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Chapter 1

Introduction

Nature and engineering commonly present multi-physics problems, i.e., complex sys-
tems involving a number of mutually interacting subsystems that can be modelled by
(non linearly coupled) Partial Differential Equations (PDEs). Examples range from
fluid-structure interaction [52], to climate models [25], or thermomechanics [4]. The
discretization of these systems of PDEs naturally leads to the use of multiple grids:

e Using different grids for independent problems joined at an interface, where the
meshes need to be coupled and exchange information.

e Using different grids for different aspects of the physical problem on the same
portion of space.

Whether it occurs in the bulk, or at the interface, coupling of different systems is a
complex endeavour. From a modelling perspective, multiple, interacting components
require additional effort. From a computational perspective, the need to accurately
transfer information between meshes is an expensive operation. In addition, the imple-
mentation of this operation in a parallel, distributed environment poses a number of
challenges connected with the lack of locality of the information.

When it is possible, the most natural way to model coupled system is through
aligned interfaces and grids, implementing the coupling through boundary or transmis-
sion conditions. Although ideal, this situation is often impractical or computationally
intractable.

In this work, we are interested in studying coupled problems through non-matching
methods. Broadly speaking, non-matching methods are techniques that allow the cou-
pling of different PDEs discretized on separate, independent, grids, or the solution to a
PDE defined on a complex domain using a simpler domain (typically a structured grid).
This strategy has been developed in a number of different methods and variations; here
we report a simple description of some notable examples:

Penalty methods These methods use a “penalty” term to impose boundary condi-
tions (see, e.g., [8]).

The general principle is summarized in [70] as follows: consider a minimization
problem for the functional K over the domain B:

min K f,
few(B)

3



4 CHAPTER 1. INTRODUCTION

where W (B) is an opportune functional space. The penalty method can be thought of
as the relaxation of the following problem. Given a domain €2 such that 2 € B, define

the functional:
0 if reB
PB(SL‘) = . .
+oif z€Q\B

We then consider the equivalent minimization problem:

min Kf + Pp,
fevi®)
where V() is an opportune functional space such that W (B) C V(Q).
A simple implementation is obtained by considering a nonnegative function ¥ such
that B == {x € Q: U(z) = 0}, where B is the complex domain we are considering,
embedded in the simpler domain 2. Defining the following approximated functional:

1
KE - K + 7\117 € > 0,
€
we have the pointwise convergence:

1
lim —¥(z) = Pp(x) for every x € Q,

e—0 €

and we can expect that the minimizer . of the approximated problem will approach the
minimizer u of the original problem (assuming existence and uniqueness for the solution
in both cases).

Composite finite element method This method was introduced in [42]: consider
an immersed domain B into the bigger domain 2. In this case, we modify the basis
functions in the vicinity of the boundary to express the boundary conditions.

This strategy is suitable for complex geometries but requires an ad-hoc implemen-
tation of the finite element strategy.

XFem The eXtended Finite Element Method (XFEM) was originally developed for
applications concerning fractures [15] [72], but has since been extended to several other
applications for its ability to describe discontinuities, localized deformations, and com-
plex geometries.

Unlike in the composite finite element method, this is not achieved through a mod-
ification of basis functions, but through a local enrichment of the approximation space,
by adding to the finite elements space some extra functions that mimic the analytical
behaviour of the solution.

The enrichment is based on the partition of unity concept: a global partition of
unity on €, is a set of functions {¢;};2; such that, for every z € Q:

M
> gi(z) =1.
=1

Let {u; };VZI be the base of the standard finite element space; a generic function wuy of
the enriched space is defined as:

N M
up =Y ujei+ >y ¢ila;,
j=1 i=1
—_———
FEM enrichment



where c¢;j,q; are the function coefficients, i.e., the unknowns describing the solution,
and we call ¥ global enrichment function. The choice of ¥ depends on the sort of
discontinuity we are expecting.

Immersed boundary methods Peskin introduced the immersed boundary (IB)
method in the seventies, to simulate flow patterns in the heart. Since then, they have
been applied successfully to a number of fluid-structure problems (see [80], and the
references therein).

The IB method is both a mathematical formulation and a numerical scheme, that
employs a mixture of Eulerian and Lagrangian variables; this idea is particularly effective
in fluid-structure interaction problems, where the Eulerian framework, used to describe
a fluid in terms of velocity and pressure fields, has to be coupled with the Lagrangian
framework, used to describe the displacements of an elastic material.

The numerical scheme arising from the use of two frameworks for the mathematical
formulation, employs a fixed Cartesian mesh for the Eulerian variables. The Lagrangian
variables are then defined on a curvilinear mesh which can move freely through the fixed
Cartesian mesh, without any constraint. A smooth approximation of the Dirac delta
function is then used to pass information between the two frameworks.

Fictitious domain methods To solve an elliptic boundary value problem on a gen-
eral domain B, these methods immerse it into a simpler domain §2, the so-called fictitious
domain, extending the right-hand side to 2. This framework has two key advantages in
constructing computational schemes [37]:

e The extended domain is geometrically simpler, admitting simpler meshes and, po-
tentially, specialized fast solution methods, such as fast solvers for elliptic problems
on rectangular domains.

e The extended domain might be time-independent, allowing the use of a fixed mesh
even in time-dependent problems.

A Lagrange multiplier is then used to enforce the original boundary conditions, so that
the solution to the extended problem matches the original one on B.

The extended problem is described by a symmetric saddle point problem, which
can be studied using, for example, the well-known inf-sup conditions from Mixed Finite
Elements [27]. Once the solution on the fictitious domain is found, it can be restricted
to B, obtaining the solution to the original problem.

Even for smooth data, the solution to this saddle point problem is, in general, non
smooth; this affects the convergence and optimality of the numerical methods used to
study the problem. To solve these convergence problems, some adaptive refinement
schemes have been proposed, see, e.g. [17, [16].

Fictitious-domain methods were first introduced by Hyman [57], and studied also by
Saul’ev [93], who coined the term “fictitious domain”. The pioneering work of Babuska
[7] inspired the Lagrange multiplier approach, which was then introduced in [38, 36], for
a Dirichlet problem. During the nineties, fictitious-domain methods became popular,
and their use was extended to the study Navier-Stokes equations [39], fluid-structure
interaction problems (see, e.g., [21]), particulate flows [37], and other problems.

As shown in [36], in the case of a particular finite element approximation, there are
two main problems when considering this approach:
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e compatibility conditions between the discretizations of B and 2 might impose
some limitations, e.g., on the mesh size,

e the extension of the right hand side, from B to (), might affect the regularity of
the solution over 2. This problem is particularly apparent when considering a
constrained solution, as in Chapter 2] and Chapter 4] where the right hand side is
prescribed over the whole €.

The aim of this work is to study these methods, and extend their use to a continuum
mechanics model of fiber reinforced materials. Our objective is to obtain a model which
does not require aligned grids, and is computationally efficient.

1.1 Outline of the thesis

This thesis is divided into four chapters; in Chapter [2] we describe the fictitious domain
method through an example model problem: a constrained Poisson equation, where the
constraint is applied either to a codimension one domain or to a codimension zero do-
main. This allows us to introduce the basic mathematical tools needed for non-matching
coupling, and show the numerical challenges connected to these problems. Chapter
deals with the technical problems related to the implementation of the coupled system,
with a focus on the computation of coupling matrices, developing the first algorithm for
the numerical coupling between arbitrarily distributed non-matching meshes. After de-
scribing the algorithms developed for the deal.Il library, we show some benchmarks for
both in serial and parallel examples. Finally, we show an application of these methods
in Chapter [ where we use the fictitious domain method to study composites materials,
in particular fiber reinforced materials. After introducing the necessary tools of contin-
uum mechanics and differential geometry, we develop a full three-dimensional model,
where the effect of the fibers is imposed through a distributed Lagrange multiplier ap-
proach. We study our model using inf-sup conditions from Mixed Finite Elements (see,
e.g., [19]). A numerical discretization of the fibers through three-dimensional meshes
is expensive; thus, a one-dimensional approximation is often considered. In literature,
to guarantee the existence of a coupling operator between the three-dimensional elastic
matrix, and the one-dimensional fibers, Weighted Sobolev Spaces are used. As a new
alternative, we propose a reduced model where the fibers are approximated with one-
dimensional objects, and the coupling is obtained through an average operator. This
method needs some additional modellistic hypotheses but does not require the use of
some special functional spaces. Finally, we validate our model through some numerical
simulations, where we compare the results of our coupled model with other solutions
found in literature.

To conclude, Section contains a summary of the main results, with some addi-
tional comments.



Chapter 2

Non-matching grid constraints

In this chapter, we introduce the problem of coupling multiple PDEs; after describing a
general version of the problem, where a system of different, coupled, PDEs is introduced,
we study the example of a constrained Poisson Equation.

The Poisson Equation, in its most basic form, reads: given a domain €2, and a
function f defined on (2, find the function u such that

—Au=f on{

2.1
u=0 on . (2.1)

This equation is suitable to model a number of physical problems involving, for example,
fluid mechanics, electromagnetism and heat transfer, and has numerous application in
pure mathematical fields, such as probability and number theory [85 [34].

With some regularity conditions on the domain €2, and on the function f, it is
possible to prove existence and uniqueness of a solution for Equation [2.1 and in a
number of cases it is also possible to find an explicit analytical solution.

One great difficulty remains when studying this problem for complex geometric
shapes, which are typical of real-world problems. In these cases, the standard solving
strategies involve the use of numerical methods; multiple difficulties are connected to the
application of numerical methods on complex geometries: from the high computational
costs to the very generation of meshes (which remains a challenge, especially in the three-
dimensional case), to all problems connected with time evolution and large deformations
of a mesh [64].

A number of solutions to these difficulties have been proposed and, among these, the
fictitious domain method sees many successful applications. Variations of this technique
are presented in the literature using also other names, such as the immersed finite
element method or the distributed Lagrange multiplier method. The idea is to embed
the complex geometry of the domain B in a larger, simpler domain 2 O B of the same
dimension, where the PDE is solved. This allows to keep the discretization of the two
grids, and their relative finite element spaces, completely independent, but requires the
development of a method to “transfer” the original boundary equation from the complex
geometry to the simple domain.

This technique is particularly efficient for the simulation of fluid-structure interaction
problems, where the configuration of the embedded structure is part of the problem
itself, and one solves a (possibly non-linear) elastic problem to determine the (time
dependent) configuration of B, and a (possibly non-linear) flow problem in Q \ B, plus
coupling conditions on the interface between the fluid and the solid.

7
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This extension problem is closely related to constrained problems, where the value
of the solution is prescribed on a certain subdomain B C €.

To describe the constraint we consider a function g defined over B; then our con-
strained problems consists in looking for a solution u of the Poisson problem defined
over (2, and such that its restriction to B coincides with g.

A possible numerical strategy for the discretization of constrained problems involves
the use of matching discretizations, where the alignment between the meshes of I and
Q) is enforced; this approach is often not practical in applications requiring complex
geometries and a time dependent domain [64]. As an alternative, we propose the use of
Lagrange multipliers on non-matching grids. The arguments of this chapter are based
on a tutorial of the deal.ii library: step 60 [62], written with prof. Luca Heltai, where it
is shown how to solve the Poisson problem on €2, with an additional constraint defined
on a non-matching subdomain B, of codimension zero or one.

We discuss the constrained Problem following Glowinski [38], using this example
to show the mathematical and numerical tools needed for non-matching coupling. To
conclude we report some numerical results, and provide some details of the numerical
implementation.

2.1 The model problem

Consider the n-dimensional domain 2 C R”, let B be a subdomain of €2 such that
B € Q; then BN O = (). Define Q=0 \ B, we assume ) is also an n-dimensional
domain. Let V(Q) be a functional space defined over €2, let V() be a functional space
defined over , such that for every v € V(Q), U|Q e V(). Let W(B) be a functional
space define over B. We assume that there exists a continuous operator

~v: V() - W(B),

which we call coupling operator. Given a function u € V(Q2), we can think of yu as,
essentially, the restriction of u over the domain B. This coupling operator allows to
couple different PDESs, and to enforce certain conditions for the solution on B:

Problem 1 (Generic cAouApled problem). Consider two elliptic operators Ay and As,
defined respectively on V(2) and W (B). Then, through the coupling operator 7, we can
define the following coupled problem: find u € V() such that:

Al(u Q) = f1 m Q
Ay(yu) = fo in B (2.2)
u =0 on 09,

where f1, fo are some functions defined on Q and B.

Equation is a very generic way to interface two different PDEs, that is, two
different physical problems. Indeed it may not have solution unless certain compatibility
or transmission conditions are imposed. Assuming the existence and uniqueness of the
solution, we now show how this problem is connected with an application of the fictitious
domain method.

Assuming that operator A; can be extended to V' (€2), and that f; can be extended
to f on Q, we would like to modify Problem [I| considering only the operator A;, and
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replacing the problem on B by defining g = A5 ! f,. This is equivalent to controlling
arbitrarily the value of the solution u on a part of the domain, imposing yu to be equal
to the function g on B:

Aju= fin Q
yu =g in B (2.3)
u =0 on OfL.

As previously stated, Equation has no solution unless certain compatibility con-
ditions are satisfied; a strategy to modify the equation and impose these conditions
is through the fictitious domain method with distributed Lagrange multipliers. Let
T W(B)" — V() be the transpose of the coupling operator, Equation can then
be modified by imposing an arbitrary value for vu, and obtaining a Problem which, given
some hypotheses on the domains and the boundary conditions, has a unique solution:

Problem 2 (Generic constrained problem). Consider the elliptic operator Ay on V().
Through the coupling operator ~y, it is possible to define the following coupled problem:
find u € V(Q) and A, Lagrange multiplier defined over B, such that:

Au+~yT = f inQ
yu=gin B (2.4)
u =0 on 09,

where f,qg are some functions defined on Q) and B respectively.

In general, the value of g may be given as an external datum, or it may be related
to the solution to a coupled problem on B, i.e., g = A5 L, (we provide an example in
Chapter .

To fix ideas, in this Chapter we study the following prototype of a Poisson problem
on () constrained over B:

Problem 3 (Model problem). Given a forcing term f defined on Q, and a constraint
g defined on B, find u satisfying:

—Au=fin
yu =g in B (2.5)
u =0 on 09,

where, for simplicity, we consider a homogeneous Dirichlet condition on 0f2.

Equation [2.5] can be written in a distributional form over the entire domain €2, by
introducing a Lagrange multiplier A.

Problem 4 (Distributional model problem). Given a forcing term f defined over €2, a
constraint g defined on B, find u € V(Q2), and X\ defined over B satisfying:

—Au+~+"N=finQ
yu =g in B (2.6)
u =0 on 0.
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Where ) is a Lagrange multiplier that enforces the condition
yu=g¢g in B,

in a variational form. As an example we use the duality product W (B)' x W (B) for the
Lagrange multiplier A (as done in, e.g., [2I]). The weak formulation can then be found
as a saddle point of the Lagrangian:

Ll ) = %(vu, Vala — (w, fla — Oy — g), (2.7)

where (-,-)q represents the L? scalar product over €, and (-,-) represents the duality
product W (B)' x W(B). The weak variational formulation reads:

Problem 5 (Weak constrained formulation). Given a forcing term f defined over 2, a
constraint g defined on B, find u € V(Q), and X € W(B)' satisfying:

(Vu, Volo + Ay0) = (Fv)e Yo e V(Q)
(yu,q) = {g,q) Vg € W(B)"
Assuming the restriction operator to be continuous, the second equation of Problem

[l can be rewritten as:
(,yu—g)=0  VYgeW(B).

2.1.1 The coupling operator

The coupling operator v allows to use a function defined over B to “transmit informa-
tion” to w, in this case constraining its value. The most obvious choice for this task is
to consider the restriction of u over B; when considering continuous functions over a
domain B, it is always possible to define the restriction operator:

Y. : C°(Q) — C°(B) c L*(B)
U yu = u}B e C(B).
Our aim is to extend this operator to an operator v: V(Q2) — W(B).
We set Problem [5| in standard Sobolev Spaces; this has some consequence when

considering the restriction of a function on B. To differentiate between codimension
cases, instead of a generic B, we introduce the following domains:

e () C R", an dimensional subdomain of R™,
e 0, € (), a subdomain of codimension 0,

e ' := 0Q),, a subdomain of codimension 1, which we assume to be the boundary of
Qs

e 0 =0\ Q, asubdomain of codimension 0.

We assume all of these domains to be Lipschitz regular, and assume €2, Q,, and I" to be
connected.

In the codimension 0 case, it is well known that the operator v can be extended to
a continuous operator on H'(£2), mapping functions in H*(£2) to functions in H*(£,).
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Q

Figure 2.1: Example configuration for the domains: 2 contains €, of codimension 0,
and its boundary T'.

The codimension 1 case is more complicated, but if the domain I" is Lipschitz and
does not have a boundary, it is possible to extend ~ to the so-called trace operator: a
continuous operator mapping H'(Q) into HY/?(T), losing some regularity.

If B has codimension 2 or more, it is not possible, in general, to extend v to H'(f2),
and more involved approaches are necessary.

One possible solution for B of codimension 2, is to use weighted Sobolev spaces and
graded meshes, as in [29]. Defining L2 (Q2) as the Hilbert space of measurable functions
u such that:

/ u(z)2d**(z)dx < oo,
Q

where d is the distance from x to B: d(z, B) = infyep ||y — z||, and the scalar product:

(u,v)2 = / u(z)v(x)d?*(x)dz.
Q
For m € N we can then define the weighted sobolev space:
H(Q) = {D"u € L(),8] < m},

where £ is a multi-index and D? is the corresponding distributional partial derivative.
Using the distance operator from B as a weight in the scalar product guarantees the
existence a continuous restriction operator over B.

Another possibility is to substitute the “restriction operator”, with some other op-
erator which has the same purpose, e.g., considering the restriction of the elements of
V() after a regularization through a convolution. For example, given n € C.(R"), and
extending u as 0 on ¢, we define 7 * u for every z € R™ as

nx*u(z) = /” u(z — y)n(y)dSdy.



12 CHAPTER 2. NON-MATCHING GRID CONSTRAINTS

Then n*u € C(R™), and we can consider its restriction [26].

The coupling operator might be defined in a number of other ways, for example, in
Chapter [4] we study the codimension 2 case using an average operator, which approxi-
mates the restriction operator (in the case of continuous functions), and is well defined
over the functional space V(Q) = H}(Q).

All these examples share two properties, which make coupling hard from a numerical
point of view:

e Given a point x € B, we need to evaluate functions defined over another grid,
i.e. €, on x; the operation of transferring a point from one grid to the other is
computationally intensive.

e The coupling at z € R™ requires information about both grids in a neighbourhood
of z. In a distributed setting, this information might be spread across multiple
processes, making it not (easily) available.

