ [−‖A‖op , ‖A‖op] and that µg is

positive (as 〈g, E (t) g〉 ≥ 0) and regular (as µg (K) <∞ for every compact

K ⊂ R).

By standard density arguments (the Stone-Weierstrass Theorem C.2.3,

combined with density of Cc(σ(A),C) = C(σ(A),C) in L2(σ(A), µg), see [79,
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Theorem 3.14]), one has that the space Pσ(A)[t] of complex valued polynomials

on σ(A) is dense in L2(σ(A), µg).

Let p ∈ Pσ(A)[t] be an approximant of a given h ∈ L2(σ(A), µg) such that

‖h− p‖L2(σ(A),µg) < ε

for arbitrary ε > 0. Then,

‖h(A)g − p(A)g‖2
H =

∫
σ(A)

|h(t)− p(t)|2 dµg (t)

= ‖h− p‖2
L2(σ(A),µg) < ε2 ,

showing that h(A)g is arbitrarily close, in L2, to an element p(A)g ∈ K (A, g).

f = A−1g =

∫
σ(A)

h(t) dE (t) g = h(A)g

with h(t) = 1
t
. Since

‖h‖2
L2 =

∫
σ(A)

1

t2
dµg (t) = ‖f‖2

H <∞ ,

then by the first part of the theorem, one concludes that f = h(A)g ∈
K (A, g).

The map

K (A, g)
T−→ L2(σ(A), µg)

p(A)g 7→ p ,

is an isometry because ‖p(A)g‖2
H =

∫
σ(A)
|p(t)|2 dµg (t) = ‖p‖2

L2(σ(A),µg). Hence

by density it lifts ([78, Chapter 7, Proposition 11]) to a unitary map

K (A, g)
∼=−→ L2(σ(A), µg) .

Notice that on the one hand Proposition 4.4.4 actually proves a more

general result than Krylov solvability, however, unlike Proposition 4.4.3, it
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does not highlight the implication A is K (A, g)-reduced ⇒ Krylov solvability.

The Krylov subspace gives permits one to construct a plethora of operator

functions applied to the vector g.

In the proof of Proposition 4.4.3 the fact that A is K (A, g)-reduced was

only used to show that A(1− PK)f ∈ AK (A, g)⊥ must belong to K (A, g)⊥

and thus the vanishing of A(1− PK)f . The same argument follows merely

assuming that the Krylov intersection IK (A, g) is trivial. For bounded

bijections, triviality of IK (A, g) becomes necessary.

Proposition 4.4.5. Let A be a bounded and injective operator on a Hilbert

space H, and let f ∈ H be a solution to Af = g, given g ∈ ranA.

(i) If IK (A, g) = {0}, then f ∈ K (A, g).

(ii) Assume further that A is invertible with everywhere defined, bounded

inverse on H. Then f ∈ K (A, g) if and only if IK (A, g) = {0}.

Proof. Part (i) and the ‘if’ implication of part (ii) follow from the comments

just before the statement of the proposition. Conversely, if A−1 ∈ B(H) and

f ∈ K (A, g), then AK (A, g) is dense in K (A, g) (Proposition 4.4.2). Take

z ∈ IK (A, g), and say z = Aw for some unique w ∈ K (A, g)⊥. Based on

the density above, let (Axn)n∈N be a sequence in AK (A, g) of approximants

of z for some xn’s in K (A, g). From Axn → z = Aw and ‖A−1‖op <∞ one

has xn → w as n→∞. Since xn ⊥ w, then

0 = lim
n→∞

‖xn − w‖2
H = lim

n→∞
(‖xn‖2

H + ‖w‖2
H) = 2 ‖w‖2

H ,

so that clearly w = 0 and hence z = 0.

The results of Propositions 4.4.2 part (ii) and 4.4.5 part (ii) are equiv-

alent conditions to the Krylov solvability of the well-defined (4.1). Propo-

sition 4.4.5(ii) shows that under the conditions of bounded bijectivity of A

Krylov solvability is tantamount as the triviality of the Krylov intersection.

This result clearly covers also the particular case when A is bounded,

self-adjoint, and positive, consistently with the same conclusion obtained

by Nemirovskiy and Polyak [64] through an independent analysis of the
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error convergence of the conjugate-gradient algorithm (see Chapter 6 for the

details).

Using the general functional calculus for bounded operators together with

some results from approximation theory (see Appendix B, Section B.3 and

Appendix C, Section C.2), the following results show that a very wide class

of problems are Krylov solvable. Specifically, it gives conditions under which

one may approximate the inverse of an injective operator in the operator

norm using polynomial sequences of the operator A.

For convenience, an operator A ∈ B(H) is said to be in class-K if

(i) 0 ∈ ρ(A),

(ii) there exists some open W ⊂ C such that σ(A) ⊂ W with W compact,

and in addition,

(iii) 0 /∈ W , and C∗ \W is connected,

where C∗ denotes the single point compactification of C.

Theorem 4.4.6. Let A ∈ B(H) on a Hilbert space H be a class-K operator

as described above. Then one has that there exists some polynomial sequence

(pn)n∈N such that ‖pn(A)− A−1‖op → 0 as n→∞.

Proof. Let U ⊂ C be an open set containing W with 0 /∈ U , so W ⊂ U ⊂ C.

Then z 7→ z−1 is holomorphic in U , and as such, there exist polynomials in z,

(pn)n∈N on C such that

∥∥z−1 − pn(z)
∥∥
L∞(W)

n→∞−−−→ 0

because of Theorem C.2.5.

On the other hand, there exists a closed curve Γ ⊂ W \ σ(A) such that

1

z
=

1

2πi

∫
Γ

1

ζ
(ζ − z)−1 dζ

pn(z) =
1

2πi

∫
Γ

pn(ζ)(ζ − z)−1 dζ .
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because of [79, Theorem 13.5], from which also

A−1 =
1

2πi

∫
Γ

ζ−1R (A, ζ) dζ

pn(A) =
1

2πi

∫
Γ

pn(ζ)R (A, ζ) dζ ,

as an application of Theorem B.3.2. Then the claim follows because

∥∥A−1 − pn(A)
∥∥

op
=

∥∥∥∥ 1

2πi

∫
Γ

(
1

ζ
− pn(ζ)

)
R (A, ζ) dζ

∥∥∥∥
op

≤
∥∥z−1 − pn(z)

∥∥
L∞(W)

∥∥∥∥ 1

2πi

∫
Γ

R (A, ζ) dζ

∥∥∥∥
op

,

and

1 =
1

2πi

∫
Γ

R (A, ζ) dζ .

Corollary 4.4.7. Let A ∈ B(H) be a class-K operator as in Theorem 4.4.6.

Consider the linear inverse problem Af = g where g ∈ H and f ∈ H is a

solution. Then f is a Krylov solution, i.e., f ∈ K (A, g).

Proof. By Theorem 4.4.6, one has the existence of the polynomial sequence

(pn)n∈N that guarantees ‖pn(A)− A−1‖op → 0 as n→∞. Applying the vector

g, it is immediate that pn(A)g ∈ K (A, g), and one has ‖pn(A)g − A−1g‖H →
0 from which the result follows.

An instance of a bounded operator that satisfies the conditions of Corol-

lary 4.4.7 would be a sectorial operator with 0 outside its numerical range.

Remark 4.4.8. The unitary right shift operator on `2(Z) provides an inter-

esting example where Corollary 4.4.7 clearly cannot be used, even though 0 is

in the resolvent set. It is known that the singular values of unitary operators

form the unit disc {z ∈ C; |z| = 1} in the complex plane. Therefore, any

open setW as described in Theorem 4.4.6 is impossible to construct such that

C∗ \W is connected and 0 /∈ W. The approximation result Theorem C.2.5
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may not hold. Furthermore by analogy to Example 4.4.1 (v), the unweighted

right shift operator on `2(Z) is in general not Krylov solvable.

4.4.3 Krylov reducibility and Krylov solvability

At this point the relation between K (A, g)-reducibility of A and Krylov

solvability is discussed further. From Proposition 4.4.3 the former clearly

implies the latter. There is more to Krylov reducibility, as for example, the

following remark illustrates that the relation between the K (A, g)-reducibility

of A and Krylov solvability is also equivalent for the class of unitary operators.

Remark 4.4.9. For unitary operators U : H → H, the Krylov solvability

is equivalent to U being K (U, g)-reduced. The fact that U being K (U, g)-

reduced implies solvability is an immediate property from Proposition 4.4.3.

Conversely, as f = U∗g is the solution to the linear inverse problem Uf =

g for some g ∈ H, then the assumption that f ∈ K (U, g) implies that

U∗g ∈ K (U, g), which by Proposition 4.3.7 is identical to the fact that U is

K (U, g)-reduced.

Example 4.3.9 made clear that there are cases where one has Krylov-

solvability of the well-defined linear inverse problem, however one fails to have

Krylov reducibility. In fact, the operator Aθ is not normal, and so one may

naturally ask the question: is there relationship between Krylov solvability

and Krylov reducibility for normal operators? The following statements reveal

that a well-defined linear inverse problem with a normal operator A may

indeed be Krylov solvable, but A is not K (A, g)-reduced. First, the following

feature of L2 convergence of holomorphic functions is needed.

Theorem 4.4.10. Let U ⊂ C be an open subset of the complex plane, and

H(U) the set of all holomorphic functions on U . Then the space H(U)∩L2(U)

is closed in L2(U) in the ‖·‖L2 norm. In particular, any convergent sequence

(fn)n∈N ⊂ H(U) ∩ L2(U) converges uniformly on any compact subset of U .

Proof. Consider a sequence of convergent holomorphic functions (fn)n∈N ⊂
H(U) ∩ L2(U), so that fn

‖·‖L2−−−→ f ∈ L2(U). Let K ⊂ U be a compact set,
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and define δ′ as the distance

δ′ := dist(K,C \ U) .

Let z0 ∈ K and 0 < r < δ ≤ δ′ such that δ <∞; and clearly z0+r exp(iθ) ∈ U
for all θ ∈ R. As fn → f ∈ L2(U) the sequence is Cauchy, let ε > 0 so that

∃N ∈ N such that ∀n,m ≥ N one has ‖fn − fm‖L2 < ε. Using the mean

value property [79, Chapter 11] and the Cauchy-Schwartz inequality one has

|fn(z0)− fm(z0)| =
∣∣∣∣ 1

2π

∫ 2π

0

fn (z0 + r exp(iθ))− fm (z0 + r exp(iθ)) dθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

|fn (z0 + r exp(iθ))− fm (z0 + r exp(iθ))| dθ

≤ 1

2π

(∫ 2π

0

1 dθ

) 1
2
(∫ 2π

0

|fn (z0 + r exp(iθ))− fm (z0 + r exp(iθ)) |2 dθ

) 1
2

=

(
1

2π

∫ 2π

0

|fn (z0 + r exp(iθ))− fm (z0 + r exp(iθ)) |2 dθ

) 1
2

.

Taking the square and integrating further in the variable r dr over the interval

(δ/2, δ),

3δ2

4
|fn(z0)− fm(z0)|2 =

∫ δ

δ/2

|fn(z0)− fm(z0)|2r dr

≤ 1

2π

∫ δ

δ/2

∫ 2π

0

|fn (z0 + r exp(iθ))− fm (z0 + r exp(iθ))|2 r dr dθ .

As z0 + r exp(iθ) ∈ U for all θ and for all r over the integration interval,∫ δ

δ/2

∫ 2π

0

|fn (z0 + r exp(iθ))− fm (z0 + r exp(iθ)) |2r dr dθ

≤ ‖fn − fm‖2
L2(U) < ε2 .

Putting everything together

3δ2

4
|fn(z0)− fm(z0)|2 < ε2 ,
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so that the sequence (fn)n∈N is also Cauchy in the uniform convergence

topology on the compact set K. The continuous functions are a complete space

in the uniform convergence topology [59]. So there exists some f̃ : K → C,

a continuous function on the compact set K, such that the restriction of

the functions fn to K, i.e. fn|K , converges uniformly to f̃ . It remains to

be shown that in fact f̃ = f |K . Clearly on the compact set K, one has

‖fn − f‖L2(K) → 0 by assumption, and also ‖fn − f̃‖L2(K) → 0 as n → ∞
by the above. Then by the triangle inequality, ‖f̃ − f‖L2(K) = 0, so that f̃

and f are the same almost everywhere on K. So f = f̃ everywhere on K.

So fn → f uniformly on compact sets K ⊂ U . Therefore, by [79, Theorem

10.28] one immediately sees that f ∈ H(U).

The example below finally answers the question about the connection

between Krylov solvability and Krylov reducibility for normal operators. In

general, the former does not imply the latter.

Example 4.4.11. The multiplication operator Mz of Example 4.4.1(ii) is

used here. From this, it is known that the problem Mzf = g for g ∈ L2(Ω) is

always Krylov solvable. However, there is a choice of vector g that one can

make such that Mz is not K (Mz, g)-reduced.

Indeed, let g ∈ L2(Ω) be such that 0 < ε ≤ |g(z)| ≤ ε′ < ∞ on Ω. The

Krylov space of this problem is

(4.9) K (Mz, g) =
{
φg; φ ∈ PΩ[z]

‖·‖2
}
,

(where E
‖·‖2

denotes the closure of a set E in the L2(Ω) topology) and PΩ[z]
‖·‖2

is contained in the holomorphic functions on Ω (Theorem 4.4.10). Surely,

consider the space K (Mz, g),

K (Mz, g) = {pg; p ∈ PΩ[z]} .

Let w ∈ K (Mz, g), so that there exists a sequence (wn)n∈N → w where

wn = png is in K (Mz, g). The sequence (png)n∈N is Cauchy in L2(Ω) and one
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has that (pn)n∈N is also Cauchy. Indeed,

‖pn − pm‖2 =

∥∥∥∥1

g
(gpn − gpm)

∥∥∥∥
2

≤ 1

ε
‖gpn − gpm‖2

n,m→∞−−−−→ 0 ,

so that pn
‖·‖2−−→ φ ∈ L2(Ω) ∩ PΩ[z]

‖·‖2
. The uniqueness of the limit guarantees

that w = φg.

To show the reverse inclusion, let w = φg for some φ ∈ PΩ[z]
‖·‖2

. Therefore,

there exists a polynomial sequence (pn)n∈N such that pn
‖·‖2−−→ φ, and png → φg

in L2(Ω) as ‖png − gφ‖2 ≤ ε′ ‖pn − φ‖2 → 0 as n→∞. Then it is clear that

w ∈ K (Mz, g).

Finally, one now sees that the problem Mzf = g is not K (Mz, g)-reduced.

Indeed, consider that the adjoint operator of Mz is the mapping f → zf ,

i.e., M∗
z = Mz. By the Cauchy-Riemann relations it is obvious that z is not

holomorphic anywhere on C, let alone on Ω. Using Proposition 4.3.7 one may

proceed by showing that it is impossible for M∗
z g ∈ K (Mz, g). Proceeding by

contradiction, assume that zg ∈ K (Mz, g) which implies that z ∈ PΩ[z]
‖·‖2

.

However, as PΩ[z]
‖·‖2 ⊂ H(Ω) ∩ L2(Ω), one comes to the contradiction that z

is holomorphic.

4.4.4 Krylov solutions in the lack of injectivity

Finally under consideration is the scenario where one has a solvable linear

inverse problem (i.e. g ∈ ranA) with A not injective. Krylov reducibility still

guarantees the existence of Krylov solutions, and under certain assumptions

on the kernel of the operator, one may even show the uniqueness of the

solution in the Krylov subspace. The following proposition is the counterpart

to Proposition 4.4.3 under (possible) lack of injectivity of A.

Proposition 4.4.12. Let A be a bounded linear operator on a Hilbert space

H, and let g ∈ ranA. If A is K (A, g)-reduced, then there exists a Krylov

solution to the problem Af = g. For example, if f◦ ∈ H satisfies Af◦ = g and

PK is the orthogonal projection onto K (A, g), then f := PKf◦ is a Krylov

solution.
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Proof. Let f◦ ∈ H be any vector that satisfies Af◦ = g. From the same

arguments in the proof of Proposition 4.4.3 one has A(1− PKf◦) = 0. Thus

APKf◦ = g, i.e. f := PKf◦ is a Krylov solution.

Although general bounded linear inverse problems may exhibit more

than one solution, some of which might not be in the Krylov space (see

Example 4.4.1), for a fairly general class of problems one may prove that the

Krylov solution, when it exists, is unique.

Proposition 4.4.13. Let A be a bounded linear operator on Hilbert space

H and let Af = g be the associated linear inverse problem, given g ∈ ranA.

If kerA ⊂ kerA∗, then there exists at most one solution f ∈ K (A, g). In

particular, the same conclusion holds for bounded normal operators.

Proof. If f1, f2 ∈ K (A, g) and Af1 = g = Af2, then f1−f2 ∈ kerA∩K (A, g).

By hypothesis kerA ⊂ kerA∗, and rather obviously K (A, g) ⊂ ranA. As

such, f1 − f2 ∈ kerA∗ ∩ ranA. But kerA∩ ranA = {0}, whence f1 = f2. The

second statement follows from the fact that for a normal operator one has

kerA = kerA∗.

The above proposition is similar to some comments made in [30, 11, 32]

about Krylov solutions to singular systems in finite-dimensions.

A consequence of Proposition 4.4.13 is the following corollary for self-

adjoint operators.

Corollary 4.4.14. If A ∈ B(H) is self-adjoint, then the linear inverse

problem Af = g with g ∈ ranA admits a unique Krylov solution.

Proof. The operator A is K (A, g)-reduced (Remark 4.3.5), and hence the

linear inverse problem admits a Krylov solution (Proposition 4.4.12). Such a

solution is then unique, owing to Proposition 4.4.13.

4.5 Numerical Tests and Examples

This Section is aimed at providing some numerical tests that, despite their sim-

plicity, reveal several features discussed in the previous sections. These tests
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are intended to be of pedagogical value for the theoretical points made rather

than an in-depth numerical study of any particular algorithm. Throughout,

the GMRES algorithm of [86] is used due to its generality of being applied to

general operator classes.

The focus on the behaviour of the convergence of the residual and error

terms occurs under the following circumstances:

1. when the solution f to the injective problem Af = g for g ∈ ranA is or

is not a Krylov solution,

2. when the linear operator is not injective (well-defined vs ill-defined

problems).

To begin with, the various problems and methods are outlined. Then

the situation of Krylov vs non-Krylov solutions is examined for an injective

operator. Lastly the case of a lack of injectivity is explored.

4.5.1 Four inverse linear problems

The ‘baseline’ case considered, where the solution is known a-priori to be a

Krylov solution, is a compact, injective, self-adjoint multiplication operator

on `2(N) (see Appendix A),

(4.10) M =
∞∑
n=1

σn |en〉 〈en| , σn = (5n)−1 .

In comparison to M , tests of the non-injective version,

(4.11) M̃ =
∞∑
n=1

σ̃n |en〉 〈en| , σ̃n =

0 if n = {3, 6, 9}

σn otherwise .
,

are also presented, and so too are results for the weighted right shift (Ap-

pendix A)

(4.12) R =
∞∑
n=1

σn |en+1〉 〈en| ,
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where the σn’s are the same as in (4.10). The linear inverse problems Mf = g,

M̃f = g and Rf = g are investigated with a datum g generated by the

a-priori chosen solution

(4.13) f =
∑
n∈N

fnen , fn =

n−1 if n 6 250

0 otherwise .

One has that

(4.14) ‖f‖`2 =

√
π2

6
− ψ(1)(251) ≈ 1.28099 ,

where ψ(k) is the polygamma function of order k (see [1, Section 6.4]).

The final problem considered here is the linear inverse problem V f = g,

where V is the Volterra operator on L2[0, 1] (see Examples 4.2.2 and 4.4.1)

and g(x) = 1
2
x2, so that the problem has unique solution

(4.15) f(x) = x , ‖f‖L2 =
1√
3
≈ 0.5774 .

The inverse linear problems associated to M and M̃ are Krylov solvable

(Corollary 4.4.14) as well as V (Example 4.4.1 (vii)). The inverse problem

associated to R is not Krylov solvable as the space K (R, g)⊥ contains the

canonical vector e1. For ease of discussion, depending on the context, H and

A will respectively denote the Hilbert space (`2(N) or L2[0, 1]) and operator

(M , M̃ , R, or V ).

The numerical tests presented herein on `2(N) (i.e., for M , M̃ and R)

generate the spanning vectors g, Ag,A2g, . . . of K (A, g) represented in the

canonical basis up to order Nmax = 500. When A = V , the spanning vectors

are constructed up to Nmax = 175 represented using a Legendre polynomial

basis on [0, 1]. These values represent a practical choice of ‘infinite’ dimension

for K (A, g).

