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Abstract

The Galactic synchrotron emission contains abundant physics of the magnetized Galactic interstellar

medium and has a non-negligible influence on detecting the B-mode polarization of the Cosmic microwave

background radiation and understanding the physics during the re-ionization epoch. To catch up with

the growing precision in astrophysical measurements, we need not only better theoretical modelings, but

also more powerful numerical simulations and analyzing pipelines for acquiring deeper understandings

in both the Galactic environment and the origin of the Universe. In this dissertation, we focus on the

Galactic synchrotron emission which involves the turbulent and magnetized interstellar medium and

energetic cosmic-ray electrons. To study the Galactic synchrotron emission consistently we need a non-

trivial Bayesian analyzer with specially designed likelihood function, a fast and precise radiative transfer

simulator, and cosmic ray electron propagation solver. We first present version X of the hammurabi

package, the HEALPix-based numeric simulator for Galactic polarized emission. Two fast methods are

proposed for realizing divergence-free Gaussian random magnetic fields either on the Galactic scale where

a field alignment and strength modulation are imposed or on a local scale where more physically motivated

models like a parameterized magneto-hydrodynamic turbulence can be applied. Secondly, we present our

effort in using the finite element method for solving the cosmic ray (electron) transport equation within

the phase-space domain that has a number of dimensions varying from two to six. The numeric package

BIFET is developed on top of the deal.II library with support in the adaptive mesh refinement. Our

first aim with BIFET is to build the basic framework that can support a high dimensional PDE solving.

Finally, we introduce the work related to the complete design of IMAGINE, which is proposed particularly

with the ensemble likelihood for inferring the distributions of Galactic components.
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Introduction

In the past decades we have witnessed several exciting discoveries in physics like the detection of

the Higgs particle [Aad et al., 2012], and of the gravitation waves emitted from the merging of black

holes [Abbott et al., 2016], and the successful reconstruction of the black hole image of M87 [Akiyama

et al., 2019]. Behind these thrilling advancements, we realize and acknowledge the power of collaboration

not only in joining the brilliant minds but also in exploiting the numerical techniques and computing

resources. As like the wisdom of a single man is always limited, there also exists a certain limitation

of the conventional computing units beyond which the calculating frequency will be too high and the

hardware starts to melt. It is the idea of parallel computing that came to save us from heavy numerical

tasks, and the computing technique itself has become a subject to which scientists from all research fields

have to pay serious attention. More and more frequently we have heard the word “state-of-art”, which

characterizes that although the physical phenomena are originated from simple and beautiful theories

and mechanisms, the studies are going beyond the pure hand-written calculations and turning to either

semi-analytic or pure numerical approaches, e.g., the non-linear and non-perturbative Galactic magnetic

turbulence. Standing at the turning point of utilizing massive computing in astro-particle physics, I

present, in this dissertation, our efforts in preparing the numerical tools for simulating and analyzing the

Galactic synchrotron emission. In the following part of this introduction section, I would like to briefly

overview our current understandings of the Galactic components and the connection between the Galactic

emissions and the cosmic micro wave background radiation (CMBR), and introduce our concept of the

consistent approach towards studying the Galaxy.

The Milky Way (or the Galaxy) we are living in is a typical spiral galaxy which mainly consists of a

central bulge, thin and thick disks, and a low density stellar and dark matter (DM) halo with Virial radius

extending to roughly larger than 100 kpc. In addition to focusing on the Galactic geometric structure

(e.g., the shape of the Galactic disk spiral arms), our work about the Galactic emissions which contami-

nate the CMBR is more sensitive to the intrinsic properties of thermal interstellar medium (namely the

cold/warm/hot thermal plasma, dust and photon field), the magnetic field and the Galactic cosmic rays

(CRs), and the interaction among these three components. Here we emphasize the difference between

CRs and the thermal interstellar medium (ISM) as the former is relativistic and having different chemical

composition than the cold/warm/hot ISM phases. These three components together form a non-linear

system, where we may also include implicitly the stellar evolution and feedback, as the star formation

in the cold and dense molecular clouds results originally from the instability and cooling of the ISM.
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It is believed that the magnetic field plays an important role (not dominant in the weak magnetic field

case) in star formation along with the ISM turbulence [Hull et al., 2017]. The CRs are ejected mainly

from luminous stars, supernova remnants, pulsars and even the jets of the extra-galactic black holes,

and reshape the structure of GMF and thermal ISM which will give birth to young stars. CR particles

with energy larger than around the EeV level, namely the ultra-high-energetic cosmic rays (UHECRs),

are believed to come from extra-Galactic sources due to the fact that their high energy that cannot

be hosted by the Galactic magnetic field strength, in addition, the anisotropic distribution of captured

UHECRs reported by Aab et al. [2017] also suggests the extra-Galactic origin. In our study of Galactic

emissions, the UHECRs are not considered since the energy is too high to produce the emission at the

microwave band, nor to have strong feedback to the GMF, besides the density fraction is too small to

exert significant influence on the ISM. The CRs with Galactic origins typically travels a long time in

the Galaxy before escaping out or fragmenting/decaying into other particle species or getting trapped in

a local region after losing sufficient energy. This is the main reason that the abundance of CR species

differs from that produced by stellar evolution. It is the Galactic magnetic turbulence which scatters the

CRs and in turn receives energy from the interaction and saturate by increasing the turbulent strength.

The amplification of the magnetic turbulence by CR streaming happens mainly near the CR sources and

the streaming speed of CRs with respect to the thermal ISM is limited. There are other amplification

mechanisms as well, like the mean field dynamo on the Galactic scale. The magnetic field works on the

ISM by shaping the motion and distribution of charged particles, whose electric current in turn determine

the magnetic field itself. To resolve the Galactic ecology we need sufficient astrophysical measurements

and precise and powerful numerical tools.

There are various tracers and probes for each phase of the Galactic components, e.g., the HI absorption

and emission for cold and warm neutral ISM, the Hα emission for the ionized warm ISM and the X-ray

for the hot ISM. Among which the synchrotron emission traces the distribution of both GMF and CRs.

Note that the GMF permeates in different phases of the ISM and so does the CRs, however the shape and

strength of GMF depends on the property of its ambient environment which also affect the propagation of

CRs. In this way, we expect the synchrotron emission can carry information of the diffusive distribution

of all three components. This is quite useful for studying the Galactic environment, since some probes

cannot trace the Galactic environments deep into the thick disk or even to the halo.

Besides the intrinsic connection of the Galactic synchrotron emission to the ecology of the Galaxy, it

influences the estimation of the CMBR intensity and polarization. Commonly the CMB detectors have

spectral range from around 1 GHz to 500 GHz, where the CMB signal is suffering from contamination

from the diffuse emissions of the Galaxy. At low frequency (< 100 GHz), the dominant pollution comes

from the synchrotron emission of energetic electrons/positrons traversing the magnetized ISM and free-

free emissions of thermal electrons. Whereas at high frequency (> 100 GHz), the pollution mainly comes

from the polarized thermal emission of spinning dust grins aligned to the magnetic field orientation.

The standard approach for removing these foreground emissions is well known as the component

separation 1 as summarized for example in Leach et al. [2008], Planck Collaboration et al. [2018a]. There

1Popular component separation methods list https://lambda.gsfc.nasa.gov/toolbox/tb_comp_separation.cfm.

https://lambda.gsfc.nasa.gov/toolbox/tb_comp_separation.cfm
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are two categories of component separation, namely the blind and non-blind methods. In non-blind

separation, either frequency scaling have to be modelled of various emissions, e.g., a power law for

synchrotron emission intensity and grey-body spectrum for dust emission intensity or emission templates

have to be prepared as external information. While in blind separation, e.g., with the analytical-blind-

separation (ABS) method proposed recently by Zhang et al. [2019a], no emission template is required but

contamination sources are assumed to be independent, or not if the foreground components are excluded

from the output-set like the ABS method. The component separation methods so far have been very

successful in extracting the CMB background and foreground (including diffuse and point sources) total

intensity. While in the next breakthrough of CMB studies for discovering the CMB B-modes which is

expected from the inflation theory, we need more precise removal of polarized Galactic emissions. The

primordial gravitational waves, if exist, result in a tensor perturbation that can imprint a significant

signal in the CMB B-modes. Naturally the B-modes can also be produced from the Galactic synchrotron

and dust emissions which in turn contaminate the background signal. According to the closest attempt

so far to the detection of CMB B-modes reported by Ade et al. [2015], the uncertainty in the foreground

contamination (mainly from the Galactic dust emission) is still too large to provide a decisive conclusion

we are waiting for. It was pointed out later by Krachmalnicoff et al. [2016] that the Galactic synchrotron

contamination is also non-negligible for measuring the primordial gravitation waves with tensor-to-scalar

ratio r ∼ 10−2 at frequency lower than 100 GHz.

Modelling the Galactic emissions analytically is possible but will sacrifice the precision required for

doing detailed studies. For example, the distribution of Galactic magnetic turbulence is considered in

average around the same strength as the regular magnetic field or even larger. Then the synchrotron emis-

sion will reflect this non-perturbative turbulence since the magnetic field contributes to the synchrotron

emissivity and Faraday rotation (which becomes non-negligible at low frequency) non-linearly. What

could be more important to CMB foreground removal is the varying of frequency scaling of polarized

synchrotron emission from one angular direction to another. This is naturally caused by the fact that

the CRE spectral distribution is not in reality a power law with a constant spectral index everywhere

in the Galaxy and the Faraday rotation is not constant in line-of-sight (LoS) direction, nor in radial

distance. An analytic approach to such a non-linear process can handle only the simple regular Galactic

fields, while the turbulent/random fields can only be approximated by their ensemble mean theoretically.

With numeric tools we should be able to look into various realizations and use more detailed modellings.

Studies about Faraday rotation are facing a similar but more complicated situation, where the rotation of

the photon polarization state during its traversing magnetized plasma is independent from its emission.

Especially in cold and clumpy clouds or filaments, the rotation effect traces the geometrical structure of

not only the thermal medium but also the magnetic field frozen within. The specific local shape of mag-

netic field near the solar neighbourhood has become a practical topic like the study of Alves et al. [2018]

where the authors consider the regular magnetic field stretched with the local bubble shell. In general,

we notice that it is the right time to start realistic modellings with numerical methods in calculating

observables which could match the high precision in astrophysical measurements where many local and

global structures, e.g., the local bubbles, north polar spurs, magnetic spiral arms and the Fermi bubbles,
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have been discovered but not extremely well explained.

Beyond implementing and testing realistic modellings, we intend to build a physically consistent

pipeline for the Galactic synchrotron emission. The generic design requires a numerical simulator which

can produce the Galactic synchrotron emissions precisely and quickly with given field information. The

field information may include the regular and turbulent Galactic magnetic field distribution, the thermal

electron distribution, the cosmic ray electron/positron distribution in the phase-space domain.

For physically inconsistent studies, which is easier to implement with a certain cost in precision (and

influences not only the CMB removal but also our understanding of the ISM), we can either model or

construct all these Galactic fields independently. A non-parametric approach can remove the intrinsic

inconsistency among the fields but the result depends highly on the quality and quantity of the measure-

ments and is technically very expensive due to the high degrees of freedom in the discretization. While

for consistent studies we define successively two studying levels according to the complexity in making

non-linear connections between different Galactic components.

At the first level, we require the consistency between the cosmic ray electrons/positrons and the

magnetic field distributions, where the Galactic synchrotron emission should match the synchrotron

energy loss from the cosmic ray electrons/positrons while they are propagating (and have already reached

the steady-state distribution) within the same magnetized ISM. Technically this requires a built-in cosmic

ray (electron/positron) propagator inside the simulation workflow of the Galactic synchrotron emission.

In addition to the synchrotron emission, if we want to bring dust emission into a joint analysis, we

need to know that the dust distribution has certain influence on the CRs. At the first consistency

level, dust distribution should be used in calculating the interstellar radiation fields (ISRFs), where

the thermal dust grains absorb and polarize the starlight and emit polarized photons while spinning

within the magnetic field (known as the polarized dust emission) which then interact with energetic

cosmic ray electrons/positrons through the inverse-Compton scattering. The energy loss of cosmic ray

electrons/positrons via inverse-Compton scattering is almost as important as its synchrotron energy loss

and these two mechanisms dominate the cosmic ray electrons/positrons energy loss at high energy scale

(> 10GeV).

At the second consistency level, we need to fully consider the role of cosmic rays in the Galactic

ecology. First of all, the cosmic ray propagation depends on how the energetic particles scatter off the

magnetic field turbulence and amplify the field strength until reaching the saturation status where the

streaming speed of cosmic rays with respect to the background plasma is thus bounded by a certain

value. In this way the shape of the magnetic field turbulence and CRs distribution are both tuned by

the non-linear interaction. Besides, the ISM (here we mainly consider dust and thermal electron) is

affected by CRs which exert an extra pressure that supports the ISM (along with the ISM thermal and

magnetic pressure) against the gravitational attraction. The second level is much more complicated since

technically we have to consider the co-evolution of cosmic rays, magnetic field turbulence and thermal

ISM with the first level consistency included.
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* * *

This dissertation focuses on the first step towards the consistent but ambitious picture we proposed

above, which is to build the numerical framework for the major computing tasks: a LoS emission/ab-

sorption/rotation integrator, a PDE system solver, and a Bayesian analyzer with specialized likelihood

function. In Chap. 1 I will present the theoretical rules and two fast numerical methods in realizing

and approximating the Galactic magnetic turbulence with Gaussian random field. To illustrate the ob-

servational implication of different features of the random magnetic fields, I will present in Chap. 2 the

hammurabi X package designed for simulating the Galactic observables. In addition to which we will also

discuss the new insights we have gathered from the Galactic synchrotron angular power spectrum with

random magnetic fields. Chap. 3 is mainly about our attempt for building the numerical framework,

BIFET , to solve the cosmic ray electron propagation by the finite element method within a high dimen-

sional domain and adaptively refined mesh. In Chap. 4 I will present the complete design for IMAGINE , a

novel Bayesian analysis package developed for inferring the Galactic components with various observables.



Chapter 1

Galactic magnetic field

1.1 Overview

The Galactic magnetic field itself can not be directly observed. Indirect measurement is the main

obstacle of why we have not reached a detailed description of the Galactic magnetic field configuration.

Generally speaking, each indirect Galactic magnetic field observable is related to only a certain property

of the magnetic field and related to some extra information from other components in the Galaxy. The

unknown aspects of the other physical quantities along with magnetic field in the indirect probes under-

mines the precision and performance of analyses. For example, in astrophysics the Zeeman splitting can

be considered a quite clean observable for inferring the Galactic magnetic field (GMF) component par-

allel to the LoS direction [DAVIES et al., 1968], but it can only be measured from the neutral hydrogen

which is not diffusive enough for inferring GMF coherently in the whole Galaxy [Fish et al., 2003]. To

overcome this, we can try to reconstruct the shape and strength of the magnetic field by joint analysis

of various astrophysical phenomena or probes. In the following we briefly overview the conventional and

new methods in probing the GMF.

The conventional observables include the Zeeman splitting we mentioned above, starlight polariza-

tion, Faraday rotation (including the rotation measure synthesis), synchrotron and dust emissions. The

deflection of ultra-high-energetic-cosmic-rays (UHECRs) is not considered, which is although promising

in tracing the large scale structure of GMF but may not be precise enough due to the lack of knowledge

about the source of UHECRs. The starlight polarization and dust emission both originated from the dust

grains which tend to be aligned to the magnetic field. The starlight is partly linearly polarized (with

extinction) parallel to the magnetic field due to the absorption of dust which also radiate polarized emis-

sion. Very recently, a joint analysis of dust emission and starlight absorption by Panopoulou et al. [2019]

has pointed out that the polarization ability of dust grains has long been underestimated, suggesting

that the future CMB foreground study can further confirm or challenge this. The synchrotron emission

from cosmic ray electrons/positrons (CREs) acts as an unique diffuse tracer for both the magnetic field

and the cosmic ray spectral shape from the Galactic disk to the halo. At low frequency (< 10 GHz),

the synchrotron emission polarization receives a significant correction from the Faraday rotation which

6



1.1. Overview 7

also traces the magnetic field but weighted by the cold/warm ionized interstellar medium (ISM) between

the emission source and the observer. The total Faraday depth itself can be a probe of GMF, by us-

ing the synthesized map provided in Oppermann et al. [2012], Hutschenreuter et al. [2018] according to

extra-galactic point sources of Faraday rotation measurements. Or the Faraday rotation measure can be

jointly analyzed with the rotation measure from pulsars in the Galaxy, by doing which a volume averaged

estimation of GMF can be derived as discussed by Han et al. [2015]. In order to have a tomographic view

of synchrotron emission with Faraday rotation, we could turn to the Faraday rotation measure synthesis

[Brentjens and de Bruyn, 2005] which transform observable from the wavelength domain into the Faraday

depth domain. By doing so we could distinguish the emission region from the rotation region and to know

better the distribution of different phase in the ISM.

In addition to the conventional methods, two new observables for probing the Galactic magnetic field

structure have been proposed recently. One is the velocity-space variation of neutral hydrogen orientation

by using the Rolling Hough Transform (HI-RHT) introduced by Clark et al. [2014], where the linear

structure within the diffuse hydrogen gas has been found with strong connection to the LoS magnetic

field tangling. As demonstrated in Clark et al. [2015], Clark [2018] this method has comparable ability in

mapping out the local Galactic magnetic field as the dust emission measurements. The other technique

is the synchrotron intensity gradient (SIG) introduced by Lazarian et al. [2017] for detecting the emitting

zone averaged magnetic field structure without being affected by the Faraday rotation. These two methods

are helpful in tomographic studies for the Galactic environment in the future. The cold molecular and

neutral gas can be traced by Faraday synthesis, the joint analysis of synchrotron polarization and SIG,

Zeeman splitting, HI-RHT, joint analysis of dust emission and starlight polarization. Meanwhile, the

synchrotron emission polarization is suitable for tracing the magnetized warm ionized medium.

Although with various tracers and probes for the Galactic magnetic field, we are moving slowly in

theoretical modelling or numerical reconstructing its global and local structure. A major issue is that

we do not know exactly what the global structure of the GMF should look like, partially due to our

particular position in the Galactic disk. It is still an open question how the large scale structure of a

galaxy is formed. A good candidate is the galactic (mean-field) dynamo theory [Chamandy et al., 2016],

which is in analogy to the dynamo mechanism in planets and stars [Charbonneau, 2014] which has been

well studied. There must be other important mechanisms, like the Biermann battery [Khanna, 1998]

and Parker instability [Parker, 1966] (especially include cosmic ray transport as discussed by Heintz and

Zweibel [2018]). On the other hand, the small scale magnetic field turbulence are better studied as

reviewed by Han [2017], especially for the relation between the cold molecular filaments and the local

magnetic field frozen within have been observed and explained in Li et al. [2013], Zhang et al. [2019b].

But more detailed understanding is missing, e.g., if the magnetic turbulence can be described by MHD

turbulent modes, and the partition ratio of different modes in various ISM phase.

Despite our ignorance in many aspects of the Galactic field, its structure can be modelled phenomeno-

logically at certain level to match a given observable, e.g., the Faraday rotation measure with dispersion

measure from pulsars, the synchrotron and dust emissions from CMB measurements. Recent attempts in

such modellings include the simplest logarithmic-spiral-arm model by Page et al. [2007], and more com-
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plicated spiral structure descriptions like those in Sun et al. [2008], Jaffe et al. [2010, 2013] and Jansson

and Farrar [2012a]. Although these models are quite simplified, we have got some basic clues about the

regular component of GMF, e.g., the local direction of GMF is roughly pointing to the Galactic longitude

70◦. The Galactic halo magnetic field is hard to infer, for which we have seen some efforts from Sun

and Reich [2010], Jansson and Farrar [2012a], Ferrière and Terral [2014] and Terral and Ferrière [2017].

the existence of toroidal GMF structure in the Galactic halo but we are not certain whether it contains

a dipole or quadruple symmetry mode or both. More up-to-date modellings seek physical motivations

instead of pure phenomenological description. Alves et al. [2018] studied the possibility of Local Bub-

ble motivated magnetic field structure near the solar neighbourhood with polarized dust emission. The

Galactic dynamo [Shukurov, 2004] inspired modelling has just being brought up by Shukurov et al. [2019]

for practical constraints with the IMAGINE consortium 1. In terms of the turbulent component in GMF,

Jansson and Farrar [2012b], Beck et al. [2016] and Vansyngel et al. [2018] have recently tried to get some

detailed understandings through the implications of turbulent/random magnetic field. The difficulty of

analyzing magnetic turbulent is not only from the requirement of accumulating observational data, but

also proper theoretical modelling and numerical simulation. According to recent theoretical discussions

made by Caldwell et al. [2016] and Kandel et al. [2017, 2018] where the authors tried to explain the

synchrotron and dust B/E ratio with magneto-hydrodynamic turbulent modes, however the results are

limited by several approximations for the convenience of analytic calculation.

The regular magnetic field is relatively easier to model and analyze, while the turbulent or random

component relies more on numerical implementations where a large uncertainty may raise if we are

not careful enough. According to these previous studies, we intend to investigate the properties of

Galactic synchrotron emission with different random magnetic field realizations in order to understand

the connection and guide future work in more details. But the first step should be introducing correct

random magnetic field generators for realizing the Galactic magnetic turbulence in numerical simulation.

1.2 Random Field Realization

1.2.1 Conceptual Discussion

Realization (or in other words, approximation) of turbulent magnetic field is a major module in

hammurabi X (which will be discussed in Chap. 2), since the correctness of most simulations relies on

physically motivated and accurate description of the turbulent fields in the multi-phase ISM. In this

section we present two Gaussian random GMF generators that are by definition divergence-free and

capable of realizing field alignment and/or strength modulation on Galactic scales or an anisotropic

power spectrum on small scales.

There are several criteria that a random GMF generator should satisfy. That it be divergence-free (or

solenoidal) is always the prime feature of any magnetic field. Absolute zero divergence is hard to define

under discretisation, but in principle either a vector-field decomposition or a Gram-Schmidt process in

the frequency domain is capable of cleaning field divergence. In realistic cases when a large-scale spatial

1https://www.astro.ru.nl/imagine

https://www.astro.ru.nl/imagine
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domain is expected to be filled with random magnetic fields, the field strength and alignment need to

be correlated with the large-scale structures in the Galaxy. This requirement complicates the generating

process, because the divergence-free property should also be satisfied simultaneously. It is straightforward

to generate a divergence-free Gaussian random field. It is also simple to then re-scale or stretch it as

done in Jaffe et al. [2010]. But the latter process destroys the divergence-free property if it is just applied

after the former one. A triple Fourier transform scheme is thus proposed mainly to reconcile these two

requirements. At Galactic scales, the new scheme allows modification of the Gaussian random realization

by a given inhomogeneous spatial profile for the field strength.

Note that aligning the magnetic field to a given direction is easy to implement in the spatial domain,

but locally varying anisotropy in the energy power spectra is not feasible by a single fast Fourier transform.

In studies of Galactic emission from MHD plasma, the dependency of local structure on a varying direction

profile breaks the symmetry required for using the fast Fourier transformation. In order to perform more

detailed modelling of the turbulent GMF power spectrum, we provide a local generator (‘local’ in the

sense that the mean field can be approximated in uniform direction) with explicit or implicit vector

decomposition.

1.2.2 Magnetic Power Spectrum

Analytic description for a random field usually consists of two components, i.e., its spatial profile

and spectral power. The spatial profile is possibly determined by the turbulent source distribution (e.g.,

supernova explosions) or large-scale structures (e.g., spiral arms or molecular clouds) in the Galaxy.

While the spectral power shape reflects more about the intrinsic properties of magnetic field turbulence

like its spectral cascading or interaction with charged particles in the ISM.

Consider a magnetic field distribution B(x) = B0(x)+b(x) and its counterpart B̃(k) in the frequency

domain, where B0 and b represent regular and random field respectively. The simplest turbulent power

spectrum is represented by the trace of the isotropic spectrum tensor in scalar form, P (k) which if not

specified is understood as the trace Tr[Pij ] of a spectrum tensor Pij . A more detailed description may

specify each element in Pij , where the underlying Cartesian base can be defined by the wave-vector k

in the frequency domain or a properly designed frame where off-diagonal terms in Pij vanish. The trace

representation Tr[Pij ] is widely used as a first approach to turbulent field realization where the spectral

shape is important. In general we could parameterize the basic scalar spectrum as

P (k) = P0

[
(
k0

k1
)α1(

k

k1
)6H(k1 − k) (1.1)

+(
k

k0
)−α1H(k − k1)H(k0 − k)

+(
k

k0
)−α0H(k − k0)

]
,

where H represents a Heaviside step function as a convenient modelling for injection scale k0, α ' 11/3

if assuming a Kolmogorov spectrum. Note that although not explicitly written, a Nyquist frequency

cutoff knq is inevitable in numeric realizations which can be described by multiplying an extra Heaviside

factor H(knq− k) in Eq. 1.1. The last term in Eq. 1.1 represents the forward magnetic cascading of MHD



10 CHAPTER 1. GALACTIC MAGNETIC FIELD

turbulence from the injection scale k0 to small scales (k > k0), while the first two terms describes the

inverse cascading [Pouquet et al., 1976] in MHD turbulence from k0 to scale k1 ' 1/L which corresponds

to the physical size L of the MHD system. According to the simulation results from Brandenburg et al.