For more details on these numerical challenges see Section [3.1.1

2.1.2 Codimension one

Consider Q, Q,,  and T as above, define the following spaces:

V= H;(Q)
W= HY(T)
= L*().

Let v: V. — W be the trace operator, and 47 : W’ — V' be its transpose operator;
identifying L?(T") with its dual, and since L?(T')) C W', we can state the constrained
problem in strong form as follows:

Problem 6 (Strong problem in codimension 1). Given a forcing term f € L?(Q), and
a constraint g € W, find (u,\) € V x Q satisfying:

—Au+~TA=fin Q\T
yu=g inl (2.8)
u =0 on 09,

An equivalent formulation can be found as a critical point of the Lagrangian func-
tional £: V x L?(T') — R:

L(v,\) = %(Vfu, Vu)a — (v, fla— A\, v—g)r. (2.9)

Obtaining the following variational constrained problem:

Problem 7 (Weak constrained formulation). Given a forcing term f € L*(Q2), and a
boundary term g € W, find (u,\) € V x Q satisfying:
(V'LL, VU)Q + ()‘7 ’}/U)F = (f7 U)Q YVoeV

(yu,q)r = (9,9)r Vg € Q. (2.10)
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The additional term 7\ guarantees that the Laplacian is defined on the whole
domain €). To better interpret the value of A, we integrate by parts the first Equation
of assuming zero boundary conditions on 0f2 and a sufficiently regular solution wu:

(o = ~(Buvla+ [ o (.0l

Testing with functions v such that yv = 0 we obtain f = —Awu almost everywhere on
Q. Then: 5
U

Ag) = (5, e L*(I).

A\a)=(5 a9 q¢ell)
Using a similar procedure one can prove that A is, in general, the L? projection of the
jump of % at T' (see [38]).

In the article [38] Glowinski et. alia used as space W (I") for the Lagrange multiplier

A, the space HY 2(T'), and proved that the multiplier A is the solution to a bound-
ary equation involving a Steklov-Poincaré operator; the theory of these operators is
fundamental in the study of boundary value problems [84].

Discrete formulation

To solve Problem [7] numerically we need to discretize the spaces V, W and Q; which we
build using using Finite Elements:

Vi, = span{v;}Y, C 'V,
Wy, = span{wj}jj\il cw,
Qn = span{qx } 1L, C Q.
respectively, where N is the dimension of V}, and M the dimension of W}, and Qp; we

also assume:

Wi, C Qp.

Problem 8 (Discrete formulation). Given a forcing term f € L*(Q), and a boundary
term g € W, find (up, \p) € Vi X Qp, satisfying:

(Vun, Vop)a + (An, you)r = (f, vn)a Vup, € Vi
(vuns an)r = (9, qn)r Van € Qn.
Problem [8| can be represented with the following finite dimensional system of equa-
tions: .
K C U F
(e 9)0)-(@) 210
where
Kij = (Vv;, Vui)q i,j=1,...,N
Coj = (Vj,qa)T j=1,...,.Na=1,....M
Fi::(fvvi)ﬂ /L:]-u 7N
Ga = (9,9a)r a=1,...,M
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The matrix K is the standard stiffness matrix for the Poisson problem on €2, the vectors
F and G are the standard right-hand-side vectors for a finite element problem with
forcing terms f and g defined, respectively, on €2 and I'. The coupling between the
two non-matching grids is handled by the matrices C' and its transpose CT, two non-
standard matrices. Each entry of the matrix C is computed as:

Coj = (10}, ga)r = /F vjdo, (2.12)

where v; and ¢, are the basis functions from the respective spaces. To compute the
integral, using finite elements, we split it into contributions from all cells K of the
triangulation used to discretize I'; then the integration over K is transformed into an
integral on the reference element K , where we use a quadrature formula. Here F is
the mapping from K to K:

Coj = (Vj,qa)rT

=> /K G (#) (vj © Fi)(#) T (2)dd

Kel

= 35 (daldn) (v 0 Fr) (33) i (5 wi).

Kel i=1

Computing this sum is non-trivial because we have to evaluate (vjo F)(Z;). In general,
if I' and Q are not aligned, the point Fx(Z;) is completely arbitrary with respect to the
grid of Q). Moreover, when running the computation in parallel and using distributed
meshes, it is not guaranteed that the process which is computing the integral over
the cell K € I' has the required information about the functions v; € Vj which have
supp(vj) N K # 0; for more details on this problem see Section

Once the matrices of Problem are assembled, it is possible to solve the final
saddle point problem using an interative solver, applied to the Schur complement .S =

CK~'CT, obtaining:
AN (STHCKTF-G)
u) ~ \ KY(F-CTX\) |-

A sufficient condition for convergence as h — 0 is the following inf-sup condition
(see [27]): there exists a positive constant « such that, for every Ay € Qp:

A
sup 7fr hh

> o Anllr-
unevi [IVrllo

It is difficult to prove this condition for two general, independent meshes; Glowinski
proved the convergence directly in, e.g., [38] for a very specific configuration and as-
suming g = 0.

2.1.3 Codimension zero

Consider €, Q,, Q and I as above. For certain geometries, e.g., when solving a Problem
on the ) shown in Figure it might be advantageous to consider the extended Prob-
lem on €2, imposing a constraint for the solution on €),. Similarly, it might be interesting
to require a physical constraint to be satisfied over a codimension zero domain.
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Consider g, defined over €, the constrained Poisson problem over 2 can be obtained
through Lagrange multipliers, as in Subsection Consider the spaces:

V= HY(),
W= HY(Q,).

Let v: V. — W be the restriction from V to W, then we can describe the following
constrained problems:

Problem 9 (Constrained distributional formulation on codimension 0). Given a forcing
term f € L*(Q), and a constraint term g € H(,), find (u,v) € V x L?(£,) such
that:
~Au+yIN=f inQ
yu =g on €, (2.13)
u =0 on 0.

Using similar procedures, and imposing the condition yu = g through a Lagrange
multiplier in L?(€2,), we obtain the equivalent weak formulation:

Problem 10 (Constrained weak formulation on codimension 0). Given a forcing term
f € L*(Q), and a constraint term g € H(,), find (u,\) € V x L*(Qy,) such that:

(Vu,Vov)a + (A, yv)a, = (f,v)a YoeV
(v, @), = (9. 9o, Vg € L*(Q).

Existence and uniqueness of the solution for Problems @] and[10] can be studied on the
two subdomains € and ,. Existence and uniqueness on Q) follows from the existence
and uniqueness of a solution for the classic Poisson equation on € with forcing term
f—xa,X and 0 boundary condition, where xq, is the characteristic function of the set
Q.. Existence and uniqueness inside €1, is a result of the imposed constraint, which
implies u}ﬂa =g.

(2.14)

Discrete formulation

As in Subsection define V},, W}, and @)y, finite dimensional subspaces of V, W, and
L?(,) respectively, with W}, € Qp. The discretized form of Problem [10| reads:

Problem 11 (Constrained discrete formulation on codimension 0). Given a forcing
term f € L*(Q), and a constraint term g € H(,), find (up, \p) € Vi, x Wy, satisfying:

(Vun, Vop)a + (Ansvn)a, = (f,vn)e Yo, € Vi, (2.15)
(uns qn)o. = (9: an)o. Yy, € Qp. (2.16)

If g is regular enough, it is possible to prove a general convergence result, with no
particular dependence between the spaces V;, and Wy, see [38].

2.2 Numerical experiments

The results here reported were generated using the deal.Il library; the Schur complement
was solved using the conjugate gradient algorithm, with a tolerance of le~12
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Figure 2.2: An example solution were u is not smooth.

Consider the following example problem: find (u, A) such that:

—Au+~+"TA=0inQ
yu=1in T
u =0 on 012,

where = [0,1]2, and T is the circumference of center (0.4,0.4) and radius 0.3.

A numerical solution can bee seen in Figure even with very regular boundary
conditions (in this case we are using constants); as expected, the gradient Vu presents
a discontinuity over I". This is one of the problems affecting the convergence rate for
the discretized problem.

2.2.1 Codimension 1

As a first example we consider €2 to be the square [0, 1]2, let 2, be the circle of radius
0.3, with center in (0.4,0.4), and consider its circumference I' := 0€,. Consider the
following terms f and g on 2:

f = 2n? sin(7x) sin(7y)

g = sin(mx) sin(7y).
The solution u to the Poisson problem is in C*():
u = sin(7z) sin(7y).

Let N be the number of degrees of freedom of V},, M be the number of degrees of freedom
of Wy; convergence Table [2.1 shows the error with respect of the analytic solution. Here
h is the diameter of the cells of {2’s triangulation; the diameter hy of the cells of I' is
hg ~ 1.3h, and we are using linear elements for both meshes.
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M N h L2 error | rate | H1 error | rate | L error | rate
9 81 V2/23 | 0.0050 - 0.2578 - 0.0238 -
17 289 | v2/2% | 0.0012 | 1.99 | 0.1262 | 1.03 | 0.0047 | 2.31
33 | 1089 | v2/2° | 2.7e-4 | 222 | 0.0630 | 1.00 | 0.0011 | 2.13
65 | 4225 | v2/26 | 6.7e-5 [ 2.01| 0.0314 | 1.00| 2.8e-4 | 1.93
129 | 16641 | v/2/27 | 1.7e-5 | 1.98 | 0.0157 | 1.00 | 7.3e-5 | 1.95
257 | 66049 | v/2/2% | 4.2e-6 | 1.96 | 0.0078 | 1.00 | 1.9e-5 | 1.94
513 | 263169 | v/2/2° | 1.1e-6 | 2.03 | 0.0039 | 1.00 | 5.0e-6 | 1.92

Table 2.1: Convergence rate with linear elements, u € C*°(1Q).

In this case the value of g coincides with the one of the solution for the Poisson
problem without a constraint on I'; thus we have the convergent rates of 2 and 1 for,
respectively, L? and H' norms.

To obtain a less regular solution, we modify the function f as follows: let r =
(z —0.4)% + (y — 0.4)?

;| 2n?sin(mz) sin(my) in €,
2r? sin () sin(ry) + 0.032 — 72 in Q.

Using the same g function, we obtain the following solution on €2:

.| sin(mz)sin(7ry) in Q,
U-=19. . et 0.03%2 .
sin(mz) sin(ry) — 15 + =3 in Q.

The discontinuity of Vu over I' is small in norm, but as we can see in Table this is
sufficient to affect convergence rates.

What we can see from Table (the parameters h and hy are the same of the
previous example), is that the H' error initially converges linearly, but the rate quickly
drops. In the case of L? and L™ the convergence stops after reaching a certain threshold.
A similar “stall” in the solution quality can be seen also using second order elements,
or changing the relative mesh size: this effect is a consequence of the use of uniformly
refined meshes.

Some solutions to this convergence problem can be found in literature: through
adaptive refinement techniques it is possible to recover the convergence of the method
and, in some cases, the optimality of the convergence (see, e.g., [13] [16]).

2.2.2 An example on a more complex geometry

Consider the curve I with the following parametrization:

s = (R 4+ rcos(wms)) cos(2ms) + cg; (R + 1 cos(wns)) sin(27s) + ¢;),

where R = .3,¢, = .5,¢y = .5, = .1, w = 12, the domain is shown in Figure
This geometry is too complex for an uniform refinement strategy, but refining addi-

tionally cells of 2 which are close to the I' boundary allows to better capture the geome-
try of I'. Figure shows the numerical solution with f = 0, g = 2(2—0.5)2—2(y—.5)?,
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M N h L2 error | rate | H1 error | rate | L® error | rate
9 81 \/5/23 0.0050 - 0.2578 - 0.0223 -
17 289 \/5/24 0.0013 | 1.89 | 0.1263 | 1.02 0.0058 1.98
33 1089 \/5/25 51e-4 | 1.37 | 0.0633 | 0.99 | 0.0023 1.31
65 4225 \/5/26 4.7¢e-4 | 0.13 | 0.0322 | 0.97 | 0.0017 | 0.42
129 | 16641 \/5/27 4.7e-4 | 0.00 | 0.0172 | 0.90 0.015 0.14
257 | 66049 \/5/28 4.7¢-4 | 0.00 | 0.0104 | 0.71 0.015 0.01
513 | 263169 \/5/29 4.7¢-4 | 0.00 | 0.0079 | 0.39 0.015 0.00

Table 2.2: Convergence rate with linear elements with a non-smooth solution.

(b) Solution with

(a) A complex example for the curve T’ f=0,g=2(z— %)2 —2(y — %)2, and
additional refinement close to I.

Figure 2.3: Solving on a complex geometry

with 4 uniform refinements of €2 and three additional refinements to the cells which are
close to T.

2.2.3 Codimension 0

Consider € to be the square [0, 1]?, and €2, be the circle of radius 0.3, with center in
(0.4,0.4). We run our simulations with the same parameters of Subsection [2.2.1} and
we first consider the case with solution u = sin(7z) sin(7y) on 2, and g = u‘Q . As we

can see in Table convergence rates for the H! norm are similar to the ones of the
codimension 1 case, but the L? and L™ rates show some oscillations.

As a second numerical experiment we consider the functions:

f = 2n?sin(nz) sin(7y)
= sin(mz) sin(my) — 2(0.3% — (x — 0.4)* — 2(y — 0.4))2.
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M N h L2 error | rate | H1 error | rate | L error | rate
25 289 | v/2/2° | 0.0011 - 0.1270 - 0.0047 -
81 1089 | v2/2% | 3.2e4 | 1.79 | 0.0649 | 0.97 | 0.0031 | 0.61
289 4225 | /2/2° | 811 e-5 | 1.98 | 0.0324 | 1.00 | 0.0011 | 1.42
1089 | 16641 | v/2/20 | 1.99 e-5 | 2.02 | 0.0161 | 1.00 | 6.4e-4 | 0.84
4225 | 66049 | v/2/27 | 419 e-6 | 2.25 | 0.0078 | 1.04 | 1.34e-5 | 5.58
16641 | 263169 | v/2/2% | 1.85 e-6 | 1.17 | 0.0039 | 1.00 | 6.27 -6 | 1.09

Table 2.3: Codimension 0: convergence rate with linear elements, u € C*°(12).

M N h L2 error | rate | H1 error | rate | L° error | rate

25 289 | v/2/2% | 0.0011 - 0.1269 - 0.0047 -

81 1089 | v2/2% | 3.3 e-4 1.8 0.0648 | 0.97 | 0.0031 0.61
289 4225 | 4/2/2% | 8.15e-5 | 2.03 | 0.0323 | 1.00 0.0011 1.42
1089 | 16641 | v/2/26 | 1.99 e-5 | 2.03 | 0.0161 | 1.00 6.2e-4 0.86
4225 | 66049 | /2/27 | 4.85e-6 | 2.03 | 0.0079 | 1.02 | 4.91e5 | 3.66
16641 | 263169 | v/2/2% | 2.38 e-6 | 1.02 | 0.0039 | 1.01 | 3.21 e-06 | 0.61

Table 2.4: Codimension 0: convergence rate with linear elements with a non-smooth
solution.

The solution u to the Poisson problem is:

. sin(mz) sin(my) in Q,
0=
g in Qg,

which is non-smooth; as shown in Table in this case the convergence rates do not
stall, even though the solution is non-smooth.
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Chapter 3

Numerical coupling

In Chapter [2] we introduced the theory behind the problem of numerical coupling for
non-matching meshes through Lagrange multipliers. We now wish to solve the chal-
lenges which need to be addressed when implementing these methods, and show how to
design algorithms which use efficiently modern hardware, with its characteristics and
limitations.

The main objective of this chapter is the numerical evaluation of an example of the
prototypical coupling problem: the coupling matrix C, used in the fictitious domain
method. This task requires to efficiently transfer information between non-matching
grids. Moreover, we are interested in extending these algorithms to the case of a dis-
tributed setting.

After describing the state of the art for numerical coupling, we analyse the algorithms
present in deal.Il 8.5.1 for this task, and then describe how to improve then, and how
to adapt them for a distributed environment. The coupling algorithms we describe are
quite generic, and can be used to solve a number of problems in finite elements, finite
volumes, or finite differences, whenever a form of coupling is required.

The tools we developed include a Cache class, to memorize computationally intensive
data, and a Parameter class, to better handle recurring parameters.

This chapter was developed as the final project for the MHPC (Master in High
Performance Computing), and the code implemented was developed on top of the deal Il
8.5 library, and included in the deal.Il library version 9.0 [5) 3].

3.1 Introduction

Computer clusters with thousands of cores are going to be the heart of most scientific
computing, at least for the foreseeable future [9]; as a consequence, dedicated parallel
codes have to be incorporated into scientific software.

As the number of cores increases, two common strategies used to facilitate the writing
of parallel code become bottlenecks, hindering the code’s performance:

e data replication across all processes,
e all-to-all communications.

The solution is apparently simple: using point-to-point communication, and distributed
data structures [9]. Unfortunately these strategies are more complex, and become par-

21
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ticularly difficult in simulations requiring coupling. Without expensive, dedicated al-
gorithms, the parallel decompositions of geometric domains do not correlate and are
independent [95]: while data distribution makes it possible to fit the simulation in the
system, it inherently complicates the process of coupling, making it necessary to resort
to complex communication patterns and strategies.

In Section we formalize a general coupling problem and show the example of
the coupling matrix C. After discussing some of the strategies found in the literature,
we propose some improvements to the current implementations present in the deal.Il
library, version 8.5.1. After showing how, the absence of data locality makes this ap-
proach fail in a distributed setting, we propose and analyse a distributed algorithm,
and study its performance. To conclude, we briefly report on furtherer improvements
obtained though the use of trees data structures.

3.1.1 Generalized Coupling

Consider two physical problems defined on (possibly different) domains A, B C R™.
Assume that V(A) and W (B) are some functional spaces on A and B respectively, a
generic definition of coupling between fields defined on A and fields defined on B can
be regarded as a continuous bi-linear operator in the form:

C:V(A) x W(B) — R. (3.1)

Among all possible couplings, the computation of the coupling matrix is an example
of a wide class of couplings, depending on a function in the form

K: Ax B >R,

called coupling kernel. Then the coupling operator C' takes the form:

C(v,w) :—/A/Bv(ac)K(m,y)w(y)dAdey, (3.2)

where V(A) and W(B) are some standard functional spaces, the above integrals are
well defined, and the functional C' is bounded.