When A = M, M̃,R, the space of entries allocated for each of the consid-

ered vectors, f, g, Ag,A2g, . . . , is 2500 entries with respect to the canonical

basis of `2(N). Again, this is to represent a practical choice of ‘infinite’ dimen-
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sion of the ambient Hilbert space H. To illustrate this point, in particular, if

one considers the repeated application of R up to 500 times, the vectors Rkg

have non-trivial entries up to order 251 + 500 = 751. This is because, by con-

struction, the last non-zero entries of f and g are the respective components

e250 and e251. Also, by repeated application of M and M̃ , the vectors Mkg

and M̃kg have the component e250 as the last non-trivial entry. All these

limits are well below the choice of the ‘infinite’ dimensional threshold of 2500

entries for H.

On the other hand, for A = V , the practical choice of ‘infinite’ dimension

for H was 250. In this case, it is expected that the numerical tests contain no

significant numerical errors in the computation with respect to the Legendre

basis polynomials, as the L2[0, 1] norm of each basis has less than 2% error

compared to the exact unit value.

During the course of running the numerical tests, from each collec-

tion {g, Ag, . . . , AN−1g} an orthonormal basis of the N -dimensional space

KN (A, g) is obtained. Of course, N ≤ Nmax, and the ‘infinite-dimensional’

problem Af = g is truncated to a finite N -dimensional problem using the

GMRES algorithm. This is all very much in the same spirit as Chapter 3.

Therefore, f̂ (N) ∈ H denotes the solution at the N -th step, or the N -th

iterate, from the GMRES algorithm. Both the infinite-dimensional error EN

and infinite-dimensional residual RN (see Definition 3.2.5) were analysed as

the two natural indicators of the convergence of the iterates to a solution

f ∈ H as ‘N →∞’.

4.5.2 Krylov vs non-Krylov solutions

Figure 4.1 illustrates the behaviours of the norms of EN and RN , as well as

the approximated solution f̂ (N), all as a function of the iteration number N .

The numerical evidence shows that

(i) The error norm of the baseline case and the Volterra case appear to

vanish with N , as too does the residual norm. This is consistent with

the obvious property that ‖RN‖H ≤ ‖A‖op ‖EN‖H. Also, ‖f̂ (N)‖H stays

uniformly bounded and tends to the prescribed theoretical value from
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(4.14) and (4.15).

(ii) The error norm of the forward shift remains of order one indicating a

lack of convergence in the strong topology to the solution f , regardless of

the truncation size N . Analogous behaviour is also seen in the residual.

Furthermore, ‖f̂ (N)‖H remains uniformly bounded, but it attains an

asymptotic value that is strictly smaller than the theoretical value

(4.14).

At this point, the asymptotics of ‖EN‖H → 1 and ‖RN‖H → 0.2 for the

problem where A = R are described. Since f̂ (N) ∈ K (R, g) and since the

latter subspace only contains vectors with zero component along the direction

e1, the error vector EN = f − f̂ (N) tends to asymptotically approach the

vector e1, as this gives the first component of f = (1, 1
2
, 1

3
, . . . ), and explains

why ‖EN‖H → 1.

Similarly, as by construction g = (0, 1
5
, 1

20
, 1

45
, . . . ), and since the asymp-

totics of the error imply that each component of f̂ (N), except for the first one,

converges to the corresponding component of f , then f̂ (N) ≈ (0, 1
2
, 1

3
, . . . ) for

N large. Therefore RN ≈ (0, 0, 1
20
, 1

45
, . . . ). As such, g and Rf̂ (N) differ by

only the vector 1
5
e2, explaining why ‖RN‖H → 0.2.

As already pointed out in Chapter 3, it is clear that the lack of vanishing

of the error and residual for the problem Rf = g do not necessarily mean

that the approximations f̂ (N) carry no information on the solution f . In fact,

here the vector entries of f , apart from the first, are well approximated by

f̂ (N).

So, the Krylov solvable infinite-dimensional problems all display norm

convergence in the error and residual terms. The convergence behaviour for

the multiplication operator M is faster than that of the Volterra operator V .

This indicates that the choice of the Krylov bases in these two cases is not

equally as effective. Heuristically, it is well-known that the GMRES method

may behave poorly in some circumstances [66]. However, the GMRES method

applied to the self-adjoint M is mathematically equivalent to the MINRES

technique, and the convergence behaviour in this case of M , a positive definite

operator, has already been discussed before by [64] (see Section 2.3.1).
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Figure 4.1: Error norm and residual norm as a function of iterations for the
cases of the injective multiplication operator M (baseline case), the weighted

right shift R, the non-injective multiplication operator M̃ , and the Volterra
operator V .
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In contrast, the non-Krylov solvable problem Rf = g does not exhibit

norm convergence of the approximations to the solution at all. Here, the

uniformity of the size of the solutions f̂ (N) does not appear affected by the

lack of Krylov solvability, and they all remain uniformly bounded.

4.5.3 Lack of injectivity

In the numerical test of the solvable inverse problem M̃f = g with g ∈ ranM̃ ,

one has an infinity of solutions. Yet, in this lack of injectivity, Corollary 4.4.14

guarantees that such a problem admits a unique Krylov solution. Numerically

it was found that (Figure 4.1)

(i) In contrast to the baseline case M , the infinite-dimensional error norm

‖EN‖H does not vanish with increasing truncation size N . The infinite-

dimensional residual norm ‖RN‖H on the other hand does display a

convergence to zero, and in fact has the same behaviour as the baseline

case M .

(ii) The norm of the approximated solution ‖f̂ (N)‖H remains uniformly

bounded.

Figure 4.2 unmasks the apparent lack of convergence of the numerical

approximants f̂ (N) to the solution f seen by the non-vanishing error norm. One

may see that the only non-zero components of the error term are precisely the

vector entries corresponding to the kernel of M̃ . This information underscores

that the GMRES algorithm has indeed found the minimal norm solution to

the problem.
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Figure 4.2: Support of the error vector (blue bars) for the non-injective

problem M̃f = g at final iteration N = 500. The red lines mark the entry
positions of the components of the kernel space of M̃ .



Chapter 5

Krylov Solvability for

Unbounded Inverse Problems

5.1 Introduction

This Chapter is an extension of the previous work presented in Chapter 4

and is based on the work [15]. The appropriate notions of Krylov reducibility

and the Krylov intersection are extended to encompass the possibility that

one is dealing with an unbounded operator. Within this Chapter, the class of

operators considered is broadened to the class of closed and densely defined

operators on Hilbert space H. Immediately domain issues come into play,

however this is dealt with by making natural and sensible assumptions on the

generating vector of the Krylov spaces to ensure that the standard Krylov

space is indeed well defined.

Some preliminary investigations into Krylov methods in the area of un-

bounded linear inverse problems have been undertaken by Gilles and Townsend

[35] and Olver [69]. Within both these studies however, the authors have

restricted themselves to particular algorithms, such as conjugate-gradients or

GMRES, for very precisely defined differential linear inverse problems. As

such, there is no existing discussion of the general mechanisms of Krylov

solvability for unbounded, closed, densely defined operators on Hilbert space.

101
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The problem considered in this Chapter is still the linear inverse problem

(5.1) Af = g ,

except now that A ∈ C (H) and D (A) ⊂ H is dense in H, with g ∈ H, f ∈ H.

Again, the usual concepts of solvable, well-defined, and well-posed apply

without modification from Chapter 4 to (5.1) (see page 72). It is immediate

that the adjoint A∗ is closed, as D (A) is dense [88, Prop. 1.6].

To begin with, the following section contains the suitably generalised

definition of the Krylov space. Preliminaries and definitions of rational

Krylov subspaces will be made clear in this Section too.

Following the next section, the extensions of the major concepts regarding

Krylov solvability in Chapter 4 are made, revealing that they are indeed the

intrinsic notions of Krylov solvability at a suitably general level. However, it

should be pointed out that under such general conditions, some extra (yet

natural) hypotheses are required.

Towards the end of this Chapter, some aspects of rational Krylov subspaces

and rational Krylov solvability are discussed within the framework of self-

adjoint operators.

5.2 Definitions and comments

Immediately the very notion of a standard Krylov subspace is called into

question. It may not be the case that every power of the operator A applied

to some g ∈ H is defined. Therefore it is necessary to have additional

assumptions to ensure that the standard Krylov subspace is well-defined.

To start with, the space of what will be called “smooth vectors” with

respect to the (possibly unbounded) operator A, is defined. This additional

notation assists with building up the appropriate notion of standard Krylov

subspaces.

Definition 5.2.1. A vector g ∈ H is said to be N -regular, for a given N ∈ N0,

with respect to a linear operator A : H → H on Hilbert space H, if g is in

the domain of all positive integer powers of A less than or equal to N . The
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customary notation for this space is

(5.2) CN (A) :=
N⋂
n=0

D (An) ⊂ H ,

and moreover, if N = sup{n | g ∈ Cn (A)} <∞, then g is said to be strictly

N -regular. In addition, g ∈ H is said to be a smooth vector with respect to

A if belongs to all positive integer powers of the domain of the operator A.

The customary notation for this space is

(5.3) C∞ (A) :=
⋂
n∈N0

D (An) ⊂ H .

Using the above notation, the standard Krylov subspaces may now be

defined as follows.

Definition 5.2.2. Let H be a Hilbert space, and let A : H → H be a

closed, densely defined linear operator with domain D (A) ⊂ H. Consider

some g ∈ CN−1 (A) for some N ∈ N. Then the N -th order Krylov subspace

associated with A and g is

(5.4) KN (A, g) := span {Ang |n ∈ N0, n ≤ N − 1} ,

and further assuming that g ∈ C∞ (A), then the Krylov subspace associated

with A and g is

(5.5) K (A, g) := span {Ang |n ∈ N0} .

From this definition, it is obvious that K (A, g) remains invariant under

the action of A, i.e., AK (A, g) ⊂ K (A, g). This does not immediately carry

over to the closure of K (A, g) because of the obvious domain issues.

Example 5.2.3. Consider the Laplacian operator ∆ : L2(Ω)→ L2(Ω) where

Ω ⊂ RN is open (and N ∈ N), and D (∆) is the set of twice differentiable

functions on L2(Ω) with Dirichlet boundary conditions. As C∞c (Ω), the space

of smooth, compactly supported functions in Ω, is dense in L2(Ω) [10], it is
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evident that ∆ has dense domain.

Now, let g ∈ C∞c (Ω). Then g ∈ C∞ (∆), so that the Krylov space

associated with ∆ and g is appropriately defined.

Next to the notion of a standard (polynomial) Krylov subspace, a new type

of Krylov subspace is introduced, namely that of rational Krylov subspaces.

In the previous definitions, Krylov spaces are built using the positive powers

of the operator A applied to a vector g, and so are known as polynomial or

standard Krylov subspaces (or just ‘Krylov subspace’). The concept of a

rational Krylov subspace uses the class of rational functions of the operator A

applied to a vector g to build up a vector space. Below is a general definition

that will be used later.

Definition 5.2.4. Let H be a Hilbert space, and let A : H → H be a closed,

densely defined linear operator with domain D (A) ⊂ H. Consider some

sequence Ξ ≡ (ξn)n∈N ⊂ ρ(A). Then the N -th order rational Krylov subspace

associated with A, g, and Ξ is

(5.6) KΞ
N (A, g) := span {g} ⊕ span

{
m∏
n=1

(A− ξn1)−1g; 1 ≤ m ≤ N − 1

}
,

and the rational Krylov subspace associated with A, g, and Ξ is

(5.7) KΞ (A, g) := span {g} ⊕ span

{
m∏
n=1

(A− ξn1)−1g; m ∈ N

}
.

The concept of rational Krylov spaces was first explicitly introduced in

the finite-dimensional setting by Ruhe [82] for solving the eigenvalue problem,

and is now an accepted and well-studied area of numerical literature (see [26,

84, 82, 31, 80, 81, 83, 58, 94, 43, 48, 23, 7, 39]).

These spaces are particularly attractive in the study of numerical tech-

niques of time-dependent partial differential equations [31, 58, 94, 23] as they

have applications in approximating time dependent functions used in the

time-stepping of the solution. However, typically these studies have focussed

on the approximation of certain operator functions and their eigenvalue eigen-

vector pairs, rather than the Krylov solvability of the linear inverse problem.



5.2. DEFINITIONS AND COMMENTS 105

Furthermore, these studies are mostly restricted to the finite-dimensional

setting, and are also restricted to the class of bounded linear operators.

In the final section of this Chapter, some aspects of rational Krylov spaces

and the linear inverse problem are considered for the class of unbounded

self-adjoint operators in Hilbert space.

Some operator-theoretic notions are also needed to develop further the

theory in the following sections. To begin with, the notion of a part of a

linear operator is defined on a closed subspace V ⊂ H, consistent with the

concept as described in [88, Definition 1.7].

Definition 5.2.5. Let A : H → H be a linear operator on the Hilbert space

H, and let V ⊂ H be a closed subspace. Let A0 be a domain restriction of

A with D (A0) = V ∩ D (A) for some V ⊂ H. Then the operator A0 is called

the part of the operator A on V .

The notion of the core of an operator is also necessary for the purposes of

the proofs of the following lemmas and propositions, and may be found in

many standard references on operator theory (e.g., [51, 88]).

Definition 5.2.6. Let A be a closed operator on H. Let T be an operator

that has a closed extension T , i.e., it is closable. If T = A, then D (T ) is

called a core of the operator A, and G (T ) = G (A). Equivalently, a linear

submanifold D ⊂ D (A) is called a core of A if the set {(u,Au) |u ∈ D} is

dense in G (A).

The core of an operator is a powerful concept that will be used to ensure

that invariance of the Krylov subspace under A still occurs at a suitably

general level.

The concept of the invariance of a closed subspace under the action of an

operator A is generalised appropriately.

Definition 5.2.7 (see Definition 1.7 [88]). Given a linear operator A : H → H
on Hilbert space H and a closed subspace V ⊂ H, then one says that V is

invariant under the action of A if A(V ∩ D (A)) ⊂ V .
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As these general definitions have now been set, one may proceed with

the development of some necessary conditions to ensure the invariance of the

closed Krylov subspace K (A, g) under the action of A.

5.3 Krylov reducibility and Krylov intersec-

tion

The fundamental concepts of Krylov reducibility and Krylov intersection are

suitably generalised to the class of closed, densely defined operators on Hilbert

space.

For a given closed, densely defined operator A, and a given vector g ∈
C∞ (A), one still has the orthogonal decomposition of the Hilbert space

(Chapter 4, page 75), namely

(4.4) H = K (A, g)⊕K (A, g)⊥ .

This is still referred to as the Krylov decomposition of H relative to A and g.

The invariance relations presented in Chapter 4 require some modification,

as do their proofs. More specifically, the proof of Lemma 4.3.1 relies on

topological aspects of continuity that cannot be used here as the operator is

no longer guaranteed to be continuous. As such, further assumptions on the

operator and Krylov space are necessary to ensure the invariance still hold

at a suitably general level. To make these assumptions clear, the part of the

operator A in the closed Krylov subspace is defined explicitly.

Definition 5.3.1. Let A be a closed, densely defined linear operator on

Hilbert space H, and let g ∈ C∞ (A). Then the part of A on the closed Krylov

subspace K (A, g) is Ã, i.e.,

(5.8) Ã := A|K(A, g)∩D(A) .

Similarly, the part of the adjoint A∗ on the closed Krylov subspace is Ã∗, i.e.,

(5.9) Ã∗ := A∗|K(A, g)∩D(A∗) .



5.3. KRYLOV REDUCIBILITY AND KRYLOV INTERSECTION 107

.

Remark 5.3.2. One may show that the operator Ã in Definition 5.3.1 is a

closed operator (and so too is Ã∗).

Indeed, take a graph norm convergent sequence
(

(zn, Ãzn)
)
n∈N
⊂ G(Ã)

(see Section B for details on graph spaces). Then

zn
‖·‖H−−→ z

Ãzn
‖·‖H−−→ v .

As zn ∈ K (A, g), it follows that z ∈ K (A, g) too. As Ã is a restriction of A,

one has that Ãu = Au for all u ∈ D(Ã). Therefore, Ãzn = Azn
‖·‖H−−→ v and the

closure of A guarantees that z ∈ D (A) and v = Az. So z ∈ K (A, g)∩D (A) =

D(Ã) and therefore Az = Ãz = v. Thus Ã is closed.

By a similar argument for Ã∗, one proves that this operator is also closed.

Proposition 5.3.3. Given a closed, densely defined operator A : H → H
(with domain D (A)) and vector g ∈ C∞ (A), then the following invariance

relation for the adjoint operator holds.

(5.10) A∗
[
K (A, g)⊥ ∩ D (A∗)

]
⊂ K (A, g)⊥ .

Proof. For arbitrary z ∈ K (A, g) take a sequence (zn)n ⊂ K (A, g), so that

zn
‖·‖H−−→ z ∈ K (A, g), and let v ∈ K (A, g)⊥ ∩ D (A∗), so that

0 = 〈Azn, v〉 = 〈zn, A∗v〉 .

Then 〈z, A∗v〉 = limn→∞ 〈zn, A∗v〉 = 0. This implies that A∗v ∈ K (A, g)⊥.

Lemma 5.3.4. Let A : H → H be a closed, densely defined operator on

Hilbert space H (with domain D (A)), with a vector g ∈ C∞ (A). If K (A, g)

is a core of Ã, then the following generalised invariance relation holds.

(5.11) A
[
K (A, g) ∩ D (A)

]
⊂ K (A, g) .
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Proof. Let z ∈ K (A, g) ∩ D (A). Hence (z, Az) ∈ G (A) but also (z, Az) =

(z, Ãz) ∈ G(Ã), where Ã is defined by (5.8) and is closed by Remark 5.3.2.

By the assumption that K (A, g) is a core of Ã, the operator A′ := Ã|K(A, g)

satisfies

G (A′) = G(Ã) .

As such, one may deduce that there is a sequence of approximants (zn, Azn) ∈
G (A′) of (z, Az) meaning that

K (A, g) 3 zn
‖·‖H−−→ z

Azn
‖·‖H−−→ Az .

This implies that Az ∈ AK (A, g) ⊂ K (A, g).

Remark 5.3.5. As stated in the proof of Lemma 5.3.4, the assumption that

K (A, g) is a core of Ã is equivalent to having G (A′) = G(Ã) (Definition 5.2.6).

To have that G (A′) = G(Ã) it is necessary that K (A, g) is dense in D(Ã) =

K (A, g) ∩ D (A), which is certainly satisfied as K (A, g) ⊂ D (A). However,

the density alone of K (A, g) in K (A, g) ∩ D (A) is not sufficient in general

to guarantee that it is a core, unless A ∈ B(H). Therefore the density of

K (A, g) in D(Ã) is not tantamount to K (A, g) being a core of Ã, so this

assumption in Lemma 5.3.4 is required in its proof.

The concept of Krylov reducibility is also generalised in what follows.

Definition 5.3.6. Given a closed, densely defined linear operator A in Hilbert

space H and g ∈ C∞ (A), one says that the operator A is K (A, g)-reduced

whenK (A, g) andK (A, g)⊥ are invariant underA, i.e., A(K (A, g)∩D (A)) ⊂
K (A, g) and A(K (A, g)⊥ ∩ D (A)) ⊂ K (A, g)⊥. This is referred to as (gen-

eralised) K (A, g)-reducibility of A, or simply (generalised) Krylov reducibility

where no confusion arises.

Remark 5.3.7. The proofs of Lemma 4.3.4 and Proposition 4.3.7 are not

suitable for extension to the entire class of closed, densely defined operators.

Concerning Lemma 4.3.4, the lack of a similar proof stems from the fact

that given a closed subspace V ⊂ H, one may not always say that V ∩ D (A)
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is dense in V (e.g., think of V = span {v} for some v ∈ H \ D (A)). And yet

a similar argument of the equivalence between the following

(i) A(V ∩ D (A)) ⊂ V , A(V⊥ ∩ D (A)) ⊂ V⊥, and

(ii) A∗(V ∩ D (A∗)) ⊂ V , A∗(V⊥ ∩ D (A∗)) ⊂ V⊥

would require density of V∩D (A), V∩D (A∗) in V, and V⊥∩D (A), V⊥∩D (A∗)

in V⊥.

The proof to Proposition 4.3.7 relies on an equivalence between (i) and

(ii) above, and so is unsuitable for modification to the entire class of closed,

densely defined operators.

Finally the concept of the Krylov intersection is suitably generalised. In

the following section, again it is shown that this is the intrinsic operator-

theoretic mechanism that guarantees Krylov solvability of the linear inverse

problem.

Definition 5.3.8. Given a closed, densely defined linear operator A on

Hilbert space H and a vector g ∈ C∞ (A), the intersection

(5.12) K (A, g) ∩
[
A(K (A, g)⊥ ∩ D (A))

]
is called the (generalised) Krylov intersection, and is denoted by ĨK (A, g).

For a given closed, densely defined operator A : H → H and g ∈ C∞ (A),

the consequence of A being Krylov reducible guarantees that ĨK (A, g) = {0}.

