Scuola Internazionale Superiore di Studi Avanzati - Trieste

DOCTORAL THESIS

A journey in dark matter
models with

non-standard features

CANDIDATE : Alessandro Davoli
SUPERVISOR : Prof. Andrea De Simone

AcADEMIC YEAR 2018 — 2019

SISSA - Via Bonomea 265 - 34136 TRIESTE - ITALY






Al miet nonni






Abstract

In this thesis, we investigate some non-standard aspects of dark matter in the context of
weakly-interacting massive particles.

We first study the impact of searches for long-lived particles on dark matter models
with two concrete realizations: a simplified model which delivers displaced vertices and
an effective one which predicts the existence of bound states similar to R-hadrons. In
both cases, we find that non-standard signatures are essential in order to fully exploit the
potential of LHC for dark matter searches.

We then focus our attention on a non-minimal composite Higgs model which can
account for dark matter; the greater complexity of the model with respect to the simplest
case allows for thermal production of dark matter with a fine tuning which is significantly
lower than in other models. In addition, we find that also non-thermal production is
possible.
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Preface

In the present thesis, we investigate the properties of dark matter (DM) from the point of
view of particle physics; in particular, we focus our attention on the category of weakly-
interacting massive particles (WIMPs), which represents the most widely studied class
of DM candidates. The interest in WIMPs lies in the fact that their annihilation cross
section naturally points to the weak scale, making it possible to look for them with
different experimental techniques.

The original part of the present work is ideally divided in two parts: the first one is
dedicated to the study of the interplay between standard monojet searches and strategies
involving long-lived particles (LLPs), while in the second one we consider dark matter in
association with the hierarchy problem of the Standard Model (SM).

In chapter 1, we review the concepts of the SM which we will refer to in the following;
in particular, after a brief recap about the SM Lagrangian, we discuss in detail its global
symmetries, we outline the main aspects of electroweak precision tests and we present the
hierarchy problem, in particular related to the Higgs mass.

In chapter 2, we review some aspects of the DM problem; after discussing the main
experimental evidences which led physicists to believe that a large amount of invisible
matter exists in the universe, we focus our attention on the case of WIMPs, discussing
some of their properties, together with the experimental searches they can be looked for
with.

In chapter 3, which is based on refs. [1,2], we focus on DM searches at the Large
Hadron Collider, studying the importance of those involving LLPs. We first study a
model which predicts the existence of displaced vertices, where an unstable dark particle
travels a macroscopic distance before decaying; the second model we consider, instead, is
characterized by a coloured particle belonging to the dark sector which can form bound
states with SM particles, similarly to what happens in supersymmetry. In both cases, we
show that experimental searches involving LLPs are essential in order to correctly explore
the parameter space of the models.

In chapter 4, which is based on ref. [3], we consider a possibility to address both the
DM and the hierarchy problems at once, in the context of composite Higgs (CH) models;
in particular, by considering a scenario which is beyond the minimal one, it is possible to
find interesting features which would be otherwise absent: this is precisely what happens
in the model we consider, where the DM can be produced via non-thermal effects. In
addition, we also find that the level of fine tuning which is required in order to correctly
reproduce the DM relic abundance and evade experimental constraints is significantly
lower than that of other non-minimal CH models which aim to address the DM problem.

Finally, we summarize the results and conclude in chapter 5.






Chapter 1

The Standard Model of particle
physics

Elementary particle physics is the
quadrant of nature whose laws can
be written in a few lines with
absolute precision and the greatest
empirical adequacy.

Riccardo Barbieri

The Standard Model of particle physics constitutes the theoretical tool at our disposal
to understand and explain how nature behaves at the shortest distances we can probe;
developed since the 60’s by some of the most brilliant scientists of the last century (like in
the seminal papers [4-6], just to cite a few), it received many experimental confirmations,
culminated in 2012 with the discovery of the Higgs bosons at the Large Hadron Collider
(LHC) by the experiments ATLAS and CMS [7,8].

Despite its incredible success, we know that the SM cannot be the definitive answer to
the question “how does nature behaves at the shortest scales?”; in fact, there are several
arguments which do not find an answer in this framework: they are both theoretical
(quantum gravity, hierarchy problem, strong C'P problem, cosmological constant problem,
etc.) and experimental (dark matter, neutrino masses, baryon asymmetry, etc.). This led
physicists to develop many beyond the Standard Model (BSM) theories.

Nevertheless, SM remains an extraordinary tool to study particle physics, and it must
be our guidance for the search of new physics (NP); for this reason, it is worth spending
some words on it before proceeding. In section 1.1, we recall the SM Lagrangian and some
of its features; in section 1.2, we discuss the global symmetries of the SM, while in sec-
tion 1.3 we briefly review the main aspects of precision measurements; finally, section 1.4
is dedicated to the hierarchy problem.

1.1 Standard Model Lagrangian

The Standard Model is a gauge theory based on the group:
QSM = SU(3)C X SU(Q)L X U(l)y, (111)
broken to SU(3). X U(1)em after electroweak symmetry breaking (EWSB).
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SU@)e | SU2)z | U(D)y

q = (Zi) 3 2 1/6
ur 3 1 2/3

dp 3 1 -1/3

0 = (:2) 1 2 -1/2
er 1 1 1

H 1 2 1/2

Table 1.1: Field content of the SM (except for the gauge bosons): in the first two columns,
we indicate the representations under SU(3). and SU(2)y, while in the last one we show
the value of the hypercharge. The generation index for the fermions is understood.

To recall the interactions dictated by the SM Lagrangian, it is convenient to consider
it as the sum of three contributions:

Lo = LI + LI + LB, (112)

where the first one describes the interactions between the fermions and the gauge bosons,
the second one the interactions between fermions and the Higgs, and the last one is
responsible for EWSB.

In the following, we consider these three contributions separately. The field content
is summarized in table 1.1, where we show the representations under SU(3). and SU(2),
while for U(1)y we indicate the value of the hypercharge; for clarity, we omit the generation
index. We then denote the Higgs doublet by H and the gauge fields as Gﬁ, Wi and By,
where A=1,...,8and a =1,...,3 are SU(3), and SU(2),, indices, respectively.

1.1.1 Gauge contribution

The first contribution is represented by the covariant kinetic terms for the fermions and
the field strengths:

auge . 1 ) v
L& =D "Dy — 2 > Vi Vi (1.1.3)
P 1%

where ¢ and V stand in general for fermions and gauge fields, respectively. In our con-
vention, the covariant derivative and the field strength are:

D, =8, —igsGATY —igW*T® —igB,Y (1.1.4a)
V,uiz/ = auvyz - auvi + g(V)fijijV;k ) (1.1.4b)

where Tflg), T ? and Y are the generators of SU(3)., SU(2), and U(1)y in the appropriate
representation (the first two are A\*/2 and 0%/2 in the fundamental representation, with
M and o being the Gell-Mann and Pauli matrices, respectively).
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1.1.2 Flavour contribution

The second contribution is represented by the interactions between fermions and the Higgs
field. By restoring the flavour indices, we have:

ﬁgli/\[/our = _yz(]u) _L,i URJ'HC — yz(jd)(jLJ dR’jH — y,L(]e)ZL,l GRJH + h.c. s (115)

with H¢ = i0oH* and i, j being family indices.

As it is well-known, it is possible to diagonalize 3(® and either y™ or y® with unitary
transformations.

After EWSB, eq. (1.1.5) is responsible for the generation of masses in the fermion
sector, giving rise to:

rsnﬁss = —mgf)ﬁL,i URj — TTLZ(?)CZLJ dR’j — mz(;)é,;,i er; + h.c., (116)
where m(Y) = 4)v/\/2. Diagonalization of the mass matrices by means of bi-unitary
transformations then leads to the appearance of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix V' in the charged current.

The interactions between the fermionic mass eigenstates and the physical Higgs are
given by:
m m(@ me

£l = ———auh — —ddh —
v

eeh . (1.1.7)

(Y (Y

1.1.3 EWSB contribution
The last contribution is represented by the Higgs Lagrangian:
LEVSE = D, H? — (u?|H|* + N H[") . (1.1.8)

We use the convention in which the Higgs vacuum expectation value (VEV) is normalized
such that, in the unitary gauge:
1
(H) = — (0) , (1.1.9)

and v = (—u2/)\)1/2 ~ 246 GeV. After EWSB, the potential for the physical Higgs

becomes: )

m m2 m2
V(h) = 7%2 + 2—5113 + 8—@’;}#, (1.1.10)

with m? = —2u% ~ 125 GeV.
EWSB is responsible for the generation of masses for the W and Z bosons, given by:

2 2 20,2 1 12
m%[/:ﬂ 7 m%:M. (1.1.11)
4 4
The interactions between the gauge bosons and the physical Higgs are:
2 2
W,Z—h mz h h
In terms of the weak angle, 6, = arctan ¢’/g, the SM then predicts:
2
my
=——=1. 1.1.13
P m?% cos? 6, ( )

This value is in excellent agreement with experiments but, as we will see, can change
significantly in SM extensions.



Figure 1.2: Main channels for Higgs decay at LHC.

1.1.4 More about the Higgs

The discovery of the Higgs in 2012 was one of the greatest achievements of modern physics,
closing the circle around the success of the SM. On the other hand, however, there is a very
challenging issue (i.e., the hierarchy problem) which characterizes this particle, as we will
discuss later; for this reason, the Higgs sector constitutes the starting point for important
extensions of the SM. It is then useful to recall some aspects about Higgs physics before
going on.

The main channels for Higgs production at LHC are shown in fig. 1.1. The first
one (called gluon fusion) is the main contribution, but also the other ones are relevant
because of their signatures, and are called vector boson fusion (VBF), Higgs strahlung
and associated production, respectively. On the other hand, also the Higgs decay channels
are important signatures for LHC physics: the main ones are shown in fig. 1.2; of course,
given the measured mass of the Higgs, m;, =~ 125 GeV, the decay into two on-shell massive
gauge bosons is not allowed. The Higgs branching ratios (BRs), as functions of the Higgs
mass, are showed in fig. 1.3.

However, one could ask: “is the Higgs really a fundamental ingredient of the SM?”;
after all, it is the only elementary scalar, and it was initially introduced just to generate a
mass term for the gauge bosons and the fermions. A good approach to address this ques-
tion is represented by the Callan-Coleman-Wess-Zumino (CCWZ) formalism, developed
in the seminal papers [10,11]; we review it in appendix A.

In order to apply the CCWZ prescription to the SM, we consider the breaking pattern
G — H, with G = SU(2), x U(1)y and H = U(1)em (SU(3). does not play any role for
this discussion); we can then parametrize the standard coordinates, i.e. the would-be
Nambu-Goldstone bosons (NGBs) x*, as:

3 = ¢lox'Ta (1.1.14)

Y

where T, = 0®/2 are the broken generators. It is easy to show that X transforms
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Figure 1.3: Higgs branching ratios as functions of the Higgs mass. Figure taken from

ref. [9].

precisely as required by CCWZ, i.e. eq. (A.2.7): in particular, under a transformation
g = exp{iafo®/2} exp{iay Y} = ULUy € G, we have:

. o3
Y UpXe o (1.1.15)

In order to have local invariance under G, we introduce a covariant derivative for 3,

defined as: ,

DY =09,% — igW, S +ig B,S % , (1.1.16)

where W), = Wio?/2 and g, g’ are the coupling constants; this definition is consistent
with eq. (1.1.15). The Lagrangian constructed out of ¥ which induces EWSB is:

2

£ = %Tr[(DMZ)T (D's)], (1.1.17)

which is easily shown to be invariant under G. To show that this Lagrangian correctly
encodes the mechanism of EWSB, we first notice that we can rewrite it as:

2
2 _ Y t
Ly = ZTr[(ETD#Z) (XTDy)]. (1.1.18)
It is then useful to introduce the field:
W, =Sw,s+-xt,x, (1.1.19)
g
which is nothing but the gauge-transformation of ¥ (with transformation matrix given by

¥1). In this way, X1D,% = —igW, + ig’B,0%/2; with the definition of the gauge boson
masses in eq. (1.1.11), we obtain:

L 1 .- .
LY > md, W + 522" (1.1.20)
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where we defined:

Wi=—-+t——~+=# 7, ="~ " (1.1.21)

We then see that eq. (1.1.20) reproduces both the gauge bosons masses and an infinite
series of interactions between them and the NGBs; in fact, if we expand %1D, ¥, we find:

~ 1 ~ 1
+ _ + + _ 3
W, _W“__mw X+ Z“_Z“__mz X+ (1.1.22)

with x* being defined analogously to W/f This analysis also shows that the mass eigen-

states Wf, ZM are the result of the gauge bosons eating the NGBs.

With the analysis presented so far, it seems that the answer to the question “is the
Higgs really a fundamental ingredient of the SM?” is “no”; eq. (1.1.20), in fact, clearly
shows that a mass for the gauge bosons can be generated without any scalar boson in the
theory: what is really necessary is the set of NGBs x’s, originated by the spontaneous
breaking SU(2); X U(1)y — U(1)en. In particular, eq. (1.1.22) shows that the NGBs are
eaten by the gauge bosons, becoming the corresponding longitudinal components.

Similar considerations can be repeated for the fermions, for which the Lagrangian is:

v y'(y)uR' (U 0
L(zf) = ——qLi Y ( ud 77> —— ;% < © ) +h.c., (1.1.23)
V2 ydp;) V2 Yij €Rj
which can be easily shown to be invariant under G. Both egs. (1.1.17) and (1.1.23) reduce
to the SM predictions in the unitary gauge, where the NGBs are set to zero and () = 1.
In the following, we only focus on quarks, the analysis for leptons being analogous.
Actually, it turns out that a theory like the one outlined so far suffers the violation of
perturbative unitarity in high energy interactions involving longitudinally-polarized gauge
bosons (see, e.g., ref. [12] for a nice review), such as in WTW ™~ scattering; this issue can
be cured in at least two ways, which we are now going to review:

i) a first possibility is to introduce a new scalar boson h in the theory which is a singlet
under G, resulting in the Lagrangian [13]:
2

2
Ls_p = %aﬂhaﬂh + UZTr[(DuZ)T (DFY)] (1 + 2a% + b% +.. ) —V(h)

(w)
Yij UR,;j h
-1 T ( (]d) ]> <1 +e—+.. ) +h.e., (1.1.24)
\/§ Yis dR,j v
where V'(h) is some potential for h.

The three parameters a, b and ¢ can then be tuned in such a way that perturbative
unitarity is recovered. The field h, in fact, enters in the scattering of gauge bosons
as well; WTW ™ scattering, for example, is unitarized for a« = 1. On the other
hand, however, one has to make sure that also new processes involving h preserve
perturbative unitarity; it is possible to show that this is the case if b = a? and ac = 1.
The combination of these three conditions leads to a = b =c¢ = 1.

It is easy to realize that this choice for a, b and c¢ is nothing but the SM (when the
higher-order interactions of h are neglected); in fact, if we introduce the doublet:

Hy = % > (hiv> : (1.1.25)

8



the standard interactions between the gauge bosons and the physical Higgs are
reproduced by the standard covariant kinetic Lagrangian for Hy, where D, Hy, =
a,uHE - Zg/2 W;LIO'GHE — ’Lg//2 B;LHE-

We can also notice that perturbative unitarity is intimately linked to renormalizabil-
ity: in fact, it is straightforward to show that the Lagrangian written in terms of Hy;,
introduced to unitarize gauge bosons scattering, is renormalizable. In general, the
lack of perturbative unitarity can be traced in the lack or renormalizability.