As an example, consider the case where B C A, and fix V(A) to be the space of
continuous functions on A4, i.e., V(A) := C°(A), and W (B) the space of distributions
on B, ie., W(B) := D(B). Define the coupling kernel as K(z,y) := 6(x —y), where ¢ is
the n-dimensional Dirac delta distribution defined by its action on continuous functions
as

v(x) = §(z —y)v(y)dy, Vv € CO(R™). (3.3)
R‘IL

In this very particular case, if we pick a subset of points y; contained in the domain

B C A, and associate a Dirac delta to each of these points as an element of W (B), say

wi(y) = 0(y — ¥i), (3.4)

the coupling defined above between an arbitrary function v € V(A) and w; reduces
simply to its point evaluation on y;, i.e.:

O, wi) = /A /B o(2)K (2, y)wi(y)dA, dB, = /B o) ()dB, = v(y),  (3.5)
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where the Kernel K removes the first integral in dA, by the definition in , and
the definition of the distributions w; remove the second integral in dB, using the same
principle.

When the spaces and the Kernel are chosen as above, the coupling is simply called
interpolation on the points y; of the function v. The typical application of this interpo-
lation operator is when the field V' (A) represents some physical quantity, for example
a continuous temperature field, and y; are the vertices of an embedded triangulation,
not aligned with A, where we would like to evaluate this physical quantity, e.g., the
temperature.

Different definitions of the spaces V(A) and W (B), and of the coupling kernel K
lead to different coupling operators. In this chapter we will restrict our examples to the
interpolation coupling above.

In the non-matching case, the domains A and B are discretised using independent
triangulations, and are split on non-intersecting cells.

When physical fields are defined on one of these triangulations, say for example on
A, they use the seperation on M cells to restrict the possible choice of functions to
a finite dimensional space of dimension N, constructed using a linear combination of
some basis functions, defined through the triangulation itself.

In general this construction is done in four steps:

e triangulate the domain A into a collection of M € N cells
Ap = U (K = Fi(K),
images under M (possibly non linear) isomorphisms of a reference cell K;

e define a set of nloc € N basis functions on the reference element K, {@Z}ﬁ"f,

o define some global basis functions on Ay, as the push forward of ©; under F; on

K = Fi(K), i.e.,
0j(&) = v (F;(2))| e,

where [ is an appropriate global numbering depending on j and i

e cnumerate the global basis functions so that we have Vj,(A4) C V(A4) and V},(A) :=
span{vi}i]il, where N € N is the dimension of the discrete space.

The construction above guarantees that any function v, € Vj(Ap) can be expressed
as

vp(z) = Zvlvi(az), (3.6)
i=1
where the functions v;(x) are different from zero only on a limited number of cells K
of Ap, namely supp(v;) := {K € Ay s.t. vi|xg # 0}. Notice that, on any K, only nloc
global basis functions are different from zero. For the space Vj,(Ay), the interpolation
coupling on a collection of points y, € By, the triangulation of the domain B, can be
expressed by the interpolation matrix C":

Cpi = C(vj,wqa) = vi(Ya), (3.7)
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K

Figure 3.1: Interpolation Problem

such that, when it is multiplied with the vector of coefficients v’ of a generic function
vy, we obtain the interpolation of the function v, on the points y,:

S Coivf = Clon,wa) = 3 v'vi(ya) = v (00): (3.8)
=1 1=1

Numerically only v;, F; and F{l can be computed directly: to evaluation of Equation
is achieved through Fi_lz

vi(ya) = 0 (F; ' (Ya)) - (3.9)
This translates in the following steps, which are illustrated in Figure 3.1
1. Use the triangulation By to identify y, in the real space.
2. Find the cell K; of the triangulation of A for which y, € K.
3. Use the triangulation of A to obtain F; ' and compute F; ! (yq).

4. Evaluate the result on the basis functions v;.

3.1.2 Existing Solutions

To fix the terminology: in a distributed mesh each processE] “owns” a number of cells, of
which it knowns all the variables and on which it runs computations; we call these cells

!Since this work is algorithmic, we use “process” as a generic term not making distinctions between
processors, processor cores or MPI processes
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locally owned. We shall use the term “own” to describe any object, such as cells and
particles, for which the current process is the one knowing all information and running
all computations.

Typically each process maintains the information of one or more layers of cells sur-
rounding its locally owned cells, these belong to other processes and are called ghost
cells; each process knowns all variables relative to ghost cells but can’t modify their
value. All remaining cells, which are not locally owned nor ghost, are called an artificial
cells; their existence is purely instrumental to the chosen data structure, but has no
participation in the solution of the actual physical problem

Particle-in-Cell Methods

The particle-in-cell (PIC) method is used to solve a certain class of partial differential
equations (PDEs); the technique consist in tracking individual particles, which have a
position and a number of individual properties, in a Lagrangian frame; at the same time
moments of a distribution, e.g., such as densities of some physical fields, are computed
on a stationary mesh. PIC methods have a long history, which sparked with applications
in plasma physics [89].

Only recently PIC methods have been implemented in a fully distributed setting;
Rene Gassmoeller et al. published a paper [35] describing how to implement PIC meth-
ods in a state-of-the art fluid dynamic solver, and implemented it using the ASPECT
library [47, [10].

Our coupling problem has some similarities to the ones studied by Gassmoeller and,
in fact, we benefited greatly from their work; but there are some important differences.

In a PIC method, each process owns a number of cells and generates particles inside
it using an algorithm, e.g., randomly, or following particular patterns. After generating
the particles, each process owns both the cells and the particles inside them; when
working with independent meshes this is no longer the case (see the next paragraph on
the Data Transfer Kit).

The method described by Gassmoeller requires a bound on the speed of each particle;
this simplifies the algorithm because, if a particle exists the locally owned part of the
mesh, it will most likely end up on a ghost cell, i.e., in which case the new owner
is known to the current process, and it is possible to transfer the particle. If this is
not possible, because the particle is lying on an artificial cell, the algorithm deletes it,
approximating the result. As shown in [35], the bound on the particle’s speed results
in a low probability of a particle entering an artificial cell: given the small amount of
deleted particles, the numerical effects are small.

While the strategy of communicating points lying on ghost cells clearly adapts to
our cases, where coupling can be computed on ghost cells, eliminating a part of a mesh
is not an option in a coupling problem. In general coupling problems we have little
control on the topological distribution of the locally owned parts of the domains A and
B: given a process, the spatial intersection of these parts might be small or even empty.

One solution to this problem, is to create a balanced configuration where the par-
tition guarantees that, spatially, a process owning a cell K of A owns also the spatial
cells of B which intersect K. This can be done, for example, with multi-constraint
partitioning techniques [94].

Another approach, which is more flexible, is to develop a strategy to communicate
points in all possible distributed settings. This would also allow the possibility to
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change the distribution of each mesh during a simulation, allowing to re-initialize the
mesh distribution even at running time, with a different number of processes and/or a
different distribution scheme.

Data Transfer Kit

Many modern physical simulations make use of a partitioned approach: different kernels,
handling different parts of the problem, work together to solve a complex problem. For
example, in a fluid-structure interaction problem, a kernel might handle fluid equations
and another might handle the structure; in this scenario accuracy and speed at data
transfer is fundamental.

The Data Transfer Library (DTK) [96] makes this kind of transfer possible through
rendezvous algorithms. These algorithms were developed by Plimpton et. al. [83], and
allow to generate balanced meshes and transfer information between different triangu-
lations, with some additional communication costs. This is how the algorithm is briefly
described in [95]:

for mesh-based data transfer generates the rendezvous decomposition which
behaves as a hierarchical parallel and geometric search tree. Using this al-
gorithm, a secondary decomposition of a subset of the source mesh that will
participate in data transfer is generated, forming the rendezvous decompo-
sition as described in the example above. The rendezvous decomposition is
encapsulated as a separate entity from the original geometric description of
the domain. It can be viewed as a temporary copy of the source mesh sub-
set that intersects the target geometry. With the rendezvous decomposition,
we effectively have a search structure that spans both parallel and physical
space.

This “search structure that spans both parallel and physical space” is the missing
step in the solution of our interpolation problem, which is absent in the PIC solution;
this structure is implemented in DTK using trees of bounding boxes which are needed
for the initial partition.

We shall create a similar structure, without constraints on the methods used for
mesh partitioning.

3.2 DAG Structure

The structure of modern general purpose numerical libraries is organized to offer an
abstraction to the user, while optimizing the object structure and the performance.
This is often achieved structuring the code with a Directed Acyclic Graph (DAG) [1§].

A DAG is a directed graph with topological ordering: each node structurally repre-
sents an object, and the directed edges stemming from it, represent how it can be used
to generate new objects or data; a simple example is shown in Figure[3.:2] This structure
is efficient and has many benefits for a parallel code, but creates some “asymmetries”,
i.e., for certain operations it favours access along one direction, while making the inverse
operation slower.

An example of this effect, in the deal Il library, is related to vertices and cells: finding
the vertices of a cell is a very efficient operation but, given a vertex, it is inefficient to
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Triangulation ——» Cell ——»  Vertex

Figure 3.2: Example of the DAG structure in a numerical library: the hierarchy of the
objects imposes a “preferred” way to access them.

find its neighbouring cells. For an algorithm requiring access to the neighbouring cells
of a vector, this “inverse operation” is likely to be an important bottleneck; the only
possible solution is to provide, with a new function or class, a new edge with the inverse
direction in the DAG structure.

deal.Il Utilities

The numerical simulations described in this thesis were made using and developing the
deal.IT library [I1, B]. The deal.Il library is a modern example of a state of the art
numerical library; as stated in the deal.Il website (http://www.dealii.org/):

deal.IT is a C++ program library targeted at the computational solution of
partial differential equations using adaptive finite elements. It uses state-of-
the-art programming techniques to offer a modern interface to the complex
data structures and algorithms required.

The main aim of deal.Il is to enable rapid development of modern finite
element codes, using among other aspects adaptive meshes and a wide array
of tools classes often used in finite element program. Writing such programs
is a non-trivial task, and successful programs tend to become very large and
complex. We believe that this is best done using a program library that takes
care of the details of grid handling and refinement, handling of degrees of
freedom, input of meshes and output of results in graphics formats, and the
like. Likewise, support for several space dimensions at once is included in a
way such that programs can be written independent of the space dimension
without unreasonable penalties on run-time and memory consumption.

3.3 Serial Case

In Figure[3.3| we see a generic coupling example in two dimensions: two meshes intersect,
and the point y; € B needs to be evaluated by A.

Compute Point Locations

The main difficulties in computing v;(ys) = v; (F;l(ya)) are:

e Find which cell K; of A contains yq.

e Use the triangulation of A to obtain FZ»_1 and compute Fi_l(ya).
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Figure 3.3: Coupling of two meshes, point y; is known by B, and has to be

communicated to A.

In a fully serial environment, all the information is present and, in the deal.II library
version 8.5.1., these operations are coded in a function called compute point locations,

which implements the following algorithm:

Input: A triangulation, a list of points

Output: cells containing points and their transformed

Initialization:

p = first point of the list;

'(p);

Fy

Find the cell K surrounding p and compute ¢

set p as found;

while there are points not found do

for p in points left do

p);

(

1
if q inside unit cell then

Fy

add p and ¢ to the cell’s list;

set p as found;

compute ¢

end
if there are points not found then

end

p = first point not found;

'(p);

Fy

Find the cell K surrounding p and compute ¢

set p as found;

end

end

Algorithm 1: Compute Point Locations in deal Il 8.5.1

The following should be noted on algorithm

e If points are pre-ordered by cell the computation is faster: at every step the number
of “not found” points decreases by the amount of points. This assumption is often
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satisfied when working with meshes and their vertices.
e Using the inverse function F' [;1 to check if the points are inside the cell is inefficient.

e The cell surrounding p is found using find active cell around point, which has a
high computational cost, as it does not follow the DAG structure (see Subsection

53).

This is how find active cell around point was implemented in deal.IT 8.5.1.
Input: A triangulation, a point p

Output: cell containing the point and it’s transformed

initialize the vector distances;

for v in triangulation’s vector do
compute the distance |[p — v||;
add it to distances;

end

Find the minimum in distances;

Save the corresponding vector v;

Initialize the cell’s vector neighbours;

for K in triangulation’s cell do

if v is a verter of K then
Add K to neighbours;

end

end

for K in neighbours do

compute ¢ = Fgl(p);

if ¢ inside unit cell then

‘ return ¢ and K;
end

end
Algorithm 2: Find active cell around point in deal.Il 8.5.1
Algorithm [2] suffers from requiring the the relation from vertexr to neighbour cells,
and using the inverse function F' [gl(p), instead of a simpler method to guess which cell
is most likely contain p.
The computational results of Subsection [3.5.1] confirm the poor performance of this
approach.

3.4 Parallel Case

In addition to what stated in Subsection we make the following general assump-
tions on distributed meshes (as reported in [9]):

o Common coarse mesh: all cells are derived by refinement from a common coarse
mesh, which needs to capture the topology of the computational domain. Each
cell is hierarchically refined into four (2d) or 8 (3d) children, which may be further
refined, forming a forest.

o Distributed storage: Each processor in a parallel program may only store a part
of the entire forest (the locally owned part).
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A

(a) A partitioned square (b) A partitioned ball

Figure 3.4: Partitioned meshes

As an example consider, in R?, the unitary square [0, 1]? with its triangulation A, and
the ball of radius 0.35 and center in (0.4, 0.45) with its triangulation B. Figureshows
an example, obtained with deal.ll, of a possible distribution for the two triangulations
A and B: each color represents a different process. The two images are separated for
better visualization, even though the ball is contained inside the square. To compute
Equation the process owning the point y, which lies on B, must also own the cell
K of A containing y,; as the figures shows, in a distributed setting this condition is
most likely not satisfied, and ghost cells are not enough to solve the problem.

Figure shows a three-dimensional example: the mismatching between colors
identifies situations where coupling is not possible, unless information is transferred
between different processes.

The problem which needs to be solved has become an ownership problem: “which
process owns the part of A in which p lies?” or “Is a part of B inside this portion of
space?”.

3.4.1 Bounding Boxes

An accurate description of the boundaries of each locally owned domain would answer
to the problem, but this solution is not feasible, as it would require no data distribution.
As a solution, we develop an approximated description, which we can find the process
owning a point, possibly among few “guesses”.

A new data structure has to be introduced; ideally this structure should be efficient
and reliable while using as little memory and communication as possible. The natu-
ral solution is using simple containers, such as bounding spheres (BS) or axis-aligned
bounding boxes (AABB). Both solutions are covered by a wide literature because of
their applications ranging in the most diverse areas: from robotics to computer graph-
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Figure 3.5: Distributed cube and sphere

ics (see, e.g., [33]). Our choice was to use AABB, as done in the DTK library, because
of their best fitting abilities.

Bounding Boxes Computations

An AABB is described through a pair of points describing the bottom-left and top-
right corners of the box. A number of standard functions to quickly check if a point is
inside/outside a bounding box, computing the intersection and union of two bounding
boxes etc. are well known in literature (see, e.g., [33]).

The intersection of two bounding boxes b1, and b2 coincides with their intersection as
closed sets; but, if we define the operation U as the union of two bounding boxes which,
given two bounding boxes b1 and b2, returns the smallest bounding box contianing both
bl and b2, then b1 LI b2 C b1 U b2 (see Figure . In the second example we see a case
in which b1 U b2 = b1 U b2; we shall call such cases “mergeable”. For the algorithm
implemented it is of importance to understand if two bounding boxes are mergeable or
not; this is computed with Algorithm

Given a refinement level which has enough coarse cells to describe the space it is
possible to create a description of the space occupied by the locally owned cells. This

is a sketch of the algorithm used:

Algorithm[4]is guaranteed to return a collection of bounding boxes which contains all
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b2

bl b1lllo2

b2

b1l /b2

bl

Figure 3.6: Non-mergeable and mergeable bounding boxes

Input: Two bounding boxes b1 and b2 in the space of dimension
spacedim

Output: True if the bounding boxes are mergeable

compute b3 = bl N b2;
if b3 is empty or has dimension < spacedim-2 then

‘ return false;
else if b1 and b2 are aligned or bl C b2 or b2 C bl then

‘ return true;
end
return false;

Algorithm 3: Checking if bounding boxes are mergeable
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Input: A triangulation, a refinement level
Output: A list of bounding boxes

initialize the list of bounding boxes b_list;

for K in triangulation’s cell of refinement level do
if children of K are locally owned then

Create a bounding box bb surrounding all locally owned cells inside K;
Add bb to b_list;

end

end

Merging section:;

for bl in b_list;

do

merge_happened = false;

for b2 in b_list;

do

if b1! = b2 and bl,b2 are mergeable then
Add b1 U b2 to b_list;
Remove b1 and b2 from b_list;
merge_happened = true;

end

if merge_happened == false then
return b_list;

end

end

end
Algorithm 4: Creating a description of the locally owned meshes
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locally owned cells; but, because of the quadratic time required in the merging section
of algorithm, it is suitable only for meshes obtained from a relatively small number of
coarse cells. Another flaw is the need to choose a refinement level which works well
with the current mesh. However, coupling complexity for the coupling is so high that
Algorithm [] suits our needs without using any relevant computing time. Moreover, in
Section we show how the use of the boost library recently offered an alternative
solution, without the quadratic time limitation.

Guessing Ownership Once every process has a global description of the mesh, in
terms of bounding boxes, a search through the bounding boxes allows to guess the
possible “owners” of each point.

Bounding Boxes Exchange

It is important for the global description returned, for example, by of Algorithm
to contain few bounding boxes, as these boxes are communicated with a collective
“allgather”, and replicated on each process. This operation allows to build a container,
global bounding boxes, containing an approximated description of the locally owned part
of the whole mesh.

Given a point, a search through global bounding bozxes, returns one (or few) processes
owning the point. This allows to solve the coupling problem through one (or few) point-
to-point communications (see Subsection [3.4.1)).

Object Communication Sending multiple, different, objects using MPI is often dif-
ficult, complicated and impractical. A key ingredient to simplify our implementation,
was the definition of two interfaces for an “all gather” and a “some to some” func-
tions which can send arbitrary objects. This is made possible implementing a simple a
serialize function for the Boost library [24].

This interface, allows to avoid the manual de-construction and reconstruction of
objects, or the use of MPI Types, making the code simpler and cleaner, and saving time
in both the writing and debugging part of the implementation.

Distributed Compute Point Locations

This function uses the structure we just described, to run the same computation as
compute point locations, but in a distributed setting.

The function returns the output of compute point location, as if it was called on the
points geometrically inside the locally owned domain, with the addition of a list of the
points for which the output is presented, the rank of the process originally owning that
point, and an id for each point .