[2019], we set k1 = 0.1 kpc−1 and α1 = 0.0 by default in this work if not specified.

For more physical parameterization, we are interested in realizing theoretical descriptions of turbulence

in compressible plasma introduced and discussed by Cho and Lazarian [2002], Caldwell et al. [2016],

Kandel et al. [2017, 2018]. In compressible plasma, turbulence can be decomposed into Alfvén, fast and

slow modes. Two critical plasma status parameters are the ratio β and the Alfvén Mach number MA.

The plasma β is the ratio of gas pressure to magnetic pressure, which represents compressibility of the

plasma, with β →∞ indicating the in-compressible regime. The Alfvén Mach number is the ratio of the

injection velocity to the Alfvén velocity. MA > 1.0 represents the super-Alfvénic regime, while MA < 1.0

means sub-Alfvénic turbulence.

The general form of the compressible MHD magnetic field spectrum tensor trace [Kandel et al.,

2018] can be described by decomposing it with the spectral shape function Pi(k), the anisotropic shape

function Fi(MA, α) and hi(β, α). The Pi(k) and hi(β, α) terms are naturally raised from solving the MHD

equations as discussed in Cho and Lazarian [2002], while the Fi(MA, α) term is used for characterizing

the power anisotropy. So in general we have

Pi(k, α) = Pi(k)Fi(MA, α)hi(β, α) , (1.2)

Pi(k) = pi

[
(
k0

k1
)α1(

k

k1
)6H(k1 − k) (1.3)

+(
k

k0
)−α1H(k − k1)H(k0 − k)

+(
k

k0
)−δiH(k − k0)

]
,

hA = 1 , (1.4)

hf =
2

D++(1 + tan2 αD2
−+/D

2
+−)

, (1.5)

hs =
2

D−+(1 + tan2 αD2
++/D

2
−−)

, (1.6)

D±± = 1±
√
D ± 0.5β , (1.7)

D = (1 + 0.5β)2 − 2β cos2 α , (1.8)

Ff = 1 , (1.9)

FA,s = exp{− | cosα|
(M2

A sinα)2/3
} , (1.10)

where i = {A, f, s} representing Alfvén, fast and slow modes respectively. In hammurabi X, compressible

MHD is only realized by the local generator and so cos(α) = k̂ · B̂0 is adopted with B0 taken as the

regular field at the solar neighbourhood. In the sub-Alfvénic (MA < 1) low-β (β < 1) regime, the spectral

indices in Eq. 1.4 can be approximated as δA = δs = 11/3, and δf = 7/2 [Cho and Lazarian, 2002]. The

Alfvén speed va which should appear in hi(α) is absorbed by the normalization factor pi for simplicity.
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1.2.3 Global Generator

One major task of hammurabi X is to generate a random GMF that can cover a specific scale in

the spatial domain. However, an inhomogeneous correlation structure is not diagonal in the frequency

domain. In this case, we try to impose an energy density and alignment profile in the spatial domain

after the random realization is generated in the frequency domain with an isotropic spectrum. Then the

field divergence can be cleaned back in frequency domain with the Gram-Schmidt process. The whole

procedure of this scheme requires two backward and one forward fast Fourier transforms.

After a Gaussian random magnetic field is realized in the frequency domain, each grid point holds

a vector b drawn from an isotropic field dispersion. The key of the triple transform is the large-scale

alignment and energy density modulation process. The alignment direction Ĥ at different Galactic

positions should be pre-defined like the energy density profile. We introduce the alignment parameter ρ

for imposing the alignment profile by

b(x) →
(b‖ρ+ b⊥/ρ)√

1
3ρ

2 + 2
3ρ
−2

, (1.11)

b‖ =
(b · Ĥ)

|Ĥ|2
Ĥ , (1.12)

b⊥ =
Ĥ× (b× Ĥ)

|Ĥ|2
. (1.13)

ρ = 1.0 means no preferred alignment direction, while ρ→ 0 (ρ→∞) indicates extremely perpendicular

(parallel) alignment with respect to Ĥ. (Previously, the alignment operation in hammurabi was carried

out by regulating b‖ only [Jaffe et al., 2010], which is phenomenological equivalent to our approach

presented here.) Note that ρ and Ĥ can either be defined as a global constant or as a function of other

physical quantities such as the regular magnetic field and the Galactic ISM structure.

For regulating the field energy density, a simple example with exponential scaling profile (which can

be customized in future studies) is proposed as

S(x) = exp

(
R� − r
hr

)
exp

(
|z�| − |z|

hz

)
, (1.14)

where (r, z) is the coordinate in the Galactic cylindrical frame, and (R�, z�) represents the solar position

in the Galactic cylindrical frame at which for the convenience to have unity scaling. The energy density

modulation acts on the vector field amplitude through

b(x)→ b(x)
√
S(x) . (1.15)

The above operations of reorienting, stretching and squeezing magnetic field vectors in the spatial

domain do not promise a divergence-free result. In order to clean the divergence, we transform the

re-profiled field forward into the frequency domain and apply the Gram-Schmidt process

b̃→
√

3

(
b̃− (k · b̃)k

|k|2

)
, (1.16)

where b̃ indicates the frequency-domain complex vector. The coefficient
√

3 is for preserving the spectral

power statistically. The second backward Fourier transform is then carried out to provide the final random

GMF vector distribution in the spatial domain.
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Figure 1.1: Cartoon illustration for the algorithm of the global random GMF generator.

Fig. 1.1 presents a cartoon illustration of the default algorithm proposed above. Note that separating

the divergence cleaning process from spatial re-profiling comes with a cost. Strong alignment with ρ� 1

or ρ� 1 are not realizable because the Gram-Schmidt process reestablishes some extra spatial isotropy

according to Eq. 1.16. Fig. 1.2 presents typical results of the global random generator in form of magnetic

field probability density distributions, where we assume a Kolmogorov power spectrum. The distributions

of by and bz are expected to be identical with the imposed alignment direction being Ĥ = x̂. Note that the

global generator is designed for realizing the inhomogeneity and anisotropy in both spatial and frequency

domains, which we then have to process with divergence cleaning to provide conceptually acceptable

realizations.
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Figure 1.2: Global random GMF probability distribution. ρ = 1.0 provides symmetric distribution

between bx = b · x̂ and by = b · ŷ. ρ = 10 indicates parallel-aligned case where by distribution is

suppressed with respect to bx. ρ = 0.1 represents perpendicular-aligned case where bx distribution

is suppressed with respect to by. σx,y represents RMS of bx,y.

1.2.4 Alternative Global Algorithm

Considering the application of the global generator in simulating Galactic synchrotron emission, the

spectral anisotropy can be equally important as the spatial field orientation alignment, as we will demon-
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strate in the next chapter that synchrotron B/E ratio is closely related to both features. In the default

global generator proposed above, a slight tension between divergence-cleaning and the spatial alignment

is technically caused by the Gram-Schmidt process. To improve, we propose an alternative algorithm

for generating global Gaussian random GMF with magnetic potential field A(x). Assuming a random

magnetic field b(x) is defined by its potential A(x), then in the frequency domain we have

b̃(k) = 2πik× Ã(k), (1.17)

which ensures ∇×b(x) = 0 and so provides an alternative approach towards divergence cleaning without

using the Gram-Schmidt process.

Figure 1.3: Cartoon illustration for the alternative algorithm of the global random GMF generator.

The basic design of this algorithm is illustrated in Fig. 1.3, where the core logic is mapping global

profile of spatial domain into spectral domain. Differs from the default algorithm, we start with the

sampling of a template magnetic potential t̃ = (1.0, 1.0, 1.0) in a Cartesian frame, which is modified

by spatial profiles and transformed back to the frequency domain. The reason for using a template

potential field t̃ is for fetching the rescaling and re-ordering operation before pushing a non-divergence-

free b̃ realization into the spatial domain. By checking the change from t̃ to t̃′ we know how much a

homogeneous vector potential realization Ã should be modified.

Naively in the spatial domain, we may consider an alignment operation similar to that in the default

algorithm

t(x) →
(t‖ρ+ t⊥/ρ)√

1
3ρ

2 + 2
3ρ
−2

, (1.18)

t‖ =
(t · Ĥ)

|Ĥ|2
Ĥ , (1.19)

t⊥ =
Ĥ× (t× Ĥ)

|Ĥ|2
, (1.20)

while for the modulation, we can safely keep the default form

t(x)→ t(x)
√
S(x) , (1.21)
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but notice that the modulation is now acting on the magnetic field potential instead of the magnetic field

itself. By transforming the manipulated template field t(x) back to the frequency domain, we can copy

the change in t̃ to a realization of the true magnetic potential Ã. Finally, divergence-free is securied by

k × Ã which is compatible with the desired spatial and spectral profiles. Knowing that in the spatial

domain random field vector reads b(x) = ∇×A(x), stretching t‖ results in perpendicular alignment in b,

while the parallel alignment is not realizable with Eq. 1.18. We notice that an ideal alignment operation

should involve manipulating the helicity of the magnetic field potential A in the spatial domain, instead

of stretching or squeezing its amplitude. This alternative algorithm is not complete yet, and the reason

of introducing it here is to later verify the correctness of the Gram-Schmidt process in the default global

algorithm in Chap. 2.

1.2.5 Local Generator

The local generator is proposed for realizing random GMFs in small scale regions like the solar

neighbourhood or part of it according to more exquisite modellings like the Local Bubble motivated

structure proposed in Alves et al. [2018], where the regular field can be approximated as homogeneous

with a uniform direction, or more precisely speaking, where the random magnetic field 2-point correlation

tensor can be approximated to be independent of the spatial position. With this assumption, random

fields can be realized with a single fast Fourier transform. Here we describe the vector decomposition

method for realizing a Gaussian random magnetic field with a generic anisotropic power spectrum tensor

Pij(k, α), where α represents extra parameters in addition to the wave-vector. By assuming Gaussianity

the power spectrum tensor reads

Pij(k, α)δ3(k− k′) = 〈b̃i(k)b̃∗j (k
′)〉b̃ , (1.22)

where b̃ represents the complex magnetic field vectors in the frequency domain. Depending on the specific

form of the given power spectrum tensor, the vector field decomposition can be either explicit or implicit

as illustrated in Fig. 1.4.

Figure 1.4: Cartoon illustration for the algorithm of the local random GMF generator.
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The implicit vector decomposition sets up two modes (vector bases) for a complex Fourier vector b̃,

which means

b̃±(k) = b̃±(k)ê± , (1.23)

ê± =
ê1 ± iê2√

2
, (1.24)

where the two orthogonal basis vectors ê± bind with the complex scalar b̃± respectively. The vectors

{ê1, ê2, ê3} form a Cartesian frame, and to ensure the divergence-free property of the resulting fields

we choose ê3 = k̂. During the Fourier transform of b̃(k) into the spatial domain we have to consider

a orthogonal base aligned with the Cartesian grid of b(x), and here we adopt one convenient base

representation as

k̂ = (
kx
k
,
ky
k
,
kz
k

) , (1.25)

ê− = (
−ky√
k2
x + k2

y

,
kx√
k2
x + k2

y

, 0) , (1.26)

ê+ = (
kxkz

k
√
k2
x + k2

y

,
kykz

k
√
k2
x + k2

y

,
−(k2

x + k2
y)

k
) , (1.27)

where k =
√
k2
x + k2

y + k2
z . Then we can proceed by projecting the complex field amplitude into this

spatial frame

b̃ · x̂ = b̃+(ê+ · x̂) + b̃−(ê− · x̂) , (1.28)

where x̂ represents the spatial Cartesian coordinate. Implicit decomposition is irrelevant to the choice of

the {e+, e−} base and useful in the case where only the spectrum trace Tr[Pij(k)] is given. The amplitude

of b̃± can be inferred from

〈b̃+, b̃+∗〉b̃ + 〈b̃−, b̃−∗〉b̃ = Tr[Pij(k)]d3k , (1.29)

with d3k represents the frequency domain discretization resolution. Eq. 1.29 indicates that the field

amplitudes b̃± should have a joint power spectrum equal to the trace of the total power spectrum.

The explicit decomposition should be used when the power spectrum tensor is available along with

the explicitly defined base {e+, e−}, where

〈b̃±, b̃±∗〉b̃ = P±(k)d3k . (1.30)

A practical example is realizing Alfvén, fast and slow modes of a MHD turbulent magnetic field in a

compressible plasma. Given a local regular GMF field B0, an Alfvén wave propagates along B̂0 with

magnetic turbulence in direction e+ = k̂ × B̂0 while slow and fast waves generate magnetic turbulence

in direction e− = e+ × k̂. Note that when the wave-vector k is aligned with B0, the amplitudes of the

Alfvén and slow modes vanish and the fast mode realization requires an implicit decomposition as the

base {e+, e−} is undefined.

Fig. 1.5 presents typical examples of the distribution of the random GMF from the local generator.

In comparison to the magnetic field distribution from the global generator where the spatial anisotropy
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Figure 1.5: Local random field probability distribution with B̂0 = x̂, Mach number MA = 0.5,

plasma parameter β = 0.1. PA represents Alfvén mode power at the injection scale, while for fast

and slow modes we set equal power Pf = Ps at the injection scale. σx,y represents RMS of bx,y.

is defined by the orientation alignment, the local generator is capable of realizing more subtle field

properties, e.g., the spectral anisotropic MHD wave types described earlier in this chapter. At the

phenomenological level, the global generator can mimic the random magnetic field orientation alignment

of the local realizations as illustrated by Fig. 1.2 and Fig. 1.5, but the spectral anisotropy is uniquely

realizable by the local generator.

1.2.6 Remarks

In the random GMF generators described above, we are not using three independent FFTs for 3D

vector fields. A straightforward approach to vector field FFT would be carrying out three independent

transformation separately. However that is expensive in general where the operations are only limited

to transforms between real and complex values. A special speedup design that provides computational

efficiency is to compress the three real scalar fields into two complex scalar fields.

Suppose that in the ξ-domain we have two complex scalar fields c0(ξ) and c1(ξ), which are compressed

from three real scalar fields bx(ξ), by(ξ) and bz(ξ) by defining

c0(ξ) = bx(ξ) + iby(ξ), (1.31)

c1(ξ) = by(ξ) + ibz(ξ), (1.32)

Then mathematically, we know their reciprocal-domain counterparts should be

c̃0(η) = b̃x(η) + ib̃y(η), (1.33)

c̃1(η) = b̃y(η) + ib̃z(η). (1.34)

Since the transform is done between real and complex fields, complex conjugate symmetry gives a useful

property

c̃∗0(−η) = b̃x(η)− ib̃y(η), (1.35)

c̃∗1(−η) = b̃y(η)− ib̃z(η), (1.36)
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from which we can recover vector fields b̃x(η), b̃y(η) and b̃z(η) in the reciprocal-domain. This method

is applied in both the global and local turbulent GMF generators in order to reduce the computational

cost.

In the FFTs of both the global and local generators, the numeric field b(x) is calculated according to

its frequency domain counterpart as

b(x) =
∑
kx

∑
ky

∑
kz

b̃(k) exp{2πikx} . (1.37)

Dimensional analysis requires the variance of b̃(k) in form

〈b̃i(k)b̃∗j (k)〉b̃ = d3kPij(k, θ) , (1.38)

which in turn satisfies the definition of energy density

E(x) =
〈b2(x)〉b

8π
=

∫ kmax

0

dk
k2

2
Tr[Pij(k)] , (1.39)

where kmax represents the Nyquist frequency. The precision of the power spectrum as represented on

the spatial grid can be visualized by comparing the theoretical and numerical energy densities from field

realizations. As illustrated with examples in Fig. 1.6, the convergence towards higher grid resolution

demonstrates the correctness of the numeric implementations.
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Figure 1.6: Examples of the relative difference between the theoretical and numerical energy

densities in random GMF realizations. The numerical energy density of each parameter set is

evaluated from an ensemble of field samples. A higher precision is achieved with better spatial

resolution represented by N (with the simulation box size L = N/2kmax), the number of sample

points in each grid dimension.

1.3 Summary

In this chapter we have focused on numerically fast realizations of turbulent Galactic magnetic field

with Gaussian randomness. Since the properties of turbulent GMF are defined in both the spatial
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and frequency domains, it is not trivial to satisfy all features along with the divergence-free premise. To

overcome such an obstacle and preserve important GMF properties, we proposed global and local random

GMF generators. The global generator is capable of handling inhomogeneous spatial profiling, while the

local one is designed for realizing detailed local GMF description without inhomogeneous manipulation

in the spatial domain.

For ensuring the divergence-free property, the global generator adopts the triple fast Fourier transform

in order to firstly realize Gaussian random samples in the frequency domain, and then we impose the

inhomogeneous spatial profile in the spatial domain. A forward transfer back to the frequency domain is

designed to clean the divergence with Gram-Schmidt method. The final result can be finally retrieved by

a backward Fourier transform. This default approach has some difficulties in realizing extreme random

field alignment, for example, in practice the spatial alignment with ρ = 10 differs little from the case with

ρ = 3 as we would expect. The reason lies in the fact that the Gram-Schmidt method not only clean the

divergence but also distort the spatial distribution especially when the alignment is strong. To relieve

this problem, we proposed an alternative algorithm for the global generator which takes the same level

of complexity in FFT but start with the magnetic vector potential instead of the magnetic field itself

in the default algorithm. We emphasize that the alternative algorithm is still under development, since

we notice that the spatial alignment feature should be described through the helicity in the magnetic

potential, and the performance should be tested in more realistic cases.

The local algorithm, meanwhile, is simpler in theory since we use the standard vector field decom-

position method. The technical detail which deserves an extra attention is the definition of explicit and

implicit decomposition. At each position in the frequency domain there exists a uniquely defined wave-

vector, while the perpendicular direction of this wave-vector can be arbitrarily defined in a plane. Such

freedom in choosing the orthogonal basis gives the idea of implicit decomposition. In some cases like

the MHD turbulent modes, the magnetic turbulent is defined according to both the wave-vector and the

regular magnetic field orientation, and so the perpendicular direction is fixed which is thus understood

as the explicit decomposition.

Beyond the new realization methods, we also have implemented efficient Fourier transform procedure

with multi-threading support. The realization precision has been examined and ensured. In the next

chapter, we will analyse the influence of global and local random GMF realizations on the Galactic

synchrotron emission.



Chapter 2

Simulating Galactic Synchrotron

Emission

2.1 Overview

Synchrotron emission from the diffuse population of relativistic electrons and positrons in the mag-

netized interstellar medium (ISM) is the dominant signal in the polarized sky observed at frequencies

ranging from MHz to GHz. Galactic synchrotron emission is therefore one of the best friends to sci-

entists who study multi-phase ISM structure and cosmic ray (CR) transport properties. To those who

study the cosmic microwave background radiation (CMBR), 21cm cosmology and the early Universe,

however, it is one of their worst enemies. Both fields recognize the importance of physical modelling

of the mechanisms and environments associated with polarized synchrotron emission, absorption and

Faraday rotation, which in the end provide a realistic description of the foreground observables. The

fundamental physical principles of the radiative transfer processes have been fully understood for around

half a century [Rybicki and Lightman, 1979], however with the growing precision and range of observa-

tions, we are challenged by various local structures and non-linear phenomena within the Galaxy. This

is slowing down conceptual and theoretical advancements in related research fields since the observables

are no longer analytically calculable in a high-resolution and non-perturbative regime. To overcome this,

hammurabi [Waelkens et al., 2009] was developed to help us simulate complicated observables with 3D

modelling of the physical components of the Galaxy.

For almost a decade we have witnessed a wide scientific applications of hammurabi for example, in

estimating and removing Galactic synchrotron foreground contamination [Dolag et al., 2015, Switzer and

Liu, 2014], in understanding magnetic fields of astrophysical objects varying from supernova remnants

[West et al., 2017] to the Galaxy [Jaffe et al., 2013, Adam et al., 2016] and even to the local Universe

[Hutschenreuter et al., 2018]. Despite successful applications of hammurabi , we have noticed that after

years of modifications and the accumulation of modules and functions with outdated programming stan-

dards, the package might be compromised by numeric issues and the lack of a properly maintained testing

suite. Given the trend towards high-resolution and computation-dominated studies, it is the right time

19



20 CHAPTER 2. SIMULATING GALACTIC SYNCHROTRON EMISSION

to provide a precision guaranteed high-performance pipeline for simulating polarized synchrotron emis-

sion, absorption and Faraday rotation. Thus a thorough upgrading project has been performed, where

we mainly focus on redesigning the code structure and work-flow, calibrating the numeric algorithms

and methods, improving the user experience and setting up new conventions for future maintenance and

development.

In addition to the technical improvements, we also keep up with recent progress in physical modelling

of Galactic foreground emission with the turbulent Galactic magnetic field (GMF), e.g. phenomenological

research carried out by Beck et al. [2016], analytic estimations calculated by Cho and Lazarian [2002],

Caldwell et al. [2016], Kandel et al. [2017, 2018], and heavy simulations analyzed by Akahori et al. [2013],

Kritsuk et al. [2018], Brandenburg et al. [2019]. For future work about inferring the GMF configuration

from observational data (e.g., Galactic synchrotron and dust emission, dispersion measure and Faraday

rotation measure) we need physically motivated and numerically fast magnetic field simulators, instead

of setting up trivial random fields or directly adopting expensive magneto-hydrodynamics (MHD) sim-

ulators. The balance has to be made between the computational cost and the modelling complexity.

Low computational costs are required by any analysis that infers model parameters directly from data

in a Bayesian fashion. There, the model has to be evaluated repeatedly while the inference algorithm

samples through the often very high dimensional parameter space. Full MHD simulations are currently

prohibitively expensive to be used within such algorithms. Thus, fast emulators for the main statistical

properties of typical MHD simulations are needed instead.

In the previous chapter, we have proposed two fast (in contrast to MHD simulation) random GMF

generators which satisfy certain criteria. A project for studying the GMF configuration with numeric

simulation has been proposed [Boulanger et al., 2018] using a computational inference engine. Though

the main motivation for hammurabi X is the construction of a Bayesian magnetic field inference engine,

we herein present an analysis of the angular power spectrum focusing on the synchrotron B/E ratio as a

possible guide for future studies.

2.2 hammurabi X

The hammurabi code [Waelkens et al., 2009] is an astrophysical simulator based on 3D models of the

components of the magnetised ISM such as magnetic fields, thermal electrons, relativistic electrons, and

dust grains. It performs an efficient line-of-sight (LoS) integral through the simulated Galaxy model

using a HEALPix 1-based [Gorski et al., 2005] nested grid to produce observables such as Faraday rotation

measure and diffuse synchrotron and thermal dust emission 2 in full Stokes I, Q and U , while taking into

account beam and depth depolarization as well as Faraday effects.

The updated version, hammurabi X3, has been developed in order to achieve higher computing per-

formance and precision. Previously in hammurabi, the generation of the anisotropic component of the

1https://healpix.jpl.nasa.gov
2This report focuses on the Galactic synchrotron emission, while the technical report and corresponding scientific analysis

of simulated thermal dust emission with hammurabi X is under preparation.
3hammurabi X is available in its public repository, https://bitbucket.org/hammurabicode/hamx, with detailed documen-

tation.

https://healpix.jpl.nasa.gov
https://bitbucket.org/hammurabicode/hamx
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random field as well as the modulation of the field strength following various parametric forms lead to

artificial magnetic field divergence. Now we propose two improved solutions for simulating the random

magnetic field. On Galactic scales, a triple Fourier transform scheme is proposed to restore the divergence-

free condition via a cleaning process. The new generation process is different from that used in Adam

et al. [2016] by imposing the divergence-free property in the random magnetic field, which was discussed

in detail in § 1.2.3 with its observational implication to be discovered in this chapter. Alternatively, in a

given local region 4, a vector-field decomposition scheme is capable of simulating more detailed random

field power-spectra. Recently, hammurabi X has already been used to generate extra-galactic Faraday

rotation maps from primordial magnetic fields in Hutschenreuter et al. [2018].