5.4 Krylov Solvability

In this Section, the theorems and lemmas regarding Krylov solvability, as

introduced in Chapter 4, Section 4.4, are suitably generalised to the closed,

densely defined operator class. Some additional assumptions, made explicit

in the modified statements, are needed owing to the possible unboundedness

of the operator class.
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To begin with, the appropriate analogue of Proposition 4.4.2 is presented.

Density of AK (A, g) in K (A, g) is still a necessary condition for Krylov

solvability, under assumptions on the core of Ã, that become necessary and

sufficient if A−1 ∈ B(H).

Proposition 5.4.1. Let A : H → H be a closed, densely defined, injective

linear operator on Hilbert space H, and let f ∈ D (A) be the solution to

Af = g, given g ∈ ranA ∩ C∞ (A). One has the following.

(i) If f ∈ K (A, g) and K (A, g) is a core of Ã, then AK (A, g) is dense in

K (A, g).

(ii) If A is invertible with an everywhere defined bounded inverse and

AK (A, g) is dense in K (A, g), then f ∈ K (A, g).

Proof. Starting with (i), by assumption f ∈ K (A, g). AK (A, g) ⊂ K (A, g)

implies AK (A, g) ⊂ K (A, g). As A is a closed operator and K (A, g) is

a core for Ã, there exists (fn)n∈N in K (A, g) such that fn
‖·‖H−−→ f and

K (A, f) 3 Afn
‖·‖H−−→ Af = g, i.e., fn

‖·‖G(A)−−−−→ f . Then g ∈ AK (A, g), and

span
{
Akg | k ∈ N0

}
⊂ AK (A, g) ,

so that K (A, g) ⊂ AK (A, g). So AK (A, g) = K (A, g).

For (ii) assume that A has bounded, everywhere defined inverse,

and that AK (A, g) is dense in K (A, g). There is a sequence of ap-

proximants in AK (A, g) to the vector g ∈ K (A, g), namely (Avn)n∈N

such that vn ∈ K (A, g) ⊂ D (A) for all n ∈ N. If A−1 ∈
B(H) then ‖Avn − g‖H → 0 implies ‖vn − f‖H → 0, as ‖vn − f‖H =

‖A−1(Avn − g)‖H ≤ ‖A−1‖op ‖Avn − g‖H → 0. So vn converges to f ∈
K (A, g).

A sufficient condition to ensure Krylov solvability of the well-defined

linear inverse problem is the Krylov reducibility, coupled with the requirement

that the orthogonal projection of the solution vector f onto the closed Krylov

subspace remains within the domain of the operator A. This latter requirement

is necessary in the proof of the following proposition to ensure that all
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the operations involving A are properly defined. Therefore this additional

restriction, much like the condition of K (A, g) being a core for Ã to guarantee

invariance of K (A, g), is inescapable owing to the possible unboundedness of

the operator.

Proposition 5.4.2. Let A be a closed, densely defined, injective linear op-

erator on Hilbert space H, and let f ∈ D (A) be the solution to Af = g,

given g ∈ ranA ∩ C∞ (A). Let the linear operator PK : H → H be the or-

thogonal projection operator onto the space K (A, g). If A is K (A, g)-reduced

and PKf ∈ D (A), then f ∈ K (A, g). In addition, if A is self-adjoint, and

K (A, g) is a core of Ã, then Af = g implies that f ∈ K (A, g).

Proof. Decompose the solution f = PKf + (1− PK)f . As f ∈ D (A) and by

assumption PKf ∈ D (A), this implies that (1− PK) ∈ D (A). So

Af = g = APKf + A(1− PK)f .

From the definition of Krylov reducibility APKf ∈ K (A, g), so that A(1−
PK)f ∈ K (A, g). Again using K (A, g)-reducibility of A, A(1 − PK)f ∈
K (A, g)⊥, so (1− PK)f = 0 owing to injectivity. Then f ∈ K (A, g).

By Proposition 5.3.3 and Lemma 5.3.4, if additionally A is self-adjoint

and K (A, g) is a core of Ã, then A is K (A, g)-reduced.

Remark 5.4.3. At this stage, a concrete example of a self-adjoint operator

such that K (A, g) is not a core for the domain restricted operator Ã would be

interesting to have. This would provide a beautiful contrast to the bounded

scenario (A ∈ B(H)) as there, K (A, g) is always a core for Ã.

Unfortunately a counterpart to Proposition 4.4.4 for self-adjoint operators

using spectral integrals does not work in this situation. The proof may not be

suitably modified as the Stone-Weierstrass theorem on locally compact spaces

requires the construction of an algebra of functions that vanish at infinity.

Clearly, this is not satisfied by the class of polynomial functions on R. The

construction may still be made when considering rational Krylov spaces, and

this will be seen later.
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The fundamental relationship between the triviality of the generalised

Krylov intersection and the Krylov solvability of the linear inverse problem still

holds, under certain restrictions. Certainly, the following proposition shows

that the triviality of the Krylov intersection is still the intrinsic mechanism

capturing Krylov solvability.

Proposition 5.4.4. Let A : H → H be a closed, densely defined, injective

operator on a Hilbert space H, and let f ∈ D (A) be the solution to Af = g,

given g ∈ ranA ∩ C∞ (A). Let the linear operator PK : H → H be the

orthogonal projection operator onto the space K (A, g).

(i) If PKf ∈ D (A) and ĨK (A, g) = {0}, then f ∈ K (A, g).

(ii) If A has an everywhere defined, bounded inverse on H, K (A, g) is a

core of Ã, and f ∈ K (A, g); then ĨK (A, g) = {0}.

Proof. Working on part (i), by assumption f ∈ D (A) and PKf ∈ D (A),

so that (1 − PK)f ∈ D (A). As in the proof of Proposition 5.4.2, one has

A(1 − PK)f ∈ K (A, g) because APKf ∈ K (A, g). This, together with

ĨK (A, g) = {0} and A(1 − PK)f ∈ A
[
K (A, g)⊥ ∩ D (A)

]
, ensures that

A(1− PK)f = 0. From the injectivity, (1− PK)f = 0 and f ∈ K (A, g).

Considering part (ii), one has f = A−1g, and f ∈ K (A, g) ∩D (A). Then

take some z ∈ ĨK (A, g) and let z = Aw for some w ∈ K (A, g)⊥ ∩ D (A).

From Proposition 5.4.1 (i), AK (A, g) is dense in K (A, g). So there is

some sequence (vn)n∈N ⊂ K (A, g) ⊂ D (A) such that Avn → z = Aw

in the H-norm. A−1 ∈ B(H) implies ‖vn − w‖H = ‖A−1A(vn − w)‖H ≤
‖A−1‖op ‖A(vn − w)‖H → 0. Therefore, vn

‖·‖H−−→ w and

w ∈ K (A, g)⊥ ∩ D (A) , vn ∈ K (A, g) .

From the above, vn and w are in othogonally complementary spaces, so that

0 = lim
n→∞

‖vn − w‖2
H = lim

n→∞

(
‖vn‖2

H + ‖w‖2
H
)

= 2 ‖w‖2
H

so w = 0 which implies z = 0.
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Remark 5.4.5. For self-adjoint operators on H, the assumption of a core in

Proposition 5.4.2 is no longer required for the Krylov solvability of the linear

inverse problem. Actually, the triviality of the Krylov intersection, along with

PKf ∈ D (A), is all that is needed for Krylov solvability.

5.4.1 Krylov solutions in the lack of injectivity

Counterparts of Krylov solvability of the linear inverse problem in the lack

of injectivity are presented with little or no modifications to the underlying

proofs from Chapter 4.

Proposition 5.4.6. Let A be a closed, densely defined, linear operator on

Hilbert space H, and let Af = g be the associated linear inverse problem with

g ∈ ranA ∩ C∞ (A). If kerA ⊂ kerA∗, then there exists at most one solution

f ∈ K (A, g). In particular this statement holds true if A is normal.

Proof. Identical to Proposition 4.4.13.

Proposition 5.4.7. Let A be a closed, densely defined linear operator on

Hilbert space H and let g ∈ ranA∩C∞ (A). Let PK : H → H be the orthogonal

projection operator onto K (A, g). If A is K (A, g)-reduced, and if f◦ ∈ D (A)

satisfies Af◦ = g is such that PKf◦ ∈ D (A); then f := PKf◦ is a Krylov

solution.

Proof. Owing to the same argument in the proof of Proposition 5.4.2, one

has A(1− PK)f◦ = 0. Then APKf◦ = g, i.e. f := PKf◦ ∈ D (A) is a Krylov

solution.

The previous two propositions combine to give the following corollary

concerning the uniqueness of Krylov solutions for self-adjoint linear inverse

problems.

Corollary 5.4.8. Let A be a self-adjoint linear operator on the Hilbert space

H. If the linear inverse problem Af = g, with g ∈ ranA ∩ C∞ (A), has a

solution f ∈ K (A, g); then f is the unique Krylov solution.

Proof. As f ∈ K (A, g) is a solution to Af = g, immediately from Proposi-

tion 5.4.6 one has that f is unique in K (A, g).
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5.4.2 Some remarks on rational Krylov solvability for

self-adjoint operators

In this Section some preliminary results regarding rational Krylov solvability

are developed for the specific class of self-adjoint operators. The theorems

developed here show that, in the case of unbounded operators, from an

approximation standpoint it may be advantageous to consider general ra-

tional approximations rather than standard polynomials. Additionally, the

restriction that g ∈ C∞ (A) may be dropped. The practical drawback of such

an approach is that there is an extra computational cost in calculating the

resolvent function R (A, ξ) for some ξ ∈ ρ(A).

In this discussion, a solution f to Af = g belonging to the closure

of a rational Krylov subspace associated with A, g and a sequence Ξ, i.e.

f ∈ KΞ (A, g), is referred to as a rational Krylov solution. Informally, one

refers to the linear inverse problem being rationally Krylov solvable should

there exist at least one solution f ∈ KΞ (A, g).

Of particular interest here is Corollary 5.4.11 that is a result of relevance

for the so-called ‘shift and invert method’ developed in [58, 94].

Theorem 5.4.9. Let A be a self-adjoint operator, with spectral measure E (t),

and scalar measure µg (t) := 〈g, E (t) g〉 for given g ∈ H. Let (ξn)n∈N ⊂ C be

a sequence such that

(i) ξn is in the resolvent of A, for all n ∈ N,

(ii) the set {ξn}n∈N is closed under complex conjugation.

Consider I, the collection of all finite index sets generated from N. Then the

subset B ⊂ C0(σ(A),C) defined by

(5.13) B = span

{∏
n∈I

1

z − ξn
; I ∈ I

}

is dense in L2(σ(A), µg).

Proof. As µg (R) = ‖g‖2
H <∞, obviously µg is a regular Borel measure.
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B is an involutive subalgebra of C0(σ(A),C): as it contains both z 7→
(z−ξn)−1 and z 7→ (z−ξn =−1, and is clearly closed under sums and products.

Furthermore, B separates points in σ(A) and B vanishes nowhere on σ(A)

in the sense of Definitions C.2.1 and C.2.2. σ(A) is closed in C and therefore

locally compact. So, from the Stone-Weierstrass theorem for locally compact

spaces (Theorem C.2.4), one has that B
‖·‖∞ = C0(σ(A),C). Moreover,

from Cc(σ(A),C)
‖·‖2 = L2(σ(A), µg) [79, Theorem 3.14], and Cc(σ(A),C) ⊂

C0(σ(A),C), one has also C0(σ(A),C)
‖·‖2 = L2(σ(A), µg).

Given u ∈ L2(σ(A), µg) and ε > 0 there exists h ∈ C0(σ(A),C) such that

‖(h(A)− u(A))g‖2
H =

∫
σ(A)

|h(t)− u(t)|2 dµg (t) <
ε2

2
,

and there exists some p ∈ B such that

‖(p(A)− h(A))g‖2
H =

∫
σ(A)

|p(t)− h(t)|2 dµg (t)

≤ ‖p(t)− h(t)‖2
L∞(σ(A),µg) ‖g‖

2
H <

ε2

2
.

Therefore,

‖(p(A)− u(A))g‖2
H < ε2 ,

which implies B
‖·‖2 = L2(σ(A), µg).

Corollary 5.4.10. Let A : H → H be a self-adjoint, injective operator, and

let (ξn)n∈N and B as in Theorem 5.4.9. Then if Af = g with g ∈ ranA one

has

f ∈ span

{∏
n∈I

(A− ξn1)−1g; I ∈ I

}
.

Proof. B = span
{∏

n∈S(z − ξn)−1g
}
S∈S is dense in L2(σ(A), µg) from Theo-

rem 5.4.9, and clearly 1
t
∈ L2(σ(A), µg), as ‖A−1g‖2

H = ‖f‖2
H <∞.

Corollary 5.4.11. Let A : H → H be a self-adjoint, injective operator such

that there exists ξ ∈ ρ(A) ∩ R, and let Ξ ≡ (ξn)n∈N with ξn = ξ for all n ∈ N.

Then the solution f to Af = g with g ∈ ranA belongs to the space KΞ (A, g),
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i.e.,

f ∈ span

{
m∏
n=1

(A− ξ1)−1g ; m ∈ N

}
⊕ span {g} .

Proof. B = span {
∏m

n=1(z − ξn)−1 |m ∈ N} satisfies the conditions of The-

orem 5.4.9, so B is dense in L2(σ(A), µg) and the approximation result

follows.

Remark 5.4.12. The rational Krylov space KΞ (A, g) from Corollary 5.4.11

will successfully approximate any function of the operator applied to g,

i.e., h(A)g, provided that h ∈ L2(σ(A), µg). Indeed ‖h(A)g − p(A)g‖2
H =

‖h(t)− (t)‖L2(σ(A),µg) for p ∈ B. This is also regardless of whether A is

injective or not, as injectivity is only used to ensure that t−1 ∈ L2(σ(A), µg).

The same comment may be made about the space considered in Corol-

lary 5.4.10: again the injectivity requirement here is only needed to ensure

t−1 ∈ L2(σ(A), µg).

Remark 5.4.13. The H-norm closures of the subspaces generated in Theo-

rem 5.4.9, Corollary 5.4.10 and Corollary 5.4.11 are identical to the closure of

the polynomial Krylov subspace for the class of bounded operators A ∈ B(H).

This is an immediate result from the isomorphisms K (A, g) ∼= L2(σ(A), µg)

and KΞ (A, g) ∼= L2(σ(A), µg), where the former was already obtained in

the discussion right after Proposition 4.4.4, and the latter follows from a

completely analogous reasoning from the proof of Corollary 5.4.10.



Chapter 6

Conjugate-gradients for

Unbounded Operators

6.1 Introduction

A specific application of the solution(s) to linear inverse problems using the

class of Krylov subspace methods known as conjugate-gradient methods,

is discussed in the setting of a general self-adjoint, positive operator. The

analysis contained herein has been inspired by the deep work of Nemirovskiy

and Polyak [64] where they considered the convergence and its rate for

conjugate-gradient style methods in the framework of bounded operators.

In this Chapter the analysis is generalised further to the setting where A

may be unbounded. Specifically, the general setting considered here is for the

solvable linear inverse problem on Hilbert space H

(6.1) Af = g , g ∈ ranA ,

where A : H → H is a self-adjoint (therefore closed), with the positivity

condition, i.e., 〈ψ, Aψ〉 ≥ 0, equivalently A ≥ O, for all ψ ∈ D (A).

At an informal level, the algorithm of conjugate-gradients is a minimisation

scheme in a chosen semi-norm defined by the operator A and a parameter

θ ≥ 0. Analogous to the presentation in Chapter 2, the scheme works by taking

a suitable initial guess f [0] and datum g, and picks the N -th approximation

117
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according to the prescription

(6.2) f [N ] := argmin
h∈{f [0]}+KN (A,R0)

∥∥Aθ/2(h− PSf [0])
∥∥
H .

Here, PSf [0] is the closest to f [0] solution to Af = g, and R0 = Af [0]−g. The

procedure is described formally in Definition 6.2.7. The main result of this

Chapter is that the convergence of the iterates f [N ] → PSf [0] is controllable

in a suitable sense. The exact sense is made clear in the formulation of the

main result, Theorem 6.4.1, and the remarks that follow.

This is indeed novel, for the case of A being an unbounded operator

has only recently been considered from special perspectives. The view of

the existence of Krylov solvability was taken in Olver [69] where the author

considered the GMRES scheme applied to the linear inverse problem from a

first order derivative operator. For the conjugate-gradient scheme, Gilles and

Townsend [35] considered the case in which the operator A was a second order

differential operator, suitably regularised to ensure that it had an everywhere

defined bounded inverse. In light of these studies, the convergence theory

from the most general, abstract perspective is missing.

Therefore it is possible that one simultaneously has an unbounded linear

operator, with 0 ∈ σ(A). Moreover, 0 may be an accumulation point of the

spectrum, making the linear inverse problem ill-posed (as opposed to having

the properties of well-posedness).

Remark 6.1.1. In the context of self-adjoint operators (not necessarily

bounded), in infinite-dimensional Hilbert space, the following properties are

all equivalent.

(i) 0 ∈ σ(A) and 0 is not an isolated point in σ(A),

(ii) The range is not closed in H,

(iii) The operator has unbounded inverse on the range.

These occurrences are possible only if dimH =∞.
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6.2 Definitions, set-up, and comments

To begin with, some definitions and notations are made before the general

algorithm is described. Many accompanying remarks are made along the way,

owing to the subtleties in dealing with the unbounded operator scenario. Here,

and in what follows, E will denote the projection valued measure associated

with the self-adjoint operator A (see Appendix B). The quantity d 〈x, E (t)x〉
denotes the corresponding scalar measure associated to a vector x ∈ H. These

measures are supported on the spectrum of A.

For the sake of convenience, the following sets of polynomials are defined

for use in this Chapter.

Definition 6.2.1. Let t ∈ [0,∞), then one may define the following polyno-

mial collections on the positive real line.

P([0,∞)) := {polynomials p(t), t ∈ [0,∞)}(6.3)

PN := {p ∈ P([0,∞)) | deg p ≤ N}(6.4)

P(1)
N := {p ∈ PN | p(0) = 1} .(6.5)

Following this, the solution manifold is defined as follows.

Definition 6.2.2. Consider the solvable linear inverse problem (6.1). Then

the solution manifold S is the set of points

(6.6) S := {f ∈ D (A) |Af = g} ,

and the operator PS : H → S is the projection map onto the manifold S.

Remark 6.2.3. As the operator A is closed, the kernel too is closed, and

therefore the solution manifold is a closed convex set. It is therefore known

that the operator PS is well-defined and produces, for any v ∈ H, the closest

to v point in S [10, Chapter 5]. Moreover, S 6= ∅ as g ∈ ranA.

The following two lemmas are technical facts to facilitate the further

discussion of various definitions and remarks of this Section. They may be
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skipped as to not interrupt the flow of the current section, without causing

any significant confusion.

Lemma 6.2.4. Let A : H → H be a self-adjoint, positive operator in H.

Then

(i) y ∈ kerA if and only if ‖E ((0,∞)) y‖H = 0,

(ii) and y ∈ (kerA)⊥ if and only if ‖E ({0}) y‖H = 0.

Proof. Starting with part (i), assuming that ‖E ((0,∞)) y‖H = 0 and letting

ε > 0, one immediately sees that

‖Ay‖2
H =

∫
[0,ε)

t2 d 〈y, E (t) y〉+

∫
[ε,∞)

t2 d 〈y, E (t) y〉

≤ ε2 〈y, E ([0, ε)) y〉+

∫
[ε,∞)

t2 d 〈y, E (t) y〉

= ε2 〈y, E ([0, ε)) y〉+ lim
n→∞

∫
[ε,n)

t2 d 〈y, E (t) y〉

≤ ε2 〈y, E ([0, ε)) y〉+ lim
n→∞

n2 〈y, E ((ε, n)) y〉

= ε2 〈y, E ([0, ε)) y〉 ≤ ε2 ‖y‖2
H

ε→0−−→ 0 ,

owing to the monotonicity property of the measure 〈y, E (t) y〉 ensuring

that 〈y, E ((ε, n)) y〉 ≤ 〈y, E ((0,∞)) y〉 = 0 for all n ∈ N. The step∫
[ε,∞)

t2 d 〈y, E (t) y〉 = limn→∞
∫

[ε,∞)
t2χ[ε,n) d 〈y, E (t) y〉 is justified by the

Lebesgue monotone convergence theorem ([79, Theorem 1.26]). This proves

the backward implication in (i). For the forward implication, let y ∈ kerA,

so that ‖Ay‖H = 0. If, by contradiction, ‖E ((0,∞)) y‖H > 0, then

0 =

∫
{0}
t2 d 〈y, E (t) y〉+

∫
(0,∞)

t2 d 〈y, E (t) y〉

=

∫
(0,∞)

t2 d 〈y, E (t) y〉 .