The idea behind a “distributed compute point locations” is the following;:

e Use the bounding boxes to guess where each point lies

e Use send and receive for points lying on parts of the domain which are not locally
owned

e Use compute locations on all the points which lie on the locally owned part of the
domain
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Input: A triangulation, global bounding box description, a list of
points

Output: cells containing points located inside the locally owned
part of the mesh, their transformed, and unique point ids

Use global bounding bozes to guess the owners of each point;
Call compute point location on the points which are probably local;
Send and receive points which have a single owner;
Send the output of compute point location and relative points for what
resulted to be in ghost cells;
Call compute point location on the points which received and owned;
Send and receive points with multiple possible owners;
Call compute point location on points which might be owned;
Build output from all computed data;
Algorithm 5: A scheme for distributed compute point locations

A sketch of the algorithm follows

The practical implementation has some complications, for example:

e The tasks are either communication intensive or computation intensive; task
spawning was used in an attempt to minimize communication overhead

e Merging the output of multiple calls to compute point location has a non trivial
computational cost

Final results for this function are presented in section

3.5 Benchmarks

3.5.1 Serial Baseline

We shall call the version of compute_point_locations present in deal.Il version 8.5.1 “ver-
sion 1”7 (from now on: v1). The initial benchmark was run with random points on
a square gridE]

Even though the growth is linear, computational cost is extremely high: taking more
than 20 seconds to find 4000 points inside a grid of 4000 cells. For a deeper analysis,
callgrind and kcachegrind were used; results are reported in Table

This preliminary analysis results can be summarized in the following:

e Function’s performance is mediocre

e The biggest computational burden lies in tranform_real_to_unit_cell i.e. F gl(p),
which is called 10176 to classify 200 points: this can probably be avoided

e The second big cost lies on find_active_cell_around_point

2This preliminary result was obtained on a laptop running ArchLinux on an Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60GHz; afterwards the benchmarks were run on SISSA’s cluster Ulysses, which
runs on Intel(R) Xeon(R) CPU E5-2640 0 @ 2.50GHz.
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Figure 3.7: compute_point_locations v1: varying number of points
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Figure 3.8: compute_point_locations v1: varying number of cells
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Table 3.1: Kcachegrind analysis for v1 with 200 cells, 200 random points

CEst | CEst per call | Count Callee

87.68 25372 10176 tranform_real_to_unit_cell

11.73 300388 115 find_active_cell_around_point

0.15 146937 3 dl runtime resolve avx

0.02 560 115 | std::allocator( std::vector( Point( 2 )))
Table 3.2: Kcachegrind analysis for v1 with 400 cells, 200 random points
CEst | CEst per call | Count Callee

82.08 25499 13657 tranform_real_to_unit_cell

17.29 513026 143 find_active_cell_around_point

0.17 247442 3 dl runtime resolve avx

0.07 2135 143 | std::allocator( std::vector( Point( 2 )))

Triangulation ———»> Cell —»  \ertex
Cache

Figure 3.9: The DAG structure, with the additional direction provided by the Cache
class.

Find active cell around point

As pointed out when describing Algorithm [2| the deal.Il implementation of find active
cell around point is quite slow but, because of its relevance to our problem we quickly
report on the improvements brought by Dr. R. Gassmoeller and Prof. L. Heltai.

The initial improvements are due to Gassmoeller et al. [35], who implemented them
in the ASPECT library [47, [10], and we ported then the code to the deal.Il library:

e Adding a storing system, GridTools::Cache, to compute only once non DAG
information

e Implementing an algorithm to guess which cell among the neighbours of v is most
likely to be the one containing p.

There are many simple methods to guess which cell might contain a point, such as
checking the distance from the point to the center. A better algorithm, based on the
angle between the vector p — v and the vectors going from each cell’s center to v, was
developed by Rene Gassmoeller et al. [35].

These improvements radically changed the performance of find active cell around
point, with a great benefit for compute point locations.

The cache class Let c be a generic cell of a grid, let v be a vertex, we use the symbol
v € ¢ to state that v is one of the vertices of ¢. In a library with the classic DAG
structure described in Figure given the vertex v, the only way to find those cells ¢
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for which v € ¢, is to use a search on all cells. Running this operation, without further
optimizations, results in two main drawbacks:

e for a simple operation on vertices the complexity O(N), where N is the number
of cells in the grid, is quite high,

e if the operation has to be repeated, e.g. when computing the coupling matrix C, it
results in huge waste of computation as cells are visited multiple times, repeating
the same operation with a waste of computational power.

As a solution we included a caching mechanism, in the class GridTools::Cache,
where the association between vertices and cells is computed only once. While the
initial operation of building the cache is slower than a single search, as memory has to
be allocated and the whole mesh has to be traversed, the performance gain is usually
apparent already at the second or third search.

3.5.2 Improvements for the Serial Code

The algorithm for compute point locations was improved in the following ways.

Calls to tranform_real_to_unit_cell The first problem is that tranform_real_to_unit_cell
is always used to identify whether or not a point is inside a cell, even if it could be
discarded using simpler methods, such as the distance from the cell’s center.

In particular, given a cell K, let px be its center, and dg the cell’s diameter; then the
following “distance check” can be used to avoid many calls to tranform_real_to_unit_cell
when checking if the point p is inside. The tranform_real_to_unit_cell function is called
only if:

1
llp — pl| < 4K

This method reduces the number of calls to tranform_real_to_unit_cell cell by more
than an order of magnitude, with a great impact on performance. We shall call the
function with this improvement “version 2”.

Looping on all the points The second bottleneck comes from the fact that the
algorithm always loops on all remaining points: this number is potentially huge and,
thus, even discarding them using the distance from the cell center is not sufficient.

Thanks to Subsection the now improved speed of find active cell around point
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makes it possible to use a completely different approach:
Data: A triangulation, a list of points
Result: cells containing points and their transformed

Initialize the vector with cells, points,qpoints;
for p in points do
Find the active cell K around p and ¢ = F' I}I(p);
if K in cells then
‘ add p and ¢ to the points in K;
else
Add K to cells;
add p and ¢ to the points in K;

end

end

return cells, points, gpoints;

Algorithm 6: Compute Point Locations, version 3

This algorithm is much more elegant than the previous ones, and its cost lies almost
entirely on find active cell around point, making it benefit greatly from the improve-
ments of Its performance is quite consistent and remains quite efficient even for
unordered configurations of points.

Searching for K in the cell list has a high cost but, in many practical problems
coming from mesh coupling, points are clustered, making the number of cell’s they
occupy low compared to the number of points.

Using different Containers In order to reduce the searching cost different containers
were used instead of vectors; unordered maps and unordered multimaps were used,
because of their constant O(1) access time [97], depending on the hashing function; in
this case the unique active cell index was used. The versions compared are:

e version 2
e version 3

e version 3 modified to check if the point is inside the last found cell (to take
advantage of point’s order, see Paragraph ).

e version 3 which uses an unordered multimap and merges the different mapped
values.

version 3 which uses and unordered map and then creates an output vector.

As shown in this results in a speed up of approximately 5%.

Mixing Both Approaches To improve the function’s performance in the case of
coupling, we make the assumption that p is probably in the last found cell, or close to
it.

This leads to two algorithm changes:
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Figure 3.10: Container Comparison

1. Before calling the search function, check if the current cell coincides with the last
one found.

2. Use the distance from the cell center, to evaluate if the last cell is a good hint cell
for find active cell around point.

Passing a wrong hint cell to find active cell around point greatly reduces the perfor-
mance, as the function looks for v, the closest vertex of the hint cell to p and checks if p
is inside one v’s neighbours; these checks waste computational power before calling the
standard algorithm, slowing down the function. At the same time a simple test such as
the distance test, represents only a small overhead with a random set of points, but it
allows to safely use hint cells in any scenario.

2d Serial Benchmarks

Test in two dimensions were run with the following settings:
e a “Random Benchmark”: random points, as shown in Figure

e a “Clusterized Benchmark”: points lying on a spiral with parametrization p —
7= (sin(p), cos(p)), with 0 < p < 27 (see Figure 3.11b))

If Ny is the target number of cells and N.p;;4 the number of children obtained from
the refinement of a single cell the cells were refined uniformly floor (IOchhil d(Nceus))
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Data: A triangulation, a list of points
Result: cells containing points and their transformed

Initialize the vector with cells, points,qpoints;
Find the active cell K around p and ¢ = Fgl(p);
Compute the K’s center px and diameter d;
for p in points do
if ||p — px|| < dx then
‘ Find the active cell with hint cell K;
else
‘ Find the active cell;
end
if K== last cell then
‘ add p and ¢ to the points in K;
else
Look for K in cells;
Same as version 3;

end
end

return cells, points, gpoints;
Algorithm 7: Compute Point Locations, version 4

timed’] and then further cells were refined reaching a total number of cells between
Neeurs and Neepis + Nepig — 1.

To time the code the the timing tools offered by deal.Il and deal2lkit [91] were used.
Here we report the profiling for a clustered simulation on 100000 points and 50000 cells:

31t’s the greatest number of possible uniform refinements without exceeding Neceiis

Random benchmark Clustered benchmark
1.0 —~ 1.0
0.8 N N 0.8
0.6 in 0.6
]
04 0.4 £
o]
024 [2 . o 0.2
0.0 L 0.0
OTU 0?2 0?4 OTG 0?8 ITO OTO 0?2 0?-’1 0?6 0?8 170
(a) Random Benchmark (b) Clustered Benchmark

Figure 3.11: 2D benchmarks examples
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Version 2

Timer Name Global time (num calls)
Add new cell 0.04804 (399)

add point to existing cell 0.5034 (9.96e+04)
Bench v2 114.1 (1D

Loop on points of cell 106.9 (2.1e+07)
Transform point 0.7632 (1.259e+05)
find_active_cell 0.08292 (400)

Version 3

Timer Name Global time (num calls)
Bench v3 12.56 (1)

add new cell 0.002193 (400)

add point to existing cell 0.5158 (9.96e+04)

find if cell present 0.609 (1e+05)
find_active_cell 11.31 (1e+05)

Version 4

Timer Name Global time (num calls)
Bench v4 .185 (1)

1

add new cell 0.002221 (399)
add point to existing cell 0.4949 (9.96e+04)
find if cell is present 0.002243 (399)
find_active_cell 0.03758 (4)
find_active_cell hint 0.5732 (1le+05)

The time needed to add new cells and points it’s the same among all versions, and
this operation can not be optimized.

Remaining observations endorse what has been written in Subsection [3.5.2} a com-
parison between v3 and v4 shows that, using the distance to evaluate if the old cell is
a reasonable hint, makes the finding process much faster while for v2 the cost of find
active cell around point is low, but the time needed to loop on all points slows down
the process.

For the random example, version 1 is used only in the simplest test, as it is extremely
slow. The speedups depend on the problem complexity and, in our examples, we reached
a speed-up of 236 in a clustered example, and one of 780 in an example with randomly
distributed points.
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Table 3.3: Clustered Benchmark: running times and speedups for different versions of
compute point locations on 10° ordered points on a mesh with 5 - 10* cells

Points | Cells vl v2 speedup v3 speedup v4 speedup
10° | 5-10% - 114.1 - 12.56 - 1.185 -

5-101 [ 2-10* | 1379 | 43.35 | 3.18 3.169 43.5 0.584 236
108 [ 2-10% | 26.96 | 7.67 3.51 0.6298 | 42.8 | 0.1233 219
108 [5-10° [ 11.81[3.999 | 295 [ 0.2818| 419 |0.1144 103

Table 3.4: Random Benchmark: running times and speedups for different versions of
compute point locations on 10° random points on a mesh with 5 - 10* cells

Points | Cells vl v2 speedup v3 speedup v4 speedup
10° | 5-10% - 8227 - 13.86 - 14.04 -

5-10% | 2-10% - 1879 - 3.451 - 3.58 -
10t | 2-10* - 171.6 - 0.6645 - 0.6654 -
108 [ 5-10% | 231.6 | 86.06 | 2.69 | 0.2979 77 0.297 780

3D Serial Benchmarks

For 3D simulations, a spiral with parametrization ¢ +— (0.4 cos(t) + 0.5,0.4sin(t) +
0.5,ht + 0.1) was used. Table shows that v4 remains the is the best function in
the clustered case, and its timing in the random case is comparable with v3, while v2
now becomes extremely slow with random points. Speed-ups are reported separately,
as version 1 is too slow for the tests shown in Table 3.6

In both clustered and random tests, the scaling is linear, but as shown in Figure
v3 is slow in comparison to the others. The speed ups reported in Table show
numbers reduced in comparison with the 2d case. In three dimensions the algorithm used
in find active cell around point is slower because of the increased number of neighbouring
cells.

Final 3D Benchmarks We have shown that different containers can improve the
speed of about 5%. For this reason a new implementation of version 4, which uses an
unordered map as container, was added. The tests were done in a 3D setting: the outer
grid is a cube and the points are arranged in a spherical shape (see Figure .

Table shows how, using unordered maps as containers gives a boost of about 5%

Table 3.5: Timings for random and clustered benchmarks of different versions of
compute point locations on 10° random points on a three-dimensional mesh with

5-10* cells
Benchmark Type | v2 timing | v3 timing | v4 timing
Clustered 12.27 29.56 2.091
Random 8434 30.84 30.98
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Table 3.6: Speed ups with respect of v1, for random and clustered benchmarks in 3D:

CHAPTER 3. NUMERICAL COUPLING

different versions of compute point locations

Benchmark Type (points, cells) | v2 speedup | v3 speedup | v4 speedup
Clustered (10%, 510%) - 1.77 5.27
Random (10%, 5 - 10%) 1.98 395 385

20k Cells, Varying Random Points

—— V2
10° 4 v3
—0— v4

— 10% 4

seconds (s

101 4

109 4 //

1(')4 2 x 10*
Points

3 x 10* 4 x10*

Figure 3.12: 3D Benchmark With Random Points

Table 3.7: v5 with unordered map comparison on random benchmark

(Points,Cells) vh v5 with unordered map | Speed Up

(3431, 4096) | 0.1797 0.1427 1.26
(27967, 32768) | 4.082 3.927 1.04
(226415, 32768) | 33.53 32.27 1.04
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in efficiency.

3.5.3 Parallel Results

In our initial test we used a cube and a sphere, as in Figure partitioned among a
varying number of processes.

TimeMonitor results over 12 processors

Timer Name MeanOverProcs

1
.001423 (1)

Compute and merge other points 0

Compute mesh predicate box 0

Constructing points to be sent 0.0001599 (1)
Dcploc, cube 4 sphere: 3 0.2365 (1)
Merge ghost 0.07784 (1)
Using BBoxes to guess owner 0.001361 (1)
all gather for bboxes 0.001553 (1)
some_to_some ghost part 0.01146 (1)
some_to_some other points 0.005509 (1)
some_to_some owned points 0.01564 (1)

The profiling on 12 processes shows how Compute and merge other points takes most
of the time: this is the section of the code were compute point locations is run on points
received from other processes and then added to the current output. This operation is
slowed down because, after calling compute point locations, an additional search on cells
is needed to merge the output.

Making a weak scaling test for this problems is complicated, as depending on the
mesh distribution the number of points which needs to be computed or communicated
varies. A preliminary scaling result is shown in Figure in this case compute point
locations was run on a total of 10k points; as we can see there are some scaling problems.

Using unordered maps To improve scaling we used another container, an unordered
map, and of version 6 of compute point locations.

The test was run using a cube and a sphere inside it, as shown in figure The
following profiling results show that the algorithm is now well-balanced. Figure |3.14
shows the preliminary scaling results: clearly, for this particular use-case, unordered
multimaps outperform vectors.
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Weak scaling with 10k points per process

5.01 —e— Current
4.5 Ideal scaling
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o 351
3
2 3.0
Q.
w
2.54
2.0
1.5
1.0
4 6 8 10 12 14 16 18 20
Processes
Figure 3.13: Weak Scaling test
TimeMonitor results over 20 processors
Timer Name MinOverProcs MeanOverProcs
Compute and merge other points 0.03702 (1) 0.03702 (1)
Compute mesh predicate box 0.00342 (1) 0.003455 (1)
Constructing points to be sent 0.0001049 (1) 0.0001074 (1)
Dcploc, cube 5 sphere: 4 0.07959 (1) 0.07962 (1)
Merge ghost 0.000176 (1) 0.003586 (1)
Using BBoxes to guess owner 0.00106 (1) 0.001089 (1)
all gather for bboxes 0.002365 (1) 0.002371 (1)
some_to_some ghost part 0.000526 (1) 0.009646 (1)
some_to_some other points 0.001664 (1) 0.001669 (1)
some_to_some owned points 0.0008979 (1) 0.0009018 (1)

Notice that the distribution of the sphere cells among processes, and the points dis-

3.6 Further developments

tribution, change with every new number of processes uses: his affects the performance
of compute point locations and it’s behind the apparent super-linear scaling. The plot
clearly shows that the algorithm is scaling well at least with up to a few dozens of cores.

A number of improvements were introduced thanks to efficient search trees algorithms
implemented in the boost library [24]. Among the others, the following functions were
added to GridTools::Cache:

1. Cache.get_vertex_kdtree(): generates a kdtree containing the vertices of the

triangulation.
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Weak Scaling on 32768 cells per process
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Figure 3.14: Weak Scaling test

2. Cache.get_cell_ bounding _boxes_rtree(): generates an rtree of bounding boxes,
where each bounding box covers a cell.

3. Cache.get_covering_rtree(): generates an rtree of bounding boxes which, given
a point, allows to identify the owner or the possible owners of the cell containing
the point.

These additions resulted in the following improvements:

e The kdtree spanning all vertices can be used to speed up the search for vertices
in compute point locations, if no candidate is found.

e The function compute point locations benefits from a tree spanning the cells of the
mesh because, instead of using the diameter, the bounding boxes can be used to
test if a point belongs to a cell. This operation is faster, and usually returns less
false positives.

e Through the intersection of trees spanning the meshes it is possible to generate
more efficiently the coupling matrix.

e The function distributed compute point locations benefits from a tree describing
the “ownership”, implementing a fast search option to find processes which might
own a point.

e The rtree describing the “ownership” can be used to generate a good local de-
scription of the mesh, without the need for a dedicated computation. The only
drawback of this approach is that, currently, the only function implemented in
the boost library returns a single, global bounding box. Multiple boxes can be
obtained with some technical tricks, i.e., implementing a visitor which travels the
tree and requesting all boxes after a certain number of splits.
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Chapter 4

Fiber reinforced materials

In this chapter we show an application of non-matching coupling methods applied to a
continuum mechanics problem: the study of fiber reinforced materials. We describe a
full 3D model, where both the fibers and the underlying material are modelled as three-
dimensional meshes, and then study a reduced model, where fibers are approximated
with tubular neighbourhoods of one-dimensional meshes.

Composite materials are the prototypical example of problems requiring the cou-
pling between multiple, complex geometries. During the past fifty years, the interest
in composite materials flourished multiple times; at first it sparked for the applications
of composites to new materials in aerospace engineering [45], civil engineering [71],
materials science [14) [68], and other engineering fields.

During the nineties, the increasing importance of biomechanics in life sciences lead
to the development of numerous models describing, e.g., arterial walls [55], soft tissues
[53], and muscle fibers [56].

Recent years saw the rise of new application fields, such as the study of natural fiber
composites [81], and engineering methods to accurately recover the three-dimensional
structure of a material sample, e.g., [58| 59].