2.2.1 Software Design

hammurabi X logically consists of three major building blocks, i.e., grid, field and LoS integrator as

presented in Fig. 2.1. There is one grid base class, and derived from which there are many derived classes

which define the Cartesian grids for Galactic components and HEALPix shells for carrying out the LoS

integral. The field classes are in charge of all built-in physical modellings, including the random field

generators. Numerical descriptions of Galactic fields are handled by the grid modules directly, but requires

specifically defined input or output formats. The grid and field modules are connected by interfacing

functions which can either write analytic field descriptions into the memory hosted by the corresponding

grids, or retrieve numerical information of certain fields from the grid storage. The LoS integrator collects

numerical descriptions for all fields and calculate observables in HEALPix shells. In the following we briefly

discuss some important features which are helpful for users to understand how hammurabi X works.

Pipeline

The pipeline class is defined for modularizing the main routines into several task groups as shown by

black boxes in Fig. 2.1. The functions in pipeline class are named as assemblers which in deed collect

information from the parameter set (except the observable assembler) and initialize what we need for

calculating the observables. The grid and field assemblers call the grid and field classes respectively,

where it is up to the user whether a specified field will be imported from external files or known analytic

models. The external field information goes through the orange lines while the built-in models follow the

green path as displayed in Fig. 2.1. Although the integration grid is derived from the base grid class but

it is intrinsically different from other grid classes since it hosts the information for storing and preparing

the observables. The LoS integrator follows the settings carried by the integration grid and retrieve

field distributions either from analytic models directly or by interpolating the field grids. It is worth

noticing that the LoS integration process may not be executed only once in a simulation pipeline. In case

multi-frequency emission results are required, the LoS integrator can repeat the calculation loop without

changing or re-initializing field distributions.

4The local region means any small-scale spatial domain where the magnetic mean field can be treated or approximated
as uniform distribution, which indicates that the local generator cannot be applied to realize large-scale random magnetic
field which is typically handled by the global generator. In this chapter we will present and analyze local realizations at the
solar neighborhood as an example.
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Figure 2.1: hammurabi X workflow.
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LoS Integration

hammurabi X currently uses the HEALPix library [Gorski et al., 2005] for observable production, where

the LoS integral accumulates through several layers of spherical shells with adaptable HEALPix resolutions.

We provide two modes of integral shell arrangements. In the auto-shell mode, given R as the maximum

simulation radius, the nth shell out of N total shells covers the radial distance from 2(n−N−1)R to

2(n−N)R, except for the first shell which starts at the observer. The nth shell is by default set up with

the HEALPix resolution controlling parameter Nside = 2(n−1)Nmin
5, where Nmin represents the lowest

simulation resolution at the first shell. Alternatively in the manual-shell mode, shells are defined explicitly

by a series of dividing radii and HEALPix Nside’s. The radial resolution along the LoS integral is uniformly

set by the minimal radial distance for each shell. The auto-shell mode follows the idea that the integral

domain is discretized with elemental bins of the same volume, while the manual-shell mode allows users

to refine specific regions in order to meet special realization requirements.

The LoS integral is carried out hierarchically, at the top level the integral is divided into multiple

shells with given spherical resolution settings, while at the bottom level inside each shell (where the

spherical resolution is fixed) the radial integral is carried out with the midpoint rule for each pixel-radial

bin. Accumulation of observable information from the inner to outer shells is applied at the top level.

We emphasize that in hammurabi X , the simulation spherical resolution for each shell can be independent

of that in the outputs, which means that we can simulate with an arbitrary number of shells and assign

each shell with a unique Nside value. While in the shell accumulating process, we interpolate (with

linear interpolation provided by HEALPix library) the recently accomplished bottom level inside-shell

integral result into the output resolution. And consequently, such interpolation between different angular

resolutions will inevitably create certain level of precision loss.

Fields

Physical fields are implemented as C++ classes. Currently, hammurabi X contains base classes for

parameterized description of each type of fields, e.g., regular and random GMF. Specific field models are

treated as derived classes with respect to corresponding base classes. This design provides convenience in

maintaining and customizing field models. In case users do not have or intend to use analytic models of

fields, hammurabi X is also capable of reading and writing numerical field distributions in Cartesian grids.

For each type of field we provide controllers for its external in/output. The “write” switch will export

physical field grid into an external binary file, while the “read” switch does the opposite operation. The

grid size and resolution for each field are separately defined when a grid is required for allocating the

memory either by reading/writing external field distribution or assembling a random field. Once the field

distribution is allocated to its corresponding grid, the main routine is capable of interpolating it from an

arbitrary position within the grid.

5Nside means the number of full sky pixels is 12N2
side.
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Fourier Transform and Grid Interpolation

Fast Fourier transforms (FFTs) are necessary for translating the power spectra of random fields into

discrete magnetic field realizations on 3D spatial grids. Random field generators in hammurabi X currently

use the FFTW 6 library. The detailed implementation was discussed in the previous chapter. In cases where

the field is input from an external or internal discrete grid, e.g., a random GMF, the LoS integral at a

given position does linear interpolation (in each phase-space dimension) from nearby grid points. The

interpolation algorithm has been calibrated, so the high resolution outputs are no longer contaminated by

any artificial structure in earlier versions of hammurabi. As illustrated in Fig. 2.2, the interpolation process

in the earlier version of hammurabi made mistakes in calculating the volume of elemental discretization,

which results in negative values of simulated dispersion measure (as an illustrative example) and incorrect

small scale features in comparison to the corrected method in hammurabi X. In this new version, unit tests

for linear interpolation can be found in the public repository.

-1.3e-28 1.3e-27

3.2e-30 3.8e-28

Figure 2.2: Comparison between the output from earlier version hammurabi (top) and hammurabi X

(bottom). The sky patch in this illustration shows the extra-galactic dispersion measure (an

observable with non-negative value by definition) simulated and studied by Hutschenreuter et al.

[2018].

Generally speaking, the precision of linear interpolation (and the discretization along with it) can be in

principle characterized by the goodness of approximation which is explicitly affected by the discretization

resolution and arrangement of the sampling/supporting points, and also by the smoothness (second order

derivative) of the approximation target. In hammurabi X the interpolation affects the precision in realizing

the power spectrum of random magnetic field generation. This can be improved by increasing the sampling

6http://www.fftw.org

http://www.fftw.org
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resolution. Further more, the linear interpolation does not preserve the divergence, but the precision can

be improved either by increasing sampling resolution 7 or matching the elemental discretization volume

in LoS integral and that in the field generation (as discussed by Waelkens et al. [2009]).

2.2.2 Underlying Theory

Here we present the basic mathematical formulae in calculating polarized synchrotron emission, ab-

sorption and Faraday rotation. The method is defined not only for analytic modelling of the CRE flux,

but also for an input grid of dimension 3 + 1 imported from external binary files, where the spectral

dimension is defined by a logarithmic sampling of electron energy. This matches the output convention in

CR transport simulators like Galprop [Strong and Moskalenko, 1998] and DRAGON [Evoli et al., 2017].

Radiative Transfer

With the CRE differential flux distribution Φ(E, r), synchrotron total and polarized emissivities at

given observational frequency ν and spatial position r read

jtot/pol(ν, r) =
1

4π

∫ E2

E1

dE
4π

βc
Φ(E, r)2πPtot/pol(ω) , (2.1)

where Ptot/pol(ω), which represents the emission power from one electron at frequency ν = ω/2π, is

calculated [Rybicki and Lightman, 1979] through synchrotron functions F (x) = x
∫∞
x
K 5

3
(ξ)dξ and

G(x) = xK 2
3
(x) (with K 5

3
(x) and K 2

3
(x) known as two of the modified Bessel functions of the second

kind) as

Ptot(ω) =

√
3e3Bper

2πmec2
F (x) , (2.2)

Ppol(ω) =

√
3e3Bper

2πmec2
G(x) , (2.3)

where e is the electron charge, me the electron mass, and Bper represents the strength of the magnetic field

projected in the direction perpendicular to the LoS direction. Statistically, we assume the synchrotron

emission at given position is isotropic, and so an observer only receives 1/4π of the emission power, which

explains the 1/4π coefficient in the front of the right hand side in Eq. 2.1. In addition, we place an extra

2π before Ptot/pol(ω) due to the relation P (ν) = 2πP (ω). The term 4π
βcΦ(E, r), with β representing the

relativistic speed, is actually N(E, r), the CRE differential density.

In practice, the CRE spectral integral can be achieved in two technically different (but with the same

theoretical origin) approaches. If given numerical CRE flux information Φ(E) prepared on a discrete

grid, the integral Eq. 2.1 can be directly evaluated by the numerical integral. Alternatively we can start

with an analytic differential density distribution N(γ, r) = 4πΦ(E, r)mec/β, and by doing so the Eq. 2.1

reads

jtot/pol(ν, r) =
1

2

∫ γ2

γ1

dγN(γ, r)Ptot/pol(ω) . (2.4)

7If estimate the divergence by the finite difference in the spatial domain, the precision in divergence follows an exponential
improvement as a function of the number of sample points in each direction.
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The reason for keeping Eq. 2.4 as an alternative method is to calculate the integral analytically once

the CRE spectral index is constant at any given position. The detailed derivation follows the auxiliary

definition of

ωc =
3

2
γ2 eBper

mec
, (2.5)

x =
ω

ωc
. (2.6)

Then by assuming N(γ) = N0γ
−α, Eq. 2.4 ends up in the form as

jtot(ν, r) =

√
3e3BperN0

8πmec2

(
4πνmec

3eBper

)(1−α)/2 ∫
dxF (x)x(α−3)/2 , (2.7)

jpol(ν, r) =

√
3e3BperN0

8πmec2

(
4πνmec

3eBper

)(1−α)/2 ∫
dxG(x)x(α−3)/2 , (2.8)

(2.9)

where the spectral integrals can be analytically calculated by using∫
dxF (x)xµ =

2µ+1

µ+ 2
Γ(
µ

2
+

7

3
)Γ(

µ

2
+

2

3
) , (2.10)∫

dxG(x)xµ = 2µΓ(
µ

2
+

4

3
)Γ(

µ

2
+

2

3
) . (2.11)

The left panel in Fig. 2.3 illustrates the dependence of the synchrotron total emissivity Ttot and po-

larized emissivity Tpol on CRE energy, with varying magnetic field strength, observational frequency and

CRE spectral shape. The peaks in emissivities are inherited from F (x) and G(x), where the dimensionless

parameter x is the ratio of observational frequency to CRE gyro-frequency.
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Figure 2.3: Left panel: Differential synchrotron total and polarized emissivities (has been converted

into brightness temperature) of CRE which follows simple power-law spectrum∝ γ−α. Right panel:

Optical depth of synchrotron self-absorption with constant CRE spectral index α (flux intensity

normalized at the solar neighbourhood). Magnetic field strength and observational frequency are

given.
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Strictly speaking, a complete LoS integral should consider radiative transfer

dIν = jνds− Iνανds , (2.12)

where αν contains all absorption effects including self-absorption and free-free absorption. In practice, the

optical depth can be evaluated according to its absorption coefficient, and the accumulated attenuation

factor is then imposed to polarized emission along the LoS integral. It is however not always necessary

to consider the absorption effect in the Galaxy. According to previous studies [Schlickeiser, 2002] the

Galactic environment is optically thin for synchrotron emission from CRE at frequency above 10 MHz,

while below that the synchrotron emission is mainly attenuated by free-free absorption. Synchrotron

self-absorption coefficient is defined as

αν(r) =
c2

8πν2

∫
dE[2πP (ω)]E2 ∂

∂E
[
N(E, r)

E2
] , (2.13)

where differential density N(E, r) = 4πΦ(E, r)/βc. According to the simple illustration presented by

the right panel in Fig. 2.3 we can safely ignore the self-absorption effect for synchrotron emission at and

beyond MHz level in the Galaxy. The latest release of hammurabi X does not contain absorption module

as long as we focus on simulating the Galactic synchrotron emission at GHz level.

Faraday Rotation

Faraday rotation describes the phenomenological manifestation of the refractive index difference in the

polarization directions for photons that propagate through a plasma with an external magnetic field. For

a linearly polarized photon emitted with wavelength λ and intrinsic polarization angle χ0, the observed

polarization angle after traversing distance s0 is

χ = χ0 + φ(s0)λ2 , (2.14)

where φ, the Faraday depth reads

φ(s0) =
e3

2πm2
ec

4

∫ s0

0

dsNe(sp̂)B(sp̂) · p̂ , (2.15)

where p̂ represents photon propagation direction, Ne represents distribution of thermal electron density.

Note that the IAU convention8 for polarization is adopted in hammurabi X, which means that the intrinsic

synchrotron polarization angle is determined by the polarization ellipse semi-major axis perpendicular

to magnetic field orientation. Under Faraday rotation at a given observational frequency ν, the observed

emission accumulates Stokes parameter dQ and dU over a distance s0 by

dQ+ idU = dIpν exp{2iχ} , (2.16)

where dIpν represents polarized intensity in radial bin [s0, s0 + ds]. Though Faraday rotation brings in

extra information about the thermal electron (TE) distribution, a relatively high observational frequency

is sometimes preferred for studying synchrotron emission, e.g., 30 GHz in this report, in order to suppress

the complicated effects of TE turbulence, which will be addressed in our future studies with hammurabi X.

8Detailed description for the different IAU and CMB polarization conventions can be found at https://lambda.gsfc.

nasa.gov/product/about/pol_convention.cfm.

https://lambda.gsfc.nasa.gov/product/about/pol_convention.cfm
https://lambda.gsfc.nasa.gov/product/about/pol_convention.cfm
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2.2.3 Precision and Performance

Precision

Profiling the numerical precision in producing observables is critical in guiding practical applications.

A standard simulation procedure can be decomposed into two major processes. The first part is the nu-

merical implementation of a specific physics phenomenon like synchrotron emission and Faraday rotation,

and the second part is the LoS integral that is universal to all observables. In the following integrated

precision check, the correctness of both will be verified and profiled together.

A given magnetic field vector B can be decomposed into directions parallel (horizontal) and per-

pendicular (vertical/poloidal) to the galactic disk, or to be specific, the {x̂, ŷ} plane (with ŷ pointing

towards galactic longitude l = 90◦) in the hammurabi X convention, i.e., B‖ and B⊥ at a given galactic

longitude-latitude position {l, b}. The LoS direction n̂ from the observer to the target field position reads

n̂ = cos(b) cos(l)x̂ + cos(b) sin(l)ŷ + sin(b)ẑ , (2.17)

where x̂ is conventionally pointing from the observer to the Galactic centre. In the same observer-centric

Cartesian frame we can explicitly write down two field components as

B‖ = B‖(cos(l0)x̂ + sin(l0)ŷ) , (2.18)

B⊥ = B⊥ẑ , (2.19)

where l0 represents the projected direction of B in the {x̂, ŷ} plane. Then it is straight forward to

calculate two key quantities needed for the calculation of synchrotron emissivity and Faraday rotation

respectively

|B× n̂| =
√
B2
‖ +B2

⊥ − |B · n̂|2 , (2.20)

B · n̂ = B‖ cos(b) cos(l − l0) +B⊥ sin(b) , (2.21)

It is obvious that Faraday rotation is more sensitive to B‖ at low Galactic latitudes, and to B⊥ at high

latitudes. On the contrary, synchrotron emissivity, which is proportional to some power of |B × n̂|, is

more sensitive to B⊥ at low Galactic latitudes and to B‖ at high latitudes.

Precision checks require a baseline model for each field, from which analytic descriptions of the

observables can be explicitly derived. Here we assume spatially homogeneous distributions for the cosmic-

ray electrons (CREs), thermal electrons (TEs) and the GMF within a given radial distance to observer.

The spectral index of the CRE energy distribution is assumed to be a constant, and consequently CRE

density N(γ) is described by

N(γ) = N0γ
−α , (2.22)

where γ represents CRE Lorentz factor, α represents the constant spectral index of CRE. With the

assumed homogeneity in all fields, we can calculate intrinsic synchrotron total intensity I0 and polarization

Stokes parameter Q0 and U0 (in the IAU convention9) before applying the Faraday rotation [Rybicki and

9Detailed description for IAU and CMB polarization conventions can be found at https://lambda.gsfc.nasa.gov/

product/about/pol_convention.cfm.

https://lambda.gsfc.nasa.gov/product/about/pol_convention.cfm
https://lambda.gsfc.nasa.gov/product/about/pol_convention.cfm
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Figure 2.4: Cartoon illustration of the projection of magnetic field B to the LoS direction n̂.

The definition of synchrotron intrinsic polarization angle (with north-to-east as the positive angle

direction) is presented on the top left LoS plan, with red arrow presenting the magnetic field

projected to the plane of sight.

Lightman, 1979]

I0 = JiR0 , (2.23)

Q0 = JpiR0 cos(2χ0) , (2.24)

U0 = JpiR0 sin(2χ0) , (2.25)

Ji =

√
3e3|B× n̂|N0

4πmec2(α+ 1)
(

2πνmec

3e|B× n̂|
)

1−α
2 (2.26)

×Γ(
α

4
+

19

12
)Γ(

α

4
− 1

12
) ,

Jpi =

√
3e3|B× n̂|N0

16πmec2
(

2πνmec

3e|B× n̂|
)

1−α
2 (2.27)

×Γ(
α

4
+

7

12
)Γ(

α

4
− 1

12
) ,

where e is the electron charge, and me is the electron mass, R0 is the spherical LoS integral depth, and

ν is the observational frequency. The intrinsic polarization angle χ0 can be derived from

tan(χ0) =
B⊥ cos(b)−B‖ sin(b) cos(l − l0)

B‖ sin(l − l0)
, (2.28)

as illustrated in Fig. 2.4. With the same modelling, Faraday depth φ can be described by

φ(l, b) = φ0R0 , (2.29)

φ0 = −Ne(B · n̂)(
e3

2πm2
ec

4
) , (2.30)

where Ne represents constant homogeneous TE density assumed within spherical radius R0. In the end,

the observed synchrotron polarization Stokes parameters Q and U reflect the Faraday rotation as

Q+ iU = (Q0 + iU0)

∫ R0

0

e2iφ0λ
2r

R0
dr , (2.31)
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Figure 2.5: Synchrotron Stokes I (top) at 2.4 GHz. Absolute error (middle) and relative error

(bottom) are presented according to the analytic reference with B⊥ = 0 and l0 = 0. The histogram

(middle left) presents relative error distribution. The single shell LoS integral is carried out with

radial resolution set as 1% of the total radius.

which also indicates that the polarized intensity receive a correction factor | sin(φλ2)/(φλ2)| consequently

which is also known as the Faraday depolarization. The formulae above are derived for providing analyt-

ically calculable results as the references in verifying the numerical outputs, while in real application the

magnetic field and CRE spectral index are not constant, the methods used by hammurabi X for calculating

synchrotron emissivity and Faraday rotation can be more generic as presented above.

Fig. 2.5 presents the absolute and relative numeric error distribution of synchrotron total intensity

from a single LoS integral shell. For an observable X, the absolute error is defined as the difference

between simulated output Xsim and the analytic reference Xref as (Xsim −Xref), while the relative error

is defined by 2(Xsim−Xref)/(Xsim+Xref). The Faraday depth calculator shares a similar error distribution

as the calculator of synchrotron total intensity. Meanwhile, Fig. 2.6 presents the absolute and relative

numeric error distributions of synchrotron Stokes Q also from a single LoS integral shell, which serves as

an example for illustrating the numeric precision in calculating tensor fields. With constant models in

testing, the numeric errors are mainly induced by the integration and interpolation methods and therefore

independent of the LoS resolution. Even with simple field settings, we can observe a few percent relative

error appearing in Fig. 2.6. Considering the future usage of hammurabi X in inferring Galactic component

structures with astrophysical measurements, if the magnitude of such numerical errors are larger than the

observational uncertainties, a Bayesian analysis with hammurabi X will consequently suffer from higher

uncertainties in parameter estimation but not biased, because the distribution of relative numerical errors

is quite symmetric with respect to zero as illustrated in Fig. 2.6.

In terms of the multi-shell arrangement in real application, the output precision is affected by the

spherical surface interpolation provided by the HEALPix library. The motivation of allowing different

resolution settings along with the divided LoS integral shells is to save computing resources as mentioned

in Adam et al. [2016]. It is worth noticing that in the simulation, the pixel values are calculated along
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Figure 2.6: Synchrotron Stokes Q (top) at 2.4 GHz where the influence of Faraday rotation is

clearly imprinted. Absolute error (middle) and relative error (bottom) are presented according to

the analytic reference with B⊥ = 0 and l0 = 0. The histogram (middle left) presents relative error

distribution. The single shell LoS integral is carried out with radial resolution set as 1% of the

total radius.

their central spherical coordinates. This is different from the actual astrophysical measurements where

each pixel value is estimated based on many observational hits. And thus when comparing low resolu-

tion simulation results with high resolution data, we recommend interpolating data with respect to the

simulation LoS directions instead of downgrading data by averaging over high resolution pixels 10.

The testing cases displayed above are prepared by assuming constant magnetic field and thermal

electron field distributions. It is inevitable that the numerical errors would grow larger when the input

Galactic components have small scale features near or below the discretization resolution. This issue can

be handled efficiently by the adaptively refined mesh/pixelization in the future.

Performance

The major computationally heavy process in hammurabi X are LoS integration for HEALPix map pixels,

random field generation with fast Fourier transforms, and tri-linear interpolation for fields prepared in

grids (e.g., internal random fields and other external fields). Massive observable production, HEALPix

map distribution and recycling of physical fields require MPI11 parallelization are beyond our scope in

this report. Technically, we are mainly limited by the HEALPix library which has no high-performance

support. In the future update we expect to develop a built-in but small high-performance pixelization

support based on HEALPix . In this work, multi-threading is always useful at the bottom level of paral-

10An extremely serious simulation should mimic the true observation beam hits, which is computational heavy unless we
focus on a small patch of the sky. hammurabi X currently implements a computational light method which picks only one
sample for each pixel, and so in comparing with astrophysical data we expect the observational resolution is much higher
than that of the simulation. Otherwise with low resolution difference, a bias in model constraints may rise in comparing
small sky patches since the number of samples may not be large enough to overcome the insufficiency of sample picking in
simulation.

11Message Passing Interface (MPI) is a standardized and portable message-passing standard designed by a group of
researchers from academia and industry to function on a wide variety of parallel computing architectures.
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lelism. Fig. 2.7 presents the strong scaling12 in observable production with various GMF and TE field

combinations. The strong speedup with either computationally heavy (with random field generation) or

light (without random field generation) pipelines follows Amdahl law [Amdahl, 1967] with around 2%

serial remnants. Note that the speedup properties are not very sensitive to the resolution setting in var-

ious simulation routines, due to the fact that the workload of pure numerical operations is proportional

to the discretization resolution.
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Figure 2.7: hammurabi X strong scaling speedup in various tasks, where the subscript “reg” stands

for regular fields while “rnd” stands for random fields. No bottle neck from memory access has

been observed. The simulation routines are set by default as calculating synchrotron emission with

Faraday rotation.

2.3 Synchrotron B/E Ratio

In order to demonstrate the usefulness of hammurabi X we investigate the properties of simulated syn-

chrotron emission at high Galactic latitudes according to different random magnetic field configurations.

By focusing on the high latitude sky we concentrate on the properties of physical fields near the solar

neighborhood where both global and local random generators can be applied.

Alves et al. [2016] reported a synchrotron B/E ratio 13 around 0.35 at spherical modes l ∈ (30, 300),

which a successful modelling of GMF should be able to explain. In addition, a low polarization fraction at

high Galactic latitudes is observed [Planck Collaboration et al., 2015]. According to a recent theoretical

work by Kandel et al. [2018], it seems possible to achieve synchrotron B/E ratio lower than 1.0 at high

Galactic latitudes with compressible MHD turbulence, especially with slow and/or Alfvén mode at low

Mach number MA < 0.5. An analytic calculation of the angular power spectrum observed in polarized

synchrotron emission is not a trivial task. As presented in theoretical estimations carried out by Caldwell

12Strong scaling is defined as how the solution time varies with the number of processors for a fixed total problem size.
13The ratio between the B-mode and the E-mode of synchrotron angular power spectrum, i.e., CBB

` /CEE
` .
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et al. [2016], Kandel et al. [2017] and Kandel et al. [2018], it is impossible to avoid a certain level of

simplification. Now with the help of hammurabi X we can approach this topic numerically.

In order to avoid distractions from other Galactic components or local structure models, in the fol-

lowing simulations we assume uniform distribution for the regular GMF parallel to the Galactic disk and

a CRE density with a fixed spectral index. No spatial re-scaling of the field strength is performed, but

the global random GMF generator keeps its freedom in field alignment.