As a final comment, if we take a < 1, we have violation of perturbative unitarity in
WHW ™ scattering at energies of the order of 47v/y/1 — a?. Similar considerations
apply also to the other channels;

ii) another example in which perturbative unitarity is recovered, although in a com-
pletely different way, is in quantum chromodynamics- (QCD-)like theories. In QCD,
for example, pions exhibit the same feature we discussed above for W+W ™~ scatter-
ing; here, however, no scalar particle enters the scene to cure the lack of perturbative
unitarity, but what happens is that a full tower of resonances (like the p) also par-
ticipate to scattering processes, compensating for the exchange of pions. Notice also
that QCD can be described with the formalism just introduced, with v substituted
by fr ~ O(90 MeV), the pion decay constant.

We can imagine QCD as a theory with an SU(2), x SU(2)g invariance (ignoring the
third family of quarks), spontaneously broken by the quark condensate to SU(2)y,
thus delivering 3 NGBs (the pions). We can then introduce a set of gauge fields by
gauging a subgroup SU(2), x U(1)y; this implies the NGBs having non-vanishing cou-
plings to the currents which couple to the gauge bosons [14], leading to the generation
of a mass term for the gauge fields.

While this mechanism in real QCD would give a mass to the W boson more than three
orders of magnitude smaller than the observed one, we could imagine to introduce
new interactions, associated to a so-called technicolour gauge group and with a decay
constant f ~ v. This idea is exactly the one behind the technicolour proposal by
Susskind [15].

While this discussion pointed out that in principle the Higgs boson is not a fundamental
ingredient of the SM, it is undoubtedly true that the discovery of a particle with the same
characteristics in 2012 ruled out technicolour-like models; nevertheless, the idea that
EWSB could be associated to a strong dynamics, still remains an intriguing possibility
for SM extensions.

1.2 Global symmetries of the Standard Model

Symmetries are a crucial aspect of modern physics; in a quantum field theory (QFT),
they dictate which operators can be present, what are the conserved quantities, and so
on. Also the SM exhibits symmetries, both local (gauge) and global; the global ones,
however, are peculiar, and we spend some words about them in this subsections.

As we will now discuss, SM global symmetries are special because they manifest as
accidental symmetries, i.e. symmetries which are such only at the renormalizable level.
We could expect these accidental symmetries to be the correct paradigm to describe
nature: after all, we have been used to deal with renormalizable theories for a long time,



especially after it was shown that the SM itself can be renormalized [16,17]. From a
modern point of view, however, renormalizability is not a fundamental requirement for
a QFT anymore [18]: what really matters are locality and symmetries (in particular,
Lorentz and gauge invariance); in this perspective, the general idea is that a Lagrangian
contains all the local operators which are compatible with the symmetries, independently
of their canonical dimension.

If we follow this recipe for the SM, it is clear that Lgy does not exhaust all the possible
interactions between the fields; in particular, it is only the renormalizable contribution to
an effective field theory (EFT) of the Standard Model, where infinitely other interactions
appear. We review some concepts of EFTs in appendix B. If we denote now as L&} the
Lagrangian in eq. (1.1.2), we could write the effective SM Lagrangian as:

LN = L850+ L3, (1.2.1)

where NR stands for “non-renormalizable”.

Accidental symmetries, then, are nothing but symmetries of £g; which are not re-
spected by the full Lagrangian £ ; surprisingly enough, nature obeys these symmetries
to a great extent. In addition, accidental symmetries are relevant because operators which
violate them can only be generated by LYW}, and as such their effects are more likely to
be observable, with respect to higher-order corrections to L£g};.

1.2.1 Number conservations and flavour symmetry

If Yukawa interactions were not there, the renormalizable SM Lagrangian would be in-
variant under the group:
gacc = U(3)5 X U<1)7 (122)

under which each fermion ¢ transforms as ¢ — Uy, U, € U(3), and the Higgs as
H — e i H oy € R. Clearly, Yukawa interactions are present, but we are going to see
that we can think in terms of accidental and approximate symmetries in order to explain
many observational evidences.

Lepton and baryon number conservation

The flavour contribution £&¥°"  given in eq. (1.1.5), would be invariant under the group

defined in eq. (1.2.2) if the Yukawa couplings behaved like fields, called spurions, trans-
forming as:

UJL y(u)UdR e~ — y(u) 7 UJL y(d)UdR o y( ) (123)

and similarly for the leptons. In general, these relations are not satisfied; however, if
there were a subgroup of G,.. under which £837°U is invariant, this would be a symmetry
group for all the renormalizable SM Lagrangian, describing then an accidental symmetry.
In order to look for this subgroup, it is convenient to go to a basis where the Yukawa
matrices are in the “most diagonal” form: since the latter can be diagonalized with bi-
unitary matrices, it is easy to show G, . transformations can be employed to obtain:

(u) (w)

d e e
e VA I i S Tl T L (1.2.4)

where V' is the CKM matrix, and the diagonal Yukawa eigenvalues are positive. By
applying eq. (1.2.3) to this basis, it turns out that U,,, U,,, U.,, Us, have to be diagonal

UR) qr.» ER
with complex exponentials as matrix elements; on the other hand, the same condition
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Figure 1.4: Parton-level contribution to K,-K, oscillations.

applied to y@ implies that U,, = e** 1, which in turn requires also U,, and Uy, to be
proportional to the identity. Altogether, we obtain from eq. (1.2.3) the following relations
for the phases:

Oy — O, — g =0
Qg — g, +ag =0 (1.2.5)

Qjep — iy, +ag =0 , 1=1,2,3

We therefore have 5 equations for 10 variables, meaning that 5 phases remain free: this
implies that a subgroup U(1)® C G, is a group of symmetry transformations for all the
renormalizable SM Lagrangian.

A convenient basis for this U(1)® leads to the conservation of total baryon number
(B), individual lepton number (L;) and hypercharge; while the first two are acciden-
tal symmetries, the hypercharge is not (it is a gauge symmetry the SM is constructed
on). Non-renormalizable operators which violate these accidental symmetry can lead to
features absent in the SM, such as neutrino masses, proton decay, etc..

Flavour symmetry

Flavour-changing neutral currents (FCNCs) represent processes in which either up- or
down-type (neutrino- or charged lepton-) flavours are involved, and where initial and
final states have different flavour number; this kind of processes is of great importance
because FCNCs are strongly suppressed in the SM, as we will briefly discuss: for this
reason, BSM effects have better prospects to be detectable. The prototypical example of
FCNC is represented by K, — K oscillations, whose parton-level contribution is shown
in fig. 1.4; in the SM, such a process is heavily suppressed for three different reasons:

i) Loop suppression
FCNC processes arise at loop level in the SM. As far as the couplings between fermions
and both photon and gluon are concerned, they are flavour universal, i.e. they are
proportional to the unit matrix in flavour space; this is indeed guaranteed by gauge
invariance. Therefore, they are not responsible for the mixing between fermions of
different flavour.
As far as the couplings with the Z are concerned, they are also flavour universal, but
for a different reason: it is so because all mass eigenstates in a given representation
of SU(3). x U(1)em come from interaction eigenstates in the same representation of
Gsm- If this were not the case, non-universal couplings with the Z boson could be

11



i)

iii)

generated.

Finally, the Yukawa interactions with the Higgs are flavour diagonal, again not mixing
fermions with different flavours; this is once again a special feature of the SM, due
to the fact that all fermions are chiral (so that no bare mass term can be present)
and there is only one Higgs doublet. This latter aspect has the consequence that the
Yukawa and mass matrices can be simultaneously diagonalized.

We then conclude that FCNC processes cannot be generated at tree level, leading to
a first suppression due to loop factors.

CKM suppression

A second reason why FCNC processes are suppressed has to be looked for in the
CKM matrix; clearly, flavour-changing processes are accompanied by non-diagonal
entries of the CKM matrices, which in the Wolfenstein parametrization [19] can
be schematically written as Vi, Vig o< X, Vi, Vis o A2, Vi, Vig o< A3, and X =
0.22465 4 0.00039 [20].

GIM suppression

A third source of suppression comes from the so-called Glashow-Iliopulos-Maiani
(GIM) mechanism [21], which predicts that no flavour-changing couplings with the
W boson exist if all the quarks in a given sector are degenerate in mass. To understand
this, let us consider the explicit example shown in fig. 1.4; the amplitude is estimated
to be:

m

4 2 2
Mpo—igy ™~ ) : ZVT ViidVl Via f w Ty (1.2.6)
0—Ko 167T2 m12/V - su; Uil " suy " Uj m2 2 )
27-]

)
w My

where f is an O(1) function in its arguments. First of all, we can restrict the sum
over the first two generations because of the CKM suppression we discussed before;
in addition, because of the unitarity of the CKM matrix, we have V] V4 ~ —VIV,,

so that:
m?2 m? m?
Z‘/;Livuidf ( 21) ~ V;U/::d {f ( QC ) - f( 2u >}
y myy myy myy,

2 .2
He — M (1.2.7)
myy

~ ViV f(0)

where in the last step we have expanded f in series. We clearly see that if the
all the quarks of a given sector (recall the we are neglecting the third generation)
are degenerate in mass, the amplitude vanishes. This is the essence of the GIM
mechanism.

The suppression of FCNC processes can also be traced in the accidental symmetries of
ans in fact, both the smallness of masses for the first two generations and the form of
the CKM matrix comes from the fact that the Yukawa couplings can be approximated

(in an appropriate basis) as:

(w);(d),(e) ~

N Yibr + small contributions . (1.2.8)

Y

o O O
o O O
—_ o O



In the limit where these small contributions are exactly zero, the flavour Lagrangian
in eq. (1.1.5) (and then the full renormalizable SM Lagrangian) is invariant a subgroup
of Gaee (defined in eq. (1.2.2)) where the transformation matrices act only on the first
two generations; this is nothing but the global group U(2)® C Gae.. Since these small
contributions are not zero, we can understand the suppression of FCNC processes in
terms of an approximate, global U(2)% symmetry.

Given that G,.. is broken only by the Yukawa interactions, and in the very peculiar way
we briefly recalled, the concept of minimal-flavour-violating (MFV) theory was introduced
in the literature [22]: an effective theory constructed from SM and the spurions satisfies
the MF'V criterion if all non-renormalizable operators are invariant under G,.. (and C'P).

1.2.2 Custodial symmetry

We discussed in section 1.1.4 how the CCWZ formalism can be employed to discuss
EWSB; however, it turns out that the one in eq. (1.1.17) is not the most general term
allowed by symmetries. Actually, we should have considered the Lagrangian:

2 2
£ = Un((D0,3)! (07D)] + ar S TS D, 207 (129)

which leads to the prediction for the gauge boson masses:

v2g? 1
I q— = p= -
4 cos? 6, (1-ar) P 1—ar

2 2
miy === mj = (1.2.10)
The current experimental value, p = 1.0003940.00019 [20], requires ar ~ 107%; in general,
we think of small values of dimensionless parameters as very much related to symmetry
arguments [23]: it is then natural to ask whether the smallness of the coefficient ar can
also be explained in terms of symmetries.

The Lagrangian in eq. (1.2.9) is invariant under local SU(2),, x U(1)y transformations;
however, if ar = 0, it is invariant under a larger group, namely a global SU(2), x SU(2)r
under which ¥ — U, X U}, Uz € SU(2)1.z. To be more precise, SU(2);, x SU(2)g is a
symmetry group for eq. (1.2.9) only if also ¢’ = 0.

In general, SU(2), x SU(2)g is broken in the SM Lagrangian:

- explicitly by ¢, since the term proportional to it in D,¥ does not commute with general
SU(2) g transformations, but only with the corresponding third component;

- explicitly by Yukawa interactions, because yl-(j“) + yl(jd ). as clear from eq. (1.1.23);

- spontaneously by the VEV of ¥, (¥) = 1, being the latter invariant only under
transformations with U, = Ug, i.e. only under the diagonal subgroup SU(2)y C
SU(2), x SU(2)g. This residual symmetry is called custodial symmetry [24-26).

The relation p = 1 remains valid at tree level, while corrections proportional to ¢’ and
y® — 4@ emerge at loop level. If the equalities ¢’ = 0 and y™ = 3@ were respected, we
would have p =1 to all orders in perturbation theory.

Actually, the custodial symmetry is not exact, since SU(2); x SU(2)p is already broken
explicitly; in addition, it could be even more heavily broken by NP operators, analogously
to what happened with the term proportional to ar in eq. (1.2.9). However, the exper-
imental fact that p ~ 1 is an indication that both ¢’ and y™ — y® must be sufficiently
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small, making the custodial symmetry an approximate symmetry of the theory. Not to be
in contrast with experiments, then, one usually requires that also BSM extensions respect
the custodial symmetry, at least approximately.

If not for the sources of explicit breaking we have just discussed, the custodial symme-
try would be a symmetry of the whole SM Lagrangian after EWSB, including the Higgs
potential in eq. (1.1.8). If we parametrize the Higgs doublet as:

1 (hy+ihy
H_ﬂ(h3+ih4), (1.2.11)

the potential is only function of |[H|* = 3, h?, and so invariant under an SO(4) symmetry
group; since SO(4) ~ SU(2) x SU(2), we recognize the invariance of the potential under
SU(2), x SU(2)g. Once the Higgs acquires a VEV, h; = 0 for i # 3, this symmetry is

explicitly broken to SO(3) ~ SU(2), i.e. the custodial symmetry.

1.3 Electroweak precision tests

The weak sector of the Standard Model has been tested very accurately, in particular at
the Large Electron-Positron Collider (LEP), in the so-called electroweak precision tests
(EWPTs). The operators relevant for EWPTs do not violate any of the accidental symme-
tries we discussed before; their importance lies in the fact that their effects are measured
with a high level of accuracy, and can therefore be sensitive also to NP originating at
high scales. Examples of these observables are my,, mz, WW~ and ZZ~ couplings, the
asymmetry in left- and right-handed fermions in the final state, defined as:

Al = D(Z = fufr) =T(Z = [nf1) (1.3.1)

D(Z = fofr) +T(Z = frfL)’

and so on.

In this kind of analysis, the parameters g, ¢’ and v are expressed in terms of the
electromagnetic fine structure constant aep, (determined from v* — ete™ scattering), the
Fermi constant G (determined from p decay) and the Z boson mass my; the reason for
doing this is that the latter are measured with a high degree of accuracy. New physics
can then change the relation between ¢, ¢’, v and ae, Gr, my.

In the following, we focus on universal theories of EWSB, defined as those theories
where the only gauge interactions of light fermions are of the type [27]:

Line = Uy (gT* Wi + ¢'Y B,)o, (1.3.2)

T being the generators of SU(2);, and Y the hypercharge. In general, V_Vl‘j and B, are
not the usual SM gauge bosons, but are rather a mixture of them with possible heavy
new gauge bosons. We consider only leptons and light quarks because these are the most
relevant particles for EWPTs. The SM can be considered a universal theory in the limit
in which the Yukawa couplings are set to zero.

In universal theories, important deviations from the SM reside in the oblique param-
eters, related to the vacuum polarization amplitudes of the SM gauge bosons. For this
reason, we introduce a uniform notation and define the vacuum polarization amplitude
for the gauge bosons [ and J as:
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. 2\ uv 2\ p v
P - i [ (q*)g"™ = Alg")a"d"] (1.3.3)

where ¢ denotes the incoming momentum. The last term usually drops out of calculation
once this amplitude is dotted in a fermion current, since we are considering light fermions.