From the first studies on composites, it has been clear that their properties are
strongly dependent on their internal structure: the volume ratio between each compo-
nent, the orientation, the shape, all contribute substantially to the material’s properties
[45, 46]. One of the most wide-spread and significant example of composites is that of
Fiber Reinforced Materials (FRMs), where thin, elongated structures (the fibers) are
immersed in an underlying isotropic material (the elastic matrix).

We may separate the approaches used to study FRMs into two broad groups: i) “ho-
mogenization methods”, which study a complex inhomogeneous body by approximating
it with a fictitious homogeneous body that behaves globally in the same way [101], and ii)
“fully resolved” methods, which use separate geometrical and constitutive descriptions
for the elastic matrix and the individual fibers.

As examples of analytical “homogenization methods” we recall the rule of mix-
tures [44] and the empirical Halpin-Tsai equations [43], used to study a transversely
isotropic unidirectional composite, where fibers are uniformly distributed and share the
same orientation. The development of homogenization theory led, in recent years, to
more complex models, e.g., [54] 12].

More intricate homogeneization approaches rely on numerical methods to provide a
“cell” behaviour, which is then replicated using periodicity, using, e.g., the Finite Ele-
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ment Method (FEM) [}, [76], [65], Fourier transforms [74] [75], 32], or Stochastic Methods
[66].

The fundamental limit of all “homogenization methods” approaches is the impos-
sibility of adapting them to study composites with little regularity. In these cases,
the different phases are typically modeled separately, as a continuum. This approach
began with Pipkin [82] on two dimensional membranes, and was then expanded to
three-dimensional examples by others (see, e.g., [61] for a detailed bibliography).

Fully resolved methods allow richer structures, but require a high numerical res-
olution, especially when material phases have different scales. The complex meshing
and coupling often result in an unbearable computational cost, limiting the use of these
methods.

The purpose of this chapter is to introduce a new approach which is fit for materials
that have intermediate properties, i.e., they posses no particular regularity, and are made
by a relatively high number of fiber components. We propose an FRMs model inspired
by the Immersed Boundary Method (IBM) [80], and by its variational counterparts [22],
48, 50, [88], [51], where the elastic matrix and the fibers are modeled independently, and
coupled through a non-slip condition. We aim at providing an efficient numerical method
for FRMs that allows the modeling of complex networks of fibers, where one may also
be interested in the elastic properties of single fibers, without requiring the resolution
of the single fibers in the background elastic matrix. From the computational point of
view, this approach allows the use of two independent discretizations: one describing the
fibers, and one describing the whole domain, i.e., both the elastic matrix and the fibers.
A distributed Lagrange multiplier is used to couple the independent grids, following the
same spirit of the finite element immersed boundary method [20] 22], separating the
Cauchy stress of the whole material into a background uniform behavior and a ezcess
elastic behavior on the fibers.

We begin this chapter introducing the tools needed for our Problem: in Section
we introduce the basic tools of continuum mechanics which are needed for the description
of the composite materials, we then introduce hyperelastic materials in Subsection [£.1.2]
and report some useful properties of linearized elastic equations in Subsection [4.1.3
In Section we recall some notion of differential geometry, these tools are needed
for Subsection 4.2.1] where we introduce the tubular neighbourhoods of curves, and
Subsection where we describe some useful coordinate systems for the description
of the gradient on tubular neighbourhoods.

Section [£.3] introduces the classical fully resolved model of a collection of fibers
immersed in an elastic matrix. For simplicity, we do not include dissipative terms,
and restrict our study to linearly elastic materials. The problem is then reformulated
exploiting classical results of mixed finite element methods (see, e.g., Chapter 4 of [19]),
following ideas similar to those found in [2I], proving that both the continuous and
discrete formulations we propose are well-posed with a unique solution.

The use of a full three-dimensional model for the fibers still results in high computa-
tional costs; the obvious simplification is to approximate the fibers with one-dimensional
structures. This approach is non-trivial because it is not possible to consider the restric-
tion of a Sobolev function defined on a three-dimensional domain to a one-dimensional
domain. A possible solution involves the use of weighted Sobolev spaces, combinded
with graded meshes [30), 29] but, if the number of fibers is large, graded meshes may still
be too computationally intensive. In Section [4.4] we propose and analyze an alternative
solution, where additional modellistic assumptions enable a 3D —1D coupling that relies
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on local averaging techniques. A similar procedure is used in [49] to model vascularized
tissues. To conclude, we validate our thin fiber model in Section

4.1 Basic notions of elasticity

Starting from some basic definitions, we now introduce kinematic description of the
main balance laws needed for the mathematical description of linear elasticity.

4.1.1 Balance Equations

With Lin(n), where n € N, we denote the vector space of all linear applications of R™
in R™. With Lin™(n) the subspace of Lin(n) of applications with positive determinant.
We denote the subspace of all symmetric applications in R™ with Sym(n).

When the dimension n of the space is understood, we shall often omit the script
“(n)”.

An important subset of the linear transformations set is the orthogonal group:
O(n) == {0 € Lin(n): 00T = I(n)},

where I(n) is the identity matriz in R™.

In mechanics we are particularly interested to the subgroup of O(n) containing
applications with positive determinant, as in dimensions n = 2 and n = 3 it coincides
with rigid rotations; the orthogonal group is defined as:

SO(n) :== O(n) N Lin™ (n).

Bodies have an intrinsic property: they occupy a region of space. This property
allows to define a body reference configuration as a regular subset ) of the Euclidean
space E3.

To study the body’s deformation we define a vector field ¢, called deformation:

$: Q — R3,
with the deformed configuration of the body being ¢(12).

Remark. It is often necessary to include an explicit dependency on the time t for the
deformation, which becomes
$:[0,T] x Q — R3,

with T a positive constant, and [0,T] a time interval.

A point can be described by its Lagrangian coordinate p € ), and by its Fulerian
coordinate x = ¢(p).

We indicate the deformation gradient with F' := V¢. This value describes locally
the volume after deformation per unit original volume, and we assume J := det F' > 0,
i.e., F(p) € Lin™.

The displacement vector of a point p € §2 is defined as:

implying
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Let pg be the mass density in the reference configuration, and let p be the mass den-
sity in the deformed configuration. Considering bodies with a continuous distribution
of mass and imposing the conservation of mass for each (measurable) subset of 2, leads
to the equation:

pJ = po.

Internal contact forces are described by the following axiom:

Axiom 1 (Cauchy’s hypothesis). Let S C Q be an oriented surface inside 2. There
exists a surface force density s(n,x), with positive unit normal n at x € S, describing
the force per unit area exerted across S upon the material on the negative side of S by
the material on the positive side.

This leads to the following statement for the conservation of linear momentum in
Eulerian form: for every regular subset P of :

/Ppb—l—/dps(n)zo,

where b is the density of the external force per unit mass.
A fundamental milestone in continuum mechanics is Cauchy theorem [40], which
states that s(n,x) is linear in n.

Theorem 4.1.1. Let (s,b) be a system of forces for a body Q. Then a necessary and
sufficient condition for the momentum balance laws to be satisfied is that there exists a
spatial tensor field T, called the Cauchy stress, such that:

e for every unit normal vector n
s(n)=Tn
e T € Sym(n)

o T satisfies the conservation of linear momentum:

divT + pb = 0.

The Cauchy stress tensor describes the contact force per unit area in the deformed
configuration and, in the case of elastic body, it is assumed to depend on the deformation
gradient:

T =T(z,F(x)).

The same quantity can be represented in the reference configuration using the first
Piola-Kirchhoff stress tensor P, defined as:

P=JF'T.

4.1.2 Hyperelasticity

A common strategy to simplify the study of elastic materials, is to assume the internal
dissipation to be zero during any admissible motion: the second law of thermodynamics
becomes an equality, and no heat is produced. This idea is formalized in the concept of
perfect elasticity: a material is said to be perfectly elastic if it does not produce entropy
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when deformed [I00]. One such material is called hyperelastic if there exists a strain
energy density, called ¥, depending only on the deformation gradient F'.

Starting from the second law of thermodynamics, it is possible to prove that the
constitutive equation of a hyperelastic material can be expressed, at every point of the

body, as:
ov

- OF;
where P is the First Piola-Kirchhoff stress.

This simplified model is appropriate, for example, to describe the first soft material
that has been extensively studied, especially by Treolar [99]: rubber. Rubber materials
can maintain an elastic behaviour even when subjected to large deformations, e.g., an
extension ratio of 3.0 as shown in Figure [4.1

Pij(F)

(), (4.1)
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Figure 4.1: Two dimensional extension on S-rubber from the original article [99]; curve
a) show the points obtained in the experiment, curve b) the agreement between the
two curves, when increasing and reducing the extension.

Using the constitutive restrictions from continuum mechanics, it is possible to detail
the dependence of ¥ on F. To avoid the possibility of an infinite deformation of the
material with a finite amount of energy, ¥ should satisfy the non-degeneracy axiom:

U(F) — +o0 for det(F) — 0T,
U(F) = 400 for \/tr(FTF) + \/tr(F—TF—l) 400,

A material is isotropic if its energy is independent of the reference frame:
U(F)=V(QF) for every F € Lin(3), and for every @ € SO(3),
Recall the right Cauchy-Green tensor is defined as:
C=F"F.

It is possible to prove that the strain energy density can be expressed as a function of
the principal invariants of C"
U = V(I, I, I3),
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where

L=t(C) I©= “r(c)):_ tr(C) I = det(C).

By making additional hypotheses on the material, it is possible to find more precise
formulations for W. For example we can consider the Mooney-Rivlin model [73] [86],
which describes an incompressible model, i.e., det I = 1, in this case the ¥ can be
expressed in the following form:

\I/<F) = CIO(II — 3) + 001(12 — 3),

where C1g and Cp; are two material parameters. For this model the shear modulus p
can be expressed as:
p = 2(C1o + Co).

A special case of this model is the neo-Hookean model, in which Cy; = 0, see [73].

4.1.3 Linear elasticity

The most widely used model for elasticity is the linear elastic model; this theory is
appropriate when considering small deformations, and can be obtained linearizing the

equations proposed in Section
We now report some widely known results, for more details see [4I] and Section 4.3

of [69].
When we consider Equation {4.1| near F' = I, its value is governed by the linear
transformation defined as:

0 0*

Ciint = ——Py(I) = —2—w(F)|
O, (T) OF;;0F (F) e

called the elasticity tensor.

The elasticity tensor C has a number of properties, such as being symmetric and
invariant under the symmetry group of the material, or that C[WW] = 0 for every W &€
Skw, the subspace of skew matrices:

Skw == {W € Lin: W = -WwT}

Theorem 4.1.2. Assume that the material is isotropic. Then there exists scalars A and
i, called Lamé moduli, such that:

C[E] =2uE + \(tr(E))I,
for every B2 € Sym

Theorem [4.1.2] is particularly important as, given the gradient Vu of the displace-
ment, it allows to write the constitutive law of the material as:

CVu :=2uEu+ A(divu)l,
where Fu = VU%V“T is the symmetric part of the gradient.

An important property of elastic tensor is the strong ellipticity: there exists a
positive constant ¢ > 0 such that:

Cijrv viwFw' > c||v||?|jw|)?,
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for all vectors v,w € R", where n is the dimension of the space we are considering

(typically 3).
In the case of linear elasticity there exists a characterization of this property:

Theorem 4.1.3. Let C be an isotropic an homogeneous elasticity tensor with Lamé
moduli A and p. Then

C is strongly elliptic < p > 0, 2u+ X > 0.

Strong ellipticity is a common and important property for elastic models; in this
thesis we chose, for simplicity, the linear elastic model for our numerical simulations.
Finally we describe pointwise stability, a stronger property than ellipticity: C is
pointwise stable if, for every symmetric v;;

(Cl'jklvijvkl > 0.
It can be proven that a linear elastic operator is stable if and only if:

2
w >0, §u+)\>0.

4.2 Basic notions of differential geometry

The description of fiber reinforced materials, and their approximation as tubular neigh-
bourhoods, requires some basic notions of differential geometry, which we briefly collect
here; for a more detailed reference see, e.g., [60].

In the second part of this Section, we introduce the description of the Laplacian
using coordinates on the curve, which is mostly used in physics-related fields for the
description of particle trajectories.

Consider T', a one-dimensional curve immersed in R?; let I C R be a finite interval,
and w: I — I be the arclength parametrization of I'.

Assuming the curve is C3, at each point = € I, there exists an s € I such that z =
w(s); and the curve parametrization defines a base for R?, called the Frenet trihedron:

t(s) = 20

_dt(s) /|| dt(s)
n(s) = ds /‘ ds ‘
b(s) =t(s) x n(s).

Here t is the vector tangent to the curve at x, while n and b generate the plane
orthogonal to the curve at x; for an example see Figure 4.2
To describe the curve I' it is useful to introduce the notions of curvature:

d*w(s)
ds?

K(s) = '

and torsion:
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Nn(s)
b(s
r (s)

X=w(S)
Figure 4.2: The Frenet trihedron.

A curve with torsion identically zero is called planar curve, as it can be embedded
inside a plane.
To describe the evolution of curvature and torsion along the curve, we use the so-
called Frenet-Serret formulas:
dt(s)
“ds K(s)n(s),
dn(s)
ds
db
d(:) - —7(s)n(s).

= —k(s)t(s) +7(s)b(s), (4.2)

4.2.1 Tubular neighbourhoods

The concept of tubular neighbourhoods is one of the basic tools in differential geometry;
the basic properties of a tubular neighbourhoods which we report here are often shown
as examples of exercises in multidimensional real analysis and multivariable calculus
books, e.g., [31].

Given a radius @ € R, a > 0, and a curve I' in R3, we define the tubular neigh-
bourhood of T of radius a, as the set of all points in R? at distance at most a from the
curve:

Q= {x € R3: dist(z,T) < a}.

If T is regular enough, and has an arclength parametrization w, then ), can also be
defined as:

Qo = {w(s) +n(s)A +b(s)ha: 5 € LA Ao € R st (/A2 + X3 < a).

We require 0f2, to be non-intersecting. This hypothesis is satisfied locally if w is
either C? regular or a C? regular plane curve, and the radius is chosen such that
1

a < max —.
sel K(s)

For a plane curve, the osculating circle has radius maxgey ﬁ, and can be seen as
the intersection of normals for infinitely closed points; because a is smaller than the
radius, perpendicular disks do not intersect.

If the torsion 7 is non-zero, then we can repeat the argument in space using the

osculating sphere, which has radius:
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Figure 4.3: Frenet-Serret and the rotated coordinate systems.

after noticing that R(s) > %

To describe the tubular neighbourhood, we introduce the following definition: for
all z = w(s) € T', we define D,(x) as the two-dimensional disk perpendicular to I', with
radius a, centered at x:

Dy (x) = {w(s) + n(s)A1 + b(s)A2: A1, A2 € R, /AT + A3 < a}.

4.2.2 A reference system on one-dimensional fibers

The use of Frenet-Serret coordinates is used in physics to study wave propagation, optics
and particle trajectories [63].

To simplify our computations we shall rotate the orthogonal vectors, as proposed
by Tang [98], and then transform the plane < n,b > using polar coordinates, as done
in [90].

Recall that each point z of a the tubular neighbourhood €2, can be written as

x = w(s) + zon(s) + yob(s),

with zg,y0 € [—a,a], where zp and yo are the distances from z to the centerline T,
along the normal and binormal directions. Using the Frenet-Serret formulas [£.2] we can
compute the metric tensor:

de - dr = dxd + dyd + [(1 — kwo)? + (22 + yd)7%)ds?® + 27(vodyo — yodzo)ds.

The metric is non-orthogonal because of the mixed term 27(zodyy — yodzo)ds.
To obtain an orthogonal metric, define 6 as an angle solving the following differential
equation:
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where the initial value 6 can be fixed arbitrarily. Define the rotated vectors:
e1(s) = cos(0(s))n(s) — sin(0(s))n(s) (4.3)
ea(s) = sin(0(s))n(s) + cos(0(s))n(s), (4.4)
each point x € {2, can be written in the new system of reference as:
x =w(s)+xie; + yiea.
The metric of the the coordinates (¢, e1, e2) is orthogonal:
dr - dx = da? + dy? + [1 — k(z1 cos(0) + yi sin(0))]*ds?.

We assume fibers to be cylindrical in their reference configuration; a natural de-
velopement for our model is for fibers to be axisymmetric. This suggests the use of a
coordinate system where the orthogonal plane to a point x of the curve, is described
through polar coordinates.

Consider the coordinate system (r,, s), where (r,9) are defined so that:

x1 = 1 cos(V) (4.5)
y1 = rsin(¥). (4.6)

This coordinate system is shown in Figure the metric for the coordinate system
(r,0,s) is:

A~

dx - dr = dr? 4+ r*d9* + (1 — kr cos(V — 0))?ds>.
This allows to write the gradient in the coordinates (r, 9, s):

d - 1£ 1 d -

4.3 Three-dimensional model

Many bi-phasic materials present a relatively simple fiber structure but result in a very
intricate elastic matrix. Consider, for example, Figure[£.4} constructing a discretization
grid for the fibers themselves maybe simple enough, but building a fully resolved grid
for the surrounding elastic matrix, in this case, may require eccessive resolution, and
result in a computationally hard problem to solve. We wish to describe a new approach,
where we substitute the complex mesh needed for the elastic matrix with a simple one
describing the whole domain, and overlap the fiber structure independently with respect
to the background grid, coupling the two systems via distributed Lagrange multipliers.

4.3.1 On the coupling bond

To introduce our model, it is useful to briefly report some well-known properties of
FRMs (for more details see [28], Chapter 16).

The mechanical characteristics of a FRM do not depend only on the properties of
the two phase materials, but also on the degree to which an applied load is transmitted
from the elastic matrix to the fiber. The transmission depends on:
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Figure 4.4: An example of a fiber structure for which the mesh generation for the
fibers would be trivial, but the resulting three-dimensional elastic matrix would be
much more expensive to resolve in full.

e The fiber-matrix bond strength 7., i.e., the degree to which an applied load is
transmitted to the fibers through the interfacial bond between the fiber and the
matrix phases

e The fiber length, because the matrix-fiber bond greatly reduces at the extremities;
see Figure [£.5]

The fact that, at the edges of the fiber, the load transmittance reduces, leads to the
definition of a critical fiber length /., dependent on both the fiber radius a and 7:

a
lo x —.
Te

If the fibers are shorter than this critical value ., the stress transference becomes neg-
ligible, while longer fibers generally result in better reinforcement for the material [28§].
Fibers for which the length [ is [ > [, are called continuous fibers.

To simplify our model we consider continuous fibers with a “perfect bond” between
the two phases, leading to the same deformation of both materials. Mathematically, the
bond is imposed using a non-slip condition between the two phases.