Yet, because t2 > 0 and is continuous on (0,∞), the last integral cannot be

zero. Thus, one must necessarily have ‖E ((0,∞)) y‖H = 0. This completes

the proof of part (i).
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For part (ii), consider the forward implication. By assumption y ∈
(kerA)⊥. Decompose y into y = E ({0}) y+E ((0,∞)) y. Clearly, E ({0}) y ⊥
E ((0,∞)) y. From part (i), E ({0}) y ∈ kerA (because E ((0,∞)) E ({0}) y =

E (∅) y = 0). If, by contradiction, E ({0}) y 6= 0, then y /∈ (kerA)⊥. For the

backward implication, let ‖E ({0}) y‖H = 0, so that by the same decomposi-

tion, one immediately obtains y = E ((0,∞)) y. Then, if x ∈ kerA, by part

(i) x = E ({0})x, so that

〈x, y〉 = 〈E ({0})x, E ((0,∞)) y〉

= 〈x, E ({0}) E ((0,∞)) y〉

= 〈x, E (∅) y〉 = 0 .

Therefore, y ∈ (kerA)⊥, and the proof of part (ii) is complete.

Lemma 6.2.5. Let A : H → H be a self-adjoint, positive operator in H.

Then the following hold true.

(i) ker(Aθ) = kerA for any θ > 0.

(ii) kerA and (kerA)⊥ remain invariant under the operator Aθ for any

θ ≥ 0.

(iii) If a vector v ∈ D (An) ∩ D (An+1) for any n ∈ N0, then v ∈ D
(
Aθ
)

where n ≤ θ ≤ n+ 1.

Proof. Considering part (i), let y ∈ kerA so that Ay = 0, and take θ > 0. In

the following, it will be shown that y ∈ kerAθ. Indeed, consider the following

spectral integrals, and let ε > 0

∥∥Aθy∥∥2

H =

∫
[0,∞)

t2θ d 〈y, E (t) y〉

=

∫
[0,ε)

t2θ d 〈y, E (t) y〉+ lim
n→∞

∫
[ε,n)

t2θ d 〈y, E (t) y〉

≤ ε2θ ‖y‖2
H + lim

n→∞
n2θ 〈y, E ([ε, n)) y〉 ,

where the Lebesgue monotone convergence theorem is used in passing to

the second equality. Then, owing to the fact that ‖E ((0,∞)) y‖H = 0 from
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Lemma 6.2.4 (i), one has that due to the monotonicity of the scalar measure

〈y, E (t) y〉, it follows 〈y, E ([ε, n)) y〉 ≤ 〈y, E ((0,∞)) y〉 = 0 for all n ∈ N
and ε > 0. Putting this together,

∥∥Aθy∥∥2

H ≤ ε2θ 〈y, E ([0, ε)) y〉 ≤ ε2θ ‖y‖2
H

ε→0−−→ 0 .

Therefore y ∈ kerAθ, and so it has been shown that kerA ⊂ kerAθ. For

proving the opposite inclusion, let w ∈ kerAθ. Now, by arguments similar

to the proof of Lemma 6.2.4, it follows that as t2θ > 0 and is smooth on

the set (0,∞), then if there exists any Borel set Ω ⊂ (0,∞) such that

〈w, E (Ω)w〉 > 0, then it must be that
∥∥Aθw∥∥2

H > 0. This would contradict

the fact that w ∈ kerAθ. Therefore 〈w, E ((0,∞))w〉 = 0. By Lemma 6.2.4,

it follows that w ∈ kerA, so kerAθ ⊂ kerA and part (i) is proven.

To prove part (ii), begin with y ∈ kerA. Then, as kerA = kerAθ by part

(i), it follows that Aθy = 0 ∈ kerA. Therefore kerA remains invariant under

Aθ. To show the invariance of (kerA)⊥ under Aθ, let y ∈ (kerA)⊥ ∩ D
(
Aθ
)
.

Then by Lemma 6.2.4 (ii) it follows that y = E ((0,∞)) y. So let x ∈ kerA =

kerAθ by part (i), from which

〈
x, Aθy

〉
=
〈
Aθx, y

〉
= 0 ,

as Aθ is self-adjoint. Therefore, Aθy ∈ (kerA)⊥, and part (ii) is proven.

Working on part (iii), the cases θ = n or θ = n + 1 are trivial. First,

however, consider the case for which 0 < θ < 1. Then ‖Av‖H <∞, so now

∥∥Aθv∥∥2

H =

∫
[0,∞)

t2θ d 〈v, E (t) v〉

≤
∫

[0,1]

d 〈v, E (t) v〉+

∫
(1,∞)

t2θ d 〈v, E (t) v〉

≤ ‖v‖2
H +

∫
(1,∞)

t2θ d 〈v, E (t) v〉 .

But on the interval (1,∞), one has that t2 ≥ t2θ as θ < 1, so from the above
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it follows

∥∥Aθv∥∥2

H ≤ ‖v‖
2
H +

∫
(1,∞)

t2 d 〈v, E (t) v〉 ≤ ‖v‖2
H + ‖Av‖2

H <∞ .

Therefore v ∈ D
(
Aθ
)

for the case of 0 ≤ θ ≤ 1. Now consider the situation

n < θ < n + 1 for arbitrary n ∈ N. An argument similar to the above

may be repeated, but alternatively, the interpolation inequality [10, Chapter

4, Remark 2] may be used instead. Indeed, letting µv (t) = 〈v, E (t) v〉,
one has that the condition v ∈ D (An) ∩ D (An+1) may be restated as

t ∈ L2n([0,∞), µv (t)) ∩ L2(n+1)([0,∞), µv (t)), and from the interpolation

inequality, it follows that

∥∥Aθv∥∥ 1
θ

H =

(∫
[0,∞)

t2θ dµv (t)

) 1
2θ

≤ ‖t‖αL2n ‖t‖1−α
L2(n+1) = ‖Anv‖

α
n
H
∥∥An+1v

∥∥ 1−α
n+1

H

for some 0 ≤ α ≤ 1. This completes the proof of part (iii).

Lemma 6.2.6. Let z ∈ H. For a point y ∈ S as defined in Definition 6.2.2,

the following conditions are equivalent.

(i) y = PSz,

(ii) z − y ∈ (kerA)⊥.

Proof. By the linearity of A, one has S = {y}+ kerA. If z − y ∈ (kerA)⊥,

then for any x ∈ kerA, and hence a generic point y + x ∈ S, it follows that

‖z − (y + x)‖2
H = ‖z − y‖2

H + ‖x‖2
H ≥ ‖z − y‖

2
H ,

so therefore y is necessarily the closest to z among all points in S (i.e.,

y = PSz), showing (ii) ⇒ (i).

Conversely, if y = PSz, and suppose by contradiction that z − y does not

belong to (kerA)⊥. Then Re 〈x0, z − y〉 6= 0 for some x0 ∈ kerA, where Re

denotes the real part. In this case, consider the polynomial

p(t) := ‖z − y − tx0‖2
H = ‖x0‖2

H t
2 − 2Re 〈x0, z − y〉 t+ ‖z − y‖2

H .
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Clearly, depending on the sign of Re 〈x0, z − y〉, one may choose t 6= 0 but

small enough such that p(t) ≤ p(0). This shows that there exist points y+tx0 ∈
S for which ‖z − (y + tx0)‖H ≤ ‖z − y‖H, contradicting the assumption

that y is the closest point to z among all points in S. Then, necessarily,

z − y ∈ (kerA)⊥, showing (i) ⇒ (ii).

Now the definition of the iteration procedure that corresponds to a general

conjugate gradient style method is presented.

Definition 6.2.7. Let A : H → H be a self-adjoint, positive operator in

H. Then given some g ∈ ranA and an initial guess f [0], for some θ ≥ 0 one

defines the θ-iterates

(6.7) f [N ] := argmin
h∈{f [0]}+KN (A,R0)

∥∥Aθ/2(h− PSh)
∥∥
H ,

provided that f [0] ∈ C∞ (A), g ∈ C∞ (A). The residual RN at step N is

defined as

(6.8) RN := Af [N ] − g .

Remark 6.2.8. If f [0], g ∈ C∞ (A), then the method is well-defined for all

θ ≥ 0, as C∞ (A) ⊂ D
(
Aθ/2

)
. This fact is due to Lemma 6.2.5 (iii). As

a consequence of f [0], g ∈ C∞ (A) one has that R0 ∈ C∞ (A) as well as

PSh ∈ S ⊂ C∞ (A), and so K (A, R0) ⊂ C∞ (A).

Yet, given some N ∈ N, the iterate f [N ] is still well-defined under the

weaker assumptions f [0] ∈ CN (A), g ∈ CN−1 (A) and 0 ≤ θ ≤ N − 1.

Only the setting f [0] ∈ C∞ (A) with g ∈ ranA∩C∞ (A) shall be considered

within this Chapter to ensure that the infinite-dimensional Krylov subspace

K (A, R0) is properly defined, and the θ-iterates are properly defined by (6.7).

From analogous considerations in Nemirovskiy and Polyak [64], the class

of vectors CA,g (θ) is introduced.

Definition 6.2.9. Let θ ∈ R, and A : H → H be a self-adjoint, positive

operator in H, with g ∈ ranA ∩ C∞ (A). Then the class of vectors CA,g (θ) is
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defined as

(6.9) CA,g (θ) :=

{x ∈ H |x− PSx ∈ D
(
Aθ/2

)
} , θ ≥ 0

{x ∈ H |x− PSx ∈ ran
(
A−θ/2

)
} , θ < 0 .

The dependence of CA,g (θ) on the vector g is implicit through the solution

manifold S.

Remark 6.2.10. Distinguishing the two cases in (6.9) is necessary in the

case that A has a non-trivial kernel, which makes the operator Aθ/2 undefined

when θ < 0.

In the case where one has A as injective, it is permissible to define Aθ/2

for strictly negative θ as A is invertible on its range ranA which is dense in

H. As t is non-zero E-a.e. in R, Proposition B.2.18 applies, and additionally

one has that D
(
Aθ/2

)
= ran(A−θ/2).

Still following analogous discussions from [64], other useful notions are

defined that relate to the convergence, and will become critical in the proofs

that follow.

Definition 6.2.11. Let θ ∈ R be fixed, and x ∈ CA,g (θ) for A and g as given

in Definition 6.2.9. Then the vector uθ(x) is defined as

(6.10)

uθ(x) :=

Aθ/2(x− PSx) , θ ≥ 0

the minimal norm solution u to A−θ/2u = x− PSx , θ < 0 .

The functional ρθ(x) is defined on the vectors x ∈ CA,g (θ) as

(6.11) ρθ(x) := ‖uθ(x)‖2
H .

Remark 6.2.12. The definition of ρθ(x) facilitates a more concrete notion

regarding its representation. As kerA and (kerA)⊥ remain invariant under
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the action of positive powers of A, one may write

(6.12) ρθ(x) =


∥∥Aθ/2(x− PSx)

∥∥2

H , θ ≥ 0∥∥∥∥(A−θ/2∣∣ran(A−θ/2)

)−1

(x− PSx)

∥∥∥∥2

H
, θ < 0 .

In this formulation for θ < 0, the operator A−θ/2
∣∣
ran(A−θ/2)

is understood

for a self-adjoint, positive-definite operator on the Hilbert subspace ranA =

ran(A−θ/2). The fact that it remains self-adjoint is a consequence of the fact

that ranA = (kerA)⊥ and both kerA and (kerA)⊥ remain invariant under

A and its positive powers.

Proposition 6.2.13. The θ-iterates f [N ] defined for a given θ ≥ 0 by means

of Definition 6.2.7 under the assumption f [0] ∈ C∞ (A), and g ∈ ranA∩C∞ (A)

satisfy the following.

(i) f [N ] − PSf [N ] ∈ (kerA)⊥ for all N ∈ N0,

(ii) PSf [N ] = PSf [0] for all N ∈ N,

(iii) f [N ] − PSf [N ] = pN(A)(f [0] − PSf [0]) for all N ∈ N,

where pN(t) is, for each N , a polynomial of degree up to N and such that

pN(0) = 1.

Proof. In the minimisation (6.7)

h− f [0] = qN−1(A)(Af [0] − g) = qN−1(A)A(f [0] − PSf [0])

for some polynomial qN−1 ∈ PN−1. From this, also

h− PSf [0] = qN−1(A)A(f [0] − PSf [0]) + (f [0] − PSf [0]) .

This implies, upon setting pN(t) := tqN−1(t) + 1, that

(*) f [N ] − PSf [0] = pN(A)(f [0] − PSf [0]) ∀N ∈ N ,

where pN ∈ P(1)
N .
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Moreover, f [N ] − PSf [N ] ∈ (kerA)⊥ as a consequence of Lemma 6.2.6

applied to z = f [N ] and y = PSf [N ]. With an analogous argument, f [0] −
PSf [0] ∈ (kerA)⊥, and so (i) is proved.

From part (i) and f [0] ∈ C∞ (A) with g ∈ ranA ∩ C∞ (A), one has f [0] −
PSf [0] ∈ (kerA)⊥ ∩ C∞ (A). Now, (kerA)⊥ ∩ C∞ (A) is invariant under the

action of polynomials of A (Lemma 6.2.5), and so from part (i) and (*), one

has that f [N ] − PSf [0] ∈ (kerA)⊥.

Next, one may split as follows

PSf [N ] − PSf [0] = (f [N ] − PSf [0])− (f [N ] − PSf [N ]) .

Obviously, PSf [N ] − PSf [0] ∈ kerA. But on the right hand side of the above,

as just shown, one has both f [N ] − PSf [0] ∈ (kerA)⊥ and f [N ] − PSf [N ] ∈
(kerA)⊥. As a consequence, PSf [N ] − PSf [0] ∈ (kerA)⊥ ∩ kerA so that

PSf [N ] − PSf [0] = 0. This proves part (ii).

From (ii), (*) takes on the required form for part (iii).

By (ii) in Proposition 6.2.13, all f [N ]’s have the same projection onto the

solution manifold S, so that the approach of f [N ] to S is the same as the

convergence f [N ] → PSf [0].

Lemma 6.2.14. If A ∈ B(H) is self-adjoint and positive, and if g ∈ ranA,

then

(i) CA,g (θ) = H whenever θ ≥ 0,

(ii) CA,g (θ) ⊂ CA,g (θ′) for θ ≤ θ′,

(iii) for θ ≤ θ′ and x ∈ CA,g (θ), one has uθ′(x) = A(θ′−θ)/2uθ(x), from which

ρθ′(x) ≤ ‖A‖θ
′−θ

op ρθ(x).

Proof. Part (i) is evident from the fact that D
(
Aθ/2

)
= H for any θ ≥ 0 as

A ∈ B(H) and positive.

Part (ii) is obvious when θ′ ≥ 0. If, instead, θ ≤ θ′ < 0, then ran(A−θ/2) ⊂
ran(A−θ

′/2) owing to the boundedness and positivity of A. Indeed, let v ∈
ran(A−θ/2), then there exists some u ∈ H such that v = A−θ/2u. So now v =
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A−θ
′/2A−(θ−θ′)/2u, so that in fact v ∈ ran(A−θ

′/2) and therefore ran(A−θ/2) ⊂
ran(A−θ

′/2). Therefore part (ii) is valid for all θ ≤ θ′.

If 0 ≤ θ ≤ θ′, then

uθ′(x) = Aθ
′/2(x− PSx) = A(θ′−θ)/2Aθ/2(x− PSx) = A(θ′−θ)/2uθ(x) .

If instead θ < 0 ≤ θ′, then uθ′(x) = Aθ
′/2(x−PSx) and A−θ/2uθ(x) = x−PSx,

from which

A(θ′−θ)/2uθ(x) = Aθ
′/2(x− PSx) = uθ′(x) .

Lastly, if θ ≤ θ′ < 0, then A−ξ/2uξ(x) = x− PSx for both ξ = θ and ξ = θ′,

and so from

x− PSx = A−θ/2uθ(x) = A−θ
′/2A(θ′−θ)/2uθ(x)

and A−θ
′/2uθ′(x) = x − PSx one deduces that uθ′(x) = A(θ′−θ)/2uθ(x).

As such, the identity is proved for all the possible cases. The inequality

ρθ′(x) ≤ ‖A‖(θ′−θ)/2
op ρθ(x) immediately follows from the boundedness of A.

This completes the proof of part (iii).

In the unbounded setting, in order to evaluate certain ρθ-functionals along

the sequence of the f [N ]’s, some extra assumptions on the initial guess f [0]

are necessary.

Lemma 6.2.15. Consider the θ-iterates f [N ] defined for a given θ ≥ 0 by

means of Definition 6.2.7 under the assumption g ∈ ranA ∩ C∞ (A). Then

(i) f [N ] ∈ CA,g (σ) for all σ ≥ 0,

(ii) f [N ] ∈ CA,g (σ) for any σ < 0 such that, additionally f [0] ∈ CA,g (σ), in

which case

(6.13) uσ(f [N ]) = pN(A)uσ(f [0]) ,

where pN(t) is the polynomial described in Proposition 6.2.13.
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Proof. Proposition 6.2.13 (iii) and the fact that g, f [0] ∈ C∞ (A) combine with

the interpolation result from Lemma 6.2.5 (iii), to give one that f [N ]−PSf [N ] ∈
D
(
Aσ/2

)
for all σ ≥ 0. This proves part (i).

Now assume that f [0] ∈ CA,g (σ) for some σ < 0. In this case, Proposi-

tion 6.2.13 (iii) reads

f [N ] − PSf [N ] = pN(A)(f [0] − PSf [0]) = pN(A)A−σ/2uσ(f [0]) ,

due to the definition (6.10) of uσ(f [0]). And so, due to the commutativity

of polynomials of A with A−σ/2 for the vector uσ(f [0]) (an application of

Theorem B.2.16), it is clear that f [N ] − PSf [N ] ∈ ranA−σ/2 and, again by

(6.10), it follows that uσ(f [N ]) = pN(A)uσ(f [0]). This completes the proof of

part (ii).

The indicator ρσ is going to be used as the suitable indicator of the

convergence. For the practical purposes, the most typical and meaningful

choices for ρσ(f [N ]) are the following

(6.14)

ρ0(f [N ]) =
∥∥f [N ] − PSf [0]

∥∥2

H

ρ1(f [N ]) =
〈
f [N ] − PSf [0], A(f [N ] − PSf [0])

〉
ρ2(f [N ]) =

∥∥A(f [N ] − PSf [0])
∥∥2

H ,

that are, respectively, the norm of the error, the so-called ‘energy’ (semi-)norm,

and the norm of the residual.

6.3 Measure-theoretic results

In this Section, some further technical properties that will be used to prove

the main result are shown.

The following technical results are measure-theoretic in nature, but neces-

sary to establish the convergence in the main result of the next section. A
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special role is played by the following measure

(6.15) dµσ (t) := d
〈
uσ(f [0]), E (t)uσ(f [0])

〉
defined under the assumption that f [0] ∈ CA,g (σ) for a given σ ∈ R, and

uσ(f [0]) as defined in (6.10). Clearly, by definition, µσ is a finite measure with

(6.16) µσ ([0,∞)) =

∫
[0,∞)

dµσ (t) =
∥∥uσ(f [0])

∥∥2

H .

Two relevant properties of µσ follow.

Proposition 6.3.1. For the given self-adjoint, positive operator A on H, and

for given g ∈ C∞ (A), σ ∈ R, f [0] ∈ C∞ (A) ∩ CA,g (σ), consider the measure

µσ defined by (6.15). Then one has

(i)

(6.17) dµσ (t) = tσd
〈
f [0] − PSf [0], E (t) (f [0] − PSf [0])

〉
,

(ii) the spectral value t = 0 is not an atom for µσ, i.e.,

(6.18) µσ ({0}) = 0 .

Proof. The identity (6.17) for σ ≥ 0 follows immediately from the definition

(6.15) and from the definition (6.10) of uσ(f [0]) = Aσ/2(f [0] − PSf [0]) owing

to the fact that

d 〈Aαψ, E (t)Aαψ〉 = λ2αd 〈ψ, E (t)ψ〉 ,

for all α ≥ 0 and ψ ∈ D (Aα) (a result from Proposition B.2.15).

If instead, σ < 0, then consider the auxiliary measures

dµ̃σ(t) := t−σdµσ (t) , dµ̂σ(t) := d
〈
f [0] − PSf [0], E (t) (f [0] − PSf [0])

〉
.