With the definition above, a positive value of 1I;; gives a positive mass shift to the
gauge bosons:

my — my + Hyy (m3) . (1.3.4)
The masslessness of the photon requires that (see, e.g., ref. [28]!):
I1,,(0) = 0 =1I1,2(0). (1.3.5)

It also useful to define:
. dHVV

115, (0) = ) 1.3.
vv(0) g o (1.3.6)
We can relate the parameters g, ¢’ and v to this polarization amplitudes as [29]:
1 / 1 / 2

The two oblique parameters which will be most relevant for us in the following are [27]:

S = g5 5(0) (1.3.8a)
= % [y (0) — Ty (0)] (1.3.8b)

These are related to the S and T Peskin-Takeuchi parameters introduced in ref. [30]
by [29]:

4sin?0,, . T
g=""Rwg o opo (1.3.9)
aem aem
It can be shown that the parameter 7' is related to p by the relation T = p— 1.
The current combined limits on S and 7" from GFitter are [31]:
S=004£0.08 , T =0.08+0.07, (1.3.10)

where we assumed the oblique parameter U vanishing.

We conclude by recalling that other oblique parameters are defined and often used in
the literature; however, S and T are the two that will be most relevant for our future
analysis.

. 'In quantum electrodynamics (QED), it is customary to normalize II(¢?) as TI(¢?) = ¢*II(¢?), with
I1(¢?) regular in ¢* = 0.
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1.4 Hierarchy problem

Although its incredible success, for sure SM is not the ultimate theory of nature, but
rather an EFT; a complete description of gravity, for instance, is missing. Of course, one
can treat gravity within the SM in a perturbative way, i.e. by expanding general relativity
semiclassically; such a description is perfectly legitimate for energies much smaller than
the Planck mass, Mp; = (87TG)7% ~ 2.4 x 1018 GeV.

While the perturbative description of gravity breaks down at the Planck scale, it is
definitely possible (and even desired, as we are going to discuss) that some new physics
emerges before reaching quantum gravity energies; for this reason, we can think the SM
as an EFT of some underlying ultraviolet (UV) theory endowed with an intrinsic cutoff
ASM-

Independently of the specific UV theory, the considerations of section 1.2 and ap-
pendix B reveal that the SM has an intrinsic disturbing feature, called hierarchy problem?.
Such a problem is not a peculiarity of the SM; in general, in fact, theories with scalars can
suffer of the same feature. To illustrate this, let us consider theory for a real scalar field
¢ (respecting a Z, symmetry, for simplicity) emerging as an EFT from some unknown
theory defined above a scale A; the most general Lagrangian is:

1
Ly = B D 0D+ Ao 0" + Ao 0F + Xep 0° + Ao d° + ..
+ )\2,2 ¢2a,u¢ a#¢ + >\4,2 ¢4ap¢ a#(é +

+ Aot 02(8,6 010)” + Aya (0,0 0"0) + . ..
+

=Y o0, (1.4.1)

If we denote by A; the dimension of the operator O, then each coefficient A\; can be
parametrized as:

g1

with being g; dimensionless and expected to be O(1) in order to be able to perform a
perturbative expansion; this assumption is not a strict requirement, but turns out to be
valid in all examples of strongly-interacting theories we know.

This assumption, however, poses a problem: for the mass term, Ay = g20A? = m?/2,
we need go < 1; if this were not the case, in fact, no quanta with energy much smaller
than A would exist (since the mass represents the minimum energy a particle can have),
and in turn no low-energy description would be possible; we are then forced to require
92,0 < 1, although without a real motivation. This brief discussion represents the simplest
example of naturalness problem.

In general, naturalness is not a necessary condition for a theory [32], although it
is very deeply connected to an idea which guided physicists for centuries: the concept
of separation of scales; the idea is that processes happening at a given scale are not
affected by the ones taking place at much shorter distances. In general, we can think of
unnaturalness as the signal for the emergence of some new physics around the corner.

2In the following, with maybe an abuse of notation, we indifferently use the terms “naturalness” and
“hierarchy”.
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Figure 1.5: Main contributions to m? coming from loops of ¢, gauge bosons and h.
& RISM g g

If this is not the case, on the other hand, it would imply a strong correlation between
infrared (IR) and UV physics, invalidating the EFT approach [33].

It is important to stress that this discussion is not a mere consequence of the con-
sidering a large cutoff A for the theory; even with other regularization schemes, such as
dimensional regularization, there would be large contributions to the mass parameter of
¢, for example due to the interactions with some other scalar ® with mass M > m (see
ref. [32] for a detailed discussion about this point).

1.4.1 Unnaturalness of the Higgs mass

Having discussed the bottom line of the naturalness problem, we can consider the case of
the Standard Model. (One of) the naturalness problem(s) is related to the mass of the
Higgs bosons; analogously to the previous example, we should write the mass term for
the Higgs, in the formulation where the SM is treated as an effective theory, as:

Ly DcAyHH. (1.4.3)

If we take Agy ~ O(10 GeV), this requires ¢ < 10729 in order to be in agreement with
experimental evidences.
We can discuss the problem in a more formal way with the following approach: in full

generality, we can assume that the UV theory predicts a mass for the Higgs boson given
by [27]:
* _dm?
2 h
= dE —+ 1.4.4

where the integrand is a not specified function of the input parameters of the UV theory.
Since the integral is performed over all the possible energies, we can consider it as the
sum of two contributions:

Asmodm? o dm?
2 _ h h g 2 2
mi —/0 dE 9B +/ASM dE 5 = 6mh|SM + 5mh‘BSM : (1.4.5)

where the first term can be fully computed within the SM, while the second one depends
on the specific underlying UV theory. The main contributions to dm3|q,, come from loops
of the top quark, the gauge bosons, and the Higgs itself, and are shown in fig. 1.5; the
result is: ,

3A§u

167202

Smy | g, & (4m; — 2my, —my —mj) . (1.4.6)
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Once again, the underlying hypothesis in eq. (1.4.5) is that contributions coming from
scales which are very separated from each others do not interfere; but then, it is clear that
a problem arises: since by assumption Agy > v ~ my, a cancellation between 5m%|SM and
dm3 |gey 18 necessary, although being the two terms completely unrelated. In particular,
we can estimate the minimum level of fine tuning ! that is needed as:

om?| AZ
—1 > h1SM ~ SM . 14
R m3 © (104 GeV2> (14.7)

If, for example, Agy ~ O(10* GeV), we obtain £~! > 10%*, meaning that at least a 24
digits cancellation between two unrelated contributions must occur; this is the essence of
the hierarchy problem related to the unnaturalness of the Higgs mass.

1.4.2 Possible solutions

During the last few decades, many solutions to the Higgs naturalness problem were pro-
posed, relying on very different assumptions. We briefly recall here some ideas:

- a first possibility is that fields with masses much larger than the EWSB scale do not
exist. Such an assumption could be motivated by the fact that many open problems of
the SM require the existence of new physics at scales which are not much larger than
v. On the other hand, however, this hypothesis presents some problems as well: first of
all, no gauge coupling unification is possible, since grand unified theories (GUTS) are
usually associated to a scale Agur ~ O(10' GeV); in addition, an even more serious
problem is represented by gravity: the latter is usually associated to the Planck scale,
Mp; ~ O(10"® GeV). A solution to this second problem was presented in the context
of large extra dimensions, where the real scale of gravity M, can be much smaller, e.g.
M, ~ O(1TeV), while the value of Mp, is just the result of the compatification of extra
dimensions;

- a second possibility is that there exist fields much heavier than the EWSB scale, but the
Higgs is a composite, rather than fundamental, particle, made up of fermions belonging
to a new, strongly-interacting, sector. This is the idea, for example, of composite
Higgs [34-37]. If we denote by Agtrong the scale at which the strong dynamics confines,
we could expect corrections to the Higgs mass of the order dmj oc AZ,,,; for this reason,
Agtrong ~ O(1TeV) is usually required;

- a third possibility is that the mass of the Higgs, considered as an elementary particle,
is kept small by symmetries. The most famous example of BSM model belonging to
this category is supersymmetry (SUSY) (see, e.g., refs. [38-40]), where large corrections
to the Higgs mass are avoided thanks to a cancellation between loop contributions of
bosons and fermions.

Although the plethora of proposals for BSM models, it is important to stress that all of
them seem to be more and more in tension with experimental results, given also that no
significant departure from the SM has been found.

In future developments of particle physics, naturalness arguments may remain valid
guiding principles anyway; if this is not the case, on the other hand, it would mean that
a deep change in the way we look at nature on small scales is necessary.
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Chapter 2

Dark matter

If this would be confirmed, we
would get the surprising result that
dark matter is present in much
greater amount than luminous
matter.

Fritz Zwicky

One very important missing piece of the SM is represented by dark matter: nowadays,
we know from experiment that most of the matter in the universe (more than 80%) is not
represented by ordinary baryons or leptons, but rather by a new, extra-ordinary form of
matter whose existence can be inferred by many indirect effects.

In this chapter, we review the main properties of DM and discuss quite in detail the
case of WIMPs, from both a theoretical and an experimental point of view.

2.1 History and evidences

The first mentions about a dark component of matter in the universe already appeared
in the 20’s [41], although we have to wait until 1933 for the first real evidence, due to the
work by Zwicky [42]. We now briefly review some of the main evidences that historically
brought to the awareness that most of the matter in the universe is dark:

- Zwicky studied the Coma Cluster, a group of more than 1000 galaxies, and applied the
virial theorem, stating that for a system in equilibrium:

2T + (V) =0, (2.1.1)

where T" and V' are the kinetic and potential energies, respectively. He assumed the
size of the cluster to be R ~ O(1 Mpc), and determined the mass of the galaxies from
measuring the velocity dispersions. By estimating the corresponding mass-to-luminosity
ratio and comparing it with the one of the close-by Kapteyn stellar system, he concluded
that the amount of matter in the cluster was more than 300 times larger than expected;
from this, he concluded that most of the matter had to be optically dark;

- another milestone in the history of DM is represented by the work of Rubin and Ford [43],
where they considered the rotation curves of stars in galaxies; Newton’s law predicts
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Figure 2.1: Rotation curve for the galaxy NGC 6503. Figure taken from ref. [44].

that the circular velocity v, of a star is related to its distance r from the center of the

galaxy by:
M
Vv, = HGN—(T)7 (2.1.2)
r

where Gy is the Newton constant and M (r) is the mass enclosed in a sphere or radius
T

M) = /| _ danla), (2.1.3)

with p being the density. By assuming that the mass of a galaxy is within the disk, eq. (2.1.2)
implies that v, oc 7~/2 at large distances. However, observations suggest that the ve-
locities tend to a constant value for large r (see fig. 2.1). These results can be explained
if one assumes an additional component which behaves like ordinary matter from a

gravitational point of view, but is characterized by a density scaling as p o< r=2;

another famous evidence for the existence of DM is represented by the so-called “Bul-
let Cluster” [45], where two clusters of galaxies collide. The image in fig. 2.2 clearly
shows that the baryonic component, i.e. the intercluster gas, is strongly affected by the
collision, whereas the gravitational potential, represented with the green lines, is not:
this suggests that the latter is not produced by the gas, but some other, extra-ordinary,
component of matter;

according to General Relativity, gravity influences the path of light: this process is
known as gravitational lensing; in particular, by studying how an image of distant
galaxies is distorted by a foreground object (a cluster, for instance), it is possible to
estimate the gravitational potential of the lens. In fig. 2.3, we show this effect due to
the cluster Abell 2218. With gravitational lensing, it has been inferred that most of the
matter is not visible;
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Figure 2.2: Collision of two clusters of galaxies, also known as “Bullet Cluster”. In the
right panel, the event is shown in the X-ray; the green lines correspond to gravitational
equipotential surfaces. Figure taken from ref. [45]

Figure 2.3: Gravitational lensing from the cluster of galaxies Abell 2218.

- one of the strongest evidences for the existence of DM is represented by cosmology,
and in particular by the cosmic microwave background (CMB); the anisotropies in
temperature can be expanded in spherical harmonics as:

AT
—(0,0) = ; Y (0, 9) | (2.1.4)
from which the power spectrum can be computed as:
((l+1)C 1 2
DT == =__—— . 2.1.
R 215

The CMB spectrum obtained by the Planck collaboration [46] is shown in fig. 2.4.
Important properties of DM can be deduced by the peaks in the power spectrum; in
fact, their angular position (measured in terms of ¢) gives us informations about the
cosmological parameters; in particular, the abundance of baryons reflects in the ratio
of the amplitudes of even and odd peaks. Observations indicate that the abundance of
baryons at 68% confidence level (CL) is given by [46]:

Qh? = 0.02233 £ 0.00015, (2.1.6)
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Figure 2.4: CMB temperature power spectrum from Planck 2018. Figure taken from
ref. [46].

where, as we will see in section 2.3, we indicate by Qxh? the ratio between the density
of a species X and the critical density of the universe.

On the other hand, the dark matter density is:
Q.h? = 0.1198 £ 0.0012. (2.1.7)

Therefore, CMB not only tells us that a dark component of matter is present in the
universe, but also that it is about 5 times more abundant than the ordinary one.

All these observations, and others, also give important insights about the properties of
DM:

i) DM is dark, meaning that its coupling to photon must be strongly suppressed. This
constraint comes from the fact that DM does not contribute to the radiation back-
ground and that it cannot cool radiating photons.

In addition to the electromagnetic ones, also DM interactions with gluons have to be
suppressed;

ii) DM is collisionless, meaning that DM self-interactions are strongly suppressed; the
Bullet Cluster is a clear example of this property;

iii) DM behaves like a fluid, rather than having a granular structure; massive compact
halo objects (MACHOs) are potential astrophysical bodies which behave like DM.
Searches from microlensing excluded a dominant contribution to DM density from
MACHOSs with masses in the range 107" M, < m < 10 M, [47];

iv) DM behaves classically, at least on the galactic scales where it is confined. Depending
on the particle nature of DM, we can infer a lower limit on its mass [48]:

- if DM is a boson, Bose-Einstein statistics allows one to have an arbitrarily large
number of particles per a single cell of phase space volume; the DM then behaves
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vi)

like a coherent field and, similarly to what happens for the hydrogen atom, its
stability can be formulated in terms of the uncertainty principle, requiring that:

AxAp S1, (2.1.8)

where Ap ~ mpyv and Ax ~ 2Ryp.,. The most stringent bound comes by applying
this limit to dwarf galaxies, leading to:

mpwm Z 10722 eV; (219)

- if DM is a fermion, on the other hand, the halo mass can be estimated as:

d*p 3
Myato = mDMV/m S mDMRialo(mDMU) . (2.1.10)

This estimate, applied to dwarf galaxies, leads to

DM is not hot (i.e. it is non-relativistic at matter-domination equality), since oth-
erwise it would have erased structures; to quantify this statement more precisely, it
is useful to introduce the so-called free-streaming length, defined as the distance a
particle travels between its production and matter-radiation equality:

fea (¢
Apg = / dt —= . 2.1.12
s to a(t) ( )

The integral is dominated by the relativistic regime, i.e. when v ~ 1 and ¢ < ty,; if
we assume radiation domination, we get [49]:

1k
Aes ~ 2/ ~ 0.4 Mpe oY (2.1.13)

mpwm

In general, we can classify a DM candidate according to its free-streaming length, as:

- hot dark matter (HDM) if Ags > 1 Mpc;
- warm dark matter (WDM) if Aps ~ 1 Mpc;
- cold dark matter (CDM) if Apg < 1 Mpc.