2.3.1 High Galactic Latitude Synchrotron Emission

With the improved precision in hammurabi X, we present high resolution Galactic synchrotron emission

simulations with analytic models as described above. Presented in Fig. 2.8 are the examples of synchrotron

polarization at high Galactic latitudes predicted by a uniform regular GMF parallel to the Galactic

disk and a random components from the global generator with a Kolmogorov power spectrum. The

corresponding maps of synchrotron polarization from the same regular GMF but the local generator

using a compressible MHD model are presented in Fig. 2.9. Since we are presenting only illustrative

models, the absolute strength of regular and random GMF are not essential here.
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Figure 2.8: 30 GHz synchrotron Stokes Q at the Galactic north pole in a 40 degree patch. The

GMF simulation consists of a uniform regular (with orientation displayed on the bottom-left corner

of each panel) and global random component with injection scale k0 = 10 kpc−1 but different

alignment parameter ρ = 10 (right), ρ = 1 (middle) and ρ = 0.1 (left). The strength ratio between

the random and regular GMF is b/B0 = 3.0.

The most prominent feature in high latitude synchrotron foreground is the quadrupolar structure that

results from the GMF orientation at the solar neighbourhood. As the examples displayed in Fig. 2.8, the

quadrupole direction is largely determined by the regular field, but on top of which, we can observe a

flip in the polarization between the regimes when ρ > 1.0 versus ρ < 1.0. When the random GMF has

no preferred alignment, i.e., the ρ = 1.0 case, the quadrupole pattern is undermined by the spatially

isotropic random field contribution. This is visually clear because of the fact that the random field

strength dominates. In Fig. 2.9 the quadruple pattern is well preserved with MHD turbulence injection

scale k0 = 10 kpc−1, and also a flip in the polarization can be observed with the pure Alfvén mode when
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the random field dominates. When the spatial distribution or random GMF is close to spatially isotropic

with PA/Pf,s = 3.0 (and Alfvén Mach number MA = 0.5, plasma parameter β = 0.1) as displayed by the

middle panel in Fig. 1.5, we observe a similar trend of weakening the quadrupole pattern as demonstrated

by Fig. 2.9.
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Figure 2.9: 30 GHz synchrotron Stokes Q at the Galactic north pole in a 40 degree patch. The GMF

simulation consists of a uniform regular (with orientation displayed on the bottom-left corner of

each panel) and a local random component with total spectral power k0P0/B
2
0 = 75.0 at injection

scale k0 = 10 kpc−1. The Alfvén Mach number MA = 0.5 and plasma parameter β = 0.1 are set

to match the parameterization in Fig. 1.5.

The synchrotron polarization fraction (or the degree of linear polarization) is mainly determined by

the CRE spectral shape when a uniformly distributed regular GMF dominates. Assuming a reasonable

constant CRE spectral index α = 3.0, the synchrotron polarization fraction Π = (3α + 3)/(3α + 7) is

much higher than that observed from Planck data [Adam et al., 2016]. Fig. 2.10 demonstrates that the

synchrotron polarization fraction can be suppressed by a Gaussian random field as long as the random

field is not strongly anisotropic in the spatial domain. The suppression in polarization fraction grows

with the increasing of random field strength but depends on the specific field modelling. Recall that

the addition of a random component to the magnetic field direction functions as a random walk in the

polarization plane, which means that even for a purely turbulent field, the polarized intensity continues

to increase with the number of turbulent cells added along the LoS. In principle, the increase goes as

the square-root of the number of cells, while the total intensity increases linearly, so the fraction should

decrease accordingly. In practice, the precise trend is complicated by the effect of the observational

beam and the locally varying anisotropy. The shape of the polarization fraction for the ρ = 0.5 model

in Fig. 2.10, for example, is due to the anisotropic random field canceling with the regular field before

beginning to dominate. An inhomogeneous distribution (by field strength regulation) of the random field

can change the efficiency of suppression differently depending on the field alignment, but the common

features described above are preserved.

The implication of the above analyses is that interpreting the synchrotron polarization toward the

poles as due to the local field direction neglects the possible effects of anisotropic turbulence, which can
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Figure 2.10: Left: Distribution (16th to 68th percentile) of synchrotron polarization fraction Π

at high Galactic latitudes produced by a uniform regular and global random GMF. In the top

panel is the distribution characterized by mean and standard deviation as a function of random

field strength, where the alignment ratio is fixed. In the bottom panel, we show a histogram of

polarization fraction where b/B0 = 3.0 and the alignment ratio ρ varies.

Right: Distribution (16th to 68th percentile) of synchrotron polarization fraction Π at high Galac-

tic latitudes produced by uniform regular and local random GMF. In the top panel is the distribu-

tion characterized by mean and standard deviation as a function of random field strength, where

the anisotropy ratio PA/Pf,s is fixed at the injection scale k0 = 10 kpc−1 while the ratio between

the total spectral power P0 = Pf + Ps + PA at the injection scale and the regular field energy

P0/B
2
0 varies. In the bottom panel, k0P0/B

2
0 = 75.0 while the anisotropy ratio PA/Pf,s varies.

mimic or flip the morphology. Though the physical process is different, the geometry of the field and its

effect on the observables is the same for polarized dust emission. This work illustrates the opportunity for

retrieving useful information of local magnetic turbulence structure with high latitude Galactic polarized

emissions, and also shows the challenge from the degeneracy between random and regular magnetic field

orientations when using emission data alone. It suggests that we need to be careful about realizing the

local GMF structure in order to avoid misleading conclusions. For example it has been proposed recently

by Alves et al. [2018] that according to observational evidences, the regular magnetic field structure may

play a dominant role in Galactic dust emission near the solar neighbourhood. We also emphasize that the

Galactic synchrotron emission is also affected by the warm ISM in the Galactic thick disk and even the

halo. The random field generators in hammurabi X can be used to bridge the gap between simple large-

scale field models and computationally intensive MHD simulations, and boost more realistic analyses and

modellings beyond previous methods.
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2.3.2 Angular Power Spectrum

The large angular scale Galactic synchrotron polarization pattern driven mainly by the GMF orien-

tation at the solar neighbourhood is quite evident as illustrated in Figures 2.8 and 2.9. However, the

small angular structures can be analyzed with the angular power spectrum, which can be decomposed

by rotation invariant components, i.e., the T, E and B modes. With the two random field generators

proposed in this work, we intend to figure out which properties of the random GMF are imprinted on

the synchrotron B/E ratio. Specifically, we are interested in verifying whether MHD turbulence modes

are capable of producing B/E < 1.0 in both the perturbative and the non-perturbative regimes. Since we

are focusing on high latitude polarization, pixels at Galactic latitude within ±60◦ are masked out. We

also set a lower limit to the radius in the LoS integral according to the random field grid resolution and

the spherical mode range. Technical details of the precision checks for the pseudo-C` estimation will be

discussed later in this chapter.

We present in Fig. 2.11 the B/E ratio distribution (by collecting results from an ensemble of realizations

with each given parameter set) for varying random field strengths and alignments of the global random

GMF. Fig. 2.11 implies that to reproduce B/E < 1.0 we either need random GMF in the non-perturbative

regime (b/B0 > 1.0) or parallel alignment (ρ > 1.0). We also note that the divergence cleaning step is

what leads to B/E 6= 1.0. As illustrated in the same figure, all realizations end up with B/E = 1.0

regardless of random field alignment, when the Gram-Schmidt process is switched off. This is acceptable

that a simple Gaussian random field should have E = B on average, whereas a magnetic field must

be divergence-free and therefore the difference between the naive random vector field and the magnetic

field, which has been ignored in many previous researches, is crucial in studying Galactic emissions. Now

we conclude that the divergence-free random magnetic field can provide synchrotron B/E 6= 1.0. The

Gram-Schmidt cleaning method is computationally useful and correct for reproducing the divergence-free

random magnetic field (which in the simplest case can alternatively be obtained from a Gaussian random

vector potential as shown in the right panel of Fig. 2.11 where synchrotron B/E < 1 arises naturally

out of either method in the non-perturbative regime.) and has the added benefit that we can spatially

modulate its strength and orientation.

By contrast, the pseudo-C`s estimated from the local MHD realizations have a clear analytic repre-

sentation. To look for the low B/E ratio according to Kandel et al. [2018], we keep the random GMF

strength at the perturbative level and tune the MHD Mach number MA = 0.2 and plasma parameter

β = 0.1. As illustrated in Fig. 2.12, we find clear evidence that a Gaussian realization of MHD turbulence

can provide a synchrotron B/E ratio smaller than 1.0, in both perturbative and non-perturbative regimes.

The fast mode in a sub-Alfvénic low-β plasma has a unique power spectrum shape and is less affected by

the anisotropy function h(α) than the slow mode. By assuming equal power in the turbulence modes at

the injection scale, the observed angular power spectra are mainly influenced by the fast mode and so the

B/E ratio has a different behavior with respect to the case where slow and Alfvén modes dominate. With

the given MHD Mach number and plasma parameter, slow mode turbulence results in a much lower B/E

ratio than that from the Alfvén mode, while fast mode prefers B/E ' 0.8 in perturbative regime. These

features are conceptually consistent with analytic predictions by Kandel et al. [2018] as demonstrated
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Figure 2.11: Left: Distribution (16th to 68th percentile) of 30 GHz synchrotron emission B/E

ratio for ` > 100 according to global random GMF with various field strength and alignment. The

results marked by “GS off” come from random GMF without divergence cleaning.

Right: Distribution (16th to 68th percentile) of the 30 GHz synchrotron emission B/E ratio

for ` > 100 according to global random GMF with various random field strength. The results

marked by “default” come from the default algorithm discussed in § 1.2.3, while “alternative”

indicates random GMF generated from the magnetic potential field realizations. The contribution

to the angular power spectrum from the regular GMF has been subtracted, which would otherwise

dominate the B/E ratio in the perturbative regime (b� B0).

in the right panel of Fig. 2.12, where the differences between two estimations are likely because of the

simplification in analytic derivation, e.g., the Limber and flat-sky approximations. Beyond the perturba-

tive regime, we observe the B/E ratio evolves with the growth of random field strength and suggests an

upper limit for the random field strength in order to achieve the observed B/E ratio with solely MHD

turbulence.

According to the observational implications in the Galactic synchrotron emission from above two types

of random field realizations, we believe divergence-free and MHD turbulent nature are both important for

providing synchrotron B/E < 1.0, besides the divergence-free is the physically indispensable requirement

of magnetic field realization. It is possible to use directly the angular power spectra estimated in the

way presented here for studying Galactic components like the work by Vansyngel et al. [2018], but we

should be aware of the numeric uncertainty if the simulation resolution is lower than that of astrophysical

measurements, in addition to the fundamental difference between simulation and observation mentioned

earlier.
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Figure 2.12: Distribution (16th to 68th percentile) of the 30 GHz synchrotron emission B/E

ratio for ` > 100 according to the local GMF realizations with various field strengths, Alfvén

Mach numbers, and plasma parameters. Solid lines in the left panel are predictions from Kandel

et al. [2018]. The fast+slow+Alfvén case sets equal magnetic field power at injection scale for

the three modes (i.e., PA/Pf,s = 1.0), while the fast mode is excluded from the slow+Alfvén

case (i.e., Pf = Ps). The contribution to the angular power spectrum from the regular GMF

has been subtracted, which would otherwise dominate the B/E ratio in the perturbative regime

(k0P0 � B2
0).

2.3.3 Precision of Angular Power Spectrum

In this work, the pseudo-C`s are estimated from an ensemble of simulations with the NaMaster 14

toolkit [Alonso et al., 2019]. The left panel of Fig. 2.13 presents a proof of the pseudo-C` estimation

pipeline, where a fiducial spectrum is used to generate multiple realizations of the signal map from which

pseudo-C`s are re-estimated with the same mask mentioned in above. To analyze partial-sky observables

with the mask described above, we choose band-power binning width ∆` = 16. In practice we also

select pseudo-C` with angular mode l > 100 after subtracting (in the pixel domain) the contribution of

the regular magnetic field to the simulated outputs as mentioned in the captions of Figures 2.11, 2.12

and 2.14. We illustrate the pseudo-C` estimated from an ensemble of simulated samples with different

magnetic field settings in the right panel of Fig. 2.13. From where we notice that the pseudo-C` estimation

with pure regular magnetic field is not correct. This is reasonable since the large angular scale anisotropic

pattern created by the regular magnetic field can hardly be estimated from around 13% sky fraction in

this work. Fortunately, in the illustrative examples the regular fields are homogeneously defined and so

it is feasible and safe to subtract the contribution of regular magnetic field in the pixel domain. We

emphasize that this subtraction can not be applied to other general regular field settings, and in our

illustrative examples it is critical for the results corresponding to perturbative random magnetic field

settings, as we can find out in the right panel of Fig. 2.13. The ` > 100 selection is proposed to avoid any

14https://github.com/LSSTDESC/NaMaster

https://github.com/LSSTDESC/NaMaster
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potential of un-cleaned spectrum power originated from the non-linear correlation between random and

regular fields.
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Figure 2.13: Left: Comparison between fiducial angular power spectrum and re-estimated pseudo-

C`s with NaMaster with multiple observable realizations. T, E and B modes are correctly recovered,

while the TE cross-correlation estimation suffers from a large uncertainty. Right: Pseudo-C`s

estimated according to global random magnetic fields with ρ = 10.0 but different strength. The

grey spectra correspond to the uniform regular magnetic field as defined earlier. The dashed color

spectra are estimated directly from simulated outputs, while solid colored spectra are estimated

after the regular field contribution being subtracted in the pixel domain.

We have presented the precision in calculating the synchrotron polarization in this chapter, the random

field realization in § 1, and the pseudo-C`s in Fig. 2.13. To further confirm the correctness of the simulated

results obtained above, a conceptual verification is necessary. An analytic approach towards generating

the angular power spectrum of tensor fields is not easy and is also beyond our scope. Alternatively, the

shape of the Faraday depth angular power spectrum can be inferred from simplified settings of the fields,

which serves as a proper check of the random field realization and the angular modes accumulation in

the LoS integral.

To begin with, we adopt the total angular momentum method introduced by Hu and White [1997],

Hu [2000]. Synchrotron polarization P (r, n̂) = Q± iU from a given geocentric position r = −rn̂ can be

expanded in a polarization basis as

P =

∫
d3k

(aπ)3

∑
`

2∑
m=−2

[E
(m)
` ±B(m)

` ] (2.32)

×±2G
m
` (k, r, n̂) ,

where for the spin-2 tensor field the basis reads

±2G
m
2 = (−i)`

√
4π

2`+ 1
±2Y

m
2 (n̂)eikr (2.33)

=
∑
`

(−i)`
√

4π(2`+ 1)[ε
(m)
` (kr)± iβ(m)

` (kr)]



40 CHAPTER 2. SIMULATING GALACTIC SYNCHROTRON EMISSION

×±2Y
m
` (n̂) ,

where sY
m
` (n̂) is the spherical harmonic function for a spin-s field. The standard path towards the

angular power spectrum E mode CEE` and B mode CBB` starts from interpreting the LoS integral of a

target foreground observable with base ±2G
m
` and leads to evaluating

CXX` =
4π

(2`+ 1)2

∫
d3kd3q

(2π)6
ei(q−k)x (2.34)

×
∑
m

〈X(m)∗
` (k)X

(m)
` (q)〉 .

In the simplest case, we consider only emission sources while ignoring absorption and Faraday rotation,

i.e., for a synchrotron polarization tensor Pν(r, n̂) at observational frequency ν,

−dPν
dr

= S = jpole
2iχ0 , (2.35)

where the basic formulae for polarized emissivity jpol and intrinsic polarization angle χ0 have been

discussed earlier in this chapter. We would thus expect the integral solution to become

E
(m)
` (k)

2`+ 1
=

∫
dr

+2S(m)
2 + −2S(m)

2

2
ε
(m)
` , (2.36)

B
(m)
` (k)

2`+ 1
=

∫
dr

+2S(m)
2 + −2S(m)

2

2
β

(m)
` , (2.37)

where the source terms are determined by

S =

∫
d3k

(2π)3

∑
m

∑
s

(sS(m)
2 sG

m
2 ) . (2.38)

It is however not trivial (and thus is commonly avoided without further simplification) to analytically

bridge the random GMF and its contribution to synchrotron emissivity expanded in a spherical harmonic

basis. Fortunately, Faraday depth is a different story, since the LoS projection of a divergence-free vector

field b(k) can be represented as

b(k) · n̂ = i

√
4π

3

∑
m

b(m) × 0Y
m
1 (n̂) , (2.39)

where the wave-vector k differs from that in random field realization by a factor of 2π. (Instead of using

the total angular momentum method, a similar approximation to the rotation measure structure function

has been carried out by Xu and Zhang [2016], which leads to the same conclusion.) The procedure we

take for Faraday depth follows the same method for the Doppler effect handled by Hu [2000], where the

linear perturbation and Limber approximations [LoVerde and Afshordi, 2008] are key assumptions. By

assuming a uniformly distributed TE field, we isolate the perturbation source of Faraday depth in the

vector mode (m = ±1) which results in angular power spectrum

CFF` ∝ `(`+ 1)

∫
k2dkPb(k)[

∫
dr
jl(kr)

kr
]2 , (2.40)

where Pb is power spectrum of random GMF. By applying Limber approximation (which assumes the

typical scale of LoS variation of a perturbed field is much larger than that in the angular direction) we

have

CFF` ∝
∫
drPb(

`

r
)

1

r2
, (2.41)
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Figure 2.14: Angular power spectra of Faraday depth estimated on thin shells with central radial

distance R and width ∆R = 0.1 kpc. Dotted lines represent estimations made with Limber

approximation (Eq. 2.41) while dashed lines represent predictions according to numeric integral

of spherical Bessel function (Eq. 2.40). Angular power contributed by regular fields has been

subtracted.

which suggests the shape of CFF` is mainly determined by Pb.

Fig. 2.14 present a comparison of the simulation precision with respect to the analytic prediction. For

the highest spherical mode `max in analysis and for a random field grid bin of length h, the lower radial

limit is roughly set as Rmin ≥ h`max/π. Regions closer than Rmin or modes above `max are greatly affected

by the grid interpolation and may affect the pseudo-C` estimation. The upper radial limit is defined by the

simulation size L within which the random GMF is generated, and Rmax ≤ L`min/π should be satisfied.

The LoS radius limits discussed here have no influence in the final conclusions about the B/E ratio but

only affecting the precision in estimating pseudo-C`. To achieve the highest precision without being

distracted by multi-shell arrangement, the simulations are done with single shell integrals. The default

simulation and output resolutions are identically set as Nsice = 128 unless specified. The random field grid

by default is built large enough to host radial integral with LoS depth Rmax ' 4 kpc from the observer

with field sampling resolution h ' 3 pc (which means kmax ' 300 kpc−1) and radial resolution r ' 5 pc,

except that in this appendix we use thin shells with 0.1 kpc thickness and much lower sampling resolution

(kmax < 100 kpc−1). With a sharp cutoff at an injection scale k0 in the random GMF models (by ignoring

the inverse cascading), we expect a corresponding break in angular power spectrum at `c ∼ 2πRmaxk0.

The break position is well recovered independent of the simulation resolution on each thin LoS shell.

The power in angular modes below and above the break `c is affected differently by the spherical and

sampling resolution. For ` < `c, the angular resolution (characterized by HEALPix Nside) has a dominant

influence, suggesting that a larger angular resolution is necessary for more distant shells to suppress

the angular power excess. While for ` > `c, the missing angular power (particularly for shells closer to

the observer) results from insufficient sampling resolution (characterized by the Nyquist frequency kmax)

in the random field realization, especially near the observer. Although the illustrations are prepared
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with the global random GMF generator, the resolution effects discussed above are generic. Insufficient

angular or Galactic component sampling resolution will result in missing power of angular power spectra

from simulation outputs. This issue can be handled in a hard way by using inhomogeneous grid or

adaptively refined mesh with non-equispaced fast Fourier transform [Keiner et al., 2009] for sampling

Galactic components (especially the turbulent fields), and also adaptively refined spherical pixelization.

An alternative solution can be nesting sampling grids with different resolution, but the precision loss on

the boundary should be carefully estimated and controlled. Now with our theoretically verified Faraday

depth anisotropy, we can conclude that our numeric realizations of Gaussian random fields are accurate,

and thus that the results regarding the B/E ratio obtained from synchrotron emission simulations should

be free from numeric defects.

2.4 Summary

In this chapter we have presented hammurabi X, the improved version of hammurabi. We have re-

designed the package properly with calibrated precision and multi-threading support. This report fo-

cuses on the implementation of the synchrotron emission simulation in hammurabi X and its relation to

the random magnetic field realization. The technical features and profiles in hammurabi associated with

Galactic synchrotron emission have been, for the first time, reported in detail.

Two fast methods for generating divergence-free Gaussian random magnetic fields covering either

Galactic scales or a local region have been proposed in Chap. 1. This is a crucial improvement (in

computing accuracy and the capability of realizing physical features) over not only the previous versions

of hammurabi but also previous fast methods of simulating the GMF and the resulting diffuse Galactic

polarized emission from the ISM. It is increasingly clear that simplistic treatments of the turbulent

component of the ISM do not produce simulated observables of sufficient complexity to be useful in

comparison to the data. Though full MHD turbulence realizations are computationally too expensive for

the usage in large-scale GMF model fitting, using the statistical properties of these MHD simulations is an

important intermediate step pursued here. The new hammurabi X provides the ability for the first time to

generate Gaussian simulations that capture some of the properties of fast, slow, and Alvén modes of MHD

turbulence in a computationally efficient approximation. Using these more realistic numerical methods

for simulating the magnetized ISM will lead to results that can be more directly linked to physical theory.

We have further demonstrated the importance of these improvements by studying two properties of

the GMF that have been discussed in the literature. Firstly, we have shown the importance of including

a treatment of the anisotropic turbulence in the local ISM when attempting to interpret high-latitude

synchrotron polarization as an indication of the local magnetic field direction. Any such modeling of

the local field can use hammurabi X to quantify how much this affects the results, particularly with the

addition of Faraday depth to break the degeneracy of using only polarized diffuse emission. Secondly,

using our new numerical methods, we have found that a Gaussian random realization with either the global

field orientation alignment or the local MHD parameterization can produce B/E ' 0.35 in synchrotron

emission at high Galactic latitudes. Comparing the B/E ratio predicted by the global random GMF



2.4. Summary 43

realizations with and without invoking the Gram-Schmidt process, we have realized that the divergence-

free property is essential for such detailed statistical studies of GMFs. Our results conceptually confirm

the prediction made by Kandel et al. [2018] for Galactic synchrotron emission, which says the MHD

magnetic turbulence has the ability to predict B/E < 1.0, while the prediction for dust emission B/E

ratio has been conceptually confirmed by Kritsuk et al. [2018]. We have also succeeded in demonstrating

the computing power that hammurabi X can provide to go beyond analytic studies of Galactic foreground

observables with non-perturbative random GMF realizations.





Chapter 3

Cosmic Ray Electron Propagation

3.1 Overview

In many previous studies about the Galactic synchrotron emission, it was considered convenient

to model the cosmic-ray electron 1 (CRE) distribution independently from the structure of the Galactic

magnetic field (GMF). This approach is theoretically inconsistent, as we know that the CRE distribution is

not physically independent from the magnetic field distribution/configuration. Following the quasi-linear

test particle approach [Schlickeiser, 2002] in describing the CR propagation through the highly conductive

magnetized plasma, the anisotropic spatial and spectral diffusion coefficients are dictated by the specific

shape of magnetic turbulence. Although it can be argued that for the independent modelling we focus only

on the phenomenological description. With given sufficient astrophysical measurements and appropriate

analysis it is always possible to achieve a proper understanding within which the CRE and magnetic field

distribution are consistent. Nevertheless, we need to point out that the phenomenological modelling is

eventually not helping us in understanding more detailed physical mechanisms. For example, the Galactic

synchrotron emission at 10 GHz level mainly 2 results from the CRE with energy roughly around 5 GeV to

30 GeV given the magnetic field strength not stronger than 10 µG and not weaker than 2 µG. Comparing

the energy loss time scale to the typical diffusion time scale, one finds that the bulk of the electrons which

are contributing to the 10 GHz level synchrotron emissivity in the observer’s neighbourhood is mainly

from sources (e.g., supernova remnants, pulsars) near the neighbourhood, instead of from faraway sources.

Thus it becomes interesting that by analyzing the Galactic synchrotron emission at various frequency and

LoS direction we should be able to study the properties of the CR sources, propagation patterns and the

magnetic field configurations. This can only be accomplished by including a CRE propagation simulation

inside the pipeline of generating synchrotron emission maps, where the synchrotron emissivity we observe

1By mentioning cosmic-ray electron (CRE) in this dissertation, we actually intend to include both electron and positron,
knowing that the energetic positron to electron ratio is less than 0.25 in the Galaxy. The Galactic positrons are largely
secondary, which means that they are not directly accelerated/ejected from astrophysical sources but from the interactions
between primary CR particles with the ISM. But this “chemical” difference is ignored since we focus more on their kinematics
in the magnetized ISM.