6.3. MEASURE-THEORETIC RESULTS 131

On an arbitrary Borel subset Ω ⊂ [0,∞) one then has

µ̃σ(Ω) =

∫
Ω

t−σ dµσ (t)

=

∫
[0,∞)

t−σχΩ dµσ (t)

=
∥∥A−σ/2E (Ω)uσ(f [0])

∥∥2

H

=
∥∥E (Ω)A−σ/2uσ(f [0])

∥∥2

H

=
∥∥E (Ω) (f [0] − PSf [0])

∥∥
H =

∫
Ω

dµ̂σ(Ω) ,

from using the definition (6.10) of f [0] − PSf [0] = A−σ/2uσ(f [0]), along with

(B.9). On a more technical note, the proof of
∥∥A−σ/2E (Ω)uσ(f [0])

∥∥2

H =∥∥E (Ω)A−σ/2uσ(f [0])
∥∥2

H requires a trivial modification of the proof of (B.9),

namely that of using a bounding sequence (Mn ∩ Ω)n∈N for the set Ω. This

shows that dµ̃σ(t) = dµ̂σ(t), from which one has (6.17). Part (i) is proved.

Moving on to part (ii), recall from Lemma 6.2.5 that f [0] − PSf [0] ∈
(kerA)⊥. Therefore, µ̂σ({0}) = 0 (Lemma 6.2.4 (i)). So, (6.17) implies also

that µσ ({0}) = 0.

Now a further set of technical results may be presented, specifically

concerning the polynomial pN in Proposition 6.2.13 (iii) of the ξ-iterates f [N ],

that correspond to the actual minimisation (6.7).

Proposition 6.3.2. For the given self-adjoint, positive operator A on H, and

for given g ∈ C∞ (A), σ ∈ R, f [0] ∈ C∞ (A) ∩ CA,g (σ) and ξ ≥ 0, let f [N ] be

the N -th ξ-iterate defined by (6.7) with initial guess f [0] and parameter θ = ξ,

and let

(6.19) sN := argmin
pN∈P

(1)
N

∫
[0,∞)

tξp2
N(t) d

〈
f [0] − PSf [0], E (t) (f [0] − PSf [0])

〉
for each N ∈ N. Then the following properties hold.

(i) One has

(6.20) f [N ] − PSf [N ] = sN(A)(f [0] − PSf [0]) ∀N ∈ N .
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(ii) The family (sN)N∈N is a set of orthogonal polynomials on [0,∞) with

respect to the measure

(6.21)
dνξ(t) := tξ−σ+1dµσ (t)

= tξ+1d
〈
f [0] − PSf [0], E (t) (f [0] − PSf [0])

〉
and satisfying deg sN = N and sN(0) = 1 for all N ∈ N.

(iii) One has

(6.22) ρσ(f [N ]) =

∫
[0,∞)

s2
N(t) dµσ (t) ∀N ∈ N .

Proof. Temporarily denote s̃N ∈ P(1)
N the polynomial that qualifies the iterate

f [N ] in Proposition 6.2.13 (iii) by means of the minimisation (6.7) with θ = ξ.

Then

argmin
h∈{f [0]}+KN (A,R0)

∥∥Aξ/2(h− PSh)
∥∥2

H =
∥∥Aξ/2(f [N ] − PSf [N ])

∥∥2

H

=
∥∥Aξ/2s̃N(A)(f [0] − PSf [0])

∥∥2

H

=

∫
[0,∞)

tξs̃2
N(t) d

〈
f [0] − PSf [0], E (t) (f [0] − PSf [0])

〉
.

Comparing the above with (6.19) it is immediate that s̃N must be the poly-

nomial sN . Therefore the equation in Proposition 6.2.13 (iii) takes the form

(6.20). This proves (i).

By way of (6.17), equation (6.20) may be rewritten

sN = argmin
pN∈P

(1)
N

∫
[0,∞)

tξ−σp2
N(t) dµσ (t) .

The minimising property of sN implies that

0 =
d

dε

∣∣∣∣
ε=0

∫
[0,∞)

tξ−σ(sN(t) + εtqN−1(t))2 dµσ (t)

= 2

∫
[0,∞)

tξ−σ+1sN(t)qN−1(t) dµσ (t)
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for any qN−1 ∈ PN−1 (indeed sN + εtqN−1 ∈ P(1)
N ). Therefore, owing to (6.21),∫

[0,∞)

sN(t)qN−1(t) dνξ(t) = 0 ∀qN−1 ∈ PN−1 .

As this condition is valid for all N ∈ N, it is well known [19, 92, 52] that this

amounts to saying that (sN)N∈N is a set of orthogonal polynomials on [0,∞)

with respect to the measure dνξ. The fact that sN(0) = 1 has already been

demonstrated in Proposition 6.2.13. Part (ii) is proved.

Now, if σ ≥ 0, then Proposition 6.2.13 (ii), (6.12), (6.17), and (6.20)

together yield

ρσ(f [N ]) =
∥∥Aσ/2(f [N ] − PSf [N ])

∥∥2

H =
∥∥Aσ/2sN(A)(f [0] − PSf [0])

∥∥2

H

=

∫
[0,∞)

s2
N(t) dµσ (t) .

If, instead, one has that σ < 0, then from (6.20), the identity (6.13) reads

uσ(f [N ]) = sN(A)uσ(f [0]) .

The latter identity, together with (6.12) and (6.15), yeild

ρσ(f [N ]) =
∥∥uσ(f [N ])

∥∥2

H =
∥∥sN(A)uσ(f [0])

∥∥2

H =

∫
[0,∞)

s2
N(t) dµσ (t) .

In either case, (6.22) is established, and part (iii) is proven.

Remark 6.3.3. The measure νξ too is finite, with

(6.23)

∫
[0,∞)

dνξ =
∥∥∥A ξ+1

2 (f [0] − PSf [0])
∥∥∥2

H
,

as is evident from (6.21). Actually, one could define νξ for arbitrary ξ ≥ −1,

but the restriction ξ ≥ 0 is kept because here ξ is the parameter required in

the definition of the ξ-iterates, and so must not be negative.

Remark 6.3.4. There is an implicit dependence on ξ in each sN , as is clear

from (6.19), analogously to the fact that the f [N ]’s depend on the choice
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of the parameter ξ. For convenience, this dependence is omitted from the

notation sN .

The key fact to take away from Proposition 6.3.2 (iii) is that the control

of the convergence of the f [N ]’s in the ρσ-sense is tantamount to monitoring

a precise spectral integral. As such, one may make use of both the properties

of the orthogonal polynomials sN and of the measure νξ together to ensure

appropriate convergence.

For convenience, the notation ŝN is used to denote the corresponding

monic polynomial to sN , i.e.,

(6.24) ŝN(t) :=

(
1

N !

dN

dtN

∣∣∣∣
t=0

)
sN(t) .

The following proposition uses some specialised, technical results from the

theory of orthogonal polynomials to establish some properties on the measure

νξ.

Proposition 6.3.5. Consider the set (sN)N∈N of orthogonal polynomials on

[0,∞) with respect to the measure νξ, as defined in (6.19) and (6.21) under

the assumptions of Proposition 6.3.2.

(i) For each N ∈ N, either sN(t) = 0 νξ-almost everywhere, or sN has

exactly N simple zeros, all located in (0,∞).

Assume now that the sN ’s are all non-vanishing with respect to the νξ measure,

and denote by λ
(N)
k the k-th zero of sN , ordering the zeros as

(6.25) 0 < λ
(N)
1 < λ

(N)
2 < · · · < λ

(N)
N .

(ii) (Separation.) One has

(6.26) λ
(N+1)
k < λ

(N)
k < λ

(N+1)
k+1 ∀k ∈ {1, 2, . . . , N − 1} ,

i.e., the zeros of sN and sN+1 mutually separate one another.
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(iii) (Monotonicity.) For each k ∈ N,

(λ
(N)
k )∞N=k is a decreasing sequence,

(λ
(N)
N−k+1)∞N=k is an increasing sequence.

(6.27)

In particular, the limits

(6.28) λ1 := lim
N→∞

λ
(N)
1 , λ∞ := lim

N→∞
λ

(N)
N

exist in [0,∞) ∪ {∞}.

(iv) (Representation.) The measure νξ is actually supported only in the

so-called ‘true interval of orthogonality’ [λ1, λ∞], and λ1 is not an atom

for νξ, namely

(6.29) νξ({λ1}) = 0 .

Here, and in the following, the symbol [λ1, λ∞] is understood as the

closure of (λ1, λ∞)

(v) (Orthogonality.) One has

(6.30)

∫
[0,λ

(N)
1 )

s2
N(t)

λ
(N)
1

λ
(N)
1 − t

dνξ(t) =

∫
[λ

(N)
1 ,∞)

s2
N(t)

λ
(N)
1

t− λ(N)
1

dνξ(t)

for any N ∈ N.

Proof. Part (i) is a standard fact from the theory of orthogonal polynomials

(see, e.g., [92, Theorem 3.3.1] or [52, Theorem 5.2]), from the fact that the

map

P([0,∞)) 3 p 7→
∫

[0,∞)

p(t) dνξ(t)

is a positive-definite functional on P([0,∞)).

Part (ii) is another standard fact from the theory of orthogonal polynomials

(see, e.g., [92, Theorem 3.3.2] or [19, Theorem I.5.3]).

Part (iii), is an immediate corollary of part (ii).
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For part (iv), recall [19, Definition I.5.2] that the true interval of or-

thogonality [λ1, λ∞] is the smallest closed interval containing all the zeros

λ
(N)
k . Moreover from [19, Theorem II.3.1], there exists a measure η in [0,∞)

supported only on [λ1, λ∞] such that the sN ’s remain orthogonal with respect

to η too and

τk :=

∫
[0,∞)

tk dνξ(t) =

∫
[λ1,λ∞)

tk dη(t) , ∀k ∈ N0 .

The η-measure is actually a Stieltjes measure associated with a bounded,

non-decreasing function ψ obtained as a point-wise limit of a subsequence of

(ψN)N∈N, where

ψN(t) :=


0 , t < λ

(N)
1 ,

A
(N)
1 + · · ·+ A

(N)
p , t ∈ [λ

(N)
p , λ

(N)
p+1) for p ∈ {1, . . . , N − 1} ,

µ0 , t ≥ λ
(N)
N

and A
(N)
1 , . . . , A

(N)
N are positive numbers determined by the Gauss quadrature

formula (see [19] for details)

τk =
N∑
p=1

A(N)
p (λ(N)

p )k , ∀k ∈ {0, 1, . . . , 2N − 1} .

Therefore,

η({λ1}) = ψ(λ1)− lim
t→λ−1

ψ(t) = 0 ,

because by part (ii) and (iii) λ1 < λ
(N)
1 for all N ∈ N, from which

ψ(λ1) = lim
N→∞

ψN(λ1) = 0

and

ψ(t) = lim
N→∞

ψN(t) = 0

for t < λ1.

Next, one sees that νξ = η, i.e., the Hamburger moment problem that
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guarantees that (sN )N∈N is an orthogonal system on [0,∞) is uniquely solved

with the measure νξ. This follows from the classical criterion [89, Theorem

2.9] for the uniqueness of the orthogonality measure (see [52, Theorem 8.3] for

a more modern discussion). Such a measure is unique if and only if w(z) = 0

for some z ∈ C, where

w(z) :=

(∑
N∈N

|ŝN(z)|2
)−1

and (ŝN (z))N∈N is the monic system obtained from (sN )N∈N (see (6.24)). This

is precisely the case on choosing z = −1 for w(−1) = 0, as owing to (6.24)

and (6.25), ŝn(t) =
∏N

k=1(t− λ(N)
k ), from which

ŝ2
N(−1) =

N∏
k=1

(−1− λ(N)
k )2 > 1 .

This shows that νξ = η, thus proving that νξ is supported only on [λ1, λ∞]

with νξ({λ1}) = 0.

Part (v) follows from the identity∫
[0,∞)

sN(t)qN−1(t) dνξ(t) = 0 ∀qN−1 ∈ PN−1 ,

which has already been considered in the proof of Proposition 6.3.2 as a

consequence of the orthogonality of the sN ’s, when the explicit choice

qN−1(t) :=
λ

(N)
1 sN(t)

λ
(N)
1 − t

is made.

Remark 6.3.6. Analogously to Remark 6.3.4, there is an implicit dependence

on ξ of all the zeros λ
(N)
k . For a more convenient notation, this dependence is

omitted.

In view of Proposition 6.3.5 (i), when the sN ’s are not identically zero,
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they may be explicitly represented as

(6.31) sN(t) =
N∏
k=1

(
1− t

λ
(N)
k

)
, ŝN(t) =

N∏
k=1

(t− λ(N)
k ) .

The integral (6.30) plays a major role in the proof of the main result,

and therefore the next technical lemma is needed to construct appropriate

bounds.

Lemma 6.3.7. Consider the set (sN )N∈N of orthogonal polynomials on [0,∞)

with respect to the measure νξ, as defined in (6.19) and (6.21) under the

assumptions of Proposition 6.3.2 and with the further restriction ξ−σ+1 ≥ 0.

Assume that the sN ’s are non-zero polynomials with respect to the measure

νξ. Then, for any N ∈ N,

(6.32)

∫
[0,λ

(N)
1 )

s2
N(t)

λ
(N)
1

λ
(N)
1 − t

dνξ(t) ≤ µσ

(
[0, λ

(N)
1 )

)(ξ − σ + 1

δN

)ξ−σ+1

,

where

(6.33) δN :=
1

λ
(N)
1

+ 2
N∑
k=2

1

λ
(N)
k

.

Remark 6.3.8. The estimate (6.32) provides a (ξ, σ)-dependent bound on

a quantity that is ξ-dependent only. This is only possible for a constrained

range of σ, namely σ ≤ ξ + 1.

Proof of Lemma 6.3.7. For each N ∈ N consider the function

[0, λ
(N)
1 ] 3 t 7→ aN(t) :=

λ
(N)
1 tξ−σ+1s2

N(t)

λ
(N)
1 − t

= tξ−σ+1

(
1− t

λ
(N)
1

)
N∏
k=2

(
1− t

λ
(N)
k

)2

(where the representation (6.31) is used for sN ), which is non-negative, smooth,

and such that aN(0) = aN(λ
(N)
1 ) = 0. Let t∗N ∈ (0, λ

(N)
1 ) be the point of
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maximum for aN . Then a′N(t∗N) = 0, which from a standard computation

yields

ξ − σ + 1 ≥ t∗N

(
1

λ
(N)
1

+ 2
N∑
k=2

1

λ
(N)
k

)
= t∗NδN ,

from which also

t∗N ≤
ξ − σ + 1

δN
.

Moreover, 0 ≤ 1− t/λ(N)
1 for t ∈ [0, λ

(N)
1 ] and for all k ∈ {1, . . . , N}, as λ

(N)
1

is the smallest zero of sN . Also, from examination of (6.31), it is immediate

that s2
N(t) ≤ 1 for t ∈ [0, λ

(N)
1 ]. Therefore,

aN(t) ≤ aN(t∗N) ≤ (t∗N)ξ−σ+1 ≤
(
ξ − σ + 1

δN

)ξ−σ+1

, t ∈ [0, λ
(N)
1 ] .

One may then conclude that∫
[0,λ

(N)
1 )

s2
N(t)

λ
(N)
1

λ
(N)
1 − t

dνξ(t) =

∫
[0,λ

(N)
1 )

aN(t) dµσ (t)

≤ µσ

(
[0, λ

(N)
1 )

)(ξ − σ + 1

δN

)ξ−σ+1

,

which completes the proof.

6.4 Main convergence result

Having the all the previous technical ingredients, the main result of this

Chapter may now be stated and proved.

Theorem 6.4.1. Let A be a self-adjoint, positive operator on the Hilbert

space H and let g ∈ ran ∩ C∞ (A). Consider the conjugate-gradient algorithm

associated with A and g where the initial guess vector f [0] satisfies

f [0] ∈ C∞ (A) ∩ CA,g (σ∗) , σ∗ = min{σ, 0}

for a given σ ∈ R, and where the iterates f [N ], N ∈ N, are constructed via
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(6.7) with parameter θ = ξ ≥ 0 under the condition σ ≤ ξ. Then

lim
N→∞

ρσ(f [N ]) = 0 .

In other words, the convergence holds at a given ‘A-regularity level’ σ for

ξ-iterates built with equal or higher ‘A-regularity level’ ξ ≥ σ, and with an

initial guess f [0] that is A-smooth if σ ≥ 0, and additionally belongs to the

class CA,g (σ) if σ < 0.

Remark 6.4.2. If, for a finite N , ρσ(f (N)) = 0, then the very iterate f (N) is

a solution to the linear problem Af = g, and one says that the algorithm ‘has

come to convergence’ in a finite number (N) of steps. Indeed, ρσ(f (N)) = 0 is

the same as A
σ
2 (f [N ]−PSf [0]) = 0 if σ ≥ 0, i.e., f [N ]−PSf [0] ∈ kerA

σ
2 = kerA;

this, combined with f [N ] − PSf [0] ∈ (kerA)⊥ (see Proposition 6.2.13 above),

implies that f [N ] = PSf [0] ∈ S. On the other hand, ρσ(f (N)) = 0 is the same

as uσ(f [N ]) = 0 with A−
σ
2 uσ(f [N ]) = f [N ] − PSf [0] if σ < 0, from which again

f [N ] = PSf [0] ∈ S.

Proof of Theorem 6.4.1. Obviously in the following, the assumption is that

none of the orthogonal polynomials sN , as defined by (6.19), vanish with

respect to the measure νξ introduced in (6.21). Otherwise, by Remark 6.4.2,

the conjugate-gradient algorithm has come to convergence in a finite number

of steps. The conclusion of Theorem 6.4.1 is then trivially true.

From the relation (6.21) between the measures µσ and νξ and the fact that

the latter is supported only on the true interval of orthogonality [λ1, λ∞] with

no atom at λ1 (Proposition 6.3.5 (iv)), the measure µσ too is only supported

on such an interval with µσ ({λ1}) = 0. Thus, in practise,

ρσ(f [N ]) =

∫
[λ1,λ∞]

s2
N(t) dµσ (t) .
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It is convenient to split integrals as follows

(6.34)

∫
[0,∞)

s2
N(t) dµσ (t) =

∫
[0,λ

(N)
1 )

s2
N(t) dµσ (t) +

∫
[λ

(N)
1 ,∞)

s2
N(t) dµσ (t)

≤ µσ

(
[0, λ

(N)
1 )

)
+

∫
[λ

(N)
1 ,∞)

s2
N(t) dµσ (t) ,

from the fact that s2
N(t) ≤ 1 for t ∈ [0, λ

(N)
1 ).

In what follows, it will be shown that

(6.35)

∫
[λ

(N)
1 ,∞)

s2
N(t) dµσ (t) ≤ 1

(λ
(N)
1 )ξ−σ+1

∫
[0,λ

(N)
1 )

s2
N(t)

λ
(N)
1

λ
(N)
1 − t

dνξ(t) .

Actually, (6.35) is a consequence of the properties of sN already discussed.

Indeed, consider the inequality

(6.36)

1 ≤

(
t

λ
(N)
1

)ξ−σ

=
1

(λ
(N)
1 )ξ−σ+1

· λ
(N)
1

t
· tξ−σ+1

≤ 1

(λ
(N)
1 )ξ−σ+1

· λ
(N)
1

t− λ(N)
1

· tξ−σ+1 (t ≥ λ
(N)
1 ) ,

which is valid owing to the constraint ξ − σ ≥ 0. Then,∫
[λ

(N)
1 ,∞)

s2
N(t) dµσ (t) ≤ 1

(λ
(N)
1 )ξ−σ+1

∫
[λ

(N)
1 ,∞)

s2
N(t)

λ
(N)
1

t− λ(N)
1

dνξ(t)

=
1

(λ
(N)
1 )ξ−σ+1

∫
[0,λ

(N)
1 )

s2
N(t)

λ
(N)
1

λ
(N)
1 − t

dνξ(t) ,

having used (6.21) and (6.36) in the first step, and (6.30) in the second. The

estimate (6.35) is now proved.

Now, plugging (6.35) into (6.34) and applying Lemma 6.3.7 yields

(6.37)

ρσ(f [N ]) =

∫
[0,∞)

s2
N(t) dµσ (t)

≤ µσ

(
[0, λ

(N)
1 )

)
+
µσ

(
[0, λ

(N)
1 )

)
(λ

(N)
1 )ξ−σ+1

(
ξ − σ + 1

δN

)ξ−σ+1

.
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The second summand on the right hand side of (6.37) is estimated as

(6.38)
µσ

(
[0, λ

(N)
1 )

)
(λ

(N)
1 )ξ−σ+1

(
ξ − σ + 1

δN

)ξ−σ+1

≤ (ξ − σ + 1)ξ−σ+1µσ

(
[0, λ

(N)
1 )

)
,

due to the fact that λ
(N)
1 δN ≥ 1 (as seen from (6.33)) and the exponent

ξ − σ + 1 is positive. Thus

(6.39) ρσ(f [N ]) ≤
(
1 + (ξ − σ + 1)ξ−σ+1

)
µσ

(
[0, λ

(N)
1 )

)
.