Hot relics also lead to a top-down picture, where large structures fragment into smaller
ones. On the contrary, cold relics lead to clustering of small structures into larger
ones.

Observations favour cold dark matter, but some room is left also to warm candidates;
interestingly enough, the latter could solve some tensions between observations and
predictions on small scales (such as the missing satellite [50] and the too big to fail [51]
problems);

DM is stable, since we still see its effects nowadays. In principle, it is possible
it is unstable but extremely long-lived: recent bounds set a lower limit of my 2

160 Gyr [52]. For our considerations, we can safely consider DM to be absolutely
stable.
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2.2 Main dark matter candidates

Historically, many models to explain the origin of DM were proposed, very different from
each others; during the time, as sensitiveness of experiments became higher and higher,
some of them have been completely ruled out, while for others the available parameter
space has been reduced.

We briefly review here some famous ideas proposed in the last few decades, without
the will of being exhaustive in any way. In general, DM candidates can be classified
depending to the fact that they belong or not to the category of WIMPs. We will discuss
in detail properties of WIMP candidates in the following, being the latter the core of this
work.

2.2.1 WIMP candidates

On general ground, WIMPs can be defined as non-baryonic massive particles which in-
teract weakly with the SM, are produced via the freeze-out mechanism and have a mass
in the range 2GeV < mpy < 100 TeV [53], where the upper limit comes from violation
of unitarity in the annihilation cross section [54]. Although this vague definition, WIMPs
have been by far the most widely studied candidates of DM, since they arise in some of
the most well-motivated BSM proposals. In addition, they usually have interactions and
rates which can be probed with current and future experiments.
Among the most famous WIMP candidates, we can recall:

- lightest supersymmetric particle (LSP): supersymmetry is in general endowed with
the so-called R-parity, a symmetry which prevents large violations of baryon number
and consequent proton decay. Supersymmetric particles are usually assigned a value
Pr = —1, while SM ones have Pg = 1; as a consequence, the lightest state of the super-
symmetric spectrum is absolutely stable, leading to a possible DM candidate. Examples
of LSPs which can be DM candidates are the neutralino or the sneutrino;

- Kaluza-Klein (KK) states: theories with extra dimensions (see, e.g., refs. [55-57]) pre-
dict a full tower of states for each particle; as an example, in the case of only one
universal extra dimension (i.e., with all particles propagating in all the spacetime) com-
pactified on a S'/Z, orbifold, the KK-parity conservation can make the lightest KK
particle a DM candidate [58];

- dark matter candidates in the form of WIMPs can be present in many other extensions
of the SM, as we will discuss in detail in the following: in chapter 3, we consider the case
in which a simple WIMP Lagrangian is added on top of the SM one, while in chapter 4
we consider the problem of DM associated to the hierarchy one.

2.2.2 Non-WIMP candidates

WIMPs are of course not the only possibility to account for DM. Some famous alternatives
to the WIMP paradigm are:

- axions: these are hypothetical particles firstly introduced to solve the strong C'P prob-
lem; on top of the QCD Lagrangian, we can add the term:

Ly €ppo G G2 (2.2.1)

- 6472
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where G, is the (non-canonically normalized) gluon field strength. Such a terms vio-
lates both P and C'P.

Let us now consider the effect of the redefinition of all the quark fields in the QCD
Lagrangian gy — el qr; because of the chiral anomaly, this has the effect of changing
the QCD Lagrangian as:

1 17 g
Laco = Lacp + 355 Gl G > ay. (2.2.2)
/

By comparing this with eq. (2.2.1), we see that it is equivalent to shifting 6 by 6 —
0+23;ay; on the other hand, the field redefinition ¢, — e g also affects the mass
term, leading to m; — e*f my.

Given that the observables are usually computed with the path integral formalism,
where the fields are integration variables, the field redefinition cannot have any physical
consequence, and therefore observable quantities cannot depend separately on 6 or on
the phases of the mass matrix, but only on the combination

e’ T m; - (2.2.3)
f

It is then evident that if any of the quark masses vanished, § would not be physical (it
could be set to zero by redefining the massless quark field), and no P- or C'P-violation
would be present in QCD. In general, it is always possible to redefine the quark fields
in such a way that § = 0, but at the price of introducing P- or C P-violating phases
in the mass parameter. If, on the other hand, we define the quark fields in such a way
that all the mass parameters are real, a 8 # 0 appears, leading to P- and C P-breaking;
in particular, it causes an anomalous dipole moment for the neutron. Experimental
measurements lead to a bound on 6 of |[#] < 1071% thus posing a naturalness problem.
A solution was found by Peccei and Quinn [59], who supposed the existence of a global
U(1) pg spontaneously broken at a scale f, > Aqcp; the corresponding NGB was called
azion [60]. According to the general discussion of appendix A, under a U(1)pg the
axion field shifts: therefore, the only non-derivative term which is allowed is:

1
L,=—
64n2f,

where a is the axion field and f, is the axion decay constant. In this way, the smallness
of @ can be seen as a dynamical problem, related to the minimum of the axion potential;
it can be shown that such a minimum is for a = 0, providing an elegant solution to the
strong C'P problem.

Astrophysics sets a lower bound on the scale of breaking of U(1)pg, namely f, 2
1079 GeV.

The axion can be a viable DM candidate; recent studies showed that if it constitutes
the totality of dark matter, its mass is predicted to be m, ~ O(20 peV) [61].

@ €pe M GP7 (2.2.4)

sterile neutrinos: from observations, we now know that neutrinos are massive particles.
On the other hand, however, the SM predicts their mass to be zero; possible mechanisms
to generate neutrino masses generally assume the existence of new heavy neutrinos,
which are singlets under Ggy [62,63]. If, however, also sufficiently light ones exist, say
with my; ~ O(keV), they can be DM candidates [64]. It is interesting to note that sterile
neutrino are usually WDM candidates;
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- primordial black holes (PBHs); the possibility that DM could be constituted by black
holes traces back to the 70s [65,66]. PBHs are thought to form in the early universe
by overdensities in the primordial fluid. Currently, models predicting PBHs received

constraints from several searches (e.g., CMB, dwarf galaxies, lensing, y-ray emission),
but PBHs with masses of O(1071?M,) can constitute the totality of dark matter [67];

- gravitino: if gravitino is the LSP, it can be a viable DM candidate. In this case, one
of the most stringent constraints comes from the requirement of avoiding overclosure of
the universe. While the gravitino can be a gopod WDM candidate for masses of O(keV),
if it is heavier, behaving as CDM, some mechanism is needed to dilute its density and
avoid overclosure. Also constraints from Big Bang nucleosynthesis are relevant, and
roughly set mgz/, < O(MeV);

- fuzzy dark matter (FDM): DM could be formed by ultra-light scalar particles, with
masses of O(107%2eV) [68]; if this is the case, the associated de Broglie wavelength is
AaB ~ O(1kpc). Such a framework could alleviate some of the small scales problems of
DM, and could be motivated by models in string theory, where light scalar fields usually
appear.

2.3 Freeze-out production of WIMP dark matter

In this subsection, we discuss the cosmological history of WIMP dark matter in detail,
since this is the main focus of the future discussion.

Before discussing the relevant physics of freeze-out quantitatively, it is useful to get
a qualitative glimpse of what happens. The idea is relatively simple: to determine the
abundance of DM, one has to consider the interactions which change the number of DM
particles; if we assume that there exists only one dark matter particle, and denote it by
X, the main contribution to this kind of interactions is:

XX < SMSM, (2.3.1)

where SM stands for a generic Standard Model particle. We are deliberately ignoring all
possible indices and similar details, the general picture not being altered by them.

As long as this interaction can take place in both directions, DM is in equilibrium
with the rest of the plasma, and its number density distribution n, follows the laws of
statistical mechanics; in particular, when the temperature drops below m, and the DM
becomes non-relativistic, n, becomes exponentially suppressed by the Maxwell-Boltzmann
factor e=™x/T. If, however, the rate of interactions in eq. (2.3.1) becomes sufficiently small
compared to the expansion rate of the universe, DM is not able to annihilate anymore,
and its number density freezes-out to the asymptotic value nS®. The relevant quantities
to be compared are the rate of interactions I'y, = n,(ov) and the Hubble parameter H;
here v represent the relative velocity of two DM particles, and is v ~ O(1073). As a rough
estimate, we can consider the freeze-out to occur when:

r, < H. (2.3.2)

2.3.1 Standard freeze-out

To formalize the previous qualitative discussion, it is necessary to resort to the formal-
ism of Boltzmann equations; in general, the Boltzmann equation for the phase space
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distribution function f(p) can be written as [49]:

L{f] = C[f], (2.3.3)

where the first term is the Liouville operator, while the second one represents a collision
term.
In the Friedman-Robertson-Walker (FRW) metric, eq. (2.3.3) for the DM number
density becomes:
S SHn. — d3p
TS = g"/ (2r)%2F

where g, is the number of internal degrees of freedom of x.
If we consider a generic process x +1+2+... < a+b+... =1 < F, the collision
term can be written as:

d’p _ L (2045 (Ps — P
0 [ Grp €l =TI T1 [ dan; emse; )

{iel} {jeF}

Clf]. (2.3.4)

x [MITp il £ f;) — IMp, (L £)] (2.3.5)

where P and P; are the final and initial momenta, respectively, and we defined:

d3
dii=g—"> (2.3.6)
(2m)"2F

Finally, the £1 in eq. (2.3.5) applies to bosons and fermions, respectively.

We can now specialize to a simpler case, i.e. the two-to-two interaction x + <> a+b;
to simplify the analysis, we make two assumptions: first, we assume C'P invariance,
which implies that |M|7_ , = |[M[3_, = |M|? the second assumption is the fact that
we can ignore both Bose condensation and Fermi blocking, in such a way that 1+ f ~ 1
(well motivated if we consider energies smaller than F — p). With these hypotheses, the
Boltzmann equation becomes:

hy + 3Hny, — — / AL dTT,dTTLdTL, (27) 5Py — PYMPE(fufo — fufs) . (23.7)

By exploiting energy conservation and introducing the equilibrium phase space distribu-
tion function, defined as f°4 = e F/T we can write:

Ny My Na Ty,

_ExHBy g oextuy patup Ny My NN
Ixfo = fafo=€¢ 7 <e T —e T >:f;qf§q< i — —oq eq> . (2.3.8)

where we took into account that e®/? = n/n°. Since the term in parenthesis does not
depend on the momenta, eq. (2.3.7) becomes:

. Ng Ny eq. e
ny + 3Hn, = —(ov) (nxn¢ i nanwq) , (2.3.9)

where we defined the thermally-averaged cross section as:

eq,,eq

1
(o) =~ / AT dITydIT,dIT, (27) 6 (Py — Py)| M| £ £ (2.3.10)
x Ty
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At this point, it is important to distinguish two different concepts of equilibrium: in
general, a particle is said to be in kinetic equilibrium (KE) if it follows its corresponding
distribution, i.e. Bose-Einstein of Fermi-Dirac; the condition of KE is usually fulfilled if
scatterings like x + SM <> x + SM are fast enough. A particle is instead in chemical
equilibrium (CE) if its chemical potential is related to the ones of the other particles it
interacts with, i.e. fp, + py = o + pp for the reaction x + ¢ <+ a + b. If a particle
is in both kinetic and chemical equilibrium, it is said to be in local thermal equilibrium
(LTE). By taking into account that e*/T = n/n®, it is easy to see that in the presence of
chemical equilibrium the L.H.S. of eq. (2.3.9) vanishes: given that this equation can be
schematically written as n, H ~ nyny(ov) = n,I'y, the parenthesis can become O(1) if
I'y < H,ie. we can expect CE to break down when a species freezes-out [69].

In order to discuss DM freeze-out, we refer to eq. (2.3.9), but in a simpler framework:
we study DM annihilations into light SM particles which are in equilibrium with the
plasma, i.e. xY < SMSM. This assumptions allows us to consider SM states to be in
LTE, so that ngy = ngj. In this case, then, eq. (2.3.9) simply becomes:

iy 4+ 3Hn, = —(ov) (n2 —n?) | (2.3.11)

2
X X
By defining now the quantities Y = n, /s, x = m, /T, where s = 27%/45 g, ¢T" is the
entropy density, we can rewrite eq. (2.3.11) as:
dy _ s(ov)
de ~ zH
where we assumed that g, ¢ does not depend on the temperature.
Let us now define the freeze-out temperature T as the one at which the rate of the
interactions xy <> SMSM roughly equals the Hubble parameter; we then expect that
Y > VY, if T < T, so that:

(Y2 -Y2), (2.3.12)

€q

1 1 *  s(ov)
—_— - — & d . 2.3.13
Yo Y /F Y ToH (2:3.13)

Since freeze-out is not an instantaneous process, it is also natural to expect that Yz > Y;
therefore, if we substitute the expressions for s and H, we arrive at:

V45 1
2v2r my Mpy dx 9.5 —<U:>
or VO T

In order to determine the freeze-out temperature in a quantitative way, we introduce the
variable A =Y — Y., in terms of which eq. (2.3.12) reads:

dA — dYy  s(ov)
dr  dx xH

Since we expect that after freeze-out Y, ceases to trace the equilibrium behaviour, we
define xp by the requirement that A(xp) = aYeq(xp), where a is an O(1) number. At
early times, x < xp, both A and |dA/dx| are small, and we can approximate the equation
above by setting dA/dz ~ 0; this then implies:
xH 1
Al o~ (2.3.16)

TR s{ov) 94 A

Yoo (2.3.14)

A(2Yo + A). (2.3.15)

Veq
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where we took into account that 1/Y., dYe,/dx ~ 1. If we now put in this equation the
constraint A(zp) = aYeq(zr), and equal it to aYey(zr), we obtain:!

2v90 ¢
~ 1 X M
R |t Ve Pl<"“>]
1.67¢ m (ov)
~ 25 +1 = X 2.3.17
log [w/g*xF 100 GeV 1pb} ( )

In getting this equation, we chose a value of a such that «(2 + o) =1, i.e. a ~ 0.4.
The relic density is then computed in terms of the dimensionless quantity:

Qh? = 2xp?

c

. pe=3MpH?. (2.3.18)

From eq. (2.3.14), the DM abundance results in:
a2 — MM h 2 _ 50Y 50y, 1 2
3M2Z, \ H 3A4;l 100 km Mpc's-1

T () TO 1 1 2
~ 500 75 \ Mpy d ges (ov) \ 100 ki Mpe !5
VI

0.03

op \/@ﬁ 1pb

where subscripts or superscripts 0 refer to quantities evaluated at the present epoch, as
usual. We show the behaviour of Y, as a function of x, in fig. 2.5; it is evident that larger
values of (ov) (denoted by (o4lv|) in the figure) lead to a smaller relic density today, in
accordance with eq. (2.3.19).

By taking into account that 1pb ~ 3 x 10726 cm®s™!, if we assume that the integral
above is dominated by the region around xzp ~ O(25), and that g, ~ g. s ~ O(100), we
obtain:

(2.3.19)

Q.h% 3 x107%cm?s? G
X"~ ~02-E, (2.3.20)
0.1 (ov) o
where G is the Fermi constant. Since the latter can be viewed as the scale associated
to the weak theory (as we discuss, e.g., in appendix B), we see that a roughly correct
relic abundance corresponds to an annihilation cross section of the order of typical weak

interactions; this feature represents the so-called WIMP miracle.