2According to the Fig. 2.3, the CRE emissivity peaks at certain energy scale corresponds to the specific observational
frequency and the ambient magnetic field strength. Softer CRE spectral or higher observational frequency pushes the
peaking position to higher energy, while on the contrary, stronger magnetic field strength tends to pull the peak to lower
energy.

45
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is calculated with exactly the same magnetic field as estimating the energy loss of CRE propagation.

And so instead of starting with an independent parametric description of CRE phase-space distribution,

the consistent approach requires physical modellings of the interaction between the energetic CRs and

the thermal component in the ISM (e.g., ionizing the neutral atoms, scattering with charged particles

and low energy photons) and the magnetic turbulence (e.g., being scattered off by magnetic turbulence,

amplifying magnetic turbulence through streaming instability).

The necessity of this consistent picture for CR studies was recently pointed out by Blasi et al. [2012]

and Evoli et al. [2018], where they studied the phenomenon of CR being scattered off by magnetic

turbulence which in turn is amplified by the CR streaming (in the perturbative regime) before reaching

a saturation. The results of their studies pointed out that the interactive picture can explain not only

the observed spectral break but also the vertical scale of the CR diffusion region. And such consistent

approach is also required in studies which focus on the Galactic ISM, where the CR streaming [Pfrommer

et al., 2017] is important for launching of galactic winds [Ruszkowski et al., 2016, Farber et al., 2017], the

Parker instability [Heintz and Zweibel, 2018] and the multi-phase medium [Wiener et al., 2016]. Since

our research scope is narrowed only to the relativistic electron/positron distribution which has dominant

contribution to the synchrotron energy loss (since the protons have a synchrotron lifetime of (mp/me)4

times longer than electron and they may lose their energy via other mechanisms without emitting much

synchrotron radiation [Rees, 1968]), we do not have to fully resolve the interactive system that is mainly

related to CR protons, nor we need to consider the combination of test-particle and test-wave (which

describes how the magnetic turbulence responds to the CR flow) approaches. The minimal consistency

required for simulating the Galactic synchrotron emission only has to ensure the synchrotron emission

we observe is exactly from the synchrotron energy loss during CRE propagation.

To achieve the minimal consistency, we need to numerically solve the CRE transport equation. Nu-

merical packages for simulating CR (not only for electron/positron) propagation have been developed

since two decades ago, among which the most popular one is Galprop by Strong and Moskalenko [1998]

where the CR transport equation is solved with the finite-difference method. More recently Evoli et al.

[2017] released the DRAGON package with a similar solver as Galprop but support for 3D anisotropic mod-

elling of the CR spatial diffusion. We have also witnessed other numerical attempts with finite-volume

method or modified finite-difference method, but unfortunately no open access has been provided to their

numerical work [Kissmann, 2014].

It is well known that for solving a partial differential equation (PDE) or a set of PDEs, there are

generally three categories of numerical approaches: finite difference, finite volume and finite element

methods. Each method has its particular advantages and disadvantages, while with appropriate numer-

ical techniques they are all suitable for simulating CR propagation with similar precision. Practically,

physicists need well developed numerical libraries with minimal programming requirements in modifying

the back-end functions for various simulation tasks. Particularly for simulating the CR propagation, we

haven’t seen any open-source numerical work with the finite-element method in the community mainly

because of the complexity in implementing this method from scratch. Besides, there is no package that

can provide us a proper discretization beyond 3D with adaptively refined mesh. With such motivations



3.2. BIFET 47

we introduce BIFET , the toolkit for solving PDEs in a domain with up-to six dimensions (not including

the time coordinate) based on the deal.II library (an open source finite element library designed to

provide well-documented tools to build finite element codes for a broad variety of PDEs). This numerical

tool can help us efficiently resolve an isotropic phase-space distribution defined within a very generic

domain.

3.2 BIFET

It is known that physical processes and phenomena are conventionally described in the phase-space

domain built by time, space and momentum. Depending on the level of detail we focus on, the di-

mension in which a physical problem lives can be reduced either by integrating over less important

coordinates or by assuming certain symmetries. For numerical simulations of cosmic ray (CR) propaga-

tion (here we treat CRs as continuous fluids), it is always better to pursue high-dimensional descriptions

if not limited by computational methods or resources. Previously without a convenient high-dimensional

partial-differential-equation (PDE) solver, we are usually limited to an isotropic CR distribution in the

momentum sub-domain and either spherical or cylindrical symmetry in the spatial sub-domain. This has

become less favoured as the observation precision has been improved dramatically, and thus simplified

modellings are not sufficient for the frontier studies any more.

To cope with the growing requirements in precision and resolution of CR propagation simulation, it is

inevitable to consider using mathematically certified libraries to help physicists build numerical simulators

properly and efficiently and so to free them from the swamp of mathematics and programming. Here

we propose BIFET, the bi-domain finite element toolkit, which is a deal.II based package that provides

convenient functions for solving high-dimensional3 PDEs. Driven by such motivations, BIFET is designed

to decompose high-dimensional problems into two sub-domains, e.g., expressing a phase-space distribution

with spatial and momentum coordinates separately. The triangulation4 in each sub-domain can thus be

carried out independently, and as well for other mathematical quantities like the finite-element and

sparsity pattern. The back-end methods introduced here for assembling high-dimension linear algebra

from two sub-domains root deeply in the deal.II library.

3.2.1 Underlying Theory

Cosmic Ray Electron Transport

Cosmic rays are referring to the relativistic, generally with energy larger than 1 MeV, charged particles

of various species. The Galactic cosmic rays are mainly categorized by a primary component, including

proton, electron, helium, carbon, etc., which can be synthesized in the stars, and the secondary 5 com-

ponent including antiprotons, borons, etc., that are mainly produced during the CR traversing though

the Galactic ISM.
3By high-dimension we mean dimension higher than three.
4In geometry, a triangulation is a subdivision of a planar object into triangles, and by extension the subdivision of a

higher-dimension geometric object into simplices.
5Note that there exists a different primary and secondary definition which distinct cosmic rays observed above and below

the earth’s atmosphere.
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It is known that CRs have frequent interactions with the magnetic turbulence, interstellar photons and

thermal particles, and because of which the averaged life time for a CR particle staying the the Galaxy

is roughly around 106 years. The motion of a single charged particle can be well predicted if the ambient

magnetic environment is known. Some numerical simulators, e.g., CRPropa [Batista et al., 2016], follow

this idea of calculation, which is precise and convenient for studying static magnetic field structure or

tracing the properties of the CR motion within a specifically designed field. Another approach (known

as the test particle approach) is to treat the CRs as either an uniform or composite fluid, and in turn the

motion of each single particle is not traceable anymore. In this way we approximate the collective behavior

of CRs by the Fokker-Planck equations, which take ensemble average of linearly perturbed description

of the system consists of the electromagnetic field and charged plasma. The quasi-linear approximation

was proved to be acceptable even the magnetic perturbation is four times larger than the regular field

strength [Schlickeiser, 2002], which we consider is enough for studying the Galaxy. In the following we

will use the test particle approach and build the numerical solving routine.

The up-to-date understandings towards the observed features of CRs are well reviewed recently by

Strong et al. [2007], Grenier et al. [2015], Tanabashi et al. [2018] and the references there in. The general

trend of the frontier studies of CRs has been pushed forward to the detailed interaction between CRs and

other Galactic components like the ionized gas and magnetic field and thus to the consistent description

of the Galactic ecology. The non-linear interactive picture which is meant to be simulated is our final aim,

and as the first step we have to focus on building the efficient numerical framework with its performance

well profiled for the near future studies of the minimal consistent scenario discussed above.

In describing the CRE propagation, we commonly start with the phase-space distribution ue(x,q, t)

of energetic electrons6 and approximate their propagation with a single transport equation mainly with

physical terms like spatial and spectral diffusion (scattering off magnetic turbulence), advection (stream-

ing with the bulk motion), spectral advection (re-acceleration and energy loss)

∂tue −∇x · (Dxx(∇xue))−∇E · (DEE(∇Eue)) (3.1)

+∇x · (Vue) +∇E · (bue −
1

3
(∇x ·V)ue) = Q ,

where Dxx/EE represents the spatial/spectral diffusion tensor, V represents the bulk motion of the CRs,

b indicates continuous energy loss due to several mechanisms like synchrotron emission, inverse-Compton

scattering, Coulomb scattering and ionizing ISM, thermal bremsstrahlung. The right-hand-side Q terms

stands for astrophysical sources of energetic electrons/positrons.

In the energy loss, here we specify the mechanisms for electrons/positrons, which are slightly different

from protons. The inverse Compton scattering describes how energetic electrons/positrons heat ISM

photons and kick them to higher frequencies, where the ISM photon field is also known as the interstellar

radiation fields (ISRFs, with “fields” for specifying the different components) which consists of various

components like CMB photons, star light (covering ultra-violet and optical-inferred bands) and dust emis-

sion (mainly covering the inferred bands). Note that the ISRFs are not known purely from observations,

6According to recent local measurements up to a few years ago and the standard energy loss of secondary positrons
[Mauro et al., 2014], the positron excess problem can very likely due to the primary component from nearby pulsars, and
so in the following we treat positrons as primaries.
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but through modelling the radiative transfer [Popescu et al., 2017] of emission and absorption processes

in the ISM and tuned to match certain observables, where the dust density and temperature distribution

is modelled. Although the Galactic dust emission is not studied in our current work, the future consistent

analysis with polarized synchrotron and dust emission should be aware that the dust distribution is not

independent from CRE.

In the simplest case we consider electrons and positrons as a single fluid, by doing so we ignore the

secondary production of positrons like the decay of protons and heavier nuclei. A better treatment should

involve at least protons/positrons and consequently the interaction between CRs and magnetic turbu-

lence. The spatial and spectral diffusion coefficients Dxx and DEE are often defined phenomenologically

because of their complexity. The basic features of Dxx/EE includes that they depend on the regular mag-

netic field orientation and turbulent amplitude and shape (according to the quasi-linear theory of CR

transport). In the quasi-linear theory the diffusion coefficients can be analytically derived as the Fokker-

Planck coefficients by solving the radiation-magneto-hydrodynamic (RMHD) system [Schlickeiser, 2002].

However the reality is more complicated, with theoretical and recent numerical studies [Kulsrud and

Cesarsky, 1971, Farber et al., 2017] the CR streaming velocity is not always confined to the Alfvén speed,

but the decoupling of CRs to the cold ISM where the magnetic turbulence is damped can be modelled

by increasing the spatial diffusion rate along the regular magnetic field orientation.

Although the (already simplified) CRE transport equation sounds complicated from the physical side

of view, it can be understood conceptually no more than a non-linear advection-diffusion problem (it is

still very non-trivial in practically solving such problem from the numerical side of view).

Finite Element Method

Here we intend to give a simple description of some important concepts in numerical analysis and

especially which are involved in solving the CR transport equation with the finite element method. The

basic concept is that the finite element method describes a continuous problem in its weak formulation

(applying the Galerkin methods) and approximate solution in a finite functional space. For example

consider a linear mapping A : V → V in a Hilbert space V , a problem is defined as Au = f where u

is the solution. Instead of solving Au = f directly, the weak formulation seeks the solution with a test

function v ∈ V and convert the problem into

〈Au, v〉 = 〈f, v〉 , (3.2)

where 〈·, ·〉 represents a bi-linear form (which in the applications here it indicates a domain integral).

Then with a set of basis functions {φi} ⊂ V we try to describe u =
∑
i Uiφi and consequently the weak

formulation reads

∑
j

Uj〈Aφj , φi〉 = 〈f, φi〉 , (3.3)

and the solution finding eventually becomes solving the linear algebra that represents the weak form above.

Note that the above formulas are defined in the continuous domain. While for the discrete domain where
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the functional base is described with quadrature points, we use notation uh for representing the discrete

solution.

By the decomposition in the finite functional space in the discrete domain, the solution precision is

largely determined by how we choose the functional basis and quadrature points, which are in principle

independent from the finite element method itself. For example we can take the Gaussian quadrature

which means with arbitrary n points {xi} and weights {wi} in one-dimensional domain [a, b], an integral

of function g(x) can be approximated as∫ b

a

g(x)dx =
∑
i

εig(xi) , (3.4)

εi =

∫ b

a

∏
j 6=i

x− xj
xi − xj

dx , (3.5)

which has a degree of precision at most 2n− 1. By applying the quadrature rule to the weak formulation

we can further write Eq. 3.3 as∑
j

Uj
∑
k

ε2kA(xk)φj(xk)φi(xk) =
∑
k

εkf(xk)φi(xk) , (3.6)

where the continuous integrals have been approximated by discrete summation, and consequently the

solution u is approximated by its discrete counterpart uh(xk) =
∑
i Uφi(xk).

The left hand side integral in Eq. 3.6 is not trivial as it appears. Here we illustrate a more realistic

derivation with a one-dimensional diffusion problem, which reads

−∂x(α∂xu) = f(x) . (3.7)

For its weak formulation we define the functional base {φi} and the discrete solution uh follows from:

−
∑
j

Uj〈φi, ∂x(α∂xφj)〉Ω = 〈f, φi〉Ω , (3.8)

where the problem is defined within the domain Ω with boundary surface ∂Ω. Integrating the left-hand-

side by part, we arrive at∑
j

Uj [〈∂xφi, α∂xφj〉Ω − (αφi, ∂xφj · n̂)∂Ω] = 〈f, φi〉Ω , (3.9)

with n̂ represents the direction of the boundary surface. In practice the partial derivation of base functions

∂xφi are pre-defined as the functional base itself. It is also apparent that Eq. 3.9 is in principle a set of

linear equations ∑
j

Mi,jUj = Ri , (3.10)

where M is known as the left-hand-side system matrix, while R is the right-hand-side system vector.

The boundary conditions we have not included in defining the strong formulation usually applies to

the boundary integral presented above, where a strong boundary condition requires specific shape of φi

or ∂xφi at the boundary surface, whereas a nature boundary condition can simplify the integral with

vanishing terms. Take the diffusion problem above for example, a strong boundary condition can be
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u(x) = g for x ∈ ∂Ω and consequently the surface integral in Eq. 3.9 should be moved to the right-hand-

side by replacing φi with g. While with a weak boundary condition we can ask ∂xu(x) = 0 for x ∈ ∂Ω,

in which case the surface integral vanishes since ∂xφj = 0 and note that this requirement will not show

up explicitly in solving the linear equations.

For some particular problems, e.g., the advection problem (or hyperbolic partial differential equation),

we need extra caution with the discretization scheme. In practice for advection problems we use the

upwind discontinuous Galerkin method, where the discontinuous means the functional basis is defined

independently for each triangulated cell and so the solution uh do not have to be continuous at the internal

boundaries between two neighbouring cells. Assuming a simple one-dimensional advection problem

∂x(βu) = f(x) , (3.11)

and the plain weak formulation in functional base φm reads

−(φm, uhβ · n̂)∂Ω +
∑
i

〈uh, β · ∂xφm〉Ti =
∑
i

〈φm, f〉Ti , (3.12)

where ∂Ω represents the external boundary surface, Ti ∈ T represents the volume for each triangulation

cell i, the notation (·, ·) indicates surface integral while 〈·, ·〉 for volume integral. Then on top which we

apply the upwind scheme, which introduces extra internal surface integrals +
∑
j(u
−
h , β · [φmn̂])Fj on the

left-hand-side, where Fj ∈ F represents the internal surface j. [φmn̂] is defined by [φmn̂] = φ+
mn̂

+ +φ−mn̂
−

where the notation + indicates the quantity in the upwind cell while − for the downwind cell. Note that

in the discrete Galerkin method, the functional basis is defined independently for each cell.

Domain Separation

The deal.II library provides triangulation methods for a domain with number of dimensions no

higher than three, which is a common setting of a finite element method library, and so for problems

defined within higher dimensions (e.g., a CR propagation problem with three spatial dimension and

one spectral dimension) we cannot build the mathematical framework directly with its original library

functions. To overcome this, we separate the full domain into a spatial sub-domain (denoting the spatial

space x) and a spectral sub-domain (denoting the energy/momentum space q). By default the spatial and

spectral sub-domains are constructed as hyper-rectangles. The notation Ra+b is defined for distinguishing

different dimension settings, where “a” represents the number of dimensions in the spatial sub-domain

while “b” represents that in the spectral sub-domain. For example R1+1 setting is built by {x1, q1}, while

R2+1 setting is built by {x1, x2, q1}.

Without any loss of generality, we assume an unspecified time-dependent problem in the form of

∂tu+ Ôu = f, (3.13)

in an arbitrary Ra+b dimension setting. The discretization in time can be approached by a sequence of

time steps with solutions un(x,q) marked by time step index n, i.e., the finite difference approach for

the time discretization. In the Rothe’s scheme we can rephrase the time-dependent problem as

un − un−1

tn − tn−1
+ ((1− θ)Ôn−1u

n−1 + θÔnun) = (1− θ)fn−1 + θfn , (3.14)
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where θ varies within [0, 1]. θ = 1 and 0 represents implicit and explicit Euler method respectively, while

θ = 0.5 is the alleged Crank-Nicolson method. For a time-independent problem, a steady state solution

can be found technically by a single solving step within the θ-scheme we described above.

Intuitively, we express solution un inside the cross product Φ of two functional spaces as

un(x,q) =
∑
i

∑
α

Uαivi(x)wα(q)

=
∑
α,i

Uαiφαi(x,q) , (3.15)

where the base function spaces are mathematically defined by

V := span{vi ∈ H1(Ra)} , (3.16)

W := span{wα ∈ H1(Rb)} , (3.17)

Φ := span{φαi ∈ V ⊗W} . (3.18)

Discretizing a PDE problem over quadrature points yields the weak formulation, where generally we can

represent the left-hand-side operator Ô by a sparse matrixMxq. Whereas the right-hand-side terms can

be assembled into a matrix representative Rxq, and in this way the generic weak formulation has the

form

Mxq · vec(U) = vec(Rxq) . (3.19)

The reason for vectorizing (with vec denoting the matrix vectorization operation) the solution matrix

U and the right-hand-side matrix R can be understood via a simplified example. Suppose upon the

solution representative U we apply two independent operations Ôx and Ôq which live separately in two

sub-domains (to be specific, Ôx ≡ Ôx(x) and Ôq ≡ Ôq(q)). It is thus straight forward to assemble

matrix representatives Mx and Mq respectively, namely the mapping from the strong formulation to

the weak formulation, which reads

ÔxÔqu→MxUMT
q , (3.20)

where (·)T stands for matrix transpose. By default we associate the row indices to quadrature points

in the spatial sub-domain. It is obvious at this point that solving a Sylvester-like equation requires a

vectorization and consequently the final left-hand-side matrix readsMxq =Mq⊗Mx. And through this

vectorization, we could also assembleMxq for even the most generic Ô(x,q) with a quadrature-point-wise

Kronecker product (represented by the symbol ⊗).

For physicists who are not very familiar with the finite element method (FEM), we feel obliged to

illustrate explicitly the methodology behind assembling theMxq (the very same idea goes to assembling

the Rxq). A typical example can be a pure spatial diffusion problem, where a strong formulation of the

diffusion term (on the left-hand-side of a PDE) can be

−∇x · (Dxx∇xu(x,q)) , (3.21)

where Dxx ≡ Dxx(x,q) represents the spatial diffusion tensor. The standard approach is to perform a

integral (over the phase-space domain) on both hand sides of the strong formulation of the problem with
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appropriate base functions {φαi = wαvi}, which reads

−
∫

Ωxq

φαi∇x · (Dxx∇xu) . (3.22)

The continuous Galerkin method, taken as a convenient example for discretizing a pure diffusion problem,

instructs u(x,q) =
∑
β,j Uβjφβj , and through a integration by part we can express the above term as∑

β,j

Uβj
∫

Ω

(∇xφαi)Dxx∇xφβj , (3.23)

where Ω ≡ Ωx ⊗ Ωq represents the volume integral in two sub-domains, with the integrand explicitly

reads

(∇xvj)
T · (D(x, p)∇xvi) · (wαwβ) . (3.24)

Note that deal.II can handle the discrete integral with continuous or discontinuous base functions in

a cell-by-cell manner (based on continuous or discontinuous Galerkin method), so that a common CR

propagation problem with diffusion and advection terms can be properly defined. Logically in BIFET what

we do is to first iterate over active cell-pairs living in the two sub-domains, and then iterates through

quadrature points are conducted where the accumulations ofMxq and Rxq are done as discrete integrals.

Notice that a integral over two sub-domains is required, so we end up with four levels of nested iterations.

Although the strong formula was defined in one-dimensional domain or sub-domains, the algorithms are

dimension free.

3.2.2 Software Design

As mentioned earlier that the main feature we implement in BIFET is assembling the linear algebra

structure with triangulation performed in two domains independently. In the following we present the

technical details related to building the numerical system for solving a high-dimensional PDE. An illus-

trative BIFET workflow chart is presented by Fig. 3.1, where the whole routine mainly consists of two

processes, one is shown on the left side of the workflow corresponds to initializing/refining and storing

the linear algebra system of the PDEs, while the right side of the workflow displays the operations related

to solving the PDE system and interacting with the conditions.
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Figure 3.1: BIFET workflow.
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Domains

While physically we distinguish between spatial and spectral domains, which are not different from

the numerical point of view. Technically we distinguish domain discretization with continuous Galerkin

method from that with the discontinuous Galerkin. In the Frame class we define the basic quantities

for describing a domain, which include mesh/grid geometry and size, finite element degrees of freedom,

dynamic sparsity pattern, strong boundary condition and hanging node constraints. The process of

initializing a single domain setting starts with the given mesh/grid shape, size and discretization, from

where the triangulation can be done automatically with built-in method of deal.II library. After which,

with given finite element method, we can estimate the degrees of freedom and dynamic sparsity pattern

according to the initial discretization, where the degrees of freedom represents how many independent

unknown variables in the final solution, while the sparsity pattern describes the basic shape of the linear

system left-hand-side matrix. Hanging node constraints are important only for continuous Galerkin

method, where the solution is required to be continuous at the boundary of two neighbouring cells. Note

that these constraints should not be used for the discontinuous Galerkin method. Here we present the

implementation of the initializing process in Frame class.

1 template <int dim> void Frame<dim>::init() {

2 // triangulate simulation box

3 dealii::GridGenerator::subdivided_hyper_rectangle(

4 *(this->triangulation),

5 this->block_nums, this->pivot_min,

6 this->pivot_max, true);

7 // if min_refine_lv is 0, no refinement operation will be taken

8 this->triangulation->refine_global(this->min_refine_lv);

9 // enumerate dof

10 this->dof_handler->distribute_dofs(*(this->fe));

11 // apply dof to constraints

12 this->constraints->clear();

13 dealii::DoFTools::make_hanging_node_constraints(

14 *(this->dof_handler),

15 *(this->constraints));

16 // apply strong boundary

17 this->bfmap_init();

18 dealii::VectorTools::interpolate_boundary_values(

19 *(this->dof_handler),

20 *(this->bfmap),

21 *(this->constraints));

22 this->constraints->close();

23 // initialize dynamic sparsity
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24 this->dsp->reinit(this->dof_handler->n_dofs(),

25 this->dof_handler->n_dofs());

26 dealii::DoFTools::make_sparsity_pattern(

27 *(this->dof_handler),

28 *(this->dsp),

29 *(this->constraints),

30 /*keep_constrained_dofs=*/ false);

31 this->sparsity->copy_from(*(this->dsp));

32 }

Sparsity Pattern

The sparsity pattern (as introduced above) for a single sub-domain, i.e., Sx for the spatial domain and

Sq for the spectral domain, is built during initializing the Frame instance. For the system left-hand-side

matrix which absorbs the system matrices from two sub-domains, the corresponding sparsity pattern is

calculated as

Sxq = Sq ⊗ Sx , (3.25)

which is generic and independent of the specific expression of the system matrix itself. In the following

we present the implementation of the Kronecker product described in Eq. 3.25. This function is defined

in the Simbox class along with functions for refining sub-domains.