Recalling that µσ

(
[0, λ

(N)
1 )

)
= µσ

(
[λ1, λ

(N)
1 )

)
, clearly

µσ

(
[0, λ

(N)
1 )

)
N→∞−−−→ 0

because λ
(N)
1 → λ1 from above, and µσ ({λ1}) = 0. This, incidentally, also

covers the case when λ1 = 0, as µσ ({0}) = 0 as already discussed.

As a consequence of the above, ρσ(f (N))→ 0 as N →∞.

Remark 6.4.3. In the special case that A is actually everywhere defined

and bounded, then the A-smoothness assumption (i.e., f [0], g ∈ C∞ (A)) is

automatically satisfied. Therefore, one only need assume that g ∈ ranA, i.e.,

that the problem Af = g is actually solvable, along with f [0] ∈ CA,g (σ∗) for

some σ ∈ R (where σ∗ = min{σ, 0}), for the convergence ρσ(f [N ])→ 0 of the

ξ-iterates to hold (ξ ≥ σ). Then, due to Lemma 6.2.14, one automatically

has that ρσ′(f
[N ]) → 0 for any σ′ ≥ σ. This is exactly what was originally

stated by Nemirovskiy and Polyak [64].

Therefore, in the bounded case, if σ is the minimum level of convergence,

then not only are the ξ-iterates with ξ ≥ σ proven to ρσ-converge, but in

addition they also ρσ′-converge at any other level σ′ ≥ σ.

This is all in contrast to the unbounded case, where the above comments

generally cannot be exported.

Remark 6.4.4. In retrospect, the assumption ξ ≥ σ was necessary to estab-

lish the bound (6.35), but more precisely, the inequality (6.36). In the other
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steps, namely in (6.37) (which is an application of Lemma 6.3.7) and (6.38),

only the less restrictive assumption ξ − σ + 1 ≥ 0 was needed.

Remark 6.4.5. Estimate (6.39) in the proof shows that the vanishing rate

of ρσ(f [N ]) is actually controlled by the vanishing rate of µσ

(
[λ1, λ

(N)
1 )

)
.

In the original work by Nemirovskiy and Polyak [64], the vanishing rate of

ρθ(f
[N ]) was actually quantified for some θ > σ (c.f. Chapter 2, Theorem 2.3.6).

Here, it is impossible for one to modify the polynomial min-max argument

used in [64], as the original argument relies on the finiteness of the interval

over which the orthogonal polynomials sN have their zeros (i.e., it relies on

the boundedness of σ(A)).

As such, for a general unbounded A, it is reasonable to expect that

convergence rates for ρσ(f [N ]) may be arbitrarily slow. That is to say, that

during the course of running the algorithm and monitoring convergence for a

finite number of iterations, it may appear that the estimate ρσ(f [N ]) stagnates

to some finite value above 0. In reality however, the vanishing of ρσ(f [N ]) is

guaranteed in the limit N →∞.

Remark 6.4.6. In Nemirovskiy and Polyak [64], the authors provide, for the

A-bounded case, an explicit convergence rate for any ρθ(f
[N ]) where θ ∈ (σ, ξ]

based on the polynomial min-max argument as mentioned in Remark 6.4.5.

The convergence rate presented in [64, Theorem 7] is

(6.40) ρθ(f
[N ]) . (2N + 1)−2(θ−σ)ρσ(f [0]) ,

which, in addition, was proven to be the optimal rate for the class of positive,

bounded operators on H [65].

As the arguments leading to this rate cannot be repeated for the unbounded

case, it is reasonable to expect that this rate may be violated in the A-

unbounded setting. Section 6.5 contains numerical evidence illustrating this

phenomenon.

Remark 6.4.7. Where exactly the true interval of orthogonality lies within

[0,+∞) depends on the behaviour of the zeroes of the sN ’s. In particular, in

terms of the quantity δN defined in (6.33), there are two alternative scenarios:
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(i) Case I: δN →∞ as N →∞;

(ii) Case II: δN remains uniformly bounded, strictly above 0, in N .

If the operator A is bounded, then Case I applies. Indeed, the orthogonal

polynomials sN are defined on σ(A) ⊂ [0, ‖A‖op], and their zeroes cannot

exceed ‖A‖op, forcing δN to blow up with N . Moreover, λ∞ = limN→∞ λ
(N)
N <

∞.

If instead A is unbounded, the λ
(N)
k ’s fall in [0,∞) and depending on their

rate of possible accumulation at infinity δN may still diverge as N →∞ or

stay bounded.

Clearly in Case II one has λ1 > 0 and λN =∞, for otherwise the condition

λ1 = limN→∞ λ
(N)
1 = 0 or λ∞ = limN→∞ λ

(N)
N < ∞ would necessarily imply

δN →∞. Thus, in Case II the true interval of orthogonality is [λ1,∞) and it

is separated from zero.

Remark 6.4.8. It is worth mentioning that the convergence phenomena

explained in Theorem 6.4.1 for the conjugate gradient method, i.e., precisely

the case that the f [N ]’s are the 1-iterates, guarantees convergence of the

error term ρ0(f
[N ]) =

∥∥f [N ] − PSf [0]
∥∥2

H, however it may still happen that

the residual term ρ2(f [N ]) =
∥∥Af [N ] − g

∥∥2

H = ‖RN‖2
H diverges. Therefore in

the more general setting that ξ < 2, a-priori one does not have convergence

guaranteed in the graph norm of the operator A.

This lack of control on the graph norm convergence is from a combination

of the subtle restriction that σ ≤ ξ in the proof of Theorem 6.4.1, along with

the fact that in Lemma 6.2.14 point (iii) only holds when A is bounded. In

other words, due to the possible unboundedness of A, one is unable to control

the convergence in a higher regularity than σ = ξ(< 2). Indeed, Section 6.5

contains numerical evidence of this phenomenon.

Of course then, to have a guaranteed control of the residual convergence

one must pick ξ ≥ 2. In the special case of ξ = 2, this corresponds to a

residual minimisation scheme at each step N .

Remark 6.4.9. In the original proof from [64] the vanishing of the ρσ(f [N ])’s

was guaranteed by the blowing up of the sum δN , along with the simultaneous
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vanishing of a cleverly chosen sequence (γN )N∈N, where γN = min{λ(N)
1 , δ

1/2
N }

for all N ∈ N. In [64], instead of splitting the integral as in (6.34), the authors

separate it into small and large spectral values at the threshold γN . After a

somewhat lengthy analysis, Nemirovskiy and Polyak reduce both parts of the

integral for t < λ
(N)
1 and t ≥ λ

(N)
1 to one over [0, γN). These facts, together

with µσ ({0}) = 0, were necessary to guarantee the vanishing of the ρσ(f [N ])’s.

On the other hand, the proof in this Chapter bypasses the use of γN by

using the properties of the orthogonal polynomials generated by the general

iteration method (6.7). More specifically,

(i) the uniqueness of the measure νξ (and hence µσ),

(ii) the interval of support for µσ,

(iii) and the fact that µσ has no atom at λ1,

all together control the convergence using continuity properties of measures.

This allows one to simultaneously consider cases where δN is bounded or

unbounded in the limit N → ∞ and do away with the sequence (γN)N∈N,

effectively making this proof independent of the behaviour of δN and γN . In

the case that δN remains uniformly bounded above 0 (only possible when A

is unbounded), the original argument in [64] cannot be suitably modified, and

an argument as used in this work becomes necessary.

6.5 Numerical Tests and Examples

In this Section some basic numerical tests that illustrate the main features are

discussed, particularly in contrast to the bounded case. Here, H = L2(R) is

the choice of Hilbert space. Throughout the numerical computations, symbolic

packages are used to bypass the discretisation of the problem. There are

four main tests covering two differential operators, and two solution functions

f(x), for the inverse linear problem (Af)(x) = g(x), used to generate the

datum g(x).

1. A = − d2

dx2
+ 1, D (A) = H2(R)
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(a) f(x) = exp(−x2), g(x) = (3− 4x2) exp(−x2)

(b) f(x) = 1
1+x2

, g(x) = 1
1+x2

+ 2
(1+x2)2

− 8x2

(1+x2)3

2. A = − d2

dx2
, D (A) = H2(R)

(a) f(x) = exp(−x2), g(x) = (2− 4x2) exp(−x2)

(b) f(x) = 1
1+x2

, g(x) = 2
(1+x2)2

− 8x2

(1+x2)3

where H2 denotes the Sobolev space of the second order. The operator

A = − d2

dx2
+1 has a bounded, everywhere defined inverse, while A = − d2

dx2
does

not have a bounded inverse on its range. In both cases, A is positive definite

(and thus injective), and f ∈ H2(R)∩C∞ (A) ensuring that g ∈ ranA∩C∞ (A).

Numerical approximations to the linear inverse problem Af = g are

constructed using the initial guess f [0] = 0, the zero function on R, and the

conjugate-gradient method, i.e., the ξ-iterates f [N ] for the case ξ = 1. Each

f [N ] is in the Krylov subspace KN (A, g) = span
{
g, Ag, . . . , AN−1g

}
, and

as g and f [0] are smooth, the 1-iterates f [N ], and thus K (A, g), are indeed

well-defined.

In practice, the minimisation (6.7) for θ = ξ = 1 is implemented using the

equivalent algebraic construction for the f [N ]’s [55, 87], along with symbolic

computation packages.

The behaviour of the convergence is monitored using the three indicators

(6.14) as N increases. Obviously f [0] ∈ CA,g (σ) for all σ ≥ 0, so that

Theorem 6.4.1 guarantees that ρσ(f [N ])→ 0 as N →∞ for any σ ∈ [0, 1]. In

the bounded case, the residual ρ2(f [N ]) would also be guaranteed to vanish

(c.f., Lemma 6.2.14), yet this is not guaranteed a-priori in the unbounded

setting.

Another meaningful quantity that is measured is N2ρ1(f
[N ]). Indeed, if

A was bounded the quantity ρ1(f [N ]) is predicted to vanish not slower than

N−2, as may be seen in (6.40). Detecting the failure of N2ρ1(f [N ]) to remain

uniformly bounded with N is a signature of the fact that one cannot apply the

convergence rate analysis by Nemirovskiy and Polyak [64] for the A-bounded

setting to the A-unbounded setting.

The results of the numerical tests are shown in Figures 6.1 to 6.4.
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(a) ρ0(f
[N ]) vs N .
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(b) ρ1(f
[N ]) vs N .
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(c) N2ρ1(f
[N ]) vs N .
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(d) ρ2(f
[N ]) vs N .

Figure 6.1: Numerical tests for case 1 (a).
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(a) ρ0(f
[N ]) vs N .
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(b) ρ1(f
[N ]) vs N .
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(c) N2ρ1(f
[N ]) vs N .
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(d) ρ2(f
[N ]) vs N .

Figure 6.2: Numerical tests for case 1 (b).
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Figure 6.3: Numerical tests for case 2 (a).
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Figure 6.4: Numerical tests for case 2 (b).
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Case 1 (a) (Figure 6.1) reveals that the iterates converge in the sense of the

error ρ0(f [N ]) and the energy norm error ρ1(f [N ]), as predicted by the theory,

but also in the residual sense ρ2(f [N ]). Moreover, the classical Nemirovskiy

and Polyak convergence rate for ρ1(f [N ]) is not violated, as N2ρ1(f [N ]) clearly

decays.

In Case 2 (a) (Figure 6.3), the invertibility of A over all of H is lost, and

here one sees that all the indicators of convergence, ρ0(f
[N ]), ρ1(f

[N ]), and

ρ2(f [N ]) all approach zero as N increases. Yet, the Nemirovskiy and Polyak

convergence rate is violated, as N2ρ1(f [N ]) clearly increases with N .

In contrast to Cases 1 (a) and 2 (a), Cases 1 (b) and 2 (b) are performed

using a function f(x) that does not decay as a Gaussian, but instead has

a long tail at large x. This feature now affects the convergence at higher

regularity levels. More precisely, Case 1 (b) (Figure 6.2) shows the vanishing

of ρ0(f [N ]), ρ1(f [N ]), and ρ2(f [N ]), but unlike Case 1 (a), it now violates the

Nemirovskiy and Polyak convergence rate for ρ1(f
[N ]) as one clearly sees

N2ρ1(f [N ]) increasing with N .

Case 2 (b) (Figure 6.4) again confirms the theory predicted by Theo-

rem 6.4.1 in that ρ0(f
[N ]) and ρ1(f

[N ]) decay with N to zero, but again,

the latter does not follow the Nemirovskiy and Polyak convergence rate as

N2ρ1(f [N ]) is clearly not uniformly bounded with N . More seriously in this

case, the residual ρ2(f [N ]) clearly fails to converge.
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Chapter 7

Future Perspectives

7.1 Two remaining questions

From the previous chapters there still are some remaining questions, mostly

regarding concrete examples of theoretical properties already discussed. More

specifically, still, it remains

1. to produce an operator A : H → H, injective, densely defined, closed

and unbounded, with a g ∈ H such that given f ∈ D (A) with Af = g,

one also has PKf ∈ D (A). Recall that PK is the orthogonal projection

onto the space K (A, g). Having PKf ∈ D (A) is a requirement of

Proposition 5.4.4.

Clearly though, by the conjugate-gradient analysis of Chapter 6, some

A = A∗ ≥ 0 with g ∈ ranA ∩ C∞ (A) does the job,

2. to produce some operator A = A∗ such that K (A, g) is not a core for

A|K(A, g)∩D(A). And, additionally, to have A such that it is not Krylov

reducible.

7.2 Krylov methods and perturbed spectra

An intriguing area to investigate is the notion of Krylov solvability under

perturbations of the operator A (which may also be cast as a perturbation
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in the datum g), and under what conditions Krylov-solvability ‘survives’ in

the vanishing limit of the perturbation. To be a bit more clear, this is the

investigation of the linear inverse problem on Hilbert space H

(7.1) Aεfε = g ,

where Aε is a perturbation in ‖·‖op of a known operator A ∈ B(H), g is the

datum, and fε is the solution to the perturbed equation (7.1) (if one exists).

Generally speaking, perturbations of a linear operator can have very wild

effects on the spectral properties. However, it is known that for the class of

operators B(H), the spectrum is upper semicontinuous under a perturbation

in the operator norm [51, Chapter IV, Theorem 3.1]. This leads to the

following proposition.

Proposition 7.2.1. Let A ∈ B(H) be a class-K operator, as described

in Theorem 4.4.6, and consider the linear inverse problem Af = g, for

g ∈ H. Then there exists some ε0 > 0 such that for all Aε ∈ B(H) with

‖A− Aε‖op < ε0, the linear inverse problem Aεfε = g is Krylov solvable.

In particular, the Krylov solvability of the perturbed linear inverse problem

Aεfε = g survives in the limit ε→ 0.

Proof. Consider the operator A and closed curve Γ as described in the proof

of Theorem 4.4.6. Then by [51, Chapter IV, Theorem 3.1 & Remark 3.3], as

Γ ⊂ ρ(A) is compact, there exists some ε0 > 0 such that for any Aε ∈ B(H)

with ‖A− Aε‖op < ε0, the curve Γ is contained in the resolvent ρ(Aε) and

contains σ(Aε) in its enclosure. Then by applying Theorem 4.4.6, the result

follows.

So, a family of operators (Aε) ⊂ B(H) that converges in operator norm

to some A ∈ B(H) as ε vanishes, with the properties as described in Theo-

rem 4.4.6, has that the Krylov solvability of Aεfε = g survives in the vanishing

limit.

Although the problem Afε = gε, for a perturbed datum gε, may be

constructed in the form Aεfε = g, in general K (A, gε) 6= K (Aε, g). So

exactly the Krylov space to consider is also a non-trivial question.
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To unmask these ideas a few small, yet informative, examples are presented

in what follows.

Example 7.2.2. This first example considers the situation of Krylov solv-

ability being lost in the limit of ε→ 0.

Consider the unweighted right-shift operator R on `2(Z) (see Appendix A).

This operator is unitary and cyclic. It is also known that for the vector g = e1,

the solution to Rf = g, f = e0, is perpendicular to K (R, g). Yet, as R
is cyclic, the set of cyclic vectors is dense in H [40]. So, choosing a vector

gε ∈ H that is cyclic and arbitrarily close to g in the H-norm generates the

whole Hilbert space. The problem under this perturbation is

Rfε = gε

which is obviously Krylov solvable. Moreover, this may actually be re-cast in

terms of a perturbation of the operator R as was stated above. Indeed, let

v = gε − g, so that (
R− 1

‖fε‖2
H
|v〉 〈fε|

)
fε = Rεfε = g .

But considering the Krylov spaces generated from perturbation of the datum,

fε ∈ K (R, gε), and yet f /∈ K (R, g) when ε = 0. This is a case of when the

ε-Krylov solvable problem is not Krylov solvable in the limit ε→ 0.

Example 7.2.3. Let A ∈ B(H) be self-adjoint, positive definite and such

that 0 ∈ σ(A), with σ(A) ⊂ [0, ‖A‖op]. Consider the linear inverse problem

Af = g with g ∈ ranA, and some ε > 0.

Let Aε = A+ ε1, so that 0 ∈ ρ(Aε). Then consider the perturbed linear

inverse problem Aεfε = g. This is a case of both the perturbed problem and

the unperturbed problem being Krylov solvable, i.e., one has fε ∈ K (Aε, g)

and f ∈ K (A, g). So, in this case, the ε-Krylov solvable problem remains

Krylov solvable in the limit ε→ 0.

Example 7.2.4. For concreteness, consider the operator A : `2(N)→ `2(N)

with the properties as described in Example 7.2.3, defined by en 7→ 1
n
en
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for all n ∈ N, where (en)n∈N is the canonical basis. Take some generic

g ∈ ranA, namely g =
∑

n∈N gnen, so that clearly for the linear inverse

problem Af = g, one has the solution f =
∑

n∈N ngnen. As g ∈ ranA, clearly∑
n∈N n

2|gn|2 <∞.

Now considering the perturbed problem Aεfε = g, where Aε = A+ε1, the

solution to the perturbed case is fε =
∑

n∈N(ε+ 1/n)−1gnen. Comparing the

solution to the perturbed an unperturbed problem, one has that ‖f − fε‖H →
0 as ε→ 0. Indeed,

f − fε =
∑
n∈N

(
n− 1

ε+ 1
n

)
gnen ,

and n− (ε+ 1/n)−1 = εn2/(1 + εn) so that

‖f − fε‖2
H =

∑
n∈N

ε2n4

(1 + εn)2
|gn|2 .

As n4/(1 + εn)2 = n2/(1/ε + n)2 ≤ n2, due to dominated convergence, one

has that ‖f − fε‖2
H → 0 as ε→ 0.

The above examples illustrate two scenarios:

(i) ε-dependent problems that are Krylov solvable for ε > 0 and when

ε = 0.

(ii) ε-dependent problems that are Krylov solvable for ε > 0 but not Krylov

solvable for ε = 0.

Example 7.2.4 also unmasks the situation where there is strong convergence

of the perturbed solution fε to the unperturbed solution f , although the

unperturbed operator A has an unbounded inverse.

This theory at such a general level presents an interesting area to explore,

and develop conditions by which one may investigate the Krylov solvability

of linear inverse problems by an auxiliary (i.e., perturbed) equation. An

advantage being that the perturbed equation may be simpler to analyse than

the unperturbed problem.
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Some particular applications of the development of this theory could

include the investigation of what are known as boundary layer problems using

Krylov methods. The differential systems that give rise to these problems are

classically known as singularly perturbed equations. This name arises from the

fact that the solution to the perturbed problem in the vanishing limit ε→ 0

does not approach the unperturbed solution ε = 0 in an appropriate norm

[95]. Under these singular perturbations of an operator A to Aε, the nature

of the equation Af = g fundamentally changes, hence the appearance of a

boundary layer where the derivative changes rapidly [8, 95]. Some classical

examples from physical systems include flow around an aerofoil [60] and also

thermal boundary layer problems present in heat transfer [47]. An example

of this in quantum physics is the perturbation of the Schrödinger equation by

the Laplacian, known in this context as a “semi-classical” limit [62].

7.3 Krylov methods applied to Friedrichs sys-

tems

Another area that is planned for an investigation using Krylov methods is

that of the Krylov solvability of Friedrich systems. Friedrichs systems are a

class of densely defined linear differential operators. In the abstract complex

Hilbert space setting, a Friedrichs system is formulated as follows. Let D ⊂ H
be a dense subspace and T, T̃ : D → H be linear operators satisfying

〈ψ, Tϕ〉 =
〈
T̃ψ, ϕ

〉
∀ϕ, ψ ∈ D ,(7.2)

∃ c > 0 such that ∀ϕ ∈ D
∥∥∥(T + T̃

)
ϕ
∥∥∥
H
≤ c ‖ϕ‖H ,(7.3)

usually in addition to a coercivity-type condition

(7.4)
〈
ϕ,
(
T + T̃

)
ϕ
〉
≥ 2µ0 ‖ϕ‖2

H ∀ϕ ∈ D

for some µ0 > 0 [3, 2]. Some nice examples of Friedrichs systems may be

found in [3]. As typically Friedrichs systems are differential operators, the
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operators T , T̃ defined by the conditions (7.2) and (7.3) are assumed to be

unbounded.