2.3.2 Exceptions to the standard paradigm

The one outlined above is the standard paradigm for WIMP freeze-out; however, several
exceptions to this picture are possible. In the famous paper [70], three of them are dis-
cussed in detail: coannihilations, annihilations into forbidden channels and annihilations

!Sometimes, a different criterium to determine z is used: T is defined as the temperature at which
ny(ov) = H(Tr). With this other definition, the only change is that in the R.H.S. of eq. (2.3.17), \/zF
appears in the numerator [49].
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Figure 2.5: Dependence of Y as a function of x; larger values of the annihilation cross
section lead to a smaller relic abundance. Figure taken from ref. [49].

near poles. In the following, we very briefly recall the last two and discuss the first one
in detail. In addition, we also study the possible departure from chemical equilibrium,
since it will be relevant for our future discussion. In the literature, other exceptions to
the standard freeze-out mechanism have been studied (see, e.g., ref. [71]).

Annihilations into forbidden channels

The idea is that if a particular channel of DM annihilation is kinematically forbidden at
zero temperature, thermal effects can make it become accessible. If we denote by v the
final state of this channel, i.e. xY — 11, if the two states are such that m, < my, the
net rate of annihilations does not vanish. Roughly, if (m, —m,)/m, < 10%, this effect
can be appreciable.

In general, the consequence of including thermal effects is that in the plane m,-Q, h?
all channels open up slightly before the mass of the products of DM annihilation.

Annihilations near a pole

If DM annihilations take place near a pole of the cross section, there is a significant en-
hancement of the annihilation cross section, and consequently a dip in the relic abundance.
We will encounter an example of this effect in chapter 4. Such an enhancement of the
cross section usually takes place if the Higgs can mediate DM annihilations in s-channel
and m, ~ my,/2.

Coannihilations

The previous discussion implicitly assumed the existence of a single particle belonging to
the dark sector; however, if more than one such states exist, the situation changes. Let
us assume a set of particles y;, ¢ = 1,..., N charged under a symmetry which stabilizes
the lightest state (e.g., a Zy symmetry under which the dark sector is odd and the SM
is even) exists, such that m,, < m,, if i < j; if we denote two generic Standard Model
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particles by SM and SM’, we can have three different types of processes, namely:

Xi + Xj ¢ SM + SM’ (2.3.21a)
Xi + SM < x; + SM’ (2.3.21b)
X; < Xi +SM+SM', (2.3.21c¢)

which represent coannihilations, conversions and decays (with also the inverse processes).
By repeating the previous analysis, we can consider the Boltzmann equation for a
single species y;, which can be schematically written as [70]:

it 3t == 3 [{ogo) (e, )

3,SM,SM/

+ ((o;0)ny,nsm — (o;0) 0 N80

+Tij (ny, — 1) } ) (2.3.22)
where o5, 07’;]- are the cross sections for coannihilations and conversions, respectively, and
I';; is the decay width of ;.

It is important to notice that the three kinds of reactions in egs. (2.3.21a) to (2.3.21c)
take place on very different time scales; for instance, if we compare the rate of conversions
with the one of coannihilations, we get:

<Uijv>nxz'nxy -~ Ty, ~ (ij

(olv)nynsm Nsm T

8 my,
>2 e~ 2 6 x 10°, (2.3.23)

where we assumed the SM particles to be relativistic at freeze-out and took m,, /T" = 25
for the last equality. Decay and inverse decay can in general be even faster.

Given that all y;’s eventually decay to xi, the relevant quantity is the total number
density of dark particles, n, = ), n,,; by summing over ¢ in eq. (2.3.22), we obtain the
following equation for n,:

1y +3Hn, = — Z(UUU) (nxl.nxj — ni‘jnfﬁ) . (2.3.24)
2%
In addition, since conversions and decays are so fast, they maintain the equilibrium be-

tween the x;’s, allowing us to approximate n,, /nid ~ n, /n{?, and then:

fiy + 3Hny & —(0V)er (2 — n$¥?) | (2.3.25)

which is precisely of the form of eq. (2.3.11), but written in terms of the effective cross
section:

ngt nid
(Ve = Y (oyjv) 2 =2 (2.3.26)

- ny! ny

The ratio n§!/n{? can be simply written in terms of A; = (m,, — m,,)/m,, as:
i gndlemsT g (14 Ao
ne(; = ‘ 3/2 - /T = ¢ 3/2 N 5 (2327)
X ngij e ngj(l + Aj) e !
J J

where g,, denotes the number of internal degrees of freedom of ;.
Once the effective cross section is computed, the determination of the DM relic abun-
dance reduces to the problem of standard freeze-out for the effective number density n,,.
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Departure from chemical equilibrium

In the previous discussion, we claimed that in eq. (2.3.22) the reactions dictated by the
last two lines usually take place on much shorter time scales compared to the first one;
these processes are responsible for the maintenance of chemical equilibrium, as defined
in section 2.3.1, since they change the number of particles of a giving species.

Let us consider the case of only two dark particles, x and 1, and two Standard Model
ones, SM and SM’, and let us also assume for simplicity the dark states to be scalars
(the analysis for fermions follows straightforwardly, with simply the appearance of some
factors of 2); if we consider the conversion process x + SM < ¢ + SM’, and assume that
all the SM states are in thermal equilibrium, the condition of CE implies:

ny My
=2 2.3.28
ny' nff ( )

If this condition breaks down, on the other hand, we have to resort to the full set of
Boltzmann equations. To this purpose, let us first consider the decay, ¥ — x +SM+SM’;
in this case, the contribution to the Boltzmann equation for y is:

hX —+ SHTLX D /dHXdedHSMdHSM/ (27‘(’)46(Pf — Pz)|M|2(f¢ - ffoMfSM/)
2
Ty Ty _Ey Ty Ty mwT F¢ (mw >
_ ) [ ar, 2m, T S Dol 0 g (e
<nqu n;q) / g oMy lype T ( ngl n;‘l) o2 "\

Ny Ty eq K1(2y) — Mx  eq
= — I, = — r
(n‘fﬁ n) " Rl = Tt ) e
where we defined xy = my /T, took into account that n°d = m2T/(27?)Ky(m/T) and
considered the integral representation of the modified Bessel functions:

K, (z) = ﬁ (g)n/loo dt (12 —1)" et (2.3.29)

It is now simple to write down the full Boltzmann equation for the DM particle x, which
reads:

dY, S e edy®
d_xx - zH |:<UXX'U><YX2 o quz) + (o) (Y Yy — quy¢q)
e Yy e <F¢> Yx ye
+ (osm?) Yapr (YX — Yzfq qu> - Yy, — qu qu
Y) )
TP sz - s Yo ] 7 (2.3.30)
(4

where the thermal cross sections are defined analogously to eq. (2.3.10). The first line
concerns annihilations and coannihilations, the second one conversions and decays of 1,
and the last one annihilations within the dark sector. An analogous equation obviously
holds for v as well.

From the discussion above, it is then clear that the last three terms are the ones
responsible for maintaining chemical equilibrium. If CE breaks down, the full set of
coupled equations for x and 1 has to be solved.
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2.4 Experimental searches

WIMPs are by far the most widely studied candidates of dark matter: for this reason, also
a very intense program of experimental searches has been developed during the decades.
In this subsection, we discuss the three different strategies we can look for WIMP dark
matter with: direct detection (DD), indirect detection (ID) and LHC searches.

2.4.1 Direct detection

The history of direct detection dates back to the 80s, when it was first proposed [72]. As
we already stressed, the DM electromagnetic coupling, if any, must be very small; for this
reason, DM does not interact with electrons within an atom, but is able to scatter off the
nucleus. The main current DD experiments include XENONIT [73], PandaX [74] and
LUX [75].

What is experimentally measured is the recoil energy FE, of the nucleus of mass mr,
which can be easily estimated; in the center of mass (CM) frame, if v is the relative
velocity between the DM and the nucleus, the momentum transfer is:

lq| = |p, —prl| = \/Qpi(l —cosf) = v/ 2(1 — cosb), (2.4.1)

with ¢ and p,r being the angle between p, and p;, and the reduced mass of the system,
respectively.
The maximum recoil energy is then:

zﬁbiTUQ

max __
BN =
mr

(2.4.2)

Typical ranges of EM are 0.1keV < E™* < 100keV for DM masses in the range
10GeV <m, < 1TeV and v ~ 1073, In addition, DD experiments usually have a lower
threshold E'" below which events are not measured; this translates in a minimal velocity

for DM, which can be easily calculated from eq. (2.4.2) as:

. Jthr
pmin — [ (2.4.3)
2:uxT

The rate R of interactions between x and the nucleus is expected to be proportional to the
number of targets Ny = Mr/mqp (with M7 being the total target mass), the interaction
cross section and the DM flux; the differential rate per unit detector mass is:

dR Po / 3 doy
= d 2.4.4

where f(v) is the velocity distribution distribution, py ~ 0.3 GeV em™ is the local DM
density and or is the DM-nucleus cross section.

For our purposes, it will be important to distinguish between spin independent (SI)
and spin dependent (SD) interactions. Let us recall that a Dirac spinor can be written in

the Weyl representation as:
o r
u,(p) = (”fg _ 52) , (2.4.5)
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where o = (1,0), 7* = (1, —0) and &, is normalized such that £ &, = 6,,. We are then
interested in the non-relativistic limit, where we can approximate:

\/p.—a%m_;’\'/_% , \/ﬁ%\/ﬁ%’\'/—%_ (2.4.6)

m _
If we finally recall that in the Weyl basis +* = (50# % ) and 7° = ( 01 (1)>, it is easy

to show that:

Uy (p) us(p') & 2m 6, (2.4.7a)
U, (p) v us(p') ~ 2m 6,5 6" (2.4.7b)
U (p) Yous(p') = =26,5(p — p') - 5 (2.4.7¢)
Uy (p) 17 us(p) = dm s’ 5,5 3 (2.4.7d)

Therefore, we see that while scalar and vector interactions are SI, axial-vector ones are SD.
In addition, pseudo-scalar interactions are SD and also suppressed by the small momentum
transfer.

Connection with experiments can be done in a quite model-independent way [76]; first
of all, as long as the mass of the particle mediating the interactions between DM and SM
quarks is larger than the transfer momentum, say mmyeq = O(100 MeV), the interaction

can be parametrized via an effective theory; in general, then, we can schematically write
the Lagrangian as (see appendix A of ref. [77]):

£OP = 0py 0, (2.4.8)

The general approach is then to go from the partonic operator O, to the operators O,,,
which describe the interactions of the DM with the nucleons; if we consider O, = A\,¢I' ¢
(where I' indicates a generic Lorentz structure), this is obtained by the replacement O, —
O,+0,=f,nl'n+ f,pT'p.

In order to map these operators to the ones describing the interaction with nucleus,
it is convenient to distinguish between SI and SD interactions involving the quarks:

a) spin-independent interactions
In this case, the nucleus-level operator is obtained by the replacement:

O0,+0,=0r=[Zf,+(A-2)f]JTTT, (2.4.9)

with T being the nucleus field, Z and A the atomic and mass number, respectively,
and ' = {1,7"}. We can further consider two possible cases:

i) scalar interaction
If we parametrize the effective Lagrangian as /JS;D) = Zq A XX 79 = xx Oy, we

have: 5
n, mnv mn,
Fap= 3 PN o fr ST A L (2.4.10)
e m 27 m
q=u,d,s g q=c,b,t q
where fg’p ) are numerical coefficients determined experimentally and Jro =1—

f(:’p) - fg’p) — }Z’p), together with f:(F:) = %) (and the same for u <> d) and
(n) _ £(p)
Jr, =t
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The DM-nucleus cross section can be finally computed with the standard tech-
niques, taking into account the non-relativistic limit and eq. (2.4.7a), yielding

to:

osiT = (M))° ’”LiT (Z fo 4+ (A= 2)f,]. (2.4.11)
167s T

ii) vector interaction
If we parametrize the effective Lagrangian as £§§D) =5 ¢ N XV'X T1uq = XV*X O pis
we have:

fn = A+ 2, (2.4.12)
and the same with u <> d for the proton; this basically follows from eq. (2.4.7b),
taking into account that ¢'q is the number of quarks and is conserved.

Similarly to the previous case, the DM-nucleus cross section is:
MP? 2
s T = M) ~ L7 f,+(A=2)f). (2.4.13)

167s T

Given that in general different experiments use different nuclei, DD limits are usually
recast in terms of the cross section between the DM and the nucleons, which is defined
as: )

Fov 1
MiT A2’
where g is the momentum transfer and p,y the DM-nucleon reduced mass, with the
nucleon mass defined as my = (m,, +m,)/2.

(2.4.14)

os1 = USI,T|q:0

spin-dependent interactions
In this case, the nucleus-level operator is obtained by the replacement:

On+0p—>OT:<< >fp <S>f>TFT (2.4.15)

where Jr is the spin of the nucleus and T' = {7°, v#~°}.

We can further consider two possible cases:

i) pseudo-scalar interaction
If we parametrize the effective Lagrangian as ng)D) = 0N XX 7 q = x7V°x O,

we have: m
fop= > 2PN el (2.4.16)

q=u,d,s Mq

5p)

. . 5n, . . .
where, as for the scalar interactions, f:(pq" are numerical coefficients determined

experimentally.

The DM-nucleus cross section can be computed as for the previous cases, by
making the replacement [T5T|> — 4m2.Jy(Jr 4 1)g% taking into account that 6
explicitly enters in the expression of |g| (cf. eq. (2.4.1)), we obtain:

USI,T—/dQ<|M|> ~ 1 Mt Jr(Jr +1) (<§—;>fp+ <§;>fn> . (2.4.17)

64725 3mm? 2m3

from which it is clear the strong velocity suppression.
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Figure 2.6: Current bounds from DD experiments. The space above each line is excluded
at 90%. Left: limits for SD interactions between DM and nucleon. The orange, dashed
line represent the irreducible background represented by neutrinos. Right panel: limits
for SD interactions between DM and proton. Figure taken from ref. [78].

ii) axial-vector interaction
If we parametrize the effective Lagrangian as £S§D) = > Ry XY x P yPq =
XV x Oy, We have:
fap= Y AN (2.4.18)

q:u7d’s

where, once again, Aén’p ) are numerical coefficients determined experimentally,
and Al = AP (and the same for u +» d) and AL = AP,
The DM-nucleus is:

2 2 2
OsLT = /dQ<|M|> ~ 4/;XT Jr(Jr+1) <<§§> fp+ <§n>fn> . (2.4.19)

6472s T

Also for SD interactions, it is convenient to introduce a cross section for DM-nucleon
interactions; it is defined as:

2
_ :uxN 1 JT
os1 = 081,74 —3

Her ((Sp) +(Su)* (Jr +1)°

(2.4.20)

Current bounds from DD are shown in fig. 2.6, for both SI and SD DM-nucleon cross
section. The characteristic shape can be understood as follows: from eq. (2.4.3), it is
easy to show that there is a minimum value of m, the experiments are sensitive to, and
this corresponds to the weaker and weaker bound in fig. 2.6 for m, < O(10GeV); on the
other hand, we see from eq. (2.4.4) that the DM number density scales as m_ 1 and this
explains why the limits also get weaker at large masses.