1 template <int spa_dim, int spe_dim>

2 void Simbox<spa_dim, spe_dim>::Kronecker_product() {

3 // reallocate result DSP

4 this->dsp->reinit(

5 this->spectral_frame->dsp->n_rows() * this->spatial_frame->dsp->n_rows(),

6 this->spectral_frame->dsp->n_cols() * this->spatial_frame->dsp->n_cols());

7 // loop through non-zero entries in left DSP

8 auto it_left = this->spectral_frame->dsp->begin();

9 auto end_left = this->spectral_frame->dsp->end();

10 for (; it_left != end_left; ++it_left) {

11 auto alpha = it_left->row();

12 auto beta = it_left->column();

13 // loop through non-zero entries in right DSP

14 auto it_right = this->spatial_frame->dsp->begin();

15 auto end_right = this->spatial_frame->dsp->end();

16 for (; it_right != end_right; ++it_right) {

17 // get global indeces
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18 auto I = alpha * this->spatial_frame->dsp->n_rows() + it_right->row();

19 auto J = beta * this->spatial_frame->dsp->n_cols() + it_right->column();

20 this->dsp->add(I, J);

21 }

22 }

23 }

System Assembling

The sparsity pattern for the full domain is useful in assembling and storing the system left-hand-side

matrix. The basic idea of assembling a system matrix is similar to the standard way defined in deal.II

library, where local matrices are assembled in a cell-wise manner and then distributed into the global

matrix. Since we are independently handling two sub-domains, the iteration at cell level is nested, which

means a local matrix is not associated to a single cell but to a couple of cells from two sub-domains. The

assembling method of local matrices in each domain is still valid, while distributing local matrices to the

global matrix requires the same method in deal.II and the Kronecker product which merge the global

sub-domain system matrices into the global full domain matrix. Note that the Kronecker product in

merging two global matrices is not relevant to whether the left-hand-side operators can be decomposed

into two sub-domains, since during the cell-wise assembling of the local matrices we naturally use the

specific expression (with nested iterations of quadrature points in both sub-domains) of the left-hand-

side operators. The snippet below presents the system initialization function for a pure spatial diffusion

problem, where the diffusion tensor is defined within System class (which applies to the definition of

advection vector and source distribution).

1 template <int spa_dim, int spe_dim>

2 void System_tmp<spa_dim, spe_dim>::Operator::init(

3 System<spa_dim, spe_dim> *system,

4 const Simbox<spa_dim, spe_dim> *simbox,

5 const double &step_time) {

6 // step 1, preparation

7 // instantiate quadrature rules in two sub-domains

8 auto spatial_quadrature_formula =

9 std::make_unique<dealii::QGauss<spa_dim>>(

10 simbox->spatial_frame->fe->degree + 1);

11 auto spectral_quadrature_formula =

12 std::make_unique<dealii::QGauss<spe_dim>>(

13 simbox->spectral_frame->fe->degree + 1);

14 // prepare finite element base function values in spatial domain

15 auto spatial_fev = std::make_unique<dealii::FEValues<spa_dim>>(
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16 *(simbox->spatial_frame->fe),

17 *spatial_quadrature_formula,

18 dealii::update_gradients |

19 dealii::update_quadrature_points |

20 dealii::update_JxW_values);

21 // prepare finite element base function values in spatial domain

22 auto spectral_fev = std::make_unique<dealii::FEValues<spe_dim>>(

23 *(simbox->spectral_frame->fe),

24 *spectral_quadrature_formula,

25 dealii::update_values |

26 dealii::update_quadrature_points |

27 dealii::update_JxW_values);

28 // degrees of freedom per cell (DPC) in two sub-domains

29 const unsigned int spatial_dpc = spatial_fev->dofs_per_cell;

30 const unsigned int spectral_dpc = spectral_fev->dofs_per_cell;

31 // number of quadrature points per cell in two sub-domains

32 const unsigned int spatial_q_points =

33 spatial_quadrature_formula->size();

34 const unsigned int spectral_q_points =

35 spectral_quadrature_formula->size();

36 // local to global matrix indices translater

37 auto spatial_l2g =

38 std::make_unique<std::vector<dealii::types::global_dof_index>>(

39 spatial_dpc);

40 auto spectral_l2g =

41 std::make_unique<std::vector<dealii::types::global_dof_index>>(

42 spectral_dpc);

43 // temporary local (per-cell) matrix caches

44 auto cell_Mx =

45 std::make_unique<dealii::FullMatrix<double>>(spatial_dpc,

46 spatial_dpc);

47 auto cell_Mq =

48 std::make_unique<dealii::FullMatrix<double>>(spectral_dpc,

49 spectral_dpc);

50 // system matrix allocation

51 system->Mxq->reinit(*(simbox->sparsity));

52

53 // step 2, fill system matrix

54 // apply integral with base functions over sub-domains
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55 // iterate over sub-domain cells (spatial domain)

56 #ifdef _OPENMP

57 system->omp_cell_distribute(simbox);

58 for (auto spatial_cell = system->it_start;

59 spatial_cell != system->it_end;

60 ++spatial_cell)

61 #else

62 for (const auto& spatial_cell :

63 simbox->spatial_frame->dof_handler->active_cell_iterators())

64 #endif

65 {

66 // initialize finite element values at given cell

67 spatial_fev->reinit(spatial_cell);

68 // translate local indices to global indices

69 spatial_cell->get_dof_indices(*spatial_l2g);

70 // iterate over sub-domain cells (spectral domain)

71 for (const auto& spectral_cell :

72 simbox->spectral_frame->dof_handler->active_cell_iterators())

73 {

74 spectral_fev->reinit(spectral_cell);

75 // translate local indices to global indices

76 spectral_cell->get_dof_indices(*spectral_l2g);

77 // apply quadrature rule in spectral domain

78 for (unsigned int spectral_qid = 0;

79 spectral_qid < spectral_q_points;

80 ++spectral_qid) {

81 // spectral domain local full matrix

82 for (dealii::types::global_dof_index alpha = 0;

83 alpha < spectral_dpc;

84 ++alpha) {

85 for (dealii::types::global_dof_index beta = 0;

86 beta < spectral_dpc;

87 ++beta) {

88 cell_Mq->set(alpha, beta,

89 spectral_fev->shape_value(alpha,

90 spectral_qid) *

91 spectral_fev->shape_value(beta,

92 spectral_qid) *

93 spectral_fev->JxW(spectral_qid));
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94 } // beta

95 } // alpha

96 // (clean cache)

97 system->Mq->reinit(*(simbox->spectral_frame->sparsity));

98 // (push local full matrix to global sparse matrix cache)

99 simbox->spectral_frame->constraints

100 ->distribute_local_to_global(

101 *cell_Mq,

102 *spectral_l2g,

103 *(system->Mq));

104 // apply quadrature rule in spatial domain

105 for (unsigned int spatial_qid = 0;

106 spatial_qid < spatial_q_points;

107 ++spatial_qid) {

108 // get spatial diffusion tensor at given quadrature point

109 const dealii::Tensor<2, spa_dim, double> coefficient{

110 system->diffusion->Dxx(

111 spatial_fev->quadrature_point(spatial_qid),

112 spectral_fev->quadrature_point(spectral_qid),

113 step_time)};

114 // spatial domain local full matrix

115 for (dealii::types::global_dof_index i = 0;

116 i < spatial_dpc;

117 ++i) {

118 for (dealii::types::global_dof_index j = 0;

119 j < spatial_dpc;

120 ++j) {

121 cell_Mx->set(i, j,

122 dealii::scalar_product(

123 spatial_fev->shape_grad(i, spatial_qid),

124 coefficient *

125 spatial_fev->shape_grad(j, spatial_qid)) *

126 spatial_fev->JxW(spatial_qid));

127 } // j

128 } // i

129 // (clean cache)

130 system->Mx->reinit(*(simbox->spatial_frame->sparsity));

131 // (push local full matrix to global sparse matrix cache)

132 simbox->spatial_frame->constraints
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133 ->distribute_local_to_global(

134 *cell_Mx,

135 *spatial_l2g,

136 *(system->Mx));

137 // accumulate to global matrix cache

138 system->Operator_Kronecker_accumulate(simbox);

139 } // spatial quadrature point

140 } // spectral quadrature point

141 } // spectral cell

142 } // spatial cell

143 }

multi-threading support

In the first version of BIFET we apply multi-threading parallelism mainly to the system assembling

process, which has already been illustrated by the snippet above. We will see later in the profiling that by

allocate the cell iterations into multiply thread is efficient until the bottleneck from memory accessing is

reached. This bottleneck is purely due to the fact that we have to allocate and compute all the non-zero

elements of system matrix. To over come which, it is essential in the future to implement MPI support

with a matrix-free scheme in system matrix calculation, where the system matrix do not have to be

pre-calculated and in turn reduces greatly the computing memory consumption and makes the process

easy to be paralleled.

3.2.3 Precision and Performance

Performance

The common routines associated to building and solving PDE system in BIFET are data-intensive. The

largest memory consumption comes from assembling PDE operator matrices. Each operator matrix size

is defined together by the domain resolution (namely, the number of cells), the base function polynomial

order (which determines the degrees of freedom per cell) and the problem dimension. The main idea

for computational parallelism is to distribute the workload related to accessing these matrices since the

operator matrices always stay in the RAM (random-access memory). At the lowest optimizing level we

apply a multi-threading with OpenMP7, which is easy to be implemented and nested inside other packages,

i.e., the IMAGINE pipeline with multi-node parallelism.

A standard simulation routine of BIFET is mainly built by iterations with three major processes:

the system initialization, system solver and (non-)adaptive refinement. Fig. 3.2 illustrates the CPU time

consumption for handling simple time-independent diffusion and advection problems with R1+1 dimension

setting by serial routines in BIFET . The CPU time cost of system initialization and refinement are roughly

proportional to the square of degrees of freedom, but actually faster thanks to the sparsity in the system

7https://www.openmp.org/
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matrix. This is expected since the system matrices have their sizes proportional to the square of the

total degrees of freedom. For the diffusion problem, we use an iterative solver so that the scaling index

is close to 2.0. While for the advection problem, a direct solver is adopted and so the solving time scales

almost linearly with respect to the system total degrees of freedom. We also observe that the system

initialization and adaptive refinement are computationally at least one magnitude more expensive than

the solver, for a problem more complicated than the pure diffusion or advection the difference is larger.
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Figure 3.2: CPU time consumption of typical standard BIFETroutines in serial mode. Iterative

solver in diffusion problem results in quadratic scaling, while direct solver in advection problem

gives linear scaling. The scaling indices are presented in Tab. 3.1

problem\process initialization refinement solver
diffusion 1.59 1.67 1.88
advection 1.38 1.46 1.26

Table 3.1: The scaling index of CPU time consumption as a power-law function of the degrees of

freedom in the discretized problems by FEM displayed in Fig. 3.2.

According to the serial profiling, initialization and adaptive refinement processes are the major opti-

mization targets. With further profiling which is not presented here, we find the most time consuming

part in both initialization and refinement processes is the assembling system matrixMxq with sufficiently

high degrees of freedom. By using OpenMP , it is possible to fork the System objects among the available

CPU working threads, where each thread assembles a certain fraction of Mxq and Rxq. In addition to

distributing System access among the threads, the refinement process defined within the Solution class

is optimized by following the very same idea. By increasing the number of threads, the non-optimized

and memory-access-related operations gradually dominate over the paralleled part in the CPU time con-

sumption when the workload for a problem (e.g., calculating the diffusion or advection coefficient at each

supporting point) is not heavy enough, in which cases the strong scaling speedups hit the rooftops as

illustrated in Fig. 3.3.
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Figure 3.3: Strong scaling speedups of initialization and refinement processes in computationally

light and heavy problems. As a benchmark we present Amdahl’s law of fully paralleled or 99%

paralleled. Rooftops occur in computationally light cases before exploiting the available threads.

Precision

The capability and precision of BIFET pipelines in confronting common physical scenarios in CR

propagation are illustrated by a series of integrated tests in the following. With an analytically solvable

problem, we can compare the numerical solution uh to the corresponding analytic one u by estimating

the L2 errors at any given testing position (x,q) in the simulation domain

εL2,q =

√∫
Ωx

[u(q)− uh(q)]
2
, (3.26)

εL2,x =

√∫
Ωq

[u(x)− uh(x)]
2
, (3.27)

where for simplicity with built-in library functions provided by deal.II , error estimations are calculated

in a single sub-domain, e.g., εL2,q is defined as the spatial sub-domain error by interpolating the solution

uh at the given spectral position q.

A pure diffusion or mathematically speaking a parabolic problem, is the simplest testing case we can

start with. We prepare a typical strong formulation for the diffusion problem as

∂tu(x,q, t)−∇x · (Dxx∇xu(x,q, t)) = f(x,q, t) , (3.28)

u(x,q, t) = 0 , x ∈ ∂Ωx , (3.29)

where a homogeneous strong condition is defined on all boundaries. For the testing purpose, a simple

steady-state solution u(x,q) which satisfies the Dirichlet boundary condition can be pre-defined as

u(x,q) = S(z)S(x)S(y) , (3.30)

where for abbreviation C(i) represents cos( (i−imin)π
Li

) and S(i) for sin( (i−imin)π
Li

) with Li = imax − imin
defined as the simulation box length in the spatial coordinate i ∈ {x, y, z}. Inspired by the testing cases
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designed by Kissmann [2014], we set a similar anisotropic spatial diffusion tensor

Dxx =

 αz2 0 0

0 βx2 βxy

0 βxy βy2

 , (3.31)

where we set α 6= β for anisotropy. The weak formulation of this problem has been presented as an

example of domain separation earlier. In the R1+m setting, the right-hand-side source term which can

provide uniquely the pre-defined solution reads

f(z) =
π2αz2

L2
z

S(z)− 2παz

Lz
C(z) , (3.32)

while in the R2+m dimension setting, its expression should be

f(z, x) = f(z)S(x)

+
π2βx2

L2
x

S(z)S(x)− 2πβx

Lx
S(z)C(x) , (3.33)

and finally in the R3+m setting, the source term is

f(z, x, y) = f(z, x)S(y)

−2π2βxy

LxLy
S(z)C(x)C(y)

−πβx
Lx

S(z)C(x)S(y)− πβy

Ly
S(z)S(x)C(y)

+
π2βy2

L2
y

S(z)S(x)S(y)− 2πβy

Ly
S(z)S(x)C(y) . (3.34)

A direct and efficient approach to this problem is to use a time-independent solver with continuous

Galerkin method in BIFET . Fig. 3.4 displays the spatial sub-domain L2 errors estimated with different

dimension and refinement settings, where in practice the total volume of the spatial sub-domain is fixed

by setting Lx = Ly = Lz = L. For a numerical solution uh found with (dis)continuous Galerkin base

functions up to polynomial order p, the corresponding L2 errors should follow hp+1 scaling where h

represents the homogeneous numerical cell length in each spatial direction. This means at each global

refinement level, the total number of elemental cells is L/h in each spatial direction. On the other hand,

solutions found with adaptive refinement scheme do not respect the hp+1 scaling law since the elemental

cells are refined inhomogeneously. Nevertheless, we still managed to find a roughly linear (but slightly

steeper) scaling of L2 errors in the adaptively refined cases with respect to the minimal (but not all) cell

length h.

For testing the time-dependent solving routines, we intend to recover the steady-state solutions by

a time-dependent solver with the Crank-Nicolson method. The left panel in Fig. 3.5 illustrates the

evolving property of the time-dependent solver with fixed time-step difference d while increasing the total

evolving step T/d until the minimal error found by the time-dependent solver is reached asymptotically.

Note that the minimal evolving steps required for reaching the steady-state solution depends on the

specific dimension and resolution settings of a problem. The convergence property of the time-dependent

solver is presented by the right panel, where the total evolving time T is fixed. With different spatial

resolution defined by L/h, we marked the saturation point beyond which further time discretization

becomes redundant.
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Figure 3.4: Spatial sub-domain L2 errors measured in solving the spatial diffusion problem with

a time-independent solver. “adaptive” indicates the adaptive refinement scheme while “global”

indicates the homogeneous global refinement scheme. “pol.ξ” indicates up to the ξ-th order of

polynomials are adopted as finite element base functions. Errors estimated with adaptive refine-

ment (adaptive refinement ratio is set as 50%) are plotted according to the same refinement level

compared to the globally refined counterparts.
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Figure 3.5: Spatial sub-domain L2 errors measured in solving the spatial diffusion problem with a

time-dependent solver. The problem is defined in R1+1 with homogeneously refined mesh and base

functions at polynomial order 1. The minimum L2 errors corresponds to the steady-state solutions

are displayed in dashed lines. The saturation positions in the right panel are chosen at where the

relative difference between time-dependent and time-independent solutions is below 10−6.
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The continuous energy loss (spectral advection) is a typical and important scenario in CR propagation

where we can experiment the discontinuous Galerkin method in the spectral sub-domain while keeping

the spatial sub-domain safely discretized by the continuous Galerkin method if no spatial advection

phenomena shows up. The strong formulation of a simple spectral advection problem is defined as

∂tu(x,q, t) +∇E · (Aqqu(x,q, t)) = f(x,q, t) , (3.35)

u(x,q, t) = 0 , q ∈ ∂Ω+
q , (3.36)

where ∂Ei = exp(−qi)∂qi since the spectral sub-domain can be built in logarithmic scale. Similar to

the previous diffusion problem, the spectral sub-domain coordinates are represented by {qx, qy, qz}. An

anisotropic spectral advection vector A is assumed to be

Aqq =

 ηz exp (nz(qz − qz,min))

ηx exp (nx(qx − qx,min))

ηy exp (ny(qy − qy,min))

 . (3.37)

In the Rm+1 setting, with a simple right-hand-side source term f(qz) = exp (sz(qz − qz,min)), the analytic

solution which satisfies the homogeneous strong boundary condition reads

u(z) =
exp ((nz − sz)qz,min)

(1 + sz)ηz
exp (qz(1 + sz − nz))

−exp ((nz + 1)qz,min + (1 + sz)Lqz )

(1 + sz)ηz
exp (−nzqz) . (3.38)

For the testing purpose we require u(x,q, t) = u(qz)u(qx)u(qy), then in analogy to the Rm+1 case the

source term for the Rm+3 setting reads

f(qz, qx, qy) = f(qz)u(qx)u(qy)

+u(qz)f(qx)u(qy) + u(qz)u(qx)f(qy) . (3.39)

Note that shifting from the energy coordinate E derivation to its corresponding logarithmic coordinate

q = log(E) derivation introduces a diagonal tensor

Tq =

 exp(−qz) 0 0

0 exp(−qx) 0

0 0 exp(−qy)

 , (3.40)

which consequently brings itself and∇qTq into the weak formulation. Before applying the upwind method

and boundary condition, the weak formulation for the advection term reads

∇E · (Aqqu) →
∑
k

∑
β,j

Uβjk
∫

Ωx

∫
Ωkq

φkαiTq∇q · (Aqqφ
k
βj)

=
∑
k

∑
β,j

Uβjk

[∫
Ωx

∮
∂Ωkq

φkαiTqAqqn̂
k
qφ

k
βj

−
∫

Ωx

∫
Ωkq

(∇qφ
k
αi)TqAqqφ

k
βj

−
∫

Ωx

∫
Ωkq

φkαi(∇qTq)Aqqφ
k
βj

]
, (3.41)
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where base functions are independently defined in each spectral cell Ωkq. With the upwind method applied

in order to ease the oscillation in the solution of an advection problem, each spectral internal surface

integral reads ∑
β,j

∫
Ωx

∮
∂Ωkq

φ−βjTqAqq(φ+
αin̂

+
q + φ−αin̂

−
q ) , (3.42)

with the wind direction (pointing from downwind cell marked by − to upwind cell marked by +) defined

by TqAqq.

Spectral L2 error scaling properties of time-independent solver with various dimension and refinement

settings are illustrated by Fig. 3.6. The performance of applying a time-dependent solver to the same

problem is illustrated in Fig. 3.7.
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Figure 3.6: Spectral sub-domain L2 errors measured in solving the spectral advection problem.

“adaptive” indicates adaptive refinement scheme while “global” indicates global refinement scheme.

“pol.ξ” indicates up to ξ-th order of polynomials are adopted as finite element base functions.

Solutions found with adaptive refinement (adaptive refinement ratio is set as 50%) are plotted

according to refinement level compared to globally refined counterparts.
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Figure 3.7: Spectral sub-domain L2 errors measured in solving the spectral advection problem

with a time-dependent solver. The problem is defined in R1+1 with homogeneously refined mesh

and base functions at polynomial order 1. The minimum L2 errors corresponds to the steady-state

solutions are displayed in dashed lines. The saturation positions in the right panel are chosen

at where the relative difference between time-dependent and time-independent solutions is below

10−6.
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In the above two testing cases, we have seen the diffusion and advection problems separately. A

more realistic problem usually involves both diffusion and advection which need to be solved simulta-

neously either defined in the same sub-domain or in two sub-domains separately. Here we set up an

advection-diffusion problem (with diffusion and advection in the same sub-domain) and approach uncon-

ventionally with the continuous Galerkin method as in the pure diffusion problem case and then observe

the performance. Despite the fact that discontinuous Galerkin is the standard method for solving an

advection-diffusion problem, a continuous Galerkin method however is computationally lighter and easier

to be implemented and also interesting to be tested as an alternative approach. The strong formulation

of a simple advection-diffusion problem is defined as

∂tu(x,q, t) +∇x · (Axxu(x,q, t))−∇x · (Dxx∇xu(x,q, t)) = f(x,q, t) , (3.43)

u(x,q, t) = 0 , x ∈ ∂Ω+
x , (3.44)

n̂x · (Axx −Dxx∇x)u(x,q, t) = 0 , x ∈ ∂Ω−x , (3.45)

where ∂Ω+ and ∂Ω− represent the upper and lower surface bounds respectively. We do not intend to

complicate advection or diffusion tensors, and so they are set with constant values

Axx =

 ηz

ηx

ηy

 , Dxx =

 α 0 0

0 β 0

0 0 β

 . (3.46)

In the R1+m setting, with simple time-independent source f(x,q, t) = exp (zmin − z) an analytic

solution that satisfies our boundary conditions can be derived as

u(z) = (
exp(zmin − z)

(α+ ηz)
− 1

ηz
) exp

(
−ηz(z − zmax)

α

)
− exp(zmin − z)

(α+ ηz)
+

1

ηz
. (3.47)

In the R2+m and R3+m settings we require u(x,q) = u(z)u(x)u(y) so that the corresponding source

functions reads

f(z, x) = f(z)u(x) + u(z)f(x) , (3.48)

f(z, x, y) = f(z, x)u(y) + u(z)u(x)f(y) . (3.49)

The left-hand-side of the time-independent weak formulation reads

∑
β,j

Uβj
∫

Ω

(Dxx∇xφβj −Axxφβj) · ∇xφαi , (3.50)

in which the surface integral terms vanish due to the boundary conditions.

Fig. 3.8 illustrates the precision of the time-independent solver in two different cases. In the first case

we set diffusion coefficient as the same magnitude as the advection coefficient, while in the second case the

diffusion term is significantly weaker than the advection. It is known that continuous Galerkin method is

not appropriate for solving a pure advection problem, and so by mixing a diffusion term into the advection

problem to suppress artificial oscillation in the solution the continuous Galerkin may become feasible.

We should expect that smaller diffusive partition in the advection-diffusion problem requires higher mesh

refinement to reach the ideal error scaling law. This is observed in the upper panel of Fig. 3.8 where the
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ideal error scaling is only achieved with highly refined grid, while in the lower panel of Fig. 3.8 the ideal

error scaling is well followed sicne the diffusion term is significant enough at the given mesh resolution.

The performance of applying a time-dependent solver to the advection-diffusion problem is illustrated in

Fig. 3.9.

100 101

L/h (fixed L)
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1
L2 ,

q
x = xx

1 + 1, global, pol.1
2 + 1, global, pol.1
3 + 1, global, pol.1
1 + 1, global, pol.2
2 + 1, global, pol.2
1 + 1, adaptive, pol.1
2 + 1, adaptive, pol.1
3 + 1, adaptive, pol.1

h1 scaling
h2 scaling
h3 scaling

100 101

L/h (fixed L)
10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

L2 ,
q

x xx

1 + 1, global, pol.1
2 + 1, global, pol.1
3 + 1, global, pol.1
1 + 1, global, pol.2
2 + 1, global, pol.2
1 + 1, adaptive, pol.1
2 + 1, adaptive, pol.1
3 + 1, adaptive, pol.1

h1 scaling
h2 scaling
h3 scaling

Figure 3.8: Spatial sub-domain L2 errors measured in solving the advection-diffusion problem.

“adaptive” indicates adaptive refinement scheme while “global” indicates global refinement scheme.

“pol.ξ” indicates up to ξ-th order of polynomials are adopted as finite element base functions.

Solutions found with adaptive refinement (adaptive refinement ratio is set as 50%) are plotted

according to refinement level compared to globally refined counterparts.
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Figure 3.9: Spectral sub-domain L2 errors measured in solving the advection-diffusion problem

with a time-dependent solver. The problem is defined in R1+1 with homogeneously refined mesh

and base functions at polynomial order 1. The minimum L2 errors corresponds to the steady-state

solutions are displayed in dashed lines. The saturation positions in the right panel are chosen

at where the relative difference between time-dependent and time-independent solutions is below

10−6.
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The above tests all focus on problems non-trivially defined in a single sub-domain, from which we

have collected some practical experience for more realistic problems which span across the whole domain8.