For the simplified one-dimensional model, we introduce the average non-slip con-
dition using the integral average; in the case of thin fibers, assuming the solution is
piecewise continuous, this can be seen as an approximation of the classical non-slip
condition.
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Figure 4.5: Deformation pattern around a fiber subjected to a load.

4.3.2 Problem formulation

As a model bi-phasic material, we consider a linearly elastic fiber reinforced material. To
simplify the treatment of the problem, in this work we limit ourselves to the quasi-static
small strain regime. The extension to finite strain elasticity and dynamic problems does
not present additional difficulties and is going to be be the subject of a future work.

To describe the composite we use a connected, bounded, Lipschitz domain Q C R of
dimension d = 3, composed of a fiber phase {2y C 2, which we assume to be a Lipschitz
domain, and an elastic matrix phase Q=0 \Qf C R?. The fiber phase is obtained as
the union of the ny € N fibers, each described through a connected, Lipschitz domain;
for simplicity we shall fix ny = 1. The results hereby reported can be easily extended
to the case of a finite number of fibers.

NONNANNANANA
vuuvuuvuuuuyu

QO Qy 0
The elastic matrix The fibers The material

Example of a two-dimensional section of an FRM with uniformly oriented fibers.

Remark. The results of this section hold for a general domain §1y, union of multiple
components with the required reqularity. The property of the fibers of being thin, elon-
gated, structures, is only needed for the model of Section[{.4], and plays no role in this
section, where they could be considered “elastic inclusions”.

Given a displacement field u: Q — R?, representing a deformation from the equi-
librium configuration, the corresponding stress tensor on {2 can be expressed using the
stress-strain law [40]:

S[u] = CVu,
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where C is a symmetric 4" order tensor that takes the form:

C in
Cy in Q.

Here Cq and C; are assumed to be constant over their respective domains, and
represent the elasticity tensors of the elastic matrix and of the fibers. The classical
formulation of static linear elasticity can be thought of as a force balance equation (see,
for example, [40]):

Problem 12 (Classic Strong Formulation). Given an external force density field b, find
the displacement u such that

—div(Cu) =0 in Q,

4.8
u=20 on 0. (48)

Due to the piecewise nature of C, it is natural to reformulate Problem [12| into a
variational or weak formulation. Given a subset D of 9€2, we introduce the notation for
the subspace of the Sobolev space H!(Q) with functions vanishing on a subset D of the
boundary 0€:

Hj p(Q)* = {v e H'(Q)%: 0|, =0},

with norm || - [[v = || - [|[g1() = || - o + ||V - [|o, where the symbol || - || 4 represents the
L?(A) norm over the measurable set A C €2, and (-, -) 4 represents the L? scalar product
on the given domain A. We define the following space:

d
V= (Hj ()" = {v e H{(Q)": v],, =0},
The standard weak formulation reads:

Problem 13 (Classic Weak Formulation). Given b € L?(Q)¢, find uw € V such that:
(CVu,Vu)g = (b,v)q Yv € V. (4.9)

The main idea behind our reformulation is to rewrite Problem [13|into an equivalent
form, where we define two independent functional spaces. The novelty we introduce is
to define the functional spaces on © and €y, and not on Q and Q 7. To achieve this,
we define two fictitious materials: one with the same properties of the elastic matrix,
occupying the full space €2, and one describing the “excess elasticity” of the fibers
separately, defined on €1y only. The first step in this direction is to split the left-hand
side of Equation [4.9| on the two domains:

(CVu,Vv)q = (C;Vu, Vo), + (CaVu, Vu)q
= (CyVu, Vu)g, + (CoVu, Vu)g + (CoVu, Vu)a, —(CaVu, Vu)g,

Q
= (CaVu, Vv)q + (6C;Vu, V’U)Qf,

where 6Cy := Cy — (CQ)‘Qf.
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For simplicity, we improperly use the expression “elastic matrix equation” and “fiber
equation”, even though they should be really considered as the “whole domain equa-
tion”, and a “delta fiber equation”.

This formal separation does not change the original variational problem, which can
still be stated explicitly: given b € L?()¢, find v € V such that:

((CQVU, VU)Q + (5CfVu, VU)Qf = (b, U)Q Yov eV. (4.10)

To simplify the coupling between the fibers and the elastic matrix, we need to split
Equation [4.10| on two functional spaces, describing their boundary conditions.

The boundary of the domain €2 induces a natural splitting on the boundary of the
fibers: we define the following partition of 0€2;:

B = 09\ 09 (4.11)
B, = 0Q N 9y, (4.12)

where B; is the interface between the fibers and the elastic matrix, and B, is the interface
between the fibers the exterior part of €2, that lies on the boundary 0.
Next we define the restriction of H(€2) on the fibers:

W= (Hgp,(27)" (4.13)

With the explicit introduction of the space W we can modify Problem by sep-
arating the solution into two components, one describing the whole matrix, the other
describing the fibers. To enforce the continuity at the boundary of the two components
we impose an interface condition: the following non-slip constraint for the solution
(u,w) e V. x W:

ulg, = w. (4.14)

To easily the continuity at the boundary of the two components and Equation 4.14] one
should choose matching grids for €2 and I'. To avoid this inconvenience we follow the
distributed Lagrange multiplier approach described in [20), 6] 23].
The modified problem can be described as a constrained minimization problem:
u,w=arg inf Y(u,w), (4.15)
ueV

weWw
subject to
u‘ =w
35

where we defined the total elastic energy of the system as
1 1
Y(u,w) = §(CQVU, Vu)g + 5(5Cwa, VU))Qf — (b,u)q. (4.16)

To impose the non-slip constraint of Equation [£.14] in weak form, several choices are
possible. One may use, for example, the scalar product of W, or the duality product
W’ x W as in [2I]. In this work, we use the latter, let Q = HO_,}BG (Q24)? = W', which
enforces the transmission condition on the interface (see [6, 23]):

(q, u‘Qf —w)gxw =0 Vg € Q. (4.17)

For simplicity we shall avoid the subscript @@ x W from now on.
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The constrained minimization expressed in Equation [4.15|is equivalent to the saddle
point problem:

u, w, A = arg inf (arg sup ¢ (u, w, )\)> , (4.18)
weW

where the constraint is imposed weakly as in with a Lagrange multiplier:

Y(u, w, \) = %(Cﬂvu, Vu)q + %(&cfvu;, Vw)a, + <A,u}Qf —w) — (b, u)q.
A solution to Equation is obtained by solving the Euler-Lagrange equation:
(Dyh,v) + (Duwth,y) + (Dab,q) =0  VveV,VyeW,VqgeQ, (4.19)
that is:

Problem 14 (Saddle Point Weak Formulation). Given b € L*(Q)¢, find v € V,w €
W, \ € Q such that:

(CaVu,Vu)g + (A, v{ﬂf) = (b,v)q YoeV (4.20)
(6CsVw, Vy)a, — (A y) =0 Yye W (4.21)
(q,u‘Qf —w)=0 Yq € Q, (4.22)

or, equivalently,

Kou +BT)\ = (b, )Q inV’
Kiw —MIX =0 in W' (4.23)
Bu —Muw =0 in Q'
where
Kq:V =V’ (Kqu,-) = (CqVu,V-)q
’Cfi W—)W’ <’wa,'> = (5<Cwa,V)Qf
B:V Q' (Bu,") = (- ul,, ) (4:24)
M:W = @ (Mw-) = (-, w).

4.3.3 Well-posedness, existence and uniqueness

The theory for saddle point structure problems is well known and can be found, for
example, in [19]. To verify well-posedness, existence and uniqueness of the solution to
such a problem, it is sufficient for certain inf — sup and ell — ker conditions to be
satisfied.

To make our notation closer to the one used in [19], we introduce the following
Hilbert space, with its norm:

V=V XMW,

1ty w) 17 = Tllfr + [l
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We indicate with u := (u,w),v := (v, y) the elements of V, and define the following
bilinear forms:

F:VxV-—R

(u,v) — (Kqu,v) + (Kjw,y) = (CoVu, Vv)q + (0CVw, Vy)q,,
E:VxQ-—R

(u,q) — (Bu,q) — (Mw, q) = {g,v|, —w).

Summing the first two equations of Problem [14] and using the newly defined space
and bilinear forms we can restate the problem as: find u € V, A € ) such that

F(u,v) + E(\,v) = (b,v)q Vo= (vy) €V,

E(u,q) =0 VqeQ. (4.25)

Following [19], to state the inf — sup conditions we introduce the kernel
ker E := {'v = (v,w) € V: <q,v‘ﬂf —w)=0Vqe€ Q} .
Since we can identify L?(Qf) with its dual, and L?(2) C W', we have that
(q,v‘Qf —w)=0= (q,v‘Qf — w)gf =0= U|Qf =w a.e. (4.26)

A sufficient condition for the problem to be well-posed, and prove existence and
uniqueness of the solution is the following: if there exist two positive constants a; >
0, ag > 0 such that

E
inf sup _Ewag) > o (4.27)
9€Q vev [[ullv llgllo
F
inf  sup ﬂ > Qag. (4.28)

u€kerE ycker £ ||’U,”V ”'UHV

These two conditions can be proven with the following propositions:
Proposition 4.3.1. There exists a constant a; > 0 such that:

. <q7 ’U}Qf - ’LU>

inf sup ——F—— > 3.

4€Q (wwyev || (v, w)llv llallo
Moreover o = 1.

The proof for this proposition, and its discrete version, are variations on the one
found in [21].

Proof. The non slip condition is given by the duality pairing between Q = W’ and W;
by definition of the norm in the dual space Q:

lallo = sup {2
S Tl

< <Q7U|Qf - w)
>~ Sup 1o
veVaweW ([lwl[g) + [[o])?

where the last inequality can be proven fixing v = 0. The final statement is found
dividing by ||¢||q and taking the inf,cq. O
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Proposition proves Inequality To prove Inequality additional hy-

potheses are needed:

Proposition 4.3.2. Assume Cq and Cy to be strongly elliptical, with constants co and
cy respectively such that cy > cq > 0; there exists a constant ag > 0 such that:

] (CaVu,Vv)g + (6CVw, Vy)g,
inf sup > Qo.
(ww)ekerE (4 ) cker B (v, )l (w, w)lv

Proof. An immediate consequence of the hypotheses is that 0Cy is elliptic of constant
¢t — cq. Following the proof for a similar statement found in [6], 23], given an element
(v,y) € ker(E), the fact that v’ q, = Y allows to use the Poincaré inequality on v to
control the norm of y; for every (u,w) € ker(E):

(CoVu, Vu)q + (6CsVuw, Vy)gf
sup
(v,y)€ker(E) H('U, y)HV
ca(Vu, Vu)q + (¢f — c)(Vw, Vw)q,
[[(w, w)|lv
S % min(cq, ¢y — cq) (U, W) E1(Q) + (W, W) F1(0))
- 2 [ (u, w) v
> agl|(u, w)|lv,

where we used the Poincaré inequality with its positive constant ¢, on u € V, with

g = %g’cf_m), and we used the scalar product of H'(Q):

(u, w) g1 () = (u,v)q + (Vu, Vo),

and the analogous one for H'(€2f). The final statement is obtained dividing by || (u, w)|lv
and considering the inf(, )ckerE- O

Remark. This manuscript does not intend to focus on the choice of elastic tensors.
As stated in Subsection[].1.3, strong ellipticity is a common property among them, and
holds in the case of linearly elastic materials with some hypotheses on p and A: let

weV,weW

CoVu :=2ugFEu+ \q(trVu)l = 2ugFu + Aq(div u)I (4.29)

CiVw :=2urEw + Xf(trVw)I = 2upEw + A p(divw)I (4.30)

0CsVw :=2(puy — po)Ew + (Af — Aq) (trVw)I (4.31)
=2usEw + \s(divw)1,

where ps == py — po and As = Ay — Aq. For our numerical tests we shall use these
equations, with coefficients satisfying the strongly ellipticity hypotheses of Theorem[].1.3

Proposition implies Inequality and we conclude that Problem [14] is well-
posed, and has a unique solution.

In the next subsection we prove Proposition directly, in the case of a
pointwise stable linear elastic operators.
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Direct proof for the inf-sup

Assuming pointwise stability (see Subsection ) for the constitutive laws, described
in Equations [£:29] and we can prove directly a modified version of Proposition
4.5.2)

Proposition 4.3.3. Assume Cq and Cy to be pointwise stable linear elastic equations,
assume Sy € €1, there exists a constant cg > 0 such that:
(CaVu, Vu)g + (6CsVw, Vy)a,

inf sup > ao.
(uw)ekerE (4 ) eker B (v, ) vl (w, w)llv

Idea of the proof: for elements of V' we can use Korn and Poincare’ inequalities;
using the fact that (u,w) € ker(E) this allows to control also w.

Proof. Define fi == %min(,ug, pg) > 05 if Ag > 0, using the definition of Cq:
(CaVu, Vu)g = 2ugal|Bullg = 24 Eullg.
If A\q < 0, then the stability condition 2uq + 3Aq > 0 = ug + Aq > 0. Now using the
fact that ||Eullg > [[tr(Eu)|q = || div(u)|g:
(CaVu, Vu)g = 2uq|| Eullg + Al div(u)|lq
> pollEullg + (pa + Ao) [[div(u)llg > polBully = 24] Eullg,
—_——
>0
Similarly:
(CyVw,Vy)a, > 20l Eullq, .

Splitting F over Q and Q t, and applying last inequality:

sup  (CqoVu, Vo) + (6C¢Vuw, Vy)gf = sup (CqoVu,Vv), + (CrVw, Vy)gf
(v,y)€ker(E) (v,y)€ker(E)

> [(Bu, Bu)g, + 2(Bw, Buw)g,
f(Bu, Eu)q + i(Ew, Ew)q, .

The last equality holds as (u,w) € ker E. Then:
1Bullg, + [|1Ewl,

[[(w, w)lw

(CVu, Vo)q + (0C;Vw, Vy)q,
sup

4.32
(v.9) Cker(E) (0, )l (4.32)

> ji

As u € V = H}(Q) we can use Korn’s first inequality (see e.g. [77] or [78]): there is
a constant Cg such that Ck||Vul|3 < ||Eul%. Using then Poincaré inequality with its
constant C on H} () we obtain:

(Bu, Eu)g + (Bw, Ew)q, > Cx|[Vul§ + | Ew|,
> CKCQHUH%H(Q) + HEwH?)f

> Cr | |Vullg+ ulld, + 1 Bwlld, |
——

(a) (b)
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where C = min(1, CqCk). Because (u,w) € ker(E) = u‘Qf = w and Hu||?2f = Hw||?2f
The term (b) can thus be estimated using the second Korn inequality:

lulg + [ Bwld, = [wll, + [Bwld, > CxlVol?, .

where we assume C is a constant satisfying both Korn inequalities. Applying Poincaré
inequality on (a):

IVullgy + llullé, + [|Ewld, > Calllullg, + [IVuld) + Cr[Vwllg,

> Co | [IVullg,+ Julld, + [Velld, |
——

(a) (b)

where Cy = min(Coq, Ck) and (b) = Hw||§{1(ﬂf). Apply again Poincaré inequality on (a):

with ay = 1C1C2Cq. Substituting in Equation

(CVv, Vu)o + (CrVy, Vwa, _ |(u,w)[}

= l|(u, w)lly

sup > 02
(v,y)Eker(E) (v, y)llv ([ (w, w)|lv
We conclude dividing by ||(u, w)||v and evaluating the inf over (u,w) € ker(E). O

4.3.4 Finite element discretization

The formulation of Problem makes it possible to consider independent, separate
triangulations for its numerical solution. Consider the family 7,(€2) of regular meshes
in Q, and a family 7,(€2f) of regular meshes in Qy, where we denote by h the maximum
diameter of the elements of the two triangulations. We assume that no geometrical
error is committed when meshing, i.e., {2 = UTheTh(Q) T}, and Qp = USheTh(Qf) Sh. We
consider two independent finite element spaces V;, C V, and W), C W.

The duality paring between Q and W can be represented using the L? scalar product
in Qg:

<Q7 ’LU> = ((L w>Qf'

Thus we discretize the duality pairing as the L? product, and consider @, = Wj,. To
handle the restriction of functions from V}, to W}, we first introduce the L? projection:

Py: W — Wy, C L*(y),
which is continuous: for every u € W
[1Pwull 20, < llull2oy)-

This condition is too weak for our problem, which involves Vw. We assume the projec-
tion Py is H'-stable, i.e., there exists a positive constant ¢, such that for all w € W:

IV Pwlla, < e Vullg,. (4.33)
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Given a function v € V, with a slight abuse of notation, we shall write Pyv instead
of Py ( ’Q We assume that the H'-stability property holds uniformly on 7;(£2) and
Tn(82f), prov1ded that the mesh size h is comparable on the two domains.

To discretize Problem [I4] we reformulate the weak non-slip condition of Equation

for every vy, € Vi,wp € Wh,qn € Qp:

(Qh,vﬂﬂf —wp)a, = (Qh,vh|ﬂf)9f — (qn, wn)a;,

= (qn, Pwon)a, — (qn, wn)a, = (qn, Pwvn — wh)q;-

Problem 15 (Discrete Weak Formulation). Given b € L*(Q)?, find up € Vi, wy, €
Wh, A € Qn such that:

<(CQVU}L, Vop)a + ()\h, Pth) = (b,v ) Yoy, € Vy, (4.34)
(6CsVwn, Vyn)a; — (Mn,yn)a, =0 Vyn € Wh, (4.35)
(qn, Pwup — wp)a, =0 Yan € Qn. (4.36)

As in the continuous case, we study the inf — sup conditions after defining the
following space:

Vi = Vi X Wh,
equipped with the norm || - ||v, and the operators:

Fr:VyxV, —R
(un,v1) — (CaVup, Vup)a + (0CVwp, Vyr)a,,
Eht Vh X Qh — R

(h, qn) — (qn, Pwon — wi)qy;-

Equation can now be discretized: find u;, € Vj,, A\, € Qj, such that

Fy(up,vn) + En(vp, An) = (b, vn)aq, V vy = (vn,yn) € Vy
En(up, qn) =0 V gy € Qp.