Another important effect is given by annual modulation: since the Earth is moving
around the Sun, while the DM is not expected to have a preferred direction of motion in
the galaxy, there is a net effect on the DM flux reaching the earth: in particular, the latter
is expected to be maximum in June, when the Earth moves in the opposite direction of
this net “DM wind”, while it is minimum in December. This is the effect claimed to be
observed by the DAMA/LIBRA experiment (see, e.g., ref. [79]).
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2.4.2 Indirect detection

A second strategy to look for DM is to seek for products of DM annihilation: even if, as
we stated before, dark matter annihilation is strongly suppressed, there is a non-vanishing
possibility for it to happen, especially in regions where the DM density is very high (such
as in dwarf galaxies, galactic centers etc.).

In general, only stable particles can reach the detectors: for this reason, electrons,
positrons, (anti-)protons, photons and neutrinos are sought for; annihilations of DM into
other SM particles reduce to these final products after decays.

Since ID is not a primary focus of this work, we will now simply recall some basic facts,
and consider the case in which photons are the final particles which reach the detector.
If we assume them to be produced within a volume dV located in the sky at the point
(r,0,¢), where r is the distance form the detector, the expected flux of photons per unit
of energy and time is [80]:

dN. dN. A1l
dEdtdvV (d_£> 12 5 (Ve n(r), (2.4.21)
0

where A is the area of the detector, (0v)eq the thermally-averaged DM annihilation cross
section and n(r) the DM number density; the factor of 1/2 comes from the fact that the
final state is made of indistinguishable particles. In writing this expression, we assumed
that the energy of photons does not change between the emission and the reception.

If we integrate along the line of sight and over the solid angle, we obtain:

1 dey <(7’U>eff de

— = J 2.4.22

AdEdt m2 (dE ) (2.4.22)
where )

is the famous J-factor for annihilations. If we assume a Navarro-Frenk-White (NFW)
profile for the DM density, which goes as p(r) oc =1 for small 7, the dwarf satellite
galaxies of the Milky Way have J ~ 1017720 GeV? cm >, while for the center of the Milky
Way J ~ 10*2 GeV2em ™. Despite the higher J-factor, the center of the galaxies are
much richer in astrophysical backgrounds than dwarf galaxies; for this reason, the latter
are usually good targets for ID experiments.

In addition, one should also consider the effect of redshift and absorption, which make
the energy of the final states not be constant from the emission to the reception.

Similarly to what happens with DD, experimental bounds are usually expressed in
terms on bounds on the cross section between DM and SM particles; we show in fig. 2.7
the upper bounds on the thermally-averaged DM annihilation cross section into bb and
77~ from the Fermi-LAT experiment.

2.4.3 LHC searches

In general, DM can also be produced at colliders, and its presence can be inferred by
an unbalance between initial and final energy in the detected tracks. An important
quantity in LHC searches for DM is the transverse momentum, pr; if the take Z to be the
longitudinal beam direction, the transverse momentum for a particle of total momentum

p is defined as [82]:
pr = /P2 +p2 =p cost, (2.4.24)
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Figure 2.7: Upper bounds on the DM annihilation cross section into bb (left) and 77~
(right) from the Fermi-LAT experiment. Figure taken from ref. [81].

where 6 is the polar angle. Given that, by definition, py = 0 for incoming particles, the
presence of particles which escape the detector (DM is a possibility, but also neutrinos
behave similarly) can be inferred by summing over the transverse momenta of all outgoing
states; to this purpose, one defines the missing transverse momentum as:

P =— ZpTﬂ- , (2.4.25)

where the index ¢ runs over all the detected tracks; the absolute value of this vector
is called missing transverse energy, and indicated with F; or MET, and is of great
importance for DM searches.

LHC searches usually put some cuts in order to reduce the huge background; as an
example, constraints on the rapidity y or the pseudo-rapidity 7, defined for a particle
respectively as

E+p.
—p

In (2.4.26a)

<

Il
N | —
=

N

7
n = Incot 7 (2.4.26Db)

are used; notice that these two quantities coincide for massless particles.
Other cuts are related to the separation between two jets; if we denote by ¢ the
azimuthal angle, and by A the difference in a given quantity, the jet separation is usually

defined:
AR =/ An? + Ag?. (2.4.27)

Although different LHC searches can be the most relevant ones for different DM models,
“mono-X" signatures are almost always present; these can be, for instance, monojet
(MJ) (where “jet” stands for both quarks and gluons), mono-Higgs, mono-photon, and
are schematically represented in fig. 2.8.

Two different approaches have been widely used in the literature to study LHC sig-
natures of DM:

- effective models: in this case, non-renormalizable interactions between DM and SM
particles are included. This approach has the virtue to be very general, leading to
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Figure 2.8: Schematic representation of some of the main signatures for DM physics at
LHC: monojet, mono-Higgs and mono-photon, respectively.

bounds which are in principle applicable to a variety of different UV completion; on the
other hand, it has the drawback that the effective approach is not always reliable, given
the high energies reachable at LHC. Discussions about the EFT validity for DM can be
found, e.g., in refs. [83-92];

- simplified models: in this second approach, only renormalizable operators usually ap-
pear, and new particles are introduced to mediate interactions between DM and SM
fields (see, e.g., refs. [90,92,93]). These models are “simplified” because, for example, a
bare mass term for the new gauge bosons is usually explicitly introduced. While they
do not suffer of the problems of effective approaches related to the energies reached at
LHC, it is not guaranteed that simplified models can be easily embedded in concrete
UV theories.

In the following, we will discuss in detail two concrete realizations of these approaches,
one for each of them.
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Chapter 3

LHC interplay between dark matter
and long-lived particles

Since a particle cannot be sent
into the infinitely distant past, our
definition (of the scattering
amplitude) in terms of the
S-matrix makes no sense.
Michael Peskin - about unstable
particles

The majority of dark matter models predict LHC signatures in the form of monojet,
where the events are characterized by a highly energetic jet and a large amount of missing
transverse energy; great attention has been dedicated to this kind of searches, by both
the ATLAS and CMS experiments (see, e.g., refs. [94-97]).

Another scenario which has been receiving more and more attention is represented by
the possibility that unstable particles are produced at the LHC and travel a macroscopic
(on collider scales) distances before decaying; these particles are called long-lived particles.
This is not a feature which is absent in the Standard Model: massive SM particles, in
fact, have lifetime which span about 66 orders of magnitude (from 7 ~ 1072°s for the
Z boson to 7 = 10*s for the proton), as schematically shown in fig. 3.1, taken from
ref. [98]. However, LLPs in the SM have masses < 5 GeV, so that particles with mass of
O(100 GeV) which can travel a macroscopic distances (¢t 2 107°m) can be a smoking
gun for NP; in addition, SM particles which can be considered long-lived have a well-
understood background.

Long-lived particles in association of BSM physics have been studied in different con-
texts, such as supersymmetry or composite-Higgs models (see, e.g., refs. [99-105]); in the
context of DM model, this possibility has been considered in refs. [1,2,106-111].

Although LLPs offer excellent prospects for the discovery of NP, they also provide
experimental physicists with a serious challenge: standard reconstruction techniques may
reject events containing LLPs, precisely because of their unusual signatures, which can
look like noise or misidentified objects; for this reason, dedicated searches are needed, in
order the investigate the possible existence of LLLPs. The awareness of both the poten-
tiality and the difficulty related to the searches for long-lived particles led to the creation
of the LHC LLP Community, whose aim is to fully exploit them for the study of NP at
the LHC; many more details about LLPs can be found in the recent white paper [98].
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Figure 3.1: Particle lifetime cr as a function of the mass M, for several SM particles.
Figure taken from ref. [98].

In this chapter, we discuss two DM models which are characterized by the presence of
LLPs: the first one, based on ref. [1], is a simplified model which delivers displaced vertices
(DVs); the second one, instead, is an effective theory where the LLP gives rise to bound
states similar to the R-hadrons which emerge in supersymmetry, and is based on ref. [2].
The two models are presented in sections 3.1 and 3.2, respectively. We show that in both
cases bounds from experimental searches looking for LLPs are crucial in order to constrain
the parameter space; in particular, these turn out to be complementary (and sometimes
even competitive) with more traditional searches based on MJ signatures. Extra details
about the two models are given in appendices 3.A and 3.B, respectively.

3.1 Pseudo-Dirac dark matter

Current DD experiments put strong constraints on the DM scattering cross section, espe-
cially in the SI case (see fig. 2.6); in particular, these bounds usually rule out naive relic
density couplings in many models. A possible way out is represented by the breaking
of the crossing symmetry between different contributions: in particular, if the scattering
rate is suppressed, while the annihilation one is not, one could be able to evade current
DD bounds without an overproduction of DM.

In this section, we study the pseudo-Dirac dark matter (pDDM) model, first considered
in ref. [112] as an EFT; this is a simple extension of the SM where two dark Majorana
fermions are introduced, and are characterized by small mass splitting (similar situations,
realized also in a supersymmetric framework, were studied in refs. [113-117]). We extend
the analysis of ref. [112] by considering a simplified model version of it, allowing then the
interaction scale to be of O(TeV), by introducing a new gauge boson, denoted by Z’: if
it is integrated out, the model reduces to the effective one studied previously

The remarkable aspect of the model is that the heavier state, x2, can be produced with
an energy and a decay length which can lead to DVs at LHC, representing a promising
direction in the search for NP [103,104, 118-147].

We introduce the model in section 3.1.1, we discuss current constraints on the param-
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eter space in section 3.1.2 and we show the results in section 3.1.3

3.1.1 Model Lagrangian

As a first case for the study of long-lived particles associated to DM, we consider the so-
called pDDM model; it is a simplified model which includes a Dirac fermion ¥ described
by a free Lagrangian which contains both a Dirac and a Majorana mass term, of the form:

Lo=T(if — Mp)T — %(FPL\IJ +he) — %(FPR\D +he), (3.1.1)

where Ppp = (1 F~°)/2 are the chiral projectors and the superscript ¢ denotes the
charge conjugated. The “pseudo-Dirac” assumption consists in the fact that we take
M pD>m L.R-

Such a state interacts with the SM via a dark gauge boson Z’' with mass my whose
interactions are:

Line = U (L Pr + crPR)V Z, + > fy* (e P+ & Pr) f 7, (3.1.2)
f

where f is a SM fermion and we take the coefficients ¢’s to be real.

As already discussed in section 2.4.3, when dealing with simplified models, one usually
does not commit to studying a particular UV completion; the simplest scenario, however,
could be realized if we assume ¥ to be embedded in a fermion © which is a doublet
under a dark SU(2)" symmetry, spontaneously broken through a Higgs-like mechanism by
a scalar field ®’. Let us assume that v' is the VEV of ®’; the Dirac mass term is then
reproduced like in the SM. As far as the Majorana mass term is concerned, instead, we
can assume that new physics takes place at an even higher scale, and that it is responsible
for the appearance of a Weinberg operator 1/A © (igo®') (ic,®’ )T ©°¢; such an interaction
leads to a Majorana mass term for ¥ after ' acquires a VEV. The hierarchy between
Mp and my, g can then be easily understood by taking into account that Mp o v', while
my =mpg x v'>/A ~ Mpo'/A. This simple UV completion is also anomaly-free; possible
anomalies, in fact, may arise from triangular diagrams involving U(1)-SU(2)-SU(2)" and
U(1)-SU(2)’-SU(2)" currents, but it is simple to show that if Z’' couples to all the SM
fermions, they are not present.

Another example of a possible UV completion as a pseudo-bino model was discussed
in ref. [112]. In general, Z’ cannot be associated to an abelian gauge symmetry, since the
latter would be explicitly broken by the Majorana mass terms.

Given that our goal is to study the interplay of DM and LLPs, we assume that the Z’
gauge boson only couples to SM quarks, given that these are responsible for the interesting
phenomenology.

The two (Majorana) mass eigenstates of the free Lagrangian in eq. (3.1.1), denoted
by x1.2, are:

)
1

X2 = ﬁ (U +9°) (3.1.3b)

with masses mio = Mp F (mg + mg)/2. Their derivation is explicitly discussed in

appendix 3.A.1. The spectrum of the dark sector therefore consists of the DM, xq, a
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heavier companion Y, and a gauge boson, Z’, which we assume to be heavy (mgz ~
O(1TeV)); in the pseudo-Dirac limit, the two fermions are close in mass, i.e. Am
mo — M < m.

In terms of these fields, the interaction Lagrangian in eq. (3.1.2) becomes:

Lo = LX) + L0004 £33 1 o)) (3.1.4)
where:
(f) () ) )
c +c ¢y’ —c
cf) = Zf R Bl P (3.1.5a)
.Cr+cr _
L) = L XY "2 7, (3.1.5b)
L0 = By xiZy o i=1,2, (3.1.5¢)

Remarkably, while the interactions between x; and y, occur via a vector coupling, those
of x1 with itself (and the same for xs) are characterized by axial-vector couplings; this
is indeed a consequence of the Majorana nature for the y’s. These two structure lead to
different phenomenology for scatterings and annihilations [90,93, 148, 149]; in particular,
given that scattering processes between y; and a nucleus are not energetic enough to
produce a Yo, interactions relevant for DD proceed via the axial-vector coupling only.
According to the discussion of section 2.4.1, then, we expect them to be SD; following the
classification of ref. [90], the relevant non-relativistic operators are:

O = s,-sy (3.1.6)
Ot = s, v, (3.1.7)
Oy = is, - (sny X q), (3.1.8)

where s, n is the spin of the DM and the nucleon, respectively, g is the momentum
transfer and v, = v—q/2p, v, with v being the DM-nucleon relative velocity and fi, x the
reduced mass of the system. Each of these operators is strongly suppressed with respect
to SI interactions [76,150-152], allowing the model to evade DD constraints [75,153,154].

The suppression of the axial-vector interaction could make it hard to reproduce the
correct relic density; as we will discuss, however, the presence of a slightly heavier partner,
X2, leads to coannihilations, solving this potential issue.

Decay length

The interactions in eqs. (3.1.5a) and (3.1.5b) are responsible for the decay x2 — Y1ff,
whose leading order width is:

Nc(f) 2 2 2 AmS
Dsair & Z 18073 (cL + cr) (C(Lf) + cﬁ;’f) > YR (3.1.9)
!

mZ/
where higher-order terms in Am/m, and my/m; have been neglected; a more complete

expression for the decay width can be found in appendix 3.A.2. In the following, we focus
our attention on SM quarks, but the analysis can be easily extended to include leptons.

44



The corresponding decay length length in the yo-rest frame is (at leading order in
Am/my and my/my):

-1
2 2 my \4(1GeV\’
Lo~ 2.94m [ZN(SJC)(CL—FCR)Q (c(Lf) +cg) )] <1TZV) ( Ao ) . (3.1.10)
f

The neglected contributions can give corrections of the order of 30%, but this estimate
correctly reproduces the order of magnitude of the decay length; in particular, for Am ~
O(GeV) and myz ~ O(TeV), Ly is of the order of the radius of the ATLAS and CMS
detectors, allowing the observation of a signal in the form of DVs.