Certainly, conditions have been developed to permit the treatment of these

types of equations with finite-element methods under particular boundary

conditions [29]. These conditions amount to the restriction of the operator

to certain subspaces that ensure one has a homeomorphism, which is then

suitable for treatment with finite-element methods. But unbounded Krylov

methods may be able to provide new insights and methods into equations

that are unsuitable for treatment with finite-element techniques. This would

effectively mean that one could remove conditions on the boundary that

guarantee boundedness and invertability of the operator.



Appendix A

Frequently Used Operators

Multiplication operator on `2(N)

Let (en)n∈N denote the canonical orthonormal basis of `2(N). For a given

bounded sequence a ≡ (an)n∈N ⊂ C, the multiplication operator is M (a) :

`2(N)→ `2(N) and its action defined by M (a)en = anen ∀n ∈ N, then extended

by linearity and density of the basis in `2(N). Hence

(A.1) M (a) =
∞∑
n=1

an |en〉 〈en| ,

that converges in the strong operator topology. M (a) is bounded with norm∥∥M (a)
∥∥

op
= supn |an| and the spectrum σ(M) = {an}n∈N. The adjoint is

the multiplication operator defined by the conjugate sequence a∗ ≡ (a∗n)n∈N,

i.e., M∗ = M (a∗), and thus M (a) is a normal operator. If a = a∗, then one

immediately has that M (a) is self-adjoint, and if limn→∞ an = 0, then M (a) is

compact.

Right- & left-shift operator on `2(N)

The right-shift operator R : `2(N)→ `2(N) is defined by Ren = en+1 for all

n ∈ N, then extended by linearity and density to `2(N), i.e.,

(A.2) R =
∞∑
n=1

|en+1〉 〈en| ,
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that converges in the strong operator topology. R is an isometry, i.e.,

‖Ru‖`2(N) = ‖u‖`2(N) for all u ∈ `2(N), and ranR = {e1}⊥. It is bounded with

‖R‖op = 1, injective, and invertible on its range with bounded inverse

(A.3) R−1 : ranR→ `2(N) , R−1 =
∞∑
n=1

|en〉 〈en+1| .

The adjoint of R on `2(N) is the left-shift operator L : `2(N) → `2(N),

defined by Len+1 = en, again extended by linearity and density to `2(N), i.e.,

(A.4) L =
∞∑
n=1

|en〉 〈en+1| , R∗ = L .

L inverts R on its range, i.e., LR = 1, but RL = 1 − |e1〉 〈e1|. Hence

kerL = kerR∗ = span {e1}. Also, ‖L‖op = 1.

Both L and R have the same spectrum σ(L) = σ(R) = {z ∈ C; |z| ≤ 1}.
R has no eigenvalues, whereas the eigenvalues of L form the open unit ball

{z ∈ C; |z| < 1}.

Clearly the resolvent sets for L and R contain the set {z ∈ C; |z| > 1}.
This is a consequence of ‖R‖op = ‖L‖op = 1.

To show that every value of z ∈ C such that |z| < 1 is an eigenvalue of L,

consider the vector u ∈ `2(N)

u =
∑
n∈N

znen ,

then one has Lu = z
∑

n∈N z
nen = zu, so that z ∈ σ(L). As the spectrum is

closed, then clearly σ(L) is the closed unit disc.

To show that the right-shift has no eigenvalues for |z| ≤ 1, one may

consider the generic vector u ∈ `2(N)

u =
∑
n∈N

unen ,

and by contradiction, assume that there is some `2(N) sequence (un)n∈N such
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that Ru = zu. One obtains the recurrence relation for the sequence (un)n∈N

un+1 = zun ,

so that un = z−1un+1. Then

u =
∑
n∈N

z−n+1u1e1 ,

which is not in `2(N) (unless u = 0) as z−n+1 →∞ as n→∞. Therefore R

has no eigenvalues.

Showing that the spectrum of R is the unit disc requires more work.

Consider any u ∈ `2(N) and |z| < 1, with

u =
∑
n∈N

unen ,

and by contradiction, assume that R−z1 is a bijection, i.e., z ∈ ρ(R). Choose

any v ∈ `2(N),

v =
∑
n∈N

vnen ,

and consider (R− z1)u = v, which has a unique solution u ∈ `2(N). Immedi-

ately one has the following

(R− z1)u =
∑
n≥2

(un−1 − zun)en − zu1e1 = v ,

that leads to the following recurrence formula v1 = −zu1, v2 = u1 − zu2, etc,

or more generally

vn = −
n−1∑
i=1

1

zn−i
vi − zun .

Clearly, un → 0 as n → ∞. As v ∈ `2(N) is arbitrary, choose vi = zi that

ensures v ∈ `2(N). In this particular case the following relationship is obtained

for un.

zn = vn =
n−1∑
i=1

1

zn
− zun ,
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however, as 1
|zn| →∞ as n→∞, it is clear that un →∞ as n→∞ which

violates u ∈ `2(N). Therefore, R − z1 is not bijective for |z| < 1. As the

spectrum is closed, σ(R) is the closed unit disc in C.

Compact (weighted) left- & right-shift operator on `2(N)

This is the operator R : `2(N)→ `2(N) defined by

(A.5) R =
∞∑
n=1

σn |en+1〉 〈en| ,

that converges in the operator norm, where σ ≡ (σn)n∈N is a given bounded

sequence such that 0 < σn+1 < σn ∀n ∈ N and limn→∞ σn = 0. R is

injective and compact with (A.5) the singular value decomposition, and

‖R‖op = σ1, ranR = {e1}⊥. The adjoint of R is the compact left-shift

operator L : `2(N)→ `2(N) defined by

(A.6) L =
∞∑
n=1

σn |en〉 〈en+1| = R∗ ,

where convergence of the series occurs in the operator norm. Moreover,

LR = M (σ2) and RL = M (σ2) − σ2
1 |e1〉 〈e1|. Also ‖L‖op = σ1.

Weighted (compact) left- & right-shift operator on `2(Z)

The compact right shift is the operator R : `2(Z) → `2(Z) defined by the

operator norm convergent series

(A.7) R =
∑
n∈Z

σ|n| |en+1〉 〈en| ,

where σ ≡ (σn)n∈N is a given bounded sequence such that 0 < σn+1 < σn

∀n ∈ N and limn→∞ σn = 0. R is injective and compact with ranR dense in

`2(Z) and norm ‖R‖op = σ0. (A.7) is the singular value decomposition of R.



163

The adjoint of R is the compact left shift on `2(Z)

(A.8) R∗ = L =
∑
n∈Z

σ|n| |en〉 〈en+1| .

Also, LR = M (σ2) = RL, and L has dense range.

The inverse operators of both R and L are densely defined, surjective,

unbounded operators with actions given by the strong operator topology

convergent series

(A.9) R−1 =
∑
n∈Z

1

σ|n|
|en〉 〈en+1| , L−1 =

∑
n∈Z

1

σ|n|
|en+1〉 〈en| .

Volterra operator on L2[0, 1]

The Volterra operator V : L2[0, 1]→ L2[0, 1] is defined by the integral

(A.10) (V f)(x) =

∫ x

0

f(y) dy x ∈ [0, 1] .

V is a compact, injective operator with spectrum σ(V ) = {0}, and norm

‖V ‖op = 2
π
. The adjoint V ∗ acts as

(A.11) (V ∗f)(x) =

∫ 1

x

f(y) dy , x ∈ [0, 1] ,

so that V + V ∗ is the rank-one orthogonal projection

(A.12) V + V ∗ = |1〉 〈1| ,

onto the function 1(x) = 1. The singular value decomposition of V is

(A.13) V =
∞∑
n=0

σn |ψn〉 〈ϕn| ,
σn = 2

(2n+1)π

ϕn(x) =
√

2 cos (2n+1)π
2

x

ψn(x) =
√

2 sin (2n+1)π
2

x ,

where both (ψn)n∈N0 and (ϕn)n∈N0 are orthonormal bases for L2[0, 1]. There-

fore, ranV is dense, but strictly contained in L2[0, 1], for example 1 /∈ ranV .
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The resolvent function (z1− V )−1 for z ∈ C \ {0} is expressed by

(A.14) (z1− V )−1ψ = z−1ψ + z−2

∫ x

0

e
x−y
z ψ(y) dy ,

for all ψ ∈ L2[0, 1]. The explicit action of powers of V is given by

(A.15) (V nf)(x) =
1

(n− 1)!

∫ x

0

(x− y)n−1f(y) dy , n ∈ N .

Multiplication operator on a disc in L2(Ω)

The multiplication operator Mz : L2(Ω) → L2(Ω) is defined by the action

f 7→ zf , where

(A.16) Ω :=

{
z ∈ C;

∣∣∣∣z − 3

4

∣∣∣∣ < 1

2

}
.

Mz is normal, with adjoint (Mz)
∗ = Mz, norm ‖Mz‖op = 1, and spectrum

σ(Mz) = Ω with no eigenvalues. Furthermore, Mz is a bijection, as 1
z
∈ L2(Ω)

and M−1
z = M 1

z
.

Firstly, consider ζ ∈ C \ Ω. Then given any f ∈ L2(Ω), one has that

(ζ1−Mz)f = (ζ − z)f ∈ L2(Ω). As such, (ζ1−Mz)
−1 = M(ζ−z)−1 and this is

a bounded linear operator, meaning that ζ ∈ ρ(Mz). One may see this by the

fact that |ζ − z| ≥ dist(ζ,Ω) > 0 ensuring that |ζ − z|−1 ≤ dist(ζ,Ω)−1 <∞,

and therefore given any g ∈ L2(Ω), one has that (ζ − z)−1g ∈ L2(Ω).

If, on the other hand, ζ ∈ Ω, then taking g ∈ L2(Ω) to be g =
√
ζ − z,

then (ζ1−Mz)
−1g = 1√

ζ−z /∈ L
2(Ω). Therefore, ζ ∈ σ(Mz).

Lastly, to see that there are indeed no eigenvalues of Mz, by contradiction

assume that f 6= 0 a.e. is an eigenvector with eigenvalue λ. Then Mzf = λf

which implies that (λ− z)f = 0, and therefore z = λ on the support of f in

Ω, which is not of zero measure. This is impossible, so Mz has no eigenvalues.



Appendix B

Operator Theory Miscellanea

The definitions, theorems and proofs here are intended to provide an outline

to some operator theoretic notions to supplement the materials presented

in Chapters 4, 5, and 6. The basic outlines, along with some proofs of

fundamental results, are illsutrated, of course with no pretention of providing

a full account of the topics discussed herein. For a full account, the reader is

referred to the following monographs [88, 51, 77, 6, 76].

B.1 The graph of an operator

Definition B.1.1. The graph space of a linear operator A : H → H with

domain D (A) in Hilbert space H is the subset

(B.1) G (A) := {(x,Ax) |x ∈ D (A)}

of the Banach space H × H, where H × H has the metric ‖(x, y)‖2
H×H =

‖x‖2
H + ‖y‖2

H. The corresponding graph norm defined on G (A) is ‖·‖2
G(A) :=

‖·‖2
H + ‖A·‖2

H. An operator A is said to be closed if G (A) = G (A).

The graph space inherits the subspace topology of H×H. Many standard

properties of closed operators and graph spaces may be found in standard

functional analysis texts (e.g., [10, 51]).
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Remark B.1.2. For any linear operator A : H → H, its closedness it

tantamount to saying that for every convergent sequence ((un, Aun))n∈N ⊂
G (A) one has

(B.2)

un → u ∈ D (A)

Aun → v ∈ H
, where v = Au .

This is equivalent to saying that the graph space of a closed operator is a

closed linear submanifold of H×H.

Definition B.1.3. A linear operator A : H → H with domain D (A) in

Hilbert space H is said to be closable if there exists an extension of A, that

shall be denoted by A, the closure of A, such that G (A) = G
(
A
)
.

Remark B.1.4. An operator A is closable if and only if there is no element

v ∈ H\{0} such that (0, v) ∈ G
(
A
)

[51, Chapter III, Section 5.3]. Obviously,

if A is closable, then A ⊂ A.

B.2 The spectral integral for self-adjoint op-

erators

The main aim of this Section is to provide a reasonably self-contained back-

ground for the development of spectral integrals of self-adjoint operators and

the functional calculus. Further details along with the proofs may be found

in [88, Chapters 4 & 5].

To begin with, the well-known polarisation formula is presented.

Lemma B.2.1. If A : H → H is a linear operator on Hilbert space H, then

4 〈y, Ax〉 = 〈x+ y, A(x+ y)〉 − 〈x− y, A(x− y)〉

+ i 〈x+ iy, A(x+ iy)〉 − i 〈x− iy, A(x− iy)〉 ,
(B.3)

for all x, y ∈ D (A).

Proof. See [88, equation (1.2)] or [51, Chapter I, Problem 6.13].
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B.2.1 The spectral measure

Definition B.2.2 (Definition 4.1 [88], [51]). A family of orthogonal projec-

tions {E (λ) |λ ∈ R} on the Hilbert space H is called a resolution of the

identity if

(i) E (λ) E (λ′) = E (λ′) E (λ) = E (min{λ, λ′})

(ii) limλ→∞E (λ)u = u and limλ→−∞E (λ)u = 0 for all u ∈ H.

Definition B.2.3 (Definition 4.2 [88]). Let M be an algebra of subsets of Ω,

and H a Hilbert space. A spectral premeasure on M is a mapping E of M

into the orthogonal projections on H such that

(i) E (Ω) = 1,

(ii) E is strongly countably additive.

If M is a σ-algebra, then E is a spectral measure on M. Note: Infinite sums∑
n∈N E (Mn) for Mn ∈M are meant in the sense of strong operator topology

convergence, e.g. for (Mn)n∈N a disjoint collection of sets with Mn ∈M for

all n ∈ N, one has E
(⋃

n∈NMn

)
u = limn→∞

∑N
n=1 E (Mn)u for u ∈ H.

The property (ii) above clearly shows that E (∅) = O, and that E is

finitely additive. Moreover, the spectral premeasure can be extended to a

spectral measure in the following lemma.

Lemma B.2.4 (Lemma 4.9 [88]). Let E0 be a spectral premeasure on an

algebra M0 of subsets of a set Ω. Then there is a spectral measure E on the

σ-algebra M generated by M0 such that E0(M) = E (M) for all M ∈M0.

Lemma B.2.5 (Lemma 4.3 [88]). If E is a finitely additive map of an algebra

M into the orthogonal projections onto Hilbert space, then for M,N ∈M

(B.4) E (M) E (N) = E (M ∩N) .

The next lemma, as presented in [88], shows that the spectral measure

may be used to construct a scalar measure on the σ-algebra M.
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Lemma B.2.6 (Lemma 4.4 [88]). A map E of a σ-algebra M on a set Ω into

the orthogonal projections on H is a spectral measure if and only if E (Ω) = 1

and for each vector x ∈ H, the set function µx (·) := 〈x, E (·)x〉 on M is a

measure.

Proof. The ‘only if’ part is immediate from Definition B.2.3. For the ‘if’ part,

consider (Mn)n∈N a sequence of disjoint sets in M, and let M =
⋃
n∈NMn.

µx (·) is countably additive because by assumption it is a measure. So

µx (M) = µx

(⋃
n∈N

Mn

)
=

〈
x, E

(⋃
n∈N

Mn

)
x

〉
=
∑
n∈N

µx (Mn)

=
∑
n∈N

〈x, E (Mn)x〉 ,

so that for every x ∈ H,〈
x, E

(⋃
n∈N

Mn

)
x

〉
=
∑
n∈N

〈x, E (Mn)x〉 .

By the polarisation formula (B.3) one has that, in the strong operator topology,

E (M) =
∑
n∈N

E (Mn) .

From the definition of a spectral measure, the proof is complete.

The next theorem shows the crucial connection between the spectral

integral and the resolution of the identity.

Theorem B.2.7 (Theorem 4.6 [88]). If E is a spectral measure on the Borel

σ-algebra B(R) in H, then for λ ∈ R

(B.5) E (λ) := E ((−∞, λ])

defines a resolution of the identity. Conversely, for each resolution of the

identity, there is a unique spectral measure E on B(R) such that (B.5) is

true.



B.2. THE SPECTRAL INTEGRAL 169

The following lemmas pave the way for the next section on the spectral

integral.

Lemma B.2.8 (Lemma 4.8 [88]). Let E be a spectral measure on (Ω,M) in a

Hilbert space H. Define µx,y(M) := 〈y, E (M)x〉 and µx (M) := 〈x, E (M)x〉
for M ∈M. Then

(i) |µx,y|(M) ≤
√
µx (M)µy (M) for x, y ∈ H and M ∈M.

(ii) If h ∈ L2(Ω, µx) and g ∈ L2(Ω, µy), then

(B.6)

∣∣∣∣∫
Ω

hg dµx,y

∣∣∣∣ ≤ ∫
Ω

|hg| d|µx,y| ≤ ‖h‖L2(Ω,µx) ‖g‖L2(Ω,µy) .

Proof. For part (i), let M ∈M be the disjoint union of a countable collection

of sets (Mn)n∈N. Then from Cauchy-Schwartz

|µx,y (Mn) | = |〈E (Mn) y, E (Mn)x〉|

≤ ‖E (Mn)x‖H ‖E (Mn) y‖H = µx (Mn)
1
2 µy (Mn)

1
2 ,

and using Cauchy-Schwartz again, along with the countable additivity of the

measure, one has ∑
n∈N

|µx,y (Mn) | ≤
√
µx (M)µy (M) ,

and taking the supremum over the disjoint partitions (Mn)n∈N that give M ,

one finally has |µx,y|(M) ≤
√
µx (M)µy (M).

For part (ii) only the simple functions are considered as they are dense in

L2 spaces. Taking f and g as simple functions, using part (i) and Cauchy-

Schwartz, the result immediately follows.

Definition B.2.9 (Definition 4.3 [88]). The support of a spectral measure E

on the Borel σ-algebra B(Ω) is the complement in Ω of the union of all open

sets U ⊂ Ω such that E (U) = O.
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B.2.2 The spectral integral

From the construction of a spectral measure, it is immediate that one may

define an integral. Much of the following theory regarding the spectral

integrals of certain functions is built by using simple approximating function,

exactly as done in the construction of the Lebesgue integral.

Definition B.2.10. Let M be a σ-algebra of subsets of a set Ω, and E a

spectral measure on (Ω,M). Then the operator known as the spectral integral

of an E almost everywhere finite, M-measurable function f : Ω→ C ∪ {∞}
is defined as follows.

(B.7) I (f) :=

∫
Ω

f(t) dE (t) .

The space S = S(Ω,M,E) is the space of E almost everywhere (E-a.e.) finite,

M-measurable functions f on Ω.

Note that the E almost everywhere finiteness of a function f means that

E ({t ∈ Ω | f(t) =∞}) = O.

Next, the concept of a bounding sequence is introduced for the purposes

of some of the subsequent results.

Definition B.2.11 (Definition 4.4 [88]). A sequence of sets (Mn)n∈N ⊂M,

of a σ-algebra M, is a bounding sequence for some subset of functions

F ⊂ S(Ω,M,E) if each function f ∈ F is bounded on Mn and Mn ⊂Mn+1

for all n ∈ N, and E
(⋃

n∈NMn

)
= 1.

For any set of finite elements of S(Ω,M,E) one may show a bounding

sequence exists (see comments after Definition 4.4 [88]).

Theorem B.2.12 (Theorem 4.13 [88]). Let (Mn)n∈N be a bounding sequence

for a function f ∈ S(Ω,M,E). Then one has:

(i) A vector v ∈ H is in D (I (f)) if and only if the sequence (I (fχMn) v)n∈N

converges in H, or equivalently, if supn∈N ‖I (fχMn) v‖H <∞.
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(ii) For v ∈ D (I (f)), the limit sequence (I (f) v)n∈N does not depend on the

bounding sequence (Mn)n∈N. There is a linear operator I (f) on D (I (f))

defined by

(B.8) I (f) v = lim
n→∞

I (fχMn) v for v ∈ D (I (f)) .

(iii)
⋃
n∈N E (Mn)H is contained in D (I (f)) and is a core for I (f). More-

over,

(B.9) E (Mn) I (f) ⊂ I (f) E (Mn) = I (fχMn) for n ∈ N .