Following Subsection [4.3.3] Problem is well-posed, and there exists a unique
solution if there exist two positive constants ag > 0,y > 0 such that

E(u
lnf Sup M > a3
1 €Qn vy, ey, [[unllv llanlla,
F(up,vp)

inf sup > ay.

unckerEn y, eker B, [|U[v, [[Vnllv,
These conditions can be proved modifying Propositions and

Proposition 4.3.4. There exists a constant ag > 0, independent of h, such that:

(qn, Pwon, — wp,)
inf sup

Qy
> 3.
IEQN (vyw) eV, |(Wns wr)l[vllan o,
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Proof. The proof is similar to the one of Proposition [4.3.1] For every q; € Qp, by
definition of the @ norm, and using the representation of the duality paring as a scalar
product in L%(Qf), there exists & € W such that:

(gn.w)o,  (qn W),  (qn, Pwd)a,

lanllq = sup = — = - : (4.37)
O vaw lwlg Kt [Kalira

where the last equality holds for the choice of spaces. Using well-known properties of
Py, and the H' stability, we can prove there exists a ¢ such that:

[Pwillg < Clldlle-
Inserting this in Equation

lanllo < (qn, Pwd)a, (qn, Pwd)a,
nllQ < - < -
lollq [Pl
w (qhs V| — wh)a
<C sup (qn> wn)a, <c o, 3
wews,  |[wallQ on€VisuneWs (|lwll + lvnll?)2
and we conclude as in Proposition [£.3.1] O

To study the ell — ker condition on Fj, we define:

ker(Ep,) == {vh = (vn, wn) € Vi (qn, Pwon —wp)a, =0 Y, € Qh}
= {vp == (v, wn) € Vi: (qn, Pwon)a, = (qn,wn)o;  Yqn € Qn}.

Proposition 4.3.5. Assume Cq and Cy to be strongly elliptical with constants co and
cy respectively such that cy > cq > 0; there exists a constant oy > 0, independent of h,
such that:

(CaVup, Vup)a + (6CsVyp, th)gf

inf sup > ay.
(un,wn)€ker En (4, 4 eker By, (s yu) v Il (s wa) llv
Proof. Mutatis mutandis, the proof follows the one of Proposition O

Error estimate Proposition[f.3.T]and [4.3.2]allow us to apply the theory from Chapter
5 of [19], obtaining the following error estimate:

Theorem 4.3.1. Consider Cq and Cy, elastic stress tensors satisfying the hypothesis of
Proposition[{.3.3, the domains Q and Qs with the regularity required in Section[4.3, and
b e L2(Q)?. Then the following error estimate holds for (u,w,\), solution to Problem

and (up, wp, Ap), solution of Problem .'

[ = unllv + [w = wpllw + A = Anlle <

(4.38)
C 1nf u—"v 1nf w — mf )\ — ) ;
e <vh€Vh | nllv +yh€Wh | Ynllw + o A = anllq

where Ce > 0, and depends on a3, oy, co,cy and the norm of the operators Kq and Ky.

We remark how this constant C, depends on a3, which is affected by the coupling
between the two meshes. As intuition suggests, the quality of the solution does not
depend only the on the ability of V and W to individually describe it, but also on the
coupling between them.
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Non-matching meshes One of the basic assumptions made in the continuous case is
that, for every element v € V, we have that v|, € W, similarly every element w € W
can be extended to an element of V. ’

With an independent discretization of the two meshes the inclusion W), C V} can
not be guaranteed, leading to the use of the projection Py : V; — Wy, which we require
to be H'-stable, i.e., that Equation holds.

Since for every vy, = (vp, wy) € ker(Ep) = Pw(vn) = wp, = wp, € Py (Vy); if the set
Py (V) is small, the inf — sup constant can be negatively affected; the extreme case
being Py = 0, which results in ker(E;,) = {(0,0)}, and the inf — sup condition for Fy
not satisfied.

Q

Under some simple construction hypotheses it is possible to guarantee that globally
constant and linear functions are included in the kernel, ensuring that ker(E;,) # {(0,0)}.

4.4 Thin fibers

The computational cost of discretizing explicitly numerous three-dimensional fibers
might render Problem too computationally demanding: a possible simplification
is suggested by the fiber shape, which can be approximated with a one-dimensional
structure. Constructing this simplified model is a non-trivial task because the restric-
tion (or trace) of a three-dimensional function to a one-dimensional domain is not well
defined in Sobolev spaces.

Instead of resorting to weighted Sobolev spaces and graded meshes, as done in
[30, 29], the solution we propose is to introduce additional modellistic hypotheses, that
allow one to use averaging techniques instead of traces to render the problem well posed.

To simplify the exposition, we shall consider a single fiber; the same results hold
with a finite collection of fibers.

We use the definitions of Section let I' be a one-dimensional connected domain,
embedded in Q, let w: [0, L] — T be its arclength parametrization of I'. We assume the
Frenet trihedron (¢(s),n(s),b(s)) to be well defined for every s € [0, L], at every point
w(s) € I, and the function s — (t(s),n(s),b(s)) to be continuous.

We fix a constant radius a € R, a > 0 for the physical fiber €2,, which is described
by the tubular neighbourhood of I' or radius a; we assume 2, C €.

We now modify the definitions of Section for the boundaries of 9€2,:

Bi = 8Qa \ GQ,
B, = 00N 0Qy,,

d
V= (Hypa(9)"

W= (H&,aﬂ(m)d

)
a

with d = 3.

As a reference model, we consider small deformations of an FRM in which fibers
are stiff compared to the underlying matrix. For this model, the fiber radius can be
considered to be approximately constant.

Curved fiber In this section we call I' be a one-dimensional straight line, immersed in
R3 of finite length, and call Q, its tubular neighbourhood of radius a, which is a straight
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cylinder. To represent a generic a one-dimensional connected domain we use the symbol
I', and assume its tubular neighborhood can be obtained through the restriction of the
diffeomorphism

D:Q—Q, (4.39)

satisfying the following hypotheses:

e It transforms the cylinder into the tubular neighbourhood of the curve T with
constant radius a: Q, = ®(€,)

e It transforms the cylinder center line: T' = &(I)

e It transforms orthogonal disks to I' into orthogonal disks to T: for every x € I,
D, (@) = ®(Dor(x)) = 71 (D, 5(2())) = Dar(@),

where we added the subscript to identify the disk as orthogonal to [ and T respectively;
D, #(®(x)) C 4, and Dy p(®(7)) C Q.

Numerous transformations satisfy these properties, e.g., rotations and stretches, but
also transformations modifying the curvature, see Section

To simplify the notation we shall avoid making the explicit distinction between I,
[ etc. in this manuscript, except for this paragraph and the next subsection, preferring
then the symbol without tilde.

4.4.1 Regularity of the average

In this subsection we prove that, by considering a certain average for our functions, we
obtain a sufficiently regular “restriction” operator which we can use for our fictitious
domain approach.

To avoid confusion, in this subsection we shall avoid the symbols V, W, writing
explicitly the spaces as H(Q), H(€), and so on.

In this Section, domains without tilde, such as I', refer to the case of cylinder aligned
with the first axis; domains with tilde, such as f, are used for other domains.

Let w € HY(T') (or w € HY(T)), the surface gradient along the curve is defined as:

Viw =t ® tVw, (4.40)

where w is a tubular extension of w on a neighbourhood of T (or T'), and we are using
the unitary tangent vector to the curve I' from the Frenet trihedron (t(x),n(z),b(z)).

We now want to prove that for every u € H* (1), its average on I is also on H*(I),
i.e., u e HY(T), where @ is defined for a.e. z € " as:

1
[Da(0)] Jp,(a)

We first use cylinders aligned with the first axis, using the axis-aligned coordinates
(w1, 22,23), and consider only the case €, €  with functions defined on H'(Q,) =
HY(Q) |Qa (the extension to Hj(Q2) is trivial). The results hold also in the case H (Q4),
which can be proven with few changes.

u(x) = u(y)dD,. (4.41)

The following lemma is used to prove that, if u is C*°, then u € H(T); later we
shall extend the result to H' using density.
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Lemma 4.4.1. Let u € C*°(Qy,), then the following inequalities hold:

_ 1
Jalr < Il (442)

_ 1
IVeile < g |Vullo, (4.43)

Proof. Since we use C°°, we can consider their restrictions: the first coordinate, x1,
shall be used for the cylinder axis, while o and z3 are normal to the axis. The first
inequality can be proven directly, using either Jensen’s or Holder inequality:

2
1
HUHZZ/ / w(x1, x2, v3)dxadrs | dxy
: (ma?)? Jp Dq(z1)

< 71_(12//11 o u(zy, x9, v3)*drodrsdr, = 2Hu||Qa

The second inequality can be proven in a similar fashion, after recognizing that, for
every x € I, the integral domain D,(z1), used to compute @(z) does not depend on the
variable x, and that |Vru(x )]2 \leu( )%

Define D = {z9, 3 s.t. 23 + 23 < a?}, then:

2
1
Vru 2 / Oy / w(x1, e, x3)dxrodrs dxy
IVl = F( e
2
! /‘a / ( Vdaadzs | d
= T 5\9 T U(xy,r2,x3)axr26T3 Z1
(7TCL2)2 r ' (z2,23)€D

2
1
N W/F (/( yeD a331“(1"1) x2, x3)dl’2dl‘3> dggl
xr2,T3

1
) , T, x3) drodrsdr, < Vul?
< MQ//(M e (@1, 22, 23) dwadazde, —3lIVullg,

Proposition 4.4.1. Consider a straight cylinder Qg; then
ue€ HY(Q,) = uc HY(T).
Proof. We begin considering u € C*°(€),). Using Lemma we obtain:
Jaln ey < —=lul
0 —||u ,
HYI) = Jra H*(Qa)
therefore u € HY(T).
Consider now a generic v € H'(T'), then there exists a sequence of functions

— 1
(Un)nen C C*°(£2,) such that w, 7, u, and we conclude with a density argument. [J

We now want to extend Proposition to the case of a tubular neighborhood
obtained through a diffeomorphism ® satisfying the hypotheses at the beginning of this
section.

To generalize our result on straight cylinders we use the following Lemma:
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Lemma 4.4.2. Given ® diffeomorphism with the above hypotheses, for every u €
HY(Q,):
1/2
luo @0, < CY*Collull g, (4.44)
1] g1 ) < (CrCa)*?[[ue @l pr(ry, (4.45)

where we defined the following positive constants:

Cj = sup |J®1(2)] Cyp = sup |[VP(2)|.
Zeﬁa Zeﬁa

Proof. The proof for the two inequality is, essentially, a change of variables using ®~ 1.
For the first inequality, we begin with the L? part of the norm:
o |3, :/ (uo@)QdQ:/~ W16 < CyJul? .
Q(l a “

Similarly, for ||V (uo ®)][3, :

IV (o ®)[3, = / (V1o ) (2))2d

a

:/ (VO (2) T Vu(®(2)))%d, gcg/ (Vu(®(2)))%d,

a a

:/~ (Vu(2)? |7o74d < CC3lul -

a

To prove the second inequality we split the change of variables, considering the re-
strictions of @ first to the disks, and then to the centerline of the tubular neighbourhood.
The symbols we use for these restrictions are, respectively, ®p and &r. With a slight
abuse of notation we avoid to describe the exact disk used for the restriction.

2
1
ag—/EQZ'QdaE—/ / w(@)dDy | dx
lallz - (7) -\ 7a2 D £(® (@)

2
1 ~
- /f <M2 /b (por®) u(cp(y))JchydDy) di

2
7,
= — u(®(y))|J®pldDy | |JPr|dx
/F(mz AR LY ) g

2
1 -
< 03/ <2/ U(<I>(y))dDy) dx = Cjlluo ®|,
r Ta Da,l"(x)

where we used the fact that, by hypothesis, ®~! (Da I:(<I>(a:))> = u(®(y)). To conclude

we apply the same procedure to the gradient norm.
O

Proposition 4.4.2. Consider a cylinder ﬁa, and ®© with properties above; then:

u e H'(Q)=ueHY(D).
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Proof. Notice that v o @ is defined on a straight cylinder.
Combining Lemma [.4.2] and Lemma

- - Cc.C 3/2
Il < (€00 2o By < T o Bl

2052
S e 14 i

which concludes the proof. O

4.4.2 Gradient equality

In the case of straight cylinders, after aligning the axis, it is possible to prove the
following equation:

1
5(0C;VEw, VEw)q, = %(mfva,va)p, (4.46)

where cr = ma?.

This is not true in general but, as we shall prove, it is possible to define a function g
defined on I', which allows to reduce the integral to a one-dimensional one, by describing
the geometry of the tubular neighbourhood.

Proposition 4.4.3. For a general tubular neighborhood 2, of a curve I', for which cur-
vature k and torsion T are defined a.e., there exists a function g defined on I satisfying:

1
5(5(CfVEw, VE’UJ)Qa = %(gé(chpw, Vrw)r. (4.47)

Proof. Let w: I — I be the arclength parametrization of I'; the proof is based on the
idea of computing (6C;VEw, VEw)q, on the reference described in Subsection m

In this reference, consider an element w € H(T'), and its extension as constant on
each orthogonal disk Fw:

dEw 1dEw 1 dEw
VEw = —e, + - ey + - es
dr r df 1 — k(s)rcos(d —6) ds

1 dEw
= = 65.
1 — k(s)rcos(d —0) ds

For every vector component of the gradient (for simplicity we avoid adding a specific
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index):

(0C¢yVEw,VEw)q, :/ 0CyVEwV EwdQ

a

B / < / 5Cfvrw(8)vrw(s)drde> ds
r Da(s)
1 g p
— /p </Da(5) 1 — k(s)rcos(d — 6) 5Cfdsw(s)(kw(s)drd9> ds

1
= /F(S(Cprw(s)er(s) (/Da(s) | n(s)rcos(0 ) drd@) ds

-~

=: g(s)ma?
= (g(S(Cprw, er)p.
Where we define the function:
1 1
g(s) = — —drdf.

ma? Jp,(s) 1 — k(s)rcos(d — 6)

O

Once g is computed, it is possible to compute the energy (§C;VEw,VEw)q, using
a linear integration. In the case of a straight cylinder k(s) = 0, and we obtain again
Equation

The condition 7 < a < maxs1/k(s) is fundamental for the definition of g on the
whole disk. Assume the curvature £(s) to be continuous, then g(s) is continuous and
there exist a constant Cy > 0 such that g(s) > Cy > 0.

To conclude, under the previous hypotheses on the domains, we introduce the ex-
tension operator:

E: HY(T) — HY(Q),
w — w o Pp,

where Pr is the geometric projection from the domain Q to I'; for every y € Q, Pry is
the element of I" such that:

dist(y, Pry) < dist(y, z) for every z € I

As a consequence of our hypotheses on the fiber, for every z € Q, we have z € Dy (Pp(z)).
The operator F is clearly bounded in L?, to prove it is bounded in H! we can use
a strategy analogous to the one used in the proof of Proposition

4.4.3 Modellistic Hypotheses

After proving that the average operator is continuous, we can finally describe the mod-
ellistic hypotheses we make on our model.
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First modellistic hypothesis: fixed radius We assume the fiber’s radius a to
remain constant. This implies that the fiber displacement w is an element of W, where:

W={weW: forae zel,Ew=uwa.e. on Dyg(z)}. (4.48)

It is useful to introduce the space of functions of V' which, restricted to €1,, belong

to W:
Vi={veV: ’U‘Qa c W}
Given w € W, Equation suggests the introduction of the following space:
W = (Hj 5, ()" (4.49)
The following Proposition is an immediate consequence of the choice of our spaces:

Proposition 4.4.4. The spaces Wr and W are 1somorphic.

Second modellistic hypothesis: average non-slip condition Consider u € V
and w € Wr, it is well known that in the case of thin fiber it is not possible to consider
the classic non-slip condition:

ul

F:w.

With the results of Section we can formulate following average non-slip condi-
tion:

U= w. (4.50)
As a second modellistic hypothesis we assume that the average non-slip condition can
replace the non-slip condition.

As a justification, notice that when considering w € W,u € V, the classic non-
slip condition, described in Equation is equivalent to Equation Moreover,
with continuous function and a small radius a, the two conditions can be considered
approximately the same.

4.4.4 Problem formulation

We assume the Modellistic Hypotheses described in the previous section hold:

e the fiber displacement w is contained in W (we shall use Wr, since it is isomorphic
to W),

e we can impose the coupling between fibers and elastic matrix through the average
non-slip condition .

This allows us to modify Problem [14] for the 3D — 1D case; the weak formulation of
the average non-slip constraint on I is:

(u—w)=0 VqeQr,

with Qp = H~1(I")?.
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For every (u,w,q) € V- x Wp x Qr, we define the energy functional of our problem
as:

1
vr(u,w,A) = 5(CaVu, Vulg + cr(90C; Vrw, Vrw)r + (¢, @ — w)r — (b, u)q.

Then the saddle point problem becomes:

u, w, A = arg in‘f/ (arg sup ¢T(u,w,>\)> . (4.51)
’wUEGWF AEQr

Using the Euler-Lagrange equations as in Section [4.3.2] we obtain:

Problem 16 (1D-3D Weak Formulation). Given b € L*(Q)¢, find u € V,w € Wr, X €
Qr such that:

(CaVu, V) + (X, 0) = (b,v)a Yo eV,
cr(goC¢Vrw, Vry)r — (A, y) =0 Vy € Wr,
(g0 —w) =0 Vg € Qr.

We now re-define the space V := V x Wp, and its norm: for every (v,y) € V,
(v, y)llv == || - [lv + || - |lw- We define the operators for the tubular fiber €,:

Fr = (CqVu, Vv)q + cr(96CyVrw, Vrw)r,
Er = <Q7 u— w>a

obtaining a new saddle-point problem, which we study using the inf — sup conditions.

4.4.5 Well-posedness, existence and uniqueness

Similarly to the three-dimensional case, to prove the well-posedness and the existence
and uniqueness of a solution we prove the following sufficient condition: there exist two
positive constants as > 0, ag > 0 such that

E
inf sup & > as
4€Qr vev |lullv [lqllqr
F(u,v
inf  sup _Flwy) > ag,

uckerE ycker E HUHV ”'UHV B

Following a procedure similar to the one of Equation [4.26

kerEp :={v = (v,w) € V: (¢, v —y) =0Vq € Qr}
={v:=(v,w) eV:0=wa.e. onQ,}.

With a variation on the proof of Proposition [4.4.2] it is possible to prove that there
exists a positive constant ¢; > 0, such that:

v =w a.e. on Qq = ||w||r = [|9|Ir < al|v|a,

These conditions can be proved with the following Propositions:
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Proposition 4.4.5. There exists a constant as > 0 such that:

inf sup (9,0 = w) > as.
4€Qr (vuw)ev (v, w)llvllallor

Moreover as = 1.

Proof. The non slip condition is given by the duality pairing between Qr = W}, and W;
by definition of the norm in the dual space Qr:

lallgr = sup )
weWrp HwHW

<Q7ID - w>
" vevwenwr (|wl|, + [[v]|2)?