The mean decay length in the laboratory frame is then simply:

LEP = By Ly, (3.1.11)

where v = py/ms is the boost factor for xo. The decay length L., of a particle in the
detector then follows the probability distribution:

P(L*) = Lllab e LG, (3.1.12)
0
If we denote by pl the momentum of y, in the transverse direction, we can then define
a transverse decay length as L2y = Lo pl /my. Following ref. [155], the total probability
that the particle travels a transverse distance larger than some threshold L can then be
approximated by simulating and averaging over a large number N of events,

N
1 L
P > )= — § exp | — . 3.1.13
( g ) i=1 L’llé},%(pg :p%tz) ( )

Relic density

Given that this model predicts the existence of two states which are very close in mass,
coannihilations can be important in the determination of the DM relic density. The
effective cross section is given by eq. (2.3.26), and in this case it simplifies to:

1
(V) = (<UU>11 + 2a{0v) 5 + O‘2<‘7”>22) ; (3.1.14)
(1+«)
where a = (1+ Am/my)*2e==dm/mi = m, /T and (ov)y; = (00) 0, p 7
The complete expressions for the thermally-averaged cross sections are reported in eqs. (3.A.6a)
and (3.A.6b); however, the leading-order effective cross section is:

N 2 (2, P2\ M
(OV) ot A (¢ + cr) <c +c > —
¢ Z 167 L R ms,

mzg

9 2 2 my 2/1TeV\*
~ 0.08;Nc(f)(cL + cRr) (cgf) +cg) ) (100 GeV) ( > (ov)wimp

(3.1.15)

with (ov)ywnip = 3 X 10726 cm®s™! being the typical WIMP annihilation cross section.
From egs. (3.A.6a) and (3.A.6b), we see that the self-annihilations are velocity suppressed,
making the coannihilation contribution be the most important one in the determination
of the effective cross section.

The relic density can be then computed by resorting to egs. (2.3.17) and (2.3.19); in
this case, g, is actually given by g, = gy, (1 + «), where g,, = 2.
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Link between decay length and relic abundance

By comparing eqs. (3.1.9) and (3.1.15), we see that the decay width of ys and the effective
cross section depend the same way on the coefficients ¢’s; this is simply because the main
contribution to (ov) 4 comes from the same vertex which controls the decay, i.e. x1x2-f f.

This fact only holds for the leading contribution to (ov) 4, but it turns out to be a good
approximation in the limit of small quark masses, m; ~ 0, where the self-annihilations
are velocity suppressed (see eq. (3.A.6b)). As already noticed in ref. [112], this allows for
a link between two observables which are in principle completely unrelated: the xs decay
length (collider property) and the DM relic density (cosmological property).

In particular, the DM abundance can be expressed as a function of Ly and the other
parameters of the model as:

QOh? T 1 L 100GeV\?/ Am \°

~1.26 —L =) —— . (3.1.16)

0.1194 /O 1 /1—Fk 1m my 1GeV

I+ —(—
1+k

QI‘F

where k = cg/cp.

Thus, we can estimate the value of Lg for given (mq, Am, k) by imposing the observed
value for Qh2. In addition, we see that for given Ly, eq. (3.1.16) does not depend on m_,
and since xp ~ O(20), then if k£ > 0, it depends only very mildly on k.

If one is able to infer Ly (from DVs) and Am (from the edge of di-jet distributions) by
collider measurements, then it would be possible to make a prediction for the DM mass
my.

3.1.2 Constraints on the parameter space

The parameter space of the model is spanned by the set:
{my, Am,my  cp, cg, cE—Jf), cg)}. (3.1.17)

In order to avoid a full scan over the entire seven-dimensional parameter space, we can
motivate benchmark points and apply a number of constraints before performing the
main analysis; we will leave {my, Am} free. Our signals of interest are not sensitive to
the chirality of the quarks, so that we can set cg) = —c(Lf ) without loss of generality; this
leads to a pure axial-vector coupling between the Z’ and SM quarks. We have checked that
perturbative unitarity is not violated for the values of masses and couplings considered in
our analysis [148].

A first restriction on the parameter space could be represented by DD; in ref. [156] a

general estimate for the SD cross section is presented and, adapted to our model, reads:

_ 2 (1TeV\"' / pon \2
osp ~ 2.4 x 1072 em? (cp — ¢p)? P ( e ) (1(§e\/> . (3.1.18)

Such an estimate can be obtained by combining egs. (2.4.19) and (2.4.20) and assuming
that A\, in eq. (2.4.18) is the same for all quarks. It turns out that current DD limits,
such as those from LUX [157], are weaker than other constraints; for this reason, we do
not consider DD in the following.

The relative magnitude of the axial-vector (x;x;) and vector (xix2) couplings is con-
trolled by the ratio k = cg/cr; they are proportional to [cg—cr| and |cgr+cyp|, respectively,
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so that the first one vanishes in the limit & — 1, while the second one for & — —1. The
interplay between these two contributions is important for the potential observability of
displaced vertices, and so we choose two benchmarks for k: £ = —0.8 and k£ = 0.

Note that a degeneracy arises because in all relevant observables, ¢y, r always appear
as either |c;, + cg|? or |c; — cg|?; as a consequence, the (cz,cg) plane is divided into
four equivalent wedges separated by the straight lines £k = —1, k = 1. Any point in
one of the four wedges can be mapped onto a point in any of the other three with no
change in the phenomenology; concretely, choosing k = —0.8 (0) is equivalent to choosing
k=1 = —0.8 (0) (by appropriately rescaling the coefficients); similarly, the transformation
(cr,cr) = —(cr,cr) has no effect.

Dijets searches

Dijet searches put upper bounds on the couplings between the Standard Model and the
dark mediator. We refer to the results of ref. [158]: in particular, in its figure 4, limits on
the coupling between Z’ and SM quarks in an axial-vector simplified model are shown.
These constraints derive from a limit on Z’ production rate, weighted by its branching
ratio into quarks: for this reason, the bounds are sensitive to the ratio between Z’ cou-
plings with DM and quarks. In particular, the analysis of ref. [158] assumes a negligible
coupling to DM, which provides the strongest limit on the coupling with quarks. In order
to be conservative, we directly apply those constraints, although the presence of Z’-DM
coupling would weaken the bounds.

In our notation, the coupling which is constrained is c(Lf ), given that we are considering
the case C(Lf) = —cg). We consider three benchmark values: c(Lf) = 0.07, cgf) = (.13 and

c(Lf) = 0.25 for my = 1.5TeV, my = 2.5TeV, my = 3.5TeV, respectively; these are
arbitrarily large values compatible with dijets constraints. We assume these couplings to
be universal, i.e. to be the same for all quarks and to be independent of m; and Am.

Relic Density

For given my, Am and myz (and then also C(Lf )), we can determine the contour corre-

sponding to the observed DM relic density in the (cr, cg) plane; we take, for the observed
value, Qh? = 0.1194 [159]. This value is shown as a red line (with orange 3o-contour)
in fig. 3.2, for three different values of m;. The benchmark for k is a straight line in this
plane, and is shown in blue. This line intercepts the relic density contour in two points;
given that the phenomenology is invariant under the replacements (cp,cgr) — —(cr,cgr)
and k — k7!, a unique pair of coefficients is effectively determined. We choose the point
for which ¢;, < 0 and cg > 0.

Z' width

A second restriction on ¢y, and cr comes from a kinematic argument: given that we treat
7' as a physical intermediate state which is exchanged in the s-channel, it is necessary
for its decay width to be small, i.e. 'y < my.

In egs. (3.A.7a) to (3.A.7c), we provide the expressions for the partial decay widths
of Z': in general, 'z /mz o (¢ + cR)2. Requiring this ratio to be less than some critical
value identifies an elliptic region in the (cp,cgr) plane (with the other parameters being
fixed); we choose this ratio to be I'z//mz < 0.2, which ensures that the Breit-Wigner
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Figure 3.2: Interplay between the DM relic abundance (red line with orange 3o-contour)
and the requirement I' 7/ /mz < 0.2 (green region) in the (cp, cg) plane for myz = 1.5 TeV,
Am =5GeV, k = —0.8 (blue line) and different values of m.

approximation is sufficiently accurate [160, 161]. The corresponding allowed region is
shown in green in fig. 3.2.

As we can see from fig. 3.2, too small values of m; make the intercept between the
relic density contour and the straight line corresponding to a fix k fall outside the allowed
green region; on the other hand, too large masses tend to pick small values of ¢;, and cg,
which represent a problematic situation from a numerical point of view which we decide
to avoid. Overall, then, this procedure also selects an allowed range of values for mq,
which we summarize in table 3.1. We choose the same range of Am for all the values of
mz, namely 1.5 GeV < Am < 8.0 GeV.

3.1.3 Results

After discussing the model and the restrictions on the parameter space, we can move
to the analysis and the results. As most of the DM models, also the pDDM is sensible
to MJ searches; in addition, however, it can also leave a trace at LHC in the form of
DVs, as anticipated. We discuss in the following how these two different strategies are
complementary for exploring the parameter space of the model, and we show that DVs
can be even competitive with MJ searches in the future.
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| mz =15TeV | mgy =25TeV | my = 3.5TeV

ctf) 0.07 0.13 0.25
my > 525 GeV 850 GeV 1100 GeV
my < 700 GeV 1200 GeV 1600 GeV

| mz =15TeV | my =25TeV | my = 3.5TeV

i) 0.07 0.13 0.25
my > 375 GeV 550 GeV 650 GeV
my < 700 GeV 1200 GeV 1600 GeV
Table 3.1: Allowed range of m; and choice for C(Lf ), for different values of my, and k = —0.8

(top) and k£ = 0 (bottom).

Monojet analysis

Monojet searches look at signatures characterized by an energetic jet and a large amount
of F'r, and are performed by both the ATLAS and CMS experiments; we use the results
from ref. [94], corresponding to an ATLAS analysis at 13 TeV with 3.2fb~! of integrated
luminosity.

In signatures relevant for MJ, the production of DM can be explored using events
where the jet is emitted in the form of initial state radiation (ISR); in addition, also the
joint production xi-x2, followed by a decay of x», would lead to MJ signatures.

We simulated the processes

pp = X12x12J ,  With xo = X177 (3.1.19)

with the choice of couplings and mass ranges discussed in table 3.1; we then applied the
selection cuts performed by the ATLAS search to determine the current regions of the
parameter space which are excluded. As described in ref. [94], the search is divided in
seven signal regions, denoted by IM1-IM7, which differ from the cuts on the ', which
go from 250 GeV to 750 GeV; they also provide upper limits on the cross section at 95%
CL, denoted by ()%, ranging from 553 fb to 19 fb.

The results strongly depend on the value of k: in particular, if £ = —0.8, only the
mass m; = 525 GeV for my = 1.5TeV is currently excluded among the ones simulated;
on the other hand, for & = 0 all the DM masses below m; = {550 GeV, 800 GeV, 850 GeV }
for my = {1.5TeV,2.5TeV,3.5TeV} are already ruled out. The fact that larger values
of myz correspond to larger currently excluded DM masses follows from the selection
procedure for the couplings we discussed in section 3.1.2: in particular, we showed that
larger couplings are typically selected for heavier Z’.

In order to project the current bounds to high luminosity (HL), we have to estimate the
corresponding uncertainties on the SM backgrounds; the latter are dominantly represented
by Zj — vvj and Wj — fv,5. Exclusions at high luminosities could be carried out by
simulating the background (see, e.g., ref. [162]); another possibility, however, is to rescale
the current constraints, and we decide to follow this second approach. In particular, it
is important to consider statistical and systematic uncertainties separately: in ref. [94],
the systematic errors on the background are reported, ranging from 2% for IM1 to 4%
for IM7 (section 7.1); in addition, also the total number of expected number of events at
3.2fb~! is given, together with the associated uncertainty (table 7). As an example, we
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Figure 3.3: Schematic representation of the process leading to 2 DVs.

can consider the signal region IM7, where the expected number of event is N = 167 £ 20
at 95% CL; by taking into account that the statistical uncertainty is SN** = /N, we
have dN** = 13 and then dN*° = 15, corresponding to 7.8% and 9.0%, respectively.
The relative statistical error scales with the inverse square root of the number of events
(and then of the luminosity), 6t o VL~1; on the other hand, it is not easy to predict
how the systematic uncertainty changes with the luminosity: for this reason, we decide
to parametrize it as 69 (Ly) = r¥5(L), where £, denote two different integrated
luminosities. If we take, for example, r = 0.4, we determine the expected number of SM
events at 100fb~! to be N = 52194201 at 95% CL, corresponding to a bound on the NP
cross section of ()% ~ 4fb; in getting this bound, we assumed the number of observed
events to be compatible with the background expectation.

At high luminosities, it is possible that at a better control on systematics is achieved
or, on the other hand, that the high-luminosity environment leads to a degradation of
the understanding of the SM backgrounds, and then to larger relative systematic uncer-
tainties; for this reason, we take as a benchmark bound on the cross section (0)% = 51fb,
corresponding to a total uncertainty on the SM background of about 10%; we use this ref-
erence value also for projections at even higher luminosities, up to £ = 1000 fb~!, simply
neglecting the statistical contribution. The bounds from current and projected MJ can
be found in fig. 3.5, together with the limits from DVs; as can be seen, they are rather
independent of Am, given that MJ cuts mostly select events where the jet comes as ISR.

Displaced vertices analysis

Displaced vertices are a smoking gun for BSM physics, with the expected background
coming from vertex misidentification only. As anticipated, pDDM model delivers DVs
if xo is produced and travels an appreciable distance before decaying. The strongest
shown in fig. 3.3: the presence of two y»’s can lead to two DVs, for which the expected
background is extremely small. The presence of ISR is responsible for the two x»’s not
to be in the back-to-back configuration; as a consequence, fr increases, and allows us
to trigger on events with high-pr + Fr. In addition, we are interested in the region of
the parameter space for which Am < 10GeV, so that the jets emitted from the decay
of x2 have pr ~ O(1GeV): these are too soft to be triggered on, but can be of help for
the offline analysis and for DVs identification. We simulate the events at parton level as
outlined in appendix 3.A.3.
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Figure 3.4: Probability that x, decays in either the ATLAS inner detector (left panel)
or muon solenoid (right panel) for mz = 1.5TeV and with the couplings determined as
discussed in section 3.1.2.

In order to deliver DVs, our model must at least admit a region of the parameter
space in which ys is enough long-lived to reach the inner detector of the experiment
under consideration. We refer to ATLAS, and in particular to ref. [163], for the analysis;
the decay must then occur in either the inner detector, with size 0.05m < r < 0.3m or
in the muon solenoid, where 3.8m < r < 7.2m. We can compute the probability for
X2 to decay in these two ranges of lengths by resorting to eq. (3.1.13), and the result is
shown in fig. 3.4 for myz = 1.5TeV; notice that with the couplings fixed as described
in section 3.1.2, the decay length is only function of {my, Am,myz}. In particular, it is
possible to notice that this probability can be significantly different from zero, especially
in the inner detector.

In ref. [163], bounds on the number of events with two DVs at a CM energy /s = 8 TeV
are given; given that our process has high-pr and large F7, the best limits come from
the jets + Fp trigger. As already stated, the expected background is extremely small
(of the order of 107* events, cf. table IX), at 20.3fb™" of integrated luminosity and with
the cuts pr > 120GeV and M ET > 200 GeV. In order to make sure that the expected
background remains approximately zero even at /s = 13TeV, we rescale the cuts to
pr > 200GeV and M ET > 300GeV. These cuts make the pseudo-rapidity n small, so
that no events are found in the barrel endcap.