Here we define a simple problem with constant and isotropic spatial diffusion and spectral advection as

∂tu−∇x · (Dxx∇xu) +∇E · (Aqqu) = f , (3.51)

u(x,q, t) = 0 , q ∈ ∂Ω+
q , (3.52)

u(x,q, t) = 0 , x ∈ ∂Ωx , (3.53)

Aqq =

 η

η

η

 , Dxx =

 α 0 0

0 α 0

0 0 α

 . (3.54)

Since the operators (diffusion and advection) are independent, we are able to formulate the solution as

u(x,q, t) = u(x, t)u(q, t) and consequently the right-hand-side source as f(x,q, t) = fx(x, t)uq(q, t) +

fq(q, t)ux(x, t). By learning from the simple forms of solutions in previous tests we fill the system with

ux(ξ) = sin

(
(ξ − ξmin)π

Lξ

)
, (3.55)

ux(x) =
∏
ξ

u(ξ) , (3.56)

uq(qξ) =
exp(qξ,min)

η(1 + s)

[
exp ((1 + s)(qξ − qξ,min))− exp

(
(1 + s)Lqξ

) ]
, (3.57)

uq(q) =
∏
qξ

u(qξ) . (3.58)

The weak formulation consists of the spatial component from the weak formulation of the spatial diffusion

problem and the spectral component from the weak formulation of the spectral advection problem, and

so the discontinuous Galerkin method is used only in the spectral domain where the advection is defined.

Before applying the upwind method, the time-independent left-hand-side is represented by

∑
k

∑
β,j

Uβjk
∫

Ωx

(∇xviDxx∇xvj)

×
[ ∮

∂Ωkq

wkαTqAqqn̂
k
qw

k
β −

∫
Ωkq

(∇qw
k
α)TqAqqw

k
β −

∫
Ωkq

wkα(∇qTq)Aqqw
k
β

]
. (3.59)

Fig. 3.10 displays the measured spatial and spectral L2 errors with respect to the simulation mesh

resolution. By applying a time-dependent solver, the asymptotic error convergence with fixed time-

difference and fixed total evolving time are displayed respectively in Fig. 3.11 (for spatial L2 errors) and

Fig. 3.12 (for spectral L2 errors).

3.3 application example

Convinced by integrated tests of various typical problems, we move on to illustrate the capacity of

BIFET in realistic simulations. The examples are designed as one of the commonly adopted simulation

settings in previous studies carried out with other simulators like Galprop [Strong and Moskalenko, 1998]

8We emphasize that all problems are defined on the full domain, but when no operation is defined in a sub-domain the
corresponding weak formulation is usually a trivial mass matrix.
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Figure 3.10: Spatial and spectral domain L2 errors measured in the spatial diffusion with spectral

advection problem. “adaptive” indicates adaptive refinement scheme while “global” indicates

global refinement scheme. “pol.x” means up to x-th order of polynomials are adopted as finite

element base functions. L/h means the number of cells along each spatial dimension. Solutions

found with adaptive refinement are placed according to refinement level in comparison with globally

refined counterparts. In this illustration we set adaptive refinement ratio as 50%.

and DRAGON [Evoli et al., 2017] where GMF is pre-defined and fixed. We consider a CRE propagation

problem with time-independent spatial diffusion plus spectral advection in the R1+1 dimension setting.

Homogeneously distributed Galactic magnetic field is assumed without requiring CR feedback, which

means no CR streaming instability in the magnetic turbulence. In the R3+3 dimension setting, the

simplified CRE propagation is defined as

∂tÑ −∇x · (D∇xÑ) +∇E · (bÑ) = Q , (3.60)

Ñ(x,q, t) = 0 , q ∈ ∂Ω+
q , (3.61)

Ñ(x,q, t) = 0 , x ∈ ∂Ωx , (3.62)

where Ñ(E, r) represents spherical symmetric CRE differential density. This toy modelling of CRE

propagation can be applied to either point source modelled as some exponential profile in a homogeneous
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Figure 3.11: Spatial L2 errors measured in the spatial-diffusion with spectral-advection problem

with a time-dependent solver. The testing spatial diffusion problem is defined in R1+1 with ho-

mogeneously refined mesh and finite element base functions at polynomial order 1. The minimum

L2 errors corresponds to the steady-state solutions are displayed in dashed lines. The saturation

positions in the right panel are chosen at where the relative difference between time-dependent

and time-independent solutions is below 10−6.
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Figure 3.12: Spectral L2 errors measured in the spatial-diffusion with spectral-advection problem

with a time-dependent solver. The testing spatial diffusion problem is defined in R1+1 with ho-

mogeneously refined mesh and finite element base functions at polynomial order 1. The minimum

L2 errors corresponds to the steady-state solutions are displayed in dashed lines. The saturation

positions in the right panel are chosen at where the relative difference between time-dependent

and time-independent solutions is below 10−6.
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diffusive background [Hooper et al., 2009], or extended sources in galaxy clusters [BRUNETTI and

JONES, 2014] and dwarf galaxies [Chen et al., 2016]. Reducing to the R1+1 dimension with spherical

symmetries, the time-independent propagation equation ∂tÑ = 0 is reformulated as

− 1

r2
∂r(r

2D∂rÑ) +
1

E2
∂E(E2bÑ) = Q , (3.63)

∂rÑ(r = 0) = 0 , (3.64)

Ñ(r = rmax) = 0 , (3.65)

Ñ(E = Emax) = 0 . (3.66)

We are interested in CREs reside within the energy range E ∈ [10−2, 103] GeV, where the dominant

continuous energy loss mechanisms are Coulomb interactions (neglecting the degree of ionization), non-

thermal bremsstrahlung (in strong-shielding limit), inverse Compton scattering and synchrotron emission,

which can be approximated mono-chromatically (which means the energy loss rate is approximated as a

function of CR energy alone) as

−b(E) = bic + bsync + bcoul + bbrem , (3.67)

bsync =
cσT
4π

(B0γ)2

' 4.96× 10−7γ2 GeV/Gyr , (3.68)

bic =
4

3
cσTωγ

2

' 2.08× 10−7γ2 GeV/Gyr , (3.69)

bcoul = 2.7cσTnHmec
2(6.85 + ln γ)

' 0.96 ln γ + 6.58 GeV/Gyr , (3.70)

bbrem =
175.5αcσT

8π
nHmec

2γ

' 0.02γ GeV/Gyr , (3.71)

where c is the light speed, σT is the Thomson cross-section, α is the fine structure constant. We assume

a typical averaged magnetic field strength B0 = 4.0 µG, averaged hydrogen density nH = 1.14 cm−3, and

constant background photon field energy density w = 0.25 eV/cm3. Fig. 3.13 presents the CRE energy

loss rates as functions of its total energy. Although the energy loss modelling is not very realistic, it

catches the basic feature of the dominating mechanisms at different electron energy range. In addition,

the toy modelling of an isotropic spatial diffusion coefficient [Evoli et al., 2017] can be defined as

D(E) = D0(
E/GeV

B0/µG
)1/3

' 3.15× 10−2γ1/3 kpc2/Gyr , (3.72)

where D0 = 1.0 × 102 kpc2/Gyr. In analogy to the phenomenon where CREs are produced by the

supernova explosion, we could roughly describe the source term Q as

Q(E, r) = Q0gsnr(E/GeV)−κ

' 1.99× 106 exp(−r/h)γ−2.2cm−3GeV−3Gyr−1 , (3.73)
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Figure 3.13: CRE continuous energy loss rate in various mechanisms defined in the toy modelling.

At low energy scale Coulomb interaction loss (dashed green curve) dominates until around 0.1 GeV

level, from where Bremsstrahlung loss (dotted red curve) takes over. When CRE energy goes higher

than 10 GeV magnitude, synchrotron loss (solid blue curve) and inverse Compton loss (dash-dot

blue curve) become dominant mechanisms.

with Q0 = 1.0 cm−3GeV−3Gyr−1, h = 0.5 kpc, κ = 2.2, which are chosen for illustrative purpose.

Alternatively, we can replace supernova-remnant-driven profile gsnr by a WIMP-annihilation-driven profile

g2
dm = 2.56

h6

(h+ r)2(h2 + r2)2
, (3.74)

which is known the Burkert profile [Burkert, 1996] for dark matter distribution in dwarf galaxies, where

the square comes from how we estimate the annihilation cross-section and the constant 2.56 is set in this

example for normalizing the total source density with respect to gsnr.

Differs from the testing case for spatial diffusion with spectral advection, here we have additional geo-

metric tensors Tr = r−2 and Tq = E−3. The raw (before applying the upwind method) weak formulation

of the time-independent left-hand-side consequently has more terms in the spatial domain, which reads

∑
k

∑
β,j

Uβjk
∫

Ωr

(vivj)

[ ∮
∂Ωkq

wα(Tqb̃) · n̂qwβ

−
∫

Ωkq

(∇qwkα) · (Tqb̃)wkβ −
∫

Ωkq

wkα(∇qTq) · b̃wkβ
]

+

∫
Ωkq

(wkαw
k
β)

[ ∫
Ωr

(Tr∇rvi + vi∇rTr) · (D̃∇rvj)
]
, (3.75)

where the effective advection coefficient b̃ = E2b, and the effective diffusion coefficient D̃ = r2D.

Fig.3.14 presents the spectral and spatial behaviour of the steady state solutions. The energy spectrum

exhibits the expected steepening at around 0.1 GeV due to the transition from diffusion to advection

domination and 10 GeV due to the transition of dominant continuous energy loss mechanism illustrated

by Fig.3.13. Since the source term Q faces spatial suppression, CRE spectral steepening occurs around
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lower energy scale and becomes more smooth at higher radii. Meanwhile, the radial flattening in the dark-

matter (DM) induced CRE spectral distribution follows the fact that DM induced modelling provides

more CREs at high radii than supernova-remnant (SNR) induced modelling.
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Figure 3.14: Spectral (left) and spatial (right) distribution of CRE differential density E2Ñ at

different radial and energy positions. Thick (red) curves represent results from CRE source dis-

tribution in analogy to DM annihilation while thin (blue) curves are from source distribution in

analogy to supernova remnants.

3.4 Summary

As demonstrated above, we have successfully built up the framework for handling the high-dimensional

PDE system. The multi-threading speedup and precision in solving simple advection-diffusion problems

has been examined. We emphasize that this toolkit itself is not fully incomplete from a technical point

of view, where we need further MPI parallelism and matrix free method in assembling the system matrix

representatives. Towards its application in realistic and complicated CRE propagation, CR-GMF co-

evolution and even the RMHD system, we need to implement more auxiliary back-end functions, especially

a hyper-propagator class that consists of several single PDE objects. Technically in terms of the solving

scheme, we can try to implement the goal-oriented adaptive refinement method [Oden and Prudhomme,

2001], and besides, the non-linear PDE system needs extra caution. In the end we should connect the

BIFET toolkit into either the hammurabi X package or directly into the IMAGINE engine in order to realize

our conceptual picture of consistent simulation and analysis of the Galactic synchrotron emission.





Chapter 4

Bayesian Analysis

4.1 Overview

Bayesian analysis is a powerful tool that connects the theoretical modeling, numerical simulation and

observational data and forms a workflow for verifying and improving our understanding of the physical

principles. Although in recent years we have witnessed the thriving of applying neural network and

machine learning in scientific studies, Bayesian analysis however, thanks to its explicit mathematical

definition in comparing various modellings, is reliable in the applications to which it is competent. In

essence, the machine learning belongs to the algorithm modelling category of statistics which is accurate

in characterizing the unknown nature without understanding the physical mechanism, while Bayesian

analysis belongs to the data modelling that relies on specific description of response functions which

bridge signal and data. In CMB foreground removal it is better to use machine learning since we do not

need to understand the physical properties of the removed contamination, while for understanding the

physics of Galactic component the Bayesian analysis is more efficient in model comparison.

Conventionally with laboratory experiments, we repeat certain physical processes and make statistical

descriptions of signals which can be explicitly predicted by theories. However, comparing the simulated

Galactic synchrotron emission to the observed Galactic emission maps provided by WMAP [Bennett et al.,

2013], Planck [Planck Collaboration et al., 2018b], CPT [Keisler et al., 2011], BICEP and Keck Array

[Ade et al., 2015], etc., is different from laboratory experiments because the Galaxy we are living in is as

unique as the Universe we observe when study the cosmology. But thanks to the large-scale homogeneity

and isotropy, i.e., the Universe is homogeneous roughly beyond 300 Mpc at present and is isotropic

with tiny (10−5 temperature contrast in CMB) fluctuations, the cosmological observables can provide

sufficient statistical descriptions. For constraining physical modellings of the Galactic components, we

know that neither homogeneity nor isotropy applies any more and thus have to use the variance imprinted

in the stochastic realizations of physical models to complete the statistical information of the Galactic

observables.

In the early studies like Sun et al. [2008], Jaffe et al. [2010], Fauvet et al. [2011], only the large angular

structures in the observables were considered, with the conventional assumption that turbulent fields do

79
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not contribute to the large angular structures which are mainly determined by the regular fields. Better

Bayesian analysis in the pixel domain was latter carried out by Jansson and Farrar [2012a,b] where a very

complicated (though still phenomenological) modelling of the Galactic magnetic field distribution was

constrained, but the Galactic variance was not considered and so it is unknown whether the results are

biased. Some others like Beck et al. [2016], Vansyngel et al. [2018] turned to the angular power spectrum

analysis which could give a better description of statistical property of the observables and so are not

biased by the Galactic variance. However we need to keep in mind that the power spectrum itself is not

sufficient in describing non-Gaussian patterns, and the numerical estimation of angular power spectrum

is computationally expensive especially for a sky patch. We have seen that with a given parameter set,

hammurabi X can make a fast prediction with an ensemble of realizations of the Galactic synchrotron

emission. It is feasible to compare the repeatable simulations directly with the unique observation in the

pixel domain, where an unconventional likelihood function is necessary.

Based on these motivations the IMAGINE consortium [Boulanger et al., 2018] has proposed the nu-

merical tool, IMAGINE , along with the ensemble likelihood function for inferring the distribution and

configuration of the Galactic components. In the following I will emphasize the likelihood function and

its numerical implementation and provide simple testing examples for demonstrating the performance of

IMAGINE .

4.2 IMAGINE

The IMAGINE package assembles pipelines (technically, instances of the Pipelines class) which use a

variety of measured data sets to constrain parameterized models of the Galactic components. It collects

simulated outputs (with the simulators linked to the pipeline) according to the Galactic models and

compares those to the measured data sets through likelihood evaluations. External Bayesian sampling

libraries are adopted for exploiting the multi-dimensional parameter space in order to provide robust

posteriori estimations.

IMAGINE uniquely deals with the Galactic (co)variance, i.e., the fact that the Galaxy can be consid-

ered as a single and unique instance of the turbulent or random processes it contains while numerical

simulations will render different realizations. IMAGINE computes observables from a finite set of different

realizations of the turbulent fields and uses the mean and variance of the simulated observables to de-

termine the likelihood in comparison to the actually measured data. In this way, the measured Galactic

observables can be compared to the (non)-parametric modellings in a way that quantitatively includes

the models’ expected variations. Here we present detailed technical introductions and explanations to

some (but not all) key functions and features implemented in the IMAGINE package.

For the record, the IMAGINE package was initially developed by Dr. Theo Steininger with his collabo-

rators, where I participated in testing the likelihood functions. I later became in charge of the completion

and upgrading of the package and providing technical support for its future development and application.

The credit of ensemble Bayesian analysis belongs to the IMAGINE consortium.
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4.2.1 Underlying Theory

Bayesian Inference

It is straight forward to consider a Galactic component (e.g., magnetic field, thermal electron density

and cosmic ray electron density) as a scalar, vector or tensor field distribution with infinite degrees of

freedom, by which we mean at any arbitrary position in the spatial domain a physical field possess a unique

scalar, vector or tensor representation. In practice we should reduce the degrees of freedom to a finite

number either by non-parametric or parametric modellings which approximate the field distribution with

a certain level of simplification. The non-parametric modelling is flexible in adjusting its approximation

precision (by refining the discretization resolution), but it is consequently expensive in application and

it depends heavily on the quality of the measured data. In contrast, parametric modelling is suitable

for gaining prominent physical insights with minimal computing cost and is flexible in encountering

various types of observables (considering that different observables are sensitive to different physical

quantities/features). In current work we focus on the Bayesian analysis with parametric modellings, but

the method implemented in the numerical package is generic.

In terms of the Bayesian inference, parameter estimation and model comparison can be described as

the following: A given model m that has a set of parameters θ shall be constrained by data d. This

means that we are interested in the posterior probability density P (θ|d,m). Bayesian statistics provides

us a quantitative prescription

P (θ|d,m) =
P (d|θ,m)P (θ|m)

P (d|m)
, (4.1)

where P (d|θ,m) is the likelihood of the data, P (θ|m) is the parameter prior, and P (d|m) is the model’s

evidence. The latter guarantees the posterior’s normalization and is given by

Z = P (d|m) =

∫
Ωθ

P (d|θ,m)P (θ|m)dθ , (4.2)

where Ωθ represents the parameter space/domain. In the nested sampling, the default sampling method in

IMAGINE (with the MultiNest library), the parameter likelihood distribution is estimated by maximizing

the evidence Z, and so for comparing different models, e.g., m1 and m2, we can calculate the Bayes factor

Rbayes as

Rbayes =
P (m1|d)

P (m2|d)
=
P (d|m1)P (m1)

P (d|m2)P (m2)
=
Z1P (m1)

Z2P (m2)
. (4.3)

Often there is no strong motivation for preferring one model over another which corresponds to setting

the model prior ratio P (m1)/P (m2) to unity. In this case, the model’s evidence is the only source of

information for model selection.

Galactic Variance

The likelihood P (d|θ,m) describes the probability to measure the data d if the reality was given by

θ and m. By modeling the physical system this probability can be explicitly calculated for certain sets

(θ, m). For this, one uses a forward simulation tool to compute observables like the Faraday rotation

measure, synchrotron emission, and thermal dust emission. Given the measured data, by modeling the

noise characteristics of the detector, a probability can be assigned to each simulated observable, which is
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in principle a standard approach. However, when analyzing parametric models of random (or stochastic)

fields one must be careful at this step because the random components are not analytically defined in the

spatial domain. Generally speaking, parametric models specify the large scale structure of the Galactic

field explicitly by parameterizing the geometry of its components, e.g., the Galactic disk and possibly its

arms, halo, X-shaped components, and the field strength therein. In contrast, random components are

modeled in terms of their statistical properties rather than explicit realizations. This means for a given

parameter set θ, each realization is distinct from the others in the spatial domain while following the same

random statistics, e.g., a certain power spectrum or/and a certain degree of anisotropy. As a consequence,

the set (θ, m) corresponds not only to one, but rather an ensemble with infinitely many possible field

realizations. For the calculation of a likelihood the measured observables must be compared with the

ensemble average, which in practice is the simulated mean of a yet finite set of observable realizations that

result from the corresponding field realizations. One may analytically work out the influence of various

types of random fields on the observables with certain approximations and simplifications. However, to

do a proper uncertainty quantification one must not neglect the so-called Galactic variance introduced by

Jaffe et al. [2013], which becomes critical when the strength of a random field component dominates over

that of the regular counterpart. This variance measures how strong the influence of a random field on

each individual pixel of an observable sky-map is. Regions where the influence is high, that is where the

observable variance is high, must be down-weighted upon comparing to the measured data, in contrast to

regions where the randomness of the stochastic fields has little influence on the observable fluctuations.

This makes it necessary to calculate instances of (θ, m) to be able to construct an estimate for the

Galactic variance.

Ensemble Likelihood

The likelihood is the probability P (d|θ,m) to obtain the data d from a measurement under the

assumption that reality is given by the model m that in turn is configured by the parameters θ. It is the

key element to rate the probability of a stochastic sample. Assuming the generic case of a measurement

with linear response function R of a signal s which involves additive noise n, the corresponding equation

for the data d reads

d = R(s) + n . (4.4)

If the measurement device is assumed to exhibit Gaussian noise characteristics with a covariance matrix

C, i.e.

G(n,C) ≡ 1√
2πC

exp

(
−1

2
n†C−1n

)
, (4.5)

the log-likelihood for a simulated signal that is the result of the evaluation of a model m with parameters

θ, i.e. s′ = m(θ), to have produced the measured data d is

L(d|s′) = −1

2
(d−R(s′))

T
C−1 (d−R(s′))− 1

2
ln (|C|) . (4.6)

In the context of IMAGINE the random/turbulent field models posses random components that are

described by (m, θ) only stochastically. Marginalizing over those random degrees of freedom results in a
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modification of the effective covariance term in Eq. 4.6, namely that the Galactic variance must be added

to the data noise covariance. For the further discussion we consider the following quantities:

• The individual field samples within an ensemble of size Nens are named si, with i ∈ [1, Nens].

• The process of creating observables from si is encoded in the response R, e.g., simulating the

Galactic synchrotron emission with hammurabi X .

• The simulated observables are denoted by f i = R(si).

• The measured observational data is named d.

Denoting furthermore the data’s noise covariance by Cobs, the Galactic covariance by Csim the log-

likelihood reads

L(d|f) = −1

2
(d− f̄)T (Cobs + Csim)−1(d− f̄)− 1

2
ln (|Cobs + Csim|) , (4.7)

with the ensemble mean

f̄ =
1

Nens

Nens∑
i=1

f i . (4.8)

The Galactic covariance Csim reflects the fact that the observables posses an intrinsic variance because of

the random/turbulent fields. For example, the higher the intrinsic variance, the more the likelihood will

be flattened by the (Cobs +Csim)−1 term. This means that the likelihood is less responsive to deviations

from the ensemble mean for regions of high variance. Hence, there is the risk of overestimating random

field contributions, since they are favored by the likelihood. However, this is compensated by the second

term in Eq. 4.7, i.e., the covariance log-determinant ln (|Cobs + Csim|).

The Galactic covariance Csim is not known from pure observation, hence, we must estimate it from

the ensemble of simulated results. Note that in this way the Galactic covariance is model dependent

and the goodness of modelling is known from the Bayesian evidence. A classic approach for Csim is to

evaluate the dyadic product of the sample deviations from their mean:

Ŝ =
uTu

Nens
, (4.9)

with

ui =
(
f i − f̄

)
(4.10)

as a row of the ensemble matrix u. Since the number of realizations in an ensemble is often much smaller

than the number of dimensions (limited by the available computing resource) this classical covariance

estimator is inaccurate. A more robust approach is to use a sophisticated estimator with a shrinkage target

(e.g., a diagonal matrix) and a shrinkage factor. Here we adopt the Oracle Approximating Shrinkage

(OAS) estimator introduced by Chen et al. [2011] where the estimator Σ̂ for inevitable covariance is

expressed as

Σ̂ = (1− ρ)Ŝ + ρ
Tr(Ŝ)

p
I , (4.11)
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where I represents the identity matrix. The shrinkage factor ρ is estimated by

ρ = min

[
(1− 2/Ndim)Tr(Ŝ2) + Tr2(Ŝ)

(Nens + 1− 2/Ndim)(Tr(Ŝ2)− Tr2(Ŝ)/Ndim)
, 1

]
, (4.12)

where the dimension (or the data size) of each observable realization is Ndim However, the OAS estima-

tor has been designed for approximating covariance matrices in terms of quadratic forms, using it for

determinant estimation yields rather poor results. For the time being we approximate the determinant

|Cobs + Csim| by its trace:

ln (|Cobs + Csim|) ≈ ln
(

Tr(Cobs + Σ̂)
)
. (4.13)

In practice we find this approximation serves the purpose of regularizing the random magnetic field

strength. In the future upgrade of estimating the log-determinant we will consider the stochastic Cheby-

shev expansions introduced by Han et al. [2015].

4.2.2 Software Design

The IMAGINE package consists of three major logical components, which are the observable, simulator

and Bayesian sampler. All the functions and features are designed for smoothly and conveniently bridging

these three components into an integrated pipeline. Given a set of observational data with various types

and sizes and even masks, IMAGINE is designed to categorize (e.g., by knowing the observational frequency)

and distribute (e.g., rearrange data-sets under IMAGINE convention and/or distribute across computing

nodes) the data and pass essential information to the simulator. The simulator is a highly customized

part, where we define a few interfacing protocols related to physical field parameter parsing and observable

handling. In general, a simulator should be able to produce ensembles of observables corresponding to the

given input data. The Bayesian sampler is in charge of evaluating the likelihood function based on the

given input data and simulated outputs at each sampling step it take in the allowed parameter space. The

pipeline exchanges information between the Bayesian sampler and the simulator, so that once a temporary

parameter set is sampled the simulator can reproduce the corresponding ensembles of observables and

send them back to the Bayesian sampler for the next round of likelihood evaluation. In the following

we introduce the main features and functions implemented around these logical components. The basic

workflow is illustrated in Fig. 4.1, where the blue arrows represent the connection of modules and the red

lines represent the actual connections among data, priors, variables, parameters and simulated outputs

in the iteration of sampling process, the green blocks indicates the default external supporting libraries.
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Figure 4.1: IMAGINE workflow.
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Observables

Input data-sets, simulated outputs, mask maps and covariance matrices are all handled by the Ob-

servableDict class in IMAGINE , due to the fact that all these quantities can be treated technically as

arrays. In practice, each type of these quantities are used differently and so under the ObservableDict

class we further define Measurements, Simulations, Masks and Covariances sub-classes. The universal

feature in the ObservableDict class is that the fundamental data structure is the Python dictionary. And

the elemental data structure under each dictionary entry is defined by the NIFTy library, which in essence

distributes data into Python arrays and applies special structures on them. Note that the NIFTy library

has built-in MPI support, and so it provides convenient functions for IMAGINE to distribute the likelihood

computation and observable simulation.