)

where the last inequality can be proven fixing v = 0.
The final statement is found dividing by ||¢|/q, and taking the inf,cq. O

Proposition 4.4.6. Assume Cq and C; to be strongly elliptical, with constants cq and
cy respectively such that cq > cy > 0; there ewists a constant cg > 0 such that:

. (CaVu,Vu)q + cr(90CyVry, Vrw)r
inf sup > ag.
(uw)eker BT (4 1)) eker B | (v, vl (u, w) v

Proof. For every (u,w) € ker(Er):

(CQVU, VU)Q + Cr(g5Cerw, Vry)r

sup
(v,y)€ker(Er) H(Uv y)HV
co(Vu, Vu)q + crCy(cy — ca)(Vrw, Vrw)r
- [[(w, w) v
< CCre min(cq, Cy(cr — cq)) (u,u) g1y + (W, w) g
- 2 [ (w, w)lw

> o (uw, w)lv,

with ag = CpCrey min(ngz,Cg(Cf—CQ)).

The result is obtained dividing and considering the inf(, )ekerEy -
O]

Using the saddle point theory we conclude that, under our modellistic assumptions,
Problem [16|is well-posed, and has a unique solution.

Remark. An analogous of Proposition holds in the 3D — 1D case; its proof uses
the same arguments and Equality [{..3}

4.4.6 Finite element discretization

The discretization of Problem for thin fibers follows the steps of Section on
the domains  and I' (the fiber’s one-dimensional core). Consider two independent
discretizations for these domains; the family 7, (£2) of regular meshes in 2, and a family
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Tn(I') of regular meshes in I'. " We assume no geometrical error is committed when
meshing. We consider two independent finite element discretizations V;, C V, W;, C Wr.

Similarly to the three-dimensional case, the duality paring between Qr and Wr can
be represented using the L? scalar product in I':

<Q7 w> = (Q? w)r.

Thus we discretize the duality pairing as the L? product, and consider Q, = Wj,. To
handle the restriction of functions from Vj, to W, we introduce the L? projection:

Py : Wr — W, ¢ L*(T),
which is continuous: for every w € Wr
| PwwlL2ry < llwl|r-

This condition is too weak for our Problem, which involves the gradient. We make the
further assumption that the restriction PW|W #£ 0, and is H'-stable, i.e., there exists a
positive constant ¢, such that for all w € Wr:

Ve Pww|r < c||Vrw|lr. (4.52)

We assume that the H'-stability property holds uniformly on 75,(2) and 7,(€2f), pro-
vided that the mesh size h is comparable on the two domains.
We can now write the discretization of Problem [16k

Problem 17 (1D-3D Discretized Weak Formulation). Given b € LQ(Q)d, findup, € Vp,wp €
W, An € Qp, such that:

(CQVuh, Vvh)Q + ()\hﬂ_}h)l“ = (b, ’Uh)Q Yo, € Vp, (4.53)
cr(g6C s Vrwn, Vryn)r — (An, yn)r =0 Yy, € Wi, (4.54)
(qn, tn — wp)r =0 Yan € Q. (4.55)

To study the saddle-point problem we define the Hilbert space V, := Vj, x W}, with
its norm, and the operators

Frp: Vi xVy, — R

(up,vp) — (CaVuy, Vup)a + cr(96C s Vrwn, Vryn)r,
Erpn: Vi x Qn — R

(nh, qn) — (qn, On — wp)r-

Then we can rewrite problem [17]in operatorial form, showing its saddle-point structure:
find uy, € Vy, Ap, € Qp, such that:

Frn(un,vh) + Erp(vn, An) = (b, vn)o YV vy, = (vh,yn) € Vy
E71(qn, un) =0 Y qn € Qn.

Proposition 4.4.7. There exists a constant oy > 0, independent of h, such that:

inf sup (Qh7 Vp — wh)r

> Q.
hEWh (v, wp,) €V, | (vn, wn) vl gnllr
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Proof. The proof is similar to the one of Proposition 4.3.4l For every g, € Qp, by
definition of the @ norm, representing the duality product as a scalar product in L2,
there exists w € W such that:

qh, W)r qh, W)r qn, Pww)r
lanlle = Sup( v _ (nd)r _ (gn, Pwid)r (4.56)
wew |lwllq @]l [l

Using well-known properties of Py, and the H' stability, we can prove there exists a ¢
such that:
[Pwi]lq < cl[llq-

Inserting this in Equation [4.56

(qn, Pww)r < C(th Py)r

lanllo < - < n
“= e [Pwibllq
(qn:vn|g —wn)r
e s R Urlg, —wn)r
wrEW} HwhHQ VR EVR,wp €W, (HwhHé + thH%/)i
and we conclude as in Proposition [£.3.1] O

To study the inf-sup condition for Fr; define:

ker(Epp) ={vy, € Vi (qn, O —wp)r =0 Vgu € Qn}
={v € Vi,: (qn, 0n)r = (qn, wp)r Van € Qn} .

Proposition 4.4.8. Assume Cq and C; to be strongly elliptical, with constants cq and
cy respectively such that cy > cq > 0; then there exists a constant ag > 0, independent
of h, such that:

(CaVun, Vug)a + cr(96CyVryn, Vrws)r

inf sup > as.
(unswn)Eker E,p (v yp)eker Eg [ (wrs ) [l (wns wa) v
Proof. The proof is almost identical to the one of Proposition O

One-Dimensional Approximation The approach of Section [£.4] hides a computa-
tional difficulty: given vy, € V},, the average vy, is obtained computing a number of two-
dimensional integrals, nullifying the computational advantage of using one-dimensional
fibers.

Since we are using finite element functions, there is a straight-forward solution to
this problem: approximate v;, with the restriction vp|.. This approximation is exact

for every vy, € V, and can be justified by the fact that for every vy € Vj:

lim oy (z) = vp(x) for every x € T,
a—0
coherently with the initial choice of v, as a “substitute” of vy,.
While this approach simplifies our computations, it makes difficult the derivation of
a formula for the error committed. The theoretical basis for such an estimate have been
described in this paper, the estimate itself shall be the subject of future work.
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4.5 Numerical validation

The analytical solution of Problems and even for simple configurations, is non-
trivial: we chose some FRMs structures which are studied in literature, and used the
known approximated solutions as a comparison for our model.

Using the deal.Il library [3, [I1], 67, 02], and the deal.Il step-60 tutorial [62] we
developed a model for thin fibers proposed in Section 3, and compared it with the Rule
of Mixtures and the Halpin-Tsai configurations in some pull and push tests.

Numerical Setting For our numerical solution, we now describe how to solve Prob-
lem [17] on a collection of fibers, while reducing the system size; we begin by redefining
our spaces and meshes:

e (): the elastic matrix, on which we build the finite element space, of dimension
N eN:

Vi, = spanf{v; } Y, ¢ HY(Q).

e I' C Q: the collection of ny € N fibers, i.e., I' := UZil T'}, with the finite element
discretization, of dimension M € N::

Wy, = span{wg } X, ¢ HY(I).

e (Jp: the space of the Lagrange multiplier, discretized using the same base of Wj,.

We use i, j as indices for the space V, and a, b as indices for the space W}, and assume
all hypotheses on spaces and meshes of Subsection [4.4.6] are satisfied.

We assume that each fiber is parametrized by Xp: I, — 'y, where I is a finite
interval in R, and 1 < k < ny. We assume for any 1 < j < k < ny we have [ N[}, = 0.
Then we can define X : UZL 1 Ix — I', which parametrizes all fibers contained in I'. For
each fiber I';, we define its tubular neighborhood €2, ;, and define

nf
Qf = U ka.
k=1

We define the following sparse matrices:

AV, =V A = (CaVu;, Vuj)a,

K: W, - W, Koy = cr(g0C¢Vrwe, Vrwp)r, (4.57)
B:V, = Q) Bia = (vi|p» wa)r = (v; 0 X, wa)r, '
L: W, = Q) Loy = (wq, wp)r-

Here B is the coupling matrix from V3 to Wj, M the mass-matrix of W,
After defining the vector g; := (b, v;)q, Problem [17| can be expressed in matrix form
as: find (u,w, A\p) € Vj, x W, x @y, such that

A o BT u g
0 K —-LT]lw|=[0 (4.58)
B —L 0 A 0
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This system has size NM?: computationally it is convenient to reduce its size. From
the second line of the Block Matrix [4.58

Kw=L"\=L\= )= L 'Kuw.

(5 757 ()= () 4

We remove w using the equation Bu = Lw = w = L~'Bu and obtaining:

System becomes:

(A+ BIL7'KL'B)u= (A+ PYKPr)u=g, (4.60)

where Pr := L~!'B. Boundary conditions are imposed weakly, using Nitsche method
(as in [87)).

4.5.1 Model description

°
°
o
°
°
°
w

(a) Section with homogeneous fibers (b) s faces numbering

Figure 4.7: Elastic cube homogeneous structure and boundary description

The elastic matrix we consider in our tests is the unitary cube 2 := [0, 1]3. All con-
sidered meshes are only uniformly refined hexaedral meshes, and we use only piecewise
bilinear finite elements.

The elastic tensors used are described in Equations — for the model
description we use the following parameters:

e rq: global refinements of the {2 mesh.

rp: global refinements of the I" mesh.

Aq, pno: Lamé parameters for the elastic matrix.

e )\, puy: Lamé parameters for the fibers.

e (3: fiber volume ratio or representative volume element (RVE), i.e., 8 = |Q¢]/|€2].
e a: the radius of the fibers.

For the boundary conditions we refer to Figure [4.7b]
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(a) Pull test example, with rq = 4

(b) Pull test example, with rq =6

Figure 4.8: Pull test: comparison on the refinement level of the triangulation for {2

4.5.2 Homogeneous fibers

In our first test we consider a unidirectional composite, where fibers are uniform in
properties and diameter, continuous, and parallel throughout the composite 2 (see
Figure .

We compare the results obtained with our model with the ones obtained using the
Rule of Mixtures [44] [2], which agrees with experimental tests especially for tensile
loads, and when the fiber ratio 8 is small.

The composite stress-strain equation, under the condition u|Qf = w, is:

1 1
Slu,w] = i(CQE’U/, Eu)q + 5(5Cwa, Ew)g,.
Using the Rule of Mixtures we can approximate the integral over 2, with one over 2:
(5(Cwa,E’LU)Qf ~ B(CS(CfEu, EU)Q,

obtaining:
1 1
Slu] = 5(@ Eu, Eu)q + 55(5(CfEu, Eu)q. (4.61)
Multiple tests were run, keeping 3 constant, while increasing the fiber density and
reducing the fiber diameter; we expect this process to render the coupled model solution
increasingly close to the homogenized one.

Comparing solutions Figures[4.8a)and [4.8D]illustrate the influence of 2’s refinement
on the final result, when using few fibers on a pull test. Stiff fibers oppose being
stretched, deforming the elastic matrix €2 through the non-slip condition: near each fiber,
the deformation of €2 should be symmetrical, resembling a cone. This effect is better
described in Figure where the higher value of rq results in greater geometrical
flexibility of the elastic matrix, allowing a better description of the effect of each fiber.
Lower values of rq result in a non symmetrical solution, as in Figure The lower
geometrical flexibility results in an “averaged” solution which, in the case of few fibers,
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Ll I Lol I L1 Lol I Lol
10? 10? 102 103

Number of Fibers Number of Fibers
(a) Pull Test, A = Ap =04, (b) Pull Test, A\ =Ap = 0.4, =1,
M:I,uF:IOOO,B:O.l. /LFZIOOO,TQ:3,TF:3.

Figure 4.9: Pull tests with varying refinements.

is closer to the homogenized model. To describe the slope in the plots, let e;,es be
the L? errors and n f,1,ny2 are the fiber numbers for two subsequent simulations; to
compute the slope we then apply the formula:

In(ez/eq)
In(nysa/ng1)

Pull test along fibers Dirichlet homogeneous conditions is applied to face 0, Neu-
mann homogeneous conditions is applied to faces 2,3,4,5. In the Push Test, the Neu-
mann condition 0.05 is applied to face 1. For the Pull Test, the value —0.05 is applied to
the same face. Boundary conditions are applied only to 0€2; the fibers interact through
the coupling with the elastic matrix.

We report here only data from pull tests, as push tests gave comparable results.

The use of the projection matrix Pr: V;, — W), and the error estimate for the fully
three-dimensional case (Inequality , both suggest that the solution quality on the
elastic matrix depends on both V;, and Wj. This is apparent in Figure where
for rr = 1 the mesh of T" is unable to describe the stretch of the material, resulting in
the error remaining approximately constant after a certain fiber density is reached. A
similar behaviour emerges in the case rr = 2.

In a similar manner Figure [£.9D] shows that refining only the elastic matrix does not
improve the solution quality: as the number of fibers increases, the error converges to
approximately the same value, which is limited by rr.

Figure shows an error comparison as the value of upr varies: as expected our
model is better suited for stiff fibers.

4.5.3 Halpin-Tsai equations

For our random-test we compare our model to the Halpin-Tsai equations: and empirical
set of equations introduced in [43]; we use the Halpin-Tsai equations for longitudinal
moduli as described in [2]. The fibers have length [, diameter d, the fiber and the matrix
Young moduli are E; and E,, respectively, § is the volume fraction occupied by the
fibers.
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Figure 4.10: Pull Test with varying up, A=Ap=04,u=1,6=0.1,rq =3,rr =3

We define two empirical constants:

_ (Ef/Em) -1
"= B Em) + 21]d)’ (4.62)
_ (Ef/Em) -1 (4.63)

T By /Bn) +2
This allows to compute the longitudinal and transverse moduli for aligned short fibers:

_ 1+ @ld)np

FE 4.64
L 1—nLB (4.64)
1+ 2nrp
EFr=——. 4.65
L P (4.65)

If fibers are randomly oriented in a plane the following equations can be used to predict
the elastic modulus:

3 5
Ec = SEy+ 2B, (4.66)
1 1

Since a random fiber composite is considered isotropic in its plane, the Poisson’s ratio
can be calculated as: P
C
vp= — — L. (4.68)
2uc
The properties of this composite do not depend directly on the fiber length or radius,
but on the aspect ratio l/d.

4.5.4 Random fibers

Our second test is a pull test on a more complex model: a random chopped fiber
reinforced composite.

We distribute small fibers at a random point of €2, with a random direction parallel
to the < z,y > plane; the fibers share the same size and properties. If a fiber surpasses
the edge of €Q, it is cut.
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Figure 4.11: Random fibers configuration inside the unitary cube.

Fiber length 0.6 0.4 0.3 0.25 0.225 0.2 0.18
Fiber radius 0.03 | 0.02 | 0.015 | 0.0125 | 0.01125 | 0.01 | 0.009
Number of Fibers | 79 268 637 1100 1509 2149 | 2947

Table 4.1: Fiber Parameters

For more details on the algorithm used to distribute the fibers see the Random Se-
quential Adsorption algorithm [79]; our implementation generates only the plane angle,
and does not implement an intersection-avoidance mechanism. As a comparison model,
we estimate the material parameters using the empirical Halpin-Tsai equations.

Our test setting runs on the unitary cube, with a fiber ratio g = 0.135 and a fiber
aspect ratio of 2l7 ~ 10, where [ is the fiber’s length and r is the fiber’s radius; the values
used are described in Table 4.1

We could not find an exact estimate of the error convergence, but we expect the
solution to improve as the number of fibers increases because:

e the fiber radius a reduces, improving of the average non-slip condition,

e more fibers result in a more homogeneous material on the planes parallel to the
< x,y > plane.

Following [79], we consider a short fiber E-glass/urethane composite: the fiber and
matrix Young’s modulus are, respectively, £y = 70GPa and E,, = 3GPa, while the
Poisson ratios are vy = 0.2 and v, = 0.38. These values were converted to the Lamé
parameters using the classic formulas for hyper elastic materials.

Predicted parameters for the composite: Fo = 2.20GPa and vo = 0.38GPa;
these are slightly different from [79] because, in the Halpin-Tsai equations, /d was used
instead of 21/d, see The boundary conditions used for the pull tests are the same

of Paragraph
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We limit the global refinements of I'; in order to obtain cells of approximately the
same size on both € and the fibers. The results are shown in Figure[4.12} as the number
of fiber increases the error reduces, but because the random fiber model is more complex
than the homogeneous one, the final error achieved is higher than the one reached in
the previous test.
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4.6 Conclusions

This thesis deals with the mathematical and numerical modelling of non-matching
coupling problems through distributed Lagrange multipliers. The results provide the
numerical tools needed for fast and reliable coupling between meshes, and a reduced
model for a fiber reinforced material, where fiber are approximated with one-dimensional
meshes immersed inside a three-dimensional elastic matrix.

The research activities concerned both analytical and numerical tasks related to the
coupling problem, with the following results:

e The implementation of a fast algorithm to compute the coupling between non-
matching meshes in a serial environment.

e The first description of an algorithm for the coupling between arbitrarily dis-
tributed non-matching meshes.

e A new result proving the well posedness, existence, and uniqueness a solution
for a reduced coupling problem between one-dimensional and three-dimensional
meshes.

In Chapter [2 we studied a constrained Poisson equation, introducing the basic the-
ory behind the fictitious domain method with distributed Lagrange multipliers. This
example showed there are two main problems when using these methods:

e data transfer: all coupling algorithms require information to be accurately trans-
ferred between the two grids. This task is particularly complex in the case of
independent meshes, as identifying points in the real space is an expensive oper-
ation.

e data locality: modern scientific simulations run on multiple processes. Data repli-
cation between a high number of processes is often infeasible, as it would require
too much memory for the cluster; the typical solution to this memory problem
is the use of distributed data structures. When meshes are distributed indepen-
dently, a data locality problem arises, as the coupling might require information
located on different processes.

To optimize the data transfer problem, we studied some search algorithms and
proved their improved performance with respect to the original one implemented in
deal.IT version 8.5.1. To solve the data locality problem, we developed an algorithm
where a local description of the mesh is generated through bounding boxes; this de-
scription is sufficiently small and efficient to be replicated on all processes through a
single global communication. Once this building phases are concluded, the data locality
problem can be solved through efficient one-to-one communications.
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Our simulations show that our solution to the distributed problem scales well, at
least when considering simulations with a few dozen cores.

In Chapter |4} we used the tools developed in the first two chapters to derive a model
for a fiber reinforced material. Even with efficient coupling algorithms, a full three-
dimensional discretization of fibers is often computationally too demanding; the typical
solution consists in approximating fibers with one-dimensional meshes. This poses some
mathematical challenges: the coupling between different meshes requires the existence
of some “restriction” (or trace) operator. Since these PDEs are typically studied on
Sobolev Spaces, the existence of such a trace operator is non-trivial when consider-
ing one-dimensional domains immersed in a three-dimensional one; current approaches
define some ad-hoc Weighted Sobolev Spaces, in order to guarantee its existence.

We introduced a new solution to the problem, which relies on the continuity of
an average operator on tubular neighbourhoods. With the introduction of some mod-
elling hypotheses on the material, this allowed us to consider the coupling between
one-dimensional and three-dimensional domains on standard Sobolev Spaces, proving
well-posedness, existence, and uniqueness for the solution. To conclude we validated
this approach through some numerical experiments.
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