The jets + MET trigger requires at least 7 tracks per vertex; whilst a full detector
simulation is beyond the scope of our work, we have performed a Delphes-level [164]
analysis of the process for several benchmark points in parameter space and found that
approximately 25% to 50% of vertices passed this track requirement. In addition, we do
not make a precise evaluation of the efficiency for the vertex reconstruction, but consider
a benchmark value of 20%; such a choice may be viewed as an optimistic scenario for
near-future displaced-vertex experimental analyses, and further emphasises the need for
an increased focus on this signal by ATLAS and CMS.

We show the results in fig. 3.5, where we project current bounds to higher luminosities:
{100 fb=* 300 fb=1, 1000 fb~'}, respectively. As anticipated, we rescale the number of
events by an efficiency coefficient which we take to be 20% (for each vertex); given that
the expected background is approximately zero, we can exclude a point of the parameter
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Figure 3.5: Current and future bounds coming from MJ and DVs. The colourbar refers
to the number of events which pass the cuts at an integrated luminosity of 1000fb~1,
and the region inside the white, dashed line is excluded at 95%CL; we show the same
region also for 100 fb~! and 300 fb~! (in blue and orange, respectively). The grey portion
of the parameter space is instead currently ruled out by MJ searches, while the red line
corresponds to the future projection at 1000 fb~*.

space at 95% CL if at least three events pass the cut (this simply comes from a Poisson
distribution with 0 events). In the same plot, also limits from MJ are shown: in particular,
future prospects are shown with the red, dashed line, and correspond to a total SM
uncertainty of 10%, as described above. We show the the results for the two benchmark
choices of k and different values of mz. As can be seen, for k£ = 0 a significant region of
the parameter space is already excluded by MJ.

As expected, the result strongly depends on the value of k; as & — —1, the decay
length of xs increases (cf. eq. (3.1.9)), and a larger number of decays takes place within
the detector volume; at the same time, the coupling xox2 Z’ increases, maximising the
production cross section. Therefore, the strongest constraints come when k is close to —1,
but not so much that ys decays outside the detector.

Finally, it is interesting to see that while the signal is maximum for small m:, larger
mediator masses allow us to probe larger m;.
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3.2 Chromo-electric dark matter

As discussed in section 2.1, DM must have (if any) extremely small electric and colour
charge, and must be stable on cosmological timescales. It is however possible that the
dark matter is just the lightest state of a full dark sector, in which some states can carry
charges; in particular, the case in which some dark particles are coloured have recently
attracted interest [155,165-167]. Such a scenario can be particularly interesting for LHC,
where the production cross section can be significantly enhanced by QCD effects.

A great deal of phenomenological properties of coloured dark sectors are rather general,
i.e. they only depend on the representation of the coloured states under SU(3). [165]; on
the other hand, however, specific features do depend on the particular model and the
interactions between the dark sector and the SM.

A simple implementation of this idea could be obtained by considering an effective
theory in which the dark states are fermions and communicate with the SM via a d =5
operator coupling the gluons and the heavier dark particle. Such a scenario is particularly
interesting for LHC phenomenology because the coloured state could hadronize in bound
states; in the supersymmetric context, this is a well-known possibility, and such bound
states are called R-hadrons [168] (for more recent papers on the topic see, e.g., refs. [140,
141,169-171]). In the following, we maintain the same terminology, although we do not
refer to any supersymmetry; in addition, given that the heavier particle interacts with
the DM through the d = 5 operator, it is possible for it to travel macroscopic distances
before decaying.

In section 3.2.1, we discuss the theoretical aspects of the models, while in section 3.2.2
we show the relevant experimental analyses.

3.2.1 Model Lagrangian

A possibility to couple DM to coloured SM particles is by considering a dark sector with
more than one state, with some of the heavy ones being coloured [167,172-179]. We
consider a simple extension of the SM, where we add on top of it two Majorana fermions,
denoted by x; and ys, with masses m; and ms = m; + Am, and we assume that the
heavier one is charged under SU(3)..

Couplings to quarks can be obtained at the renormalizable level by assuming the
heavier state to be in the fundamental representation [167,180,181]; a coupling to gluons,
instead, can be achieved through effective operators, starting at d = 5, with y, being in
the adjoint representation. We consider the latter possibility, and introduce the following

free Lagrangian:
1 : 1 -a (; a
,Co = 5)21 (Za — ml) X1 + 5)(2 (ZlD — mg) X2 5 (321)
with a being the colour index in the adjoint representation.
The interaction with the gluons mimics the (chromo-)electric and (chromo-)magnetic

dipole moments, and we parametrize it as (see, e.g., refs. [182,183]):

U ,
Lint = 2—mlxga“ (ux - deVS) x1G, (3.2.2)
where o = i/2[y#*,4"] and GY,, is the canonically normalized gluon field strength.
The two operators in the equation above lead to similar phenomenological results,
and do not interfere with each others in the determination of the observables which are of
interest for us; for this reason, we limit our attention to the operator proportional to d,.
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Table 3.2: Leading order contributions to the cross sections <O’U>XZ.X]._, smsm- s denotes
the strong coupling, while v is the relative velocity in the x;-x; CM frame.

The interactions between the dark sector and the SM are therefore completely de-
scribed in terms of the parameters {m, Am,d,}; a first requirement is d, < 1: this
is because it can be formally identified as d,, ~ my/A, with A identifying the scale of
some underlying NP. We will come back to this point later, when we will briefly make a
connection between the parametrization of eq. (3.2.2) and the general language of EFTs
discussed in appendix B.

Being heavier than the DM, y» decays into it: the leading process is x2 — x19, whose
decay length can be simply computed to be:

3
2 3 2 3
r, - Am 2m) A (3.2.3)
1+ —

my

Given that d, is assumed to be small, it is possible that y, travels macroscopic distances
before decaying, being in fact a LLP.

Relic density

The first requirement on the model is the correct reproduction of the DM relic abundance;
this is determined by the processes x;x; — SMSM, and the leading order expressions
for the corresponding cross sections are reported in table 3.2. More complete expressions,
used for the simulations, can be found in appendix 3.B.1.

A first modification to the standard paradigm is represented by coannihilations, which
become relevant if Am < my; similarly to the pDDM model, the effective cross section
defined in eq. (2.3.26) is:

1

—(1 P ((ov)yy + 2a(ov)y + a*(0V)y,) | (3.2.4)

<Uv>eff =

with @ = gy,/0y, (1 + Am/my)*emsAm/mi g = ) /T and (o) = (V) ssmsws the
numbers of degrees of freedom of x; and x, are g,, = 2 and g,, = 16, respegctively. The
relic abundance is then computed in the standard way through eqs. (2.3.17) and (2.3.19),
where g, is now g, = gy, (1 + ).
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Figure 3.6: Profile of the observed DM relic density, Qh? = 0.1194 [159], in the (m;, Am)
plane, together with the corresponding 3c-contours; both the perturbative (blue) and
Sommerfeld-enhanced (orange) result are shown.

A second important effect is due to the Sommerfeld enhancement, a non-perturbative
effect which is due to the exchange of soft gluons between coloured particles in the initial
state [184-186]. Model-independent treatments of this effect can be found in refs. [155,
165]; in these analyses, the relic density is assumed to be dominated by QCD effects (the
case in which the DM contributes negligibly to coannihilations has also been considered
in the general context of sterile coannihilations in ref. [187]).

We refer to the general analysis of ref. [165] for the treatment of the Sommerfeld
enhancement, since also for our model it is reasonable to assume that coannihilations are
dominated by QCD effect because of the smallness of d, (cf. table 3.2); we review some
relevant aspects of Sommerfeld enhancement in appendix 3.B.2.

The relic density profile Qh? = 0.1194 [159] can be found in fig. 3.6; there, we show both
the perturbative result obtained from eq. (3.2.4) and the one which takes the Sommerfeld
enhancement into account. As can be seen, the correction significantly affects the result,
and cannot be neglected.

Given that the relic abundance does not depend on d, (up to small corrections), the
number of free parameters can be reduced by imposing the correct value of Qh?, and using
it to fix, for instance, Am; this way, the decay width of 9 in eq. (3.2.3) only depends on
the DM mass and d,. As anticipated, the smallness of d, can lead to macroscopic decay
lengths; we show in fig. 3.7 the value of the decay length 1/I',,, as functions of m; and
dy. We see that in order for y, to travel a distance of at least O(10~*m), values of d,, as
small as 1077 + 107% are in general needed.

Departure from chemical equilibrium

As discussed in detail in section 2.3.2, the general formula for the effective thermal cross
section in presence of coannihilations, eq. (2.3.26), is obtained under the assumptions that
conversion processes and decays are much faster than annihilations; in other words, it is
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Figure 3.7: Decay lengths in the rest frame of xo for the process xo — x1¢9; in all the
(mi1,d,) plane, the observed DM relic density is reproduced.

assumed that CE holds. While this is true in most of the situations, especially when
the requirement of reproducing the correct DM abundance is imposed, in some special
circumstances it can cease to be true.

In the model we are considering, as we showed, the relic density is independent of
the coefficient which couples the dark sector and the SM (d,,), leaving it a basically free
parameter; since we are interested in small values of d, (in such a way that y» is a LLP), it
is in principle possible that CE breaks down, given that the same parameter also controls
conversion processes. In order to verify this condition, we have to evaluate the ratios
[y, /H, where Iy, generically represents the rate of a process involving x; and x;: it
can be the scattering x2 x2 — X1 X1, the decay x2 — x1 g, the conversions y29 — X1 ¢
and 2 g — x1 ¢, as well as all the inverse reactions.

Since the rates of (inverse) decay and conversions are proportional to di, whereas that
of scattering scales as di, the latter is expected to be the smallest one, and therefore
negligible for determining CE. When the largest of all these rates, denoted by F;m)?f)
becomes smaller than the Hubble parameter, we can consider CE to break down; if this is
the case, we should resort to the full set of Boltzmann differential equations, as described
in section 2.3.2.

It is reasonable to assume that scattering with gluons is the ultimate responsible
for maintaining chemical equilibrium, since the corresponding cross section scales as
(OV)xs gosxs g < g dy (cf. eq. (3.B.2)). We show the ratios T'y,,,/H as functions of temper-
ature in fig. 3.8, for m; = 1 TeV and d,, = 1079 (in the direction ya — X1): as can be seen,
the scattering processes actually have the largest rates; in addition, we verified that also
for different DM masses the scattering with gluons is always the main contribution. Since
the CE has to be maintained until the DM freeze-out, and since the rate is monotonically
decreasing with the temperature, we can simply evaluate it at freeze-out, 20 < zp < 30;
from fig. 3.8, we see that for d, = 107%, the ratio I'/H is roughly 10*. By rescaling it
with d,, we finally find that CE ceases to be valid for d,, < 1075,
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Figure 3.8: Ratios I'y,,/H for different processes as functions of the temperature, for
my = 1TeV and d, = 107% in particular, scattering, decay and conversion are shown in
blue, red and green, respectively.

Given that the resolution of the full set of Boltzmann equation is not the main goal
of the model, we consider in the following values d,, 2 1078, in order to be in the regime
of chemical equilibrium.

3.2.2 LHC analysis

Like most of the DM models, also this one predicts monojet signatures at LHC; in ad-
dition, however, also bounds from R-hadrons searches apply, given that xs can travel a
macroscopic distance and then hadronize; finally, also dijets signatures could arise, from
the production and fragmentation of a bound state of two ys’s. We are going to review
these different searches in this subsection.

Bounds from monojet

The main channel of production of dark particles which is relevant for MJ is pp — x2 X2 7,
the other ones being suppressed by powers of d,; we apply recent bounds from the ATLAS
experiment presented in ref. [96], which select events with large ' and at least one high-
energy jet, with CM energy /s = 13 TeV and an integrated luminosity of 36.1fb~1.

Events are required to satisfy the conditions: £ > 250 GeV, leading-py > 250 GeV,
M icading jor. < 2-4; in addition, at most four jets with pr > 30GeV and |n| < 2.8 are
allowed; finally, the condition A¢(jet,pT) > 0.4 must be satisfied for each selected
jet. As usual for this kind of analyses, different signal regions are used, differing from
each others by the cut on JF,; in particular, the latter is f > 250 GeV for IM1, and
goes up to fp > 1000 GeV for IM10. We simulate parton-level events using MAD-
GRAPH5_AMCQ@NLO [188], then apply these cuts.

Constraints from MJ searches only apply if yo decays promptly, i.e. within the beam-
line radius, fpeam = 2.5 cm; otherwise, if it enters the detector material, it will form an
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Figure 3.9: Ratio between the simulated cross section and the bounds coming from ref. [96]
as functions of the different signal regions; the DM mass is m; = 860 GeV.

R-hadron within a very short timescale, of roughly A(S%JD ~ 1072*s. We take this into
account by considering the probability for each x» to decay with transverse decay length
Or less than lpeam [155]:

’P(ET < gbeam) =1- exp (—gbeam) , (325)
by

where {r = pJ /(myT,,) is the transverse distance travelled by y,. Each event is weighted
by this probability in order to find the effective cross-section where y, decays promptly.
We assume that all the coloured particles reaching the detecting stage hadronize.

In order to obtain a limit on the number of new physics events Nyp, we apply for
both current and future luminosities a y? analysis with 95% CL with unit efficiency and
acceptance, according to ref. [165]:

Xg _ [Nobs — (Nsm + NNP)]2
Nxp + Nsm + UgM

, (3.2.6)

where the error on the SM background is assumed to be normally distributed.

In order to determine which of the then signal regions of ref. [96] gives the strongest
constraint on our model, we consider (for a given value of m;) the ratio between the cross
section we simulated and the bound coming from the experimental search; the result is
shown in fig. 3.9 for m; = 860 GeV, leading to the strongest bound coming from IM9
(identified by the cut ' > 900 GeV). Given that different values of m; change both the
value of the simulated cross section and the kinematic distribution of the particles, it is
not trivial to recast the bound of fig. 3.9 into limits on the DM mass.

For the signal region IM9, the number of events is (see table 5 of ref. [96]):

Ney = 464 +34 ., Ny = 468. (3.2.7)
If we then apply eq. (3.2.6), we find that, at 95% CL, the number of NP events is Nyp < 85,
leading to the bound onxp < 2.4fb at 36.1fb™! of integrated luminosity. By using this
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value, we set a lower bound on the DM mass of m; > 860 GeV for d,, > 2 x 1077. The
full exclusion on the parameter space from current MJ searches is shown in fig. 3.11 with
the blue region. For a given value of m,, a lower limit on d, is set by the requirement
that xo decays promptly in order not to reach the detector and form R-hadrons.

Next, we project the bounds from MJ to higher luminosity by following the strat-
egy already adopted for the pDDM model; in particular, if we assume that the relative
systematic error scales as 0%°(Ly) = 7 0%(L;) with the luminosity, we can translate an
upper bound o (£,) on the NP cross section at the luminosity £; into a bound on the
same quantity at the luminosity £, as:

max max E N
‘71(\IP (L) = UI(\IP (L) \/7“2 + (E_: — 7“2) 5_N112 : (3.2.8)

where N; and dN; refer to the luminosity £;.

We extrapolate the current bounds to £, = 3000 fb™!, in an optimistic scenario where
the systematic uncertainties reduce by a factor of 2 with respect to the current ones; in
this case, the lower limit on the DM mass becomes m; > 1020 GeV, and is shown with
the light, blue region in fig. 3.11. Finally