Proof. For part (i), suppose that v ∈ D (I (f)). Since f is bounded on Mn one

has fχMn is bounded on Ω, and I (fχMn) is everywhere defined and bounded

(see [88, Section 4.3.1]). From [88, Proposition 4.12]

‖I (fχMk
) v − I (fχMn)‖2

H = ‖I (fχMk
− fχMn)‖2

H

=

∫
Ω

|fχMk
− fχMn|2 dµv (t)

= ‖fχMk
− fχMn‖L2(Ω,µv(t))

for k, n ∈ N. Since f ∈ L2(Ω, µv (t)), by (B.7), and the fact that fχMn → f

in L2(Ω, µv (t)) from Lebesgue dominated convergence (see [79, Theorem

1.34]), (fχMn)n∈N is a Cauchy sequence in L2(Ω, µv (t)). Thus (I (fχMn) v)n∈N

converges in H, and is therefore the H-norms are uniformly bounded in n.

This completes the forward implication of part (i).

For the backward implication of part (i), by assumption

c := sup
n∈N
{‖I (fχMn)‖H} <∞ .

Since (|fχMn|2)n∈N converges monotonically to |f |2 µv (t)-a.e. on Ω, by

Lebesgue’s monotone convergence theorem (see [79, Theorem 1.26])∫
Ω

|f |2 dµv (t) = lim
n→∞

∫
Ω

|fχMn|2 dµv (t)
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= lim
n→∞

‖I (fχMn)‖2
H ≤ c2 <∞ ,

where the second equality is due to [88, Proposition 4.12]. As such, f ∈
L2(Ω, µv (t)) and so x ∈ D (I (f)).

For part (ii), let (M ′
n)n∈N be another bounding sequence for f . From [88,

Proposition 4.12] one has

‖I (fχMn) v −I (fM ′
k) v‖H =

∥∥fχMn − fχM ′k
∥∥
L2(Ω,µv(t))

≤ ‖fχMn − f‖L2(Ω,µv(t)) +
∥∥f − fχM ′k∥∥L2(Ω,µv(t))

→ 0 ,

as k, n→∞ since fχMn → f and fχM ′k → f in L2(Ω, µv (t)) as noted in part

(i). Therefore, limn→∞ I (fχMn) v = limk→∞ I
(
fχM ′k

)
v. This proves part (ii).

For part (iii), let v ∈ H, and since E (Mk) = I (χMk
), from [88, Proposition

4.12], one has

(*) I (fχMk
) v = I (fχMnχMk

) v = I (fχMn) E (Mk) v = E (Mk) I (fχMn) v ,

for n ≥ k. So, supn∈N ‖I (fχMn) v‖H < ∞, so that E (Mk) v ∈ D (I (f)) by

part (i). That is to say,
⋃
k∈N E (Mk)H ⊂ D (E (f)).

Now, taking n → ∞ and using (B.8), one has that I (f) E (Mk) v =

I (fχMk
) v for v ∈ H. Now suppose v ∈ D (I (f)). Letting n → ∞ again in

(*), one obtains E (Mk) I (f) v = I (f) E (Mk) v. This proves (B.9).

Since E (Mn) v → v and I (f) E (Mn) v = E (Mn) I (f) v → I (f) v for

v ∈ D (I (f)), then the linear subspace
⋃
n∈N E (Mn)H of H is a core for I (f).

This concludes the proof of part (iii).

Theorem B.2.13 (Proposition 4.18 [88]). The operator I (f) is bounded if and

only if f ∈ L∞(Ω,E). Should this be the case, then ‖I (f)‖op = ‖f‖L∞(Ω,E).

Proof. From (B.6) it is immediate that if f ∈ L∞(Ω,E), then I (f) is bounded

and ‖I (f)‖op ≤ ‖f‖L∞(Ω,E).

Now suppose that I (f) ∈ B(H). Set Mn = {t ∈ R; |f(t)| ≥ ‖I (f)‖op +

2−n} for n ∈ N. By Theorem B.2.16 and (B.6) for x ∈ H, one has

‖I (f)‖2
op ‖E (Mn)x‖2

H ≥ ‖I (f) E (Mn)x‖2
H = ‖I (fχMn)‖2

H
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=

∫
Ω

|fχMn|2 dµx (t) =

∫
Mn

|f |2 dµx (t)

≥ (‖I (f)‖op + 2−n)2 ‖E (Mn)x‖2
H .

It is clear then that E (Mn)x = 0, so E (Mn) = O and therefore

E
(⋃

n∈NMn

)
= O. Since M = {t ∈ R; |f(t)| > ‖I (f)‖op}, this means

that |f(t)| ≤ ‖I (f)‖op E-a.e., so ‖f‖L∞(Ω,E) ≤ ‖I (f)‖op.

It may well be the case that some spectral integrals give rise to unbounded

operators. It is therefore critical that the domain of definition of these spectral

integrals be specified.

Definition B.2.14. Suppose that f is an E-a.e. finite measurable function

on the space (Ω,M). Then the domain of the spectral integral is

(B.10) D (I (f)) :=

{
x ∈ H;

∫
Ω

|f(t)|2 dµx (t) <∞
}
.

Proposition B.2.15 (Proposition 4.15 [88]). Let f, g ∈ S and x ∈ D (I (f))

and y ∈ D (I (g)). Then

(B.11) 〈I (g) y, I (f)x〉 =

∫
Ω

f(t)g(t) dµx,y (t) .

Proof. To begin, if f is a bounded M-measurable function on Ω, then one

has that 〈y, I (f)x〉 =
∫

Ω
f(t)dµx,y (t). This is easily seen by taking a simple

function for f and noting that the bounded measurable functions are arbi-

trarily well-approximated by simple functions on Ω (see [88, Prop. 4.12] for

details). Another useful couple of identities for this class of functions are

I
(
f
)

= I (f)∗ and I (fg) = I (f) I (g) (where g is also bounded measurable).

Now, consider the bounded function fgχMn , where (Mn)n∈N is a bounding

sequence for f and g. From the comments above,∫
Ω

fgχMn dµx,y (t) = 〈y, I (fgχMn)x〉 = 〈I (gχMn) y, I (fχMn)x〉 .

As x ∈ D (I (f)) and y ∈ D (I (g)), by Definition B.2.14 it means that

f ∈ L2(Ω, µx (t)) and g ∈ L2(Ω, µy (t)). By Lemma B.2.8 the integral
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Ω
fg dµx,y (t) exists, and so∣∣∣∣ ∫

Ω

fgχMn dµx,y (t)−
∫

Ω

fg dµx,y (t)

∣∣∣∣
=

∣∣∣∣∫
Ω

(fχMn − f)g dµx,y (t)

∣∣∣∣
≤ ‖fχMn − f‖L2(Ω,µx(t)) ‖g‖L2(Ω,µy(t))

n→∞−−−→ 0 .

Clearly, fχMn → f in the L2(Ω, µx (t)) topology from application of the

Lebesgue dominated convergence theorem [79, Theorem 1.34]. Furthermore,

by Theorem B.2.12 (ii), one has that I (f)x = limn→∞ I (fχMn)x for any

x ∈ D (I (f)). The claim has now been proven.

Some of the most important properties of the spectral measure are listed

below. For the proof, the reader is referred to [88].

Theorem B.2.16 (Theorem 4.16 [88]). Let f, g ∈ S(Ω,M,E) and α, β ∈ C.

Then one has

(i) I
(
f
)

= I (f)∗, where f denotes the complex conjugate of the function f,

(ii) I (αf + βg) = αI (f) + βI (g),

(iii) I (fg) = I (f) I (g),

(iv) I (f) is a closed normal operator on H, and I (f)∗ I (f) = I
(
ff
)

=

I (f) I (f)∗

(v) D (I (f) I (g)) = D (I (fg)) ∩ D (I (g)).

Theorem B.2.17 (Proposition 4.17 [88]). Let f, g ∈ S(Ω,M,E).

(i) If f(t) = g(t) E-a.e. on Ω, then I (f) = I (g).

(ii) If f(t) is real E-a.e. on Ω, then I (f) is self-adjoint.

(iii) If f(t) ≥ 0 E-a.e. on Ω, then I (f) is positive and self-adjoint.

The next two results for the spectral integral presented here are important

in the construction of the functional calculus for self-adjoint operators.
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Proposition B.2.18 (Proposition 4.19 [88]). The spectral integral operator

I (f) is invertible if and only if f(t) 6= 0 E-a.e. on Ω. In this case, one has

I (f)−1 = I (f−1).

Remark B.2.19. This is needed in the use of the functional calculus for the

representation of the inverse of an injective, self-adjoint operator A, namely

A−1, in terms of a spectral integral.

The following proposition is particularly important for polynomial Krylov

subspaces.

Proposition B.2.20 (Proposition 4.22 [88]). For any polynomial p on R
with coefficients in C, one has I (p(f)) = p (I (f)), given f ∈ S(Ω,M,E).

Sketch of the proof. Induction is used on a general polynomial p of given

degree n. Suppose that the assertion holds true for each polynomial of degree

strictly less than n. Then, all one must do is prove the assertion remains true

for the particular polynomial p(t) = tn.

Take the identity |f |2 ≤ 1 + |fn|2, which is easily verified by considering

where |f(t)| ≤ 1 and |f(t)| > 1 separately. Then, by (B.10) D (I (fn)) ⊂
D (I (f)), and using the induction hypothesis I (fn−1) = I (f)n−1 along with

Theorem B.2.16 (v),

D (I (f)n) = D
(
I (f)n−1 I (f)

)
= D

(
I
(
fn−1

)
I (f)

)
= D (I (f)) ∩ D (I (fn)) = D (I (fn)) .

Now by Theorem B.2.16 (iii) it follows that

I (f)n = I (f)n−1 I (f) = I
(
fn−1

)
I (f) ⊂ I (fn) ,

and using Theorem B.2.16 (ii), for a general polynomial p(t) of degree n, one

obtains

p (I (f)) ⊂ I (p(f)) .

Furthermore, fn ∈ L2(Ω, µx (t)) if and only if p(f) ∈ L2(Ω, µx (t)). So

D (I (fn)) = D (I (p(f))) by (B.10). And also D (p (I (f))) = D (I (f)n) by

the definition of p (I (f)). The result then follows.
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The spectrum of the spectral integral operator is as follows.

Proposition B.2.21 (Proposition 4.20 [88]). The spectrum of I (f) is the

essential range of f , i.e.

(B.12) σ (I (f)) = {ζ ∈ C; E ({t ∈ Ω; |f(t)− ζ| < ε}) 6= O , ∀ ε > 0} .

Moreover, if ζ ∈ ρ (I (f)), then R (I (f) , ζ) = I ((f − ζ)−1).

Proof. Set the function f̃ = f − ζ.

Now 0 ∈ ρ
(
I
(
f̃
))

if and only if I
(
f̃
)

has a bounded, everywhere defined

inverse. Therefore, by Proposition B.2.18 and Theorem B.2.13 it follows that

f̃−1 ∈ L∞(Ω,E). Equivalently, there must exist some constant c > 0 such

that E
(
{t ∈ R; |f̃(t)| ≥ c}

)
= O.

So, 0 ∈ σ
(
I
(
f̃
))

if and only if E
(
{t ∈ R; |f̃(t)| < ε}

)
6= O for all ε > 0

(precisely as the spectrum and resolvent sets are complementary). So by

Proposition B.2.18 it follows that R (I (f) , ζ) = I (f − ζ)−1 = I ((f − ζ)−1).

B.2.3 The spectral representation theorem

The general spectral theorem for unbounded self-adjoint operators is stated

in what follows. This obviously simplifies in the case where one is dealing

with a bounded operator. The definition of the functional calculus is then

given. It is immediate from the definition of the functional calculus that it is

simply a spectral integral, and hence all the theory of the previous section

applies.

Theorem B.2.22 (Theorem 5.7 [88]). Let A be a self-adjoint operator on a

Hilbert space H. Then there exists a unique spectral measure E on the Borel

σ-algebra B(R) such that

(B.13) A =

∫
R
t dE (t) .
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Remark B.2.23. It is immediate from Proposition B.2.21 and the definition

of the support of the spectral measure, that the interval of support of the

measure E in Theorem B.2.22 is in fact the spectrum of the operator A

itself. Therefore, the interval of integration in B.13 may be replaced with the

spectrum σ(A).

Definition B.2.24. For a self-adjoint operator A on the Hilbert space H,

and E the unique spectral measure of Theorem B.2.22, the mapping that

takes some f ∈ S(R,B(R),E) to the spectral integral I (f) is the functional

calculus of the operator A. The functional calculus for the function f with

respect to the operator A is denoted f(A), and it has the same properties as

the spectral integral.

B.3 The general functional calculus for the

class B(H)

In this Section, a few results are given for the functional calculus of general

bounded operators on Hilbert space. Details may be found in [76, Chapter

XI].

Before the statement of the theorem for the general functional calculus or

spectral mapping, first one must define the concept of an admissible domain.

Definition B.3.1 (Chapter XI, Section 148 [76]). An admissible domain

with respect to a linear operator A is any bounded open set U in C, whose

boundary ∂U consists of a finite number of rectifiable closed curves lying

in the resolvent set ρ(A), with the same orientation as U as a subset of the

complex plane.

Theorem B.3.2 (Chapter XI, Section 151 [76]). Let A be a bounded linear

operator on Hilbert space H. Consider the complex function f(z) that is

defined and differentiable, with respect to z, at all points of an open subset of

V ⊂ C that contains the spectrum of A. Let U be an admissible domain with

respect to A containing the entire spectrum of A, and itself with its boundary
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contained in V. Then the general functional calculus f(A) is given by the

following Cauchy integral.

(B.14) f(A) =
1

2πi

∫
∂U
f(z)R (A, z) dz .

In this case, the following relation between the spectrum of the operator A

and the functional calculus f(A) holds.

(B.15) σ(f(A)) = f(σ(A)) .

Remark B.3.3. As the resolvent function R (A, z) is analytic in z on ρ(A)

[76, 51] then ‖R (A, z)‖op is bounded on ∂U ⊂ ρ(A). As a result, if there is

a sequence of holomorphic functions on V, (fn)n∈N, that tend to f ∈ H(V)

uniformly in the domain V , then the transformations (fn(A))n∈N tend to the

transform f(A) in the operator norm topology [76, Chapter XI, Section 151].



Appendix C

Functional Analysis Miscellanea

This Appendix contains some miscellanea from functional analysis that do not

quite fit in the other appendices, but nonetheless are important for several

arguments within this thesis.

C.1 Types of convergence in Hilbert space

In infinite-dimensional Banach spaces, there are several different notions of

convergence. Here, the focus is on three different forms of convergence in

Hilbert space, namely strong convergence, weak convergence, and pointwise

convergence.

Definition C.1.1. Let H be a Hilbert space, and let (un)n∈N be a sequence

of vectors in H. Then

(i) The strong convergence (norm convergence) of (un)n∈N to a vector u ∈ H
is said to occur if ‖un − u‖H

n→∞−−−→ 0. It is customarily written un → u

(or un
‖·‖H−−→ u) as n→∞.

(ii) The weak convergence of (un)n∈N to a vector u ∈ H is equivalent to

〈v, un〉 → 〈v, u〉 as n → ∞ for all v ∈ H [10, Proposition 3.5]. Weak

convergence is written un ⇀ u as n→∞.

(iii) For a separable Hilbert space H with an orthonormal basis (ek)k∈N,

the component-wide convergence of (un)n∈N to a vector u ∈ H is said

179
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to occur if 〈ek, un〉
n→∞−−−→ 〈ek, u〉 for all k ∈ N. This means that the

k-th component of the un’s converge to the k-th component of u with

respect to the basis (ek)k∈N. Component-wise convergence is customarily

written as un  u as n→∞.

Remark C.1.2. The implications

(C.1) strong ⇒ weak ⇒ component-wise

hold onH, but their converses do not when dimH =∞ (whereas the converses

are true when dimH <∞).

Lemma C.1.3. Let H be a separable Hilbert space, and (un)n∈N a sequence

of vectors in H. Then for u ∈ H one has the following.

(C.2) un
n→∞−−−→ u ⇔

un ⇀ u

‖un‖H → ‖u‖H
,

and

(C.3) un ⇀ u as n→∞ ⇔

〈ek, un〉
n→∞−−−→ 〈ek, u〉 ∀k ∈ N

supn∈N ‖un‖H <∞
,

where (ek)k∈N is an orthonormal basis of H.

Proof. Obviously the forward implication of (C.2) holds [10, Proposition 3.5].

For the backward implication note that ‖un − u‖2
H = 〈un − u, un − u〉 so that

‖un − u‖2
H = ‖un‖2

H − 〈u, un〉 − 〈un, u〉+ ‖u‖2
H .

From the weak convergence un ⇀ u, one has 〈u, un〉
n→∞−−−→ ‖u‖2

H and

〈un, u〉
n→∞−−−→ ‖u‖2

H. The result then follows.

To show the forward implication in (C.3) is a straightforward application

of the definition of weak convergence and the fact that under weak convergence

one has that (‖un‖H)n∈N is uniformly bounded [10, Proposition 3.5].
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For the backward implication of (C.3), consider some f =
∑

k∈N fkek ∈ H.

Then

〈f, un − u〉 =
∑
k∈N

fk 〈ek, un − u〉

and for some fixed M ∈ N

|〈f, un − u〉| ≤
M∑
k=1

|fk| |〈ek, un − u〉|+
∞∑

k=1+M

|fk| |〈ek, un − u〉|

≤ max
k∈{1,...,M}

|fk| |〈ek, un − u〉|+
∞∑

k=1+M

|fk| |〈ek, un − u〉|

≤ max
k∈{1,...,M}

|fk| |〈ek, un − u〉|

+

(
∞∑

k=1+M

|fk|2
) 1

2
(

∞∑
k=1+M

|〈ek, un − u〉|2
) 1

2

≤ max
k∈{1,...,M}

|fk| |〈ek, un − u〉|+ ‖un − u‖2
H

(
∞∑

k=1+M

|fk|2
) 1

2

.

As ‖un − u‖H is uniformly bounded in n and un  u, the above inequality

may be arbitrarily small by choosing both M ∈ N and n ∈ N large enough.

The result then follows.

For convenience, below are the definitions of some different types of

operator convergence.

Definition C.1.4. Consider a family of linear operators in Hilbert space

An : H → H such that An ∈ B(H) for all n ∈ N.

(i) If there exists some A ∈ B(H) such that ‖An − A‖op

n∞−−→ 0, then the

An’s are said to converge in the operator norm.

(ii) If there exists some A ∈ B(H) such that for every ψ ∈ H one has

‖(An − A)ψ‖H
n→∞−−−→ 0, i.e. Anψ → Aψ, then the An’s are said to

converge in the strong operator topology.

(iii) If there exists some A ∈ B(H) such that for every ψ ∈ H one has
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Anψ ⇀ Aψ as n→∞, then the An’s are said to converge in the weak

operator topology.

C.2 Some approximation theorems

One of the deepest results in approximation theory is the Stone-Weierstrass

theorem. This is stated below for compact Hausdorff spaces, along with its

generalisation to locally compact Hausdorff spaces. The full details and proofs

may be found in [91]. To begin with, the precise definitions concerning the

separation of points and vanishing are required.

Definition C.2.1. Let X be a space and let η be a subset of the functions

from X to C. Then η is said to vanish at a point x0 ∈ X if f(x0) = 0 for all

f ∈ η.

Definition C.2.2. Let X be a space and let η be a subset of the functions

from X to C. Then η is said to separate points on X if for every distinct x

and y in X, there is some function f ∈ η such that f(x) 6= f(y).

Theorem C.2.3. Let X be a compact Hausdorff space, and let C(X,C)

denote the space of continuous functions on X equipped with the supremum

norm. If C is an involutive subalgebra of C(X,C) that separates points in X,

then either

(i) the closure of C in the supremum norm is all of C(X,C), or

(ii) the closure of C in the supremum norm is the family of all functions

η ⊂ C(X,C) that vanish at a uniquely determined point x0 ∈ X.

In particular, if C is a unital, involutive subalgebra of C(X,C) that separates

points, then the closure of C in the supremum norm is all of C(X,C), i.e.

C
‖·‖∞ = C(X,C).

Proof. See [91, Section 5, Corollaries 1 & 2].
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Theorem C.2.4. Let X be a locally compact Hausdorff space, and let

C0(X,C) denote the space of continuous functions on X that vanish at in-

finity equipped with the supremum norm. If C is a involutive subalgebra of

C0(X,C) that separates points and vanishes nowhere, then the closure of C

in the supremum norm is all of C0(X,C), i.e. C
‖·‖∞ = C0(X,C).

Proof. see [91, Section 6, Corollary 1].

The following classical result specifically concerns polynomial approxima-

tions to holomorphic functions.

Theorem C.2.5 (Theorem 13.7 [79]). Let K ⊂ C be a compact set, and let

C∗ \K be connected (where C∗ denotes the single point compactification of

C). Let f be holomorphic in U , where U is an open set containing K. Then

there is a sequence of polynomials (pn)n∈N that approach f(z) uniformly on

K.



184 APPENDIX C. FUNCTIONAL ANALYSIS MISCELLANEA



Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions:

With Formulas, Graphs, and Mathematical Tables. Applied mathematics

series. U.S. Department of Commerce, National Bureau of Standards,

1972.
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