The dictionary entries are defined universally in ObservableDict as Python tuples. The elements in

each entry are observable name, observational frequency, observable size or HEALPix Nside, and finally

the extra tag. It is straight forward to understand the first two entry elements, while the third element

is made flexible for accommodating either plain arrays (e.g., masked sky maps or non-map data-sets)

or HEALPix (full-sky) maps. The reason for treating masked sky maps separately from full-sky HEALPix

maps is for saving memory for corresponding covariance matrices. The extra tag is designed mainly for

dealing with polarized emission maps which have Stokes I, Q and U components. It is also convenient to

have this extra tag entry in case like marking data sets in some special applications.

The major difference between Measurements and Simulations is the fundamental array shape allowed

to possess. IMAGINE by default treats measurements (in other words, the measured data sets) as single

realization ensembles logically, while the simulated outputs are taken as multiple realization ensembles.

Note that the Covariances is fortunately independent of this “measured” and “simulated” definition.

A covariance matrix can be either from the external input along with measured data sets, or from the

internal calculation of the Galactic variance. The very same idea applies to the Masks sub-class as well, it

hosts mask maps/arrays from the external input and applies the masking operation to both the measured

data sets and the simulated outputs. The numerical operations like evaluating the Galactic variance and

applying masking information are all supported by MPI parallelism.

We store observables in a Python dictionary (as the basic data structure in the ObservableDict class

and its derived classes) so that each data-set can be identified by a unique key (or entry in the non-Python

language). Each elemental content 1 of the dictionary in an instance of ObservableDict should be tagged

with the following information:

1 ('name',

2 'observed frequency in GHz',

3 'size or HEALPix Nside',

4 'extra tag')

1The elemental content is defined in the Observable class designed with back-end support from NIFTy library, by which
we mean a well defined data structure that contains information of the corresponding observables, i.e., a HEALPix array of
the full-sky polarized synchrotron emission Stokes Q observed at 30 GHz with resolution Nside = 1024.
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Instead of contracting these separate pieces of information into a single key string, we define a tuple

of strings as the form of the dictionary key so that they can be handled in a flexible way in practice.

If any of these tags is redundant, it can be filled with string ′nan′ by default. Now we introduce some

conventions we set up for these tags:

The first tag, ′name′, represents observable type, where we set default names and physical units for

the commonly used observables as follows:

• ′fd′ for the Faraday depth (in unit rad/m2)

• ′dm′ for the dispersion measure (in unit pc/cm3)

• ′sync′ for the synchrotron emission (units depend on the ′extra tag′)

The second tag, ′observed frequency in GHz′, specifies the observational frequency. It can be redun-

dant for some observables like the Faraday depth or dispersion measure, in which case it can be set as

′nan′. The value of this tag (the string will be translated to a floating point number) is always read in

unit GHz.

The third tag, ′size or HEALPix Nside′, stores either a HEALPix Nside value 2 or just the plan data

size (or data dimension). This means that to store a plain data set one should use the data size as this

key, while the Nside value must be used for storing HEALPix maps. The reason for distinguishing plain

data-sets from HEALPix maps is that in HEALPix maps are the most commonly used data form and defined

on the spherical coordinate.

The last tag, ′extra tag′, commonly applies to diffuse polarized emission components. It however can

be set as any string but by default we recommend ′nan′ in order to avoid un-necessary troubles since at

certain points in the IMAGINE workflow all the tags will be checked or compared automatically. Take the

polarized Galactic synchrotron emission as an example, the tag convention is:

• ′I′ for the total intensity (in unit K-cmb)

• ′Q′ for Stokes Q (in unit K-cmb, IAU convention)

• ′U′ for Stokes U (in unit K-cmb, IAU convention)

• ′PI′ for polarization intensity (in unit K-cmb)

• ′PA′ for polarization angle (in unit rad, IAU convention)

The most important method implemented in ObservableDict is the append function, for which the first

input argument is the key tuple described above, and the second input argument can be either a Numpy

ndarray or NIFTy Field object or an IMAGINE Observable object (the Observable class is internally defined

and so not for users). Additionally, we require the 1D ndarray being not in the Numpy vector shape (n, )

but in (1, n). The last argument is optional, which by default is False which indicates the input data is

a HEALPix map, otherwise is a plain data without any special geometry.

In the following we present some application examples related to the Measurements and Simulations

classes.
2A HEALPix map size is known as 12N2

side.
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1 '''

2 Examples of initializing empty Measurements instance

3 and appending new data under a certain key.

4 '''

5

6 # create an empty Measurements object

7 measure_dict = imagine.Measurements()

8

9 # append a HEALPix map

10 data = np.random.rand(3, 48)

11 measure_dict.append(('test', 'nan', '2', 'nan'), data)

12

13 # append a plain data-set

14 data = np.random.rand(1, 3)

15 measure_dict.append(('test', 'nan', '3', 'nan'), data, True)

16

17 '''

18 A typical usage of the append function is pushing simulations

19 realizations in to the Simulations object.

20 The major difference between the data structure in Measurements

21 and that in Simulations is that, under a given key, a Simulations

22 object allows multiple data appending, which is considered as

23 extending the ensemble size of the corresponding observable.

24

25 What follows is the call function of the hammurabi interfacing module,

26 as an practical example of using the append function in the Simulations

27 class

28 '''

29

30 def __call__(self,

31 field_list):

32 """

33 run hammurabi executable

34 pack up outputs in IMAGINE convention

35

36 Parameters

37 ----------

38 field_list: list of tuple
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39 a list/tuple of GeneralField objects

40

41 Return

42 ------

43 object of Simulations class

44 a dictionary filled with simulated maps

45 hosts a certain number of simulation realizations

46 under each dictionary key

47 """

48

49 self.register_fields(field_list) # register field info

50 sims = Simulations() # execute hammurabi ensemble

51 for i in range(self._ensemble_size):

52 self.update_fields(field_list, i) # update parameters

53 self._ham() # execute hammurabi

54 for key in self._output_checklist: # pack up outputs

55 sims.append(key, np.vstack([self._ham.sim_map[key]]))

56 return sims

A Masks object can be applied to objects of all other derived classes of ObservableDict, e.g., to

simulated output or observational data, and also to covariance matrix. By convention, a mask map or

mask array should be only a single array filled with binary value, i.e., either True or False, where False

means that the corresponding pixel or data point in the raw data must be masked out. For matching a

mask map to its targets, the masking function, apply mask, conducts masking operation to each target

with the same dictionary key as the mask map. Notice that a mask map applies to each target only once,

and the ′size or Nside′ tag in the key of the masked target will be automatically updated so the mask

can not be re-applied due to the mismatch in their keys. With practical snippets we further illustrate

how the masking processes work in IMAGINE .

1 '''

2 Simple example of applying mask map,

3 where we assume the data variable contains the target

4 observables or covariance matrices

5 '''

6

7 mask = Masks()

8 mask.append(('test', 'nan', str(size), 'nan'), mask_values, plain=True)

9 # After the apply_mask function,

10 # the key (‘test’, ‘nan’, str(size), ‘nan’) will be changed into
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11 # (‘test’, ‘nan’, str(size_of_masked_map), ‘nan’) automatically.

12 data.apply_mask(mask)

Fields and Factories

In the IMAGINE terminology, “fields” refers to any Galactic physical component such as the GMF, the

thermal electron distribution, the CR distribution, etc. (because both vector and scalar fields are handled

within the underlying NIFTy library). The base classes for handling such fields are called GeneralField

and GeneralFieldFactory 3.

An IMAGINE GeneralField object can be read by simulators, which can use the information hosted

by the object to simulate the corresponding physical component. A GeneralField object possesses a

set of parameters, e.g., a GMF field object may host parameter values for pitch angles, scale radii and

amplitudes, etc..

In contrast, the GeneralFieldFactory is designed as an intermediate layer of the infrastructure used by

the Bayesian samplers to provide the connection between the sampling of points in the parameter space

and the GeneralField object for triggering simulators. A GeneralFieldFactory object has a list of the full

parameter set for the corresponding field, in addition to a list of controlling parameters specialized for the

simulators in collaboration. GeneralFieldFactory also defines the allowed value ranges as well as default

values for the parameters that either will or will not be explored by the Bayesian sampler.

At each sampling step, an IMAGINE pipeline asks GeneralFieldFactory objects for the next position in

the parameter space and later receives a list of GeneralField objects that can be handed to the simulators

in collaboration, which in turn provides simulated observables for comparison with the measured data.

Technically, GeneralField objects do nothing more than informing the simulators (e.g., hammurabi X by

default) of the updated parameter values. The reason for separately defining factories and fields is to

easily enable future usages of other field implementations.

simulators

The default simulator is hammurabi X which has been introduced in Chap. 2. The simulator module

is flexible for accommodating different and even multiple simulators as long as the interfacing module is

consistent with the rest part of IMAGINE package. Generally speaking, IMAGINE package does not contain

a built-in simulator but use pre-built/installed simulator library. Take hammurabi X for example, IMAGINE

possess a copy of the Python wrapper of hammurabi X and based on the design of the wrapper we write

an interfacing module which translates between the IMAGINE data and parameter convention and that in

hammurabi X . The design is convenient for maintaining and upgrading either IMAGINE itself or catching

up with updates in the simulators.

The other key feature in the simulator interfacing module is that since the sampler will call for new

sets of simulated outputs at each sampling step, the simulation kernel will be either executed multiple

times or required for producing multiple observables in a single execution. The detailed solution depends

3We use ‘General’ to avoid confusion with the Field class of the NIFTylibrary.
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on specific design of a simulator and/or its Python wrapper.

Technically, the MPI support we built-in IMAGINE Pipelines requires that each computing node works

on its own observable realizations and not communicating with other working nodes. The likelihood

function evaluation is carried out collectively at the master node only. This means that any simulator in

collaboration should at least have a multi-threading solution.

Likelihoods

The Likelihoods class and its derived classes define how to quantitatively compare the simulated and

measured observables. The ensemble likelihood function discussed above is implemented in EnsembleLike-

lihood where covariance matrices from measurements are combined with the expected galactic variance

from models that include stochastic components.

Likelihoods objects have to be initialized at least with measured data (measured covariance matri-

ces and mask maps as optional input arguments) before executing the pipeline in which the likelihood

functions are calculated. The optional input argument, object of Covariances, is not required to contain

covariance matrices for all measured data. The Likelihood function is flexible for cases where part or all

of the measured covariance matrices are not available. If the EnsembleLikelihood is used, then at each

sampling position in the parameter space, an ensembles of simulated data for each type of observable is

generated, so the Galactic variance of these observables can then be included in the likelihood calculation

quantitatively. In order to present how to use Likelihoods, we display the definition of its init and call

functions.

1 '''

2 The first few lines of the init and call functions of Likelihoods

3 '''

4

5 def __init__(self,

6 measurement_dict,

7 covariance_dict=None,

8 mask_dict=None):

9 '''

10 Arguments

11 ---------

12 measurement_dict: Measurements object

13 covariance_dict: Covariances object

14 mask_dict: Masks object

15 '''

16

17 def __call__(self,

18 observable_dict):
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19 '''

20 Arguments

21 ---------

22 observable_dict: Simulations object

23

24 Return

25 ------

26 log-likelihood value

27 '''

28 assert isinstance(observable_dict, Simulations)

29 # check dict entries

30 assert (observable_dict.keys() ==

31 self._measurement_dict.keys())

Bayesian samplers

IMAGINE makes use of external nested sampling libraries, MultiNest [Feroz et al., 2009], which is

written in FORTRAN with MPI support. Nested sampling is a Monte Carlo method developed by Skilling

[2006], that is capable of directly estimating the relation between the likelihood function and the prior

mass. It is unique in the fact that nested sampling is specifically made for usage in Bayesian problems,

giving the evidence as its primary result instead of the posterior probability. The major benefits from

nested sampling are: First, it reduces calculations from multi-dimensional parameter/variable domain

into the one-dimensional prior domain, which makes it easier for handling models with huge number of

parameters. Secondly, it calculates evidence directly and is efficient in avoiding local minimums which

often trap the conventional Markov chains. Nested sampling works with a set of live points. In each

sampling step, the point that has the lowest likelihood value gets replaced by a new one with a higher

likelihood value. As this method progresses, the new points sample a smaller and smaller prior volume.

The algorithm thus traverses through nested shells of the likelihood.

pipelines

IMAGINE pipelines are defined within the Pipelines class. The design of pipelines focus only on the

single requirement, that is in each sampling step before evaluating the likelihood function, the pipeline

has to spawn a finite number of processes for simulating observables with the same temporary parame-

ter/variable set. Technical efforts are devoted to making fast simulations and execution of the sampler

simultaneously.

The current MPI solution provided in IMAGINE (with the MultiNest library) is to pause before likeli-

hood evaluation in the sampler and use the computing notes to simulate observable ensembles in parallel,

then the the likelihood calculations are conducted in the master node followed up by scattering the results

to each computing node accordingly (since each node is executing a portion of the parameter/variable
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domain).

MPI support

ObservableDict has MPI support inherited from the NIFTy library, and corresponding changes in data

distribution are listed as follows:

• Measurements: function append in the MPI mode reads a single realization of data (non-distributed)

with each key, users have to ensure the data is universally defined on all nodes.

• Covariances: function append in the MPI mode reads either distributed data, or non-distributed

according to the input shape. If reading non-distributed covariance matrix, users have to ensure

the data is universally defined on all nodes.

• Simulations: function append in the MPI mode reads distributed data, where each node is considered

as hosting a certain number of realizations of the ensemble of simulated observables.

• Masks: function append in the MPI mode reads non-distributed data, but then broadcasts each

mask map to all computing nodes. This is designed for the convenience in masking process.

The MultinestPipeline inherits MPI support from the MultiNest library. At each sampling step,

different computing nodes pick up different variable (corresponds to free parameters which users want to

explore) positions and communicate after the log-likelihoods being evaluated. IMAGINE do not interfere

with the parallelism inside the MultiNest , instead, in each sampling step MultinestPipeline caches the

variable positions on each node first, then generates ensembles of observable realizations in parallel, and

finally returns the evaluated log-likelihood value to each node. At the front end, users should only know

that by executing IMAGINE routine in the MPI mode, the true ensemble size for each sampling step and

each observable is defined as ensemble size parameter multiplied by the number of MPI nodes.

4.2.3 Precision and Performance

IMAGINE is designed, and so expected, to recognize correctly the random field contributions to the

observables, especially when it is much larger than that of the regular fields. In addition, we also need

to check if the parameter constraining process is affected by the finite number of realizations in each

observable ensemble. To perform a fast and illustrative verification, we propose two toy models which are

named as the linear and quadratic model. For the linear model we define an observable y as a function

of the (angular) position x

ylinear(x) = cos(x)G(a, b, s) , (4.14)

where G represents a Gaussian distribution with mean value controlled by parameter a, standard deviation

controlled by parameter b and random seed controlled by s. The random seed is necessary from the

technical point of view, it also defines explicitly the measured mock data or simulated output. As the

same modeling is used for generating simulated observable ensembles, s controls each realization precisely
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where two realizations with the same seed are identical. Meanwhile, the quadratic model is defined as

yquadratic(x) = [sin(x)G(a, b, s)]
2
, (4.15)

where the major difference from the linear model is that the observable has quadratic dependency (or

response) on the random component.

The linear model is designed for mimicking the Faraday rotation phenomenon, where the Faraday

depth depends linearly on the random magnetic field and thermal electron density. The quadratic model

is designed for mimicking the synchrotron or dust emission, where the random magnetic field energy

density plays a major role. It is interesting to notice that the Galactic (co)variance in the linear and

quadratic models are dramatically different, as illustrated in the left panels of Figures 4.2 and 4.3. The

random component in the linear model provides an extra Gaussian fluctuation, so even if the random field

modeling is missing in constraining parameters, i.e., by replacing the G term by only the constant a in

observable simulation, the estimation on a will not be biased but only suffered from a large uncertainty

given enough measurements. However this is not true in the quadratic model because the random

component contributes to the observable with its variance, and so an incompetent Bayesian analysis will

always be biased. In the right panels of Figures 4.2 and 4.3 we demonstrate that IMAGINE is able to

retrieve correct estimations on both the regular and random field parameters even when the random

component dominates. Since the measurement uncertainty is not important in the testing cases, we set

relatively small noise fields for the mock data generations.
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Figure 4.2: Left: Linear model of the mock observable, the random field contributes a Gaussian

fluctuation on top of the regular field (red). Right: Parameters of the linear model estimated by

IMAGINE , where the true values are marked in red, the dashed lines represents the 2nd, 16th, 5th,

86th and 98th quantiles respectively.

Note that in estimating the parameters with IMAGINE , the simulated observables are produced with

the same toy models 4 as described in Eq. 4.14 and Eq. 4.15 while the only difference is that the random

4Simulating observables with different models than the mock data is an issue about modelling itself, and so independent
of the Bayesian analysis.
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Figure 4.3: Left: Quadratic model of the mock observable, the random field contributes a Gaussian

fluctuation on top of the regular field (red). Right: Parameters of the quadratic model estimated

by IMAGINE , where the true values are marked in red, the dashed lines represents the 2nd, 16th,

5th, 86th and 98th quantiles respectively.

seed for each realization is different. As we are using only a finite number of realizations in each simulation

ensemble, we should ensure that this limitation along with the OAS covariance estimator does not bias

the parameter estimation. In Fig. 4.4 we repeat the IMAGINE estimation pipeline several times with

different simulation ensemble sets, and find out the distributions differs from each other slightly (which

is reasonable and acceptable) but are statistically highly consistent.
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Figure 4.4: Distributions of logical variables corresponds to parameter a and b estimated by

IMAGINE with different simulation ensemble sets.

With these two simple tests, we can conclude that the IMAGINE package and the ensemble likelihood

meet our expectation very well and show a promising potential in inferring the turbulent field distribution
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from the Galactic emission measurements. For readers who are interested in using IMAGINE , the fast

testing cases are suitable practicing materials.

4.3 Summary

In this chapter we have presented the complete design of the IMAGINE package with MPI support.

At the minimal application level, we currently are able to handle the Galactic synchrotron emission and

Faraday depth either independently or jointly with hammurabi X , while for other observables we need to

adjust the interface accordingly. The capability in parameter estimation according to illustrative models

has been verified, but not yet profiled in detail. The basic conclusion we can draw is that the Bayesian

pipeline works for distinguishing Galactic (co)variance from data noise, and the results appear to be

robust with finite simulation ensemble size. The current release is ready and practically feasible for

scientific tasks in studying the Galactic emissions with partial-sky real/mock data.

We still see some further improvements can be done in the near future, in order to make the routine

practically appropriate for full-sky and high resolution analysis. First of all, we are not extremely satisfied

with the log-determinant estimation of the covariance matrix, the performance of this step can directly

affect the efficiency and precision of the Bayesian analysis. Secondly, the back-end Bayesian sampler is

either written in FORTRAN or Python which are both not the ideal languages in modern high-performance

computing, since FORTRAN is not convenient for maintaining while Python is practically slow. As a matter

of fact, we may not even need the NIFTy library support which duplicates the memory consumption at

certain places, and so an aggressive upgrade plan can involve rewriting the observable handler (especially

for calculations related to the covariance matrices) and the multi-nest sampler in C++ or Julia with better

MPI support under the current IMAGINE framework. Considering the future application of IMAGINE , we

emphasize that nested MPI support and even GPU acceleration will be appreciated.

It is also possible to consider including non-parametric modelling analysis and/or machine learning

algorithms under the framework, where the interface for handling measured and simulated data sets is

generic. For these potential upgrades, we will only have to adjust and specialize part of the current design

in the future.



CONCLUSION

In this thesis we have presented three numerical packages prepared for carrying out the idea of

consistent analysis for the Galactic synchrotron emission and the physical components associated. First

of all, we introduced hammurabi X for simulating the Galactic synchrotron emission according to given

distributions or descriptions of physical components. The precision and performance of hammurabi X

is crucial for getting correct observational implications of various Galactic field structures. Then, for

removing the repeatedly defined mechanisms or processes and rebuilding the connections among the

Galactic components, we proposed the BIFET for solving high-dimensional PDE systems. Currently we

have finished the basic framework design and tested the solving routine with high-dimensional advection-

diffusion examples. According to the testing results we observed that the adaptive mesh refinement works

as expected and solution precision scales correctly with mathematical expectation. These two numerical

tools are designed to support the consistent simulation pipeline, while for comparing the simulated results

with observational measurements we developed IMAGINE. By using the ensemble likelihood function and

the multi-nest samplers, IMAGINE can handle the Galactic (co)variance properly and in turn provide un-

biased estimation on model parameters. hammurabi X has been integrated inside IMAGINE as its default

observable simulator, while BIFET still needs further improvements due to the complication in solving a

non-linear PDE system. As IMAGINE has gone through its first upgrade, it becomes feasible to carry out

Bayesian analyses for synchrotron emission with independent parametric models of Galactic components.

We have implemented the first phase of our scientific goal, i.e., to analyze the influence of random

GMF on the Galactic synchrotron emission. By checking the angular power spectrum of synchrotron

polarization at 30 GHz, we find there are multiple reasons for observing B/E < 1.0. With the global

random GMF realizations, the synchrotron B/E ratio is affected by the divergence-free property itself

which was not expected and even ignored in previous studies. It also shows up with the global realizations

that spatial alignment is also responsible for tuning the synchrotron B/E. Meanwhile with the local

realizations where parameterized MHD magnetic turbulence is adopted, we find consistent numerical

results for synchrotron B/E ratio at perturbative regime where the random GMF strength is much lower

than that of the regular field. For both types of realizations, we manage to go beyond the perturbative

regime and find evolution in the synchrotron B/E ratio for the first time. This first phase work can be

easily extended to include the Galactic dust emission and the first level of consistency we defined in the

beginning, and give more useful information of the general properties of the Galactic emissions and their

potential correlation which is useful for studying the CMB foreground removal and the distribution of
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Galactic components.

For hammurabi X, we would like to focus on improving the random GMF generators with more phys-

ical features. The alignment of the random GMF around local filaments (including helicity) and non-

Gaussianity will be interesting extensions, through which we can study the joint effect of the magnetic

field alignment and its spectral anisotropy. In hammurabi X, both the global and local generators are

designed to allow in the future the addition of non-Gaussianity, e.g., with the method introduced by Vio

et al. [2001], helicity, e.g., with the method instructed by Kitaura and Enßlin [2008] and more realistic

modeling, e.g., with local filaments studied by Bracco et al. [2018]. We intend to extend hammurabi X for

further studies of Galactic Faraday rotation, dust emission and free-free absorption by including (where

possible) the coupling between the random GMF and the thermal electron and dust distributions im-

plemented in similarly calibrated numeric implementations. For studying the global GMF structure we

would also like to include realistic Galactic geometry like the Galactic warp and flare studied by Chen

et al. [2019] based on measured Cepheids.

The future plans for technical improvements of IMAGINE and BIFET have been discussed in the cor-

responding chapters. BIFET is suitable for carrying out fast and precise simulation of CRE propagation

with the random magnetic field realizations generated by hammurabi X. By doing so, we could try to study

the implications of magnetic field in the CMB foreground with a more realistic starting point, e.g., the

frequency scaling of synchrotron and dust emissions and the possible correlation between them. IMAGINE

will be a powerful tool for inferring Galactic components by comparing ensemble simulations of observ-

ables. The Galactic random fields, and their effect known as the Galactic (co)variance, have troubled us

for many years. Now according to the testing results presented earlier, we feel confident in near future

to provide convincing and robust analyses for understanding the observable sensitive properties of the

random fields.

We emphasize that our long term project is to combine all three packages together and realize the 2nd

level consistency in the Galactic emission analyses. This dissertation can be considered as our numerical

efforts which are necessary for non-linear, high-dimension, high-precision and high-resolution studies in

the CMB foreground removal and Galactic environment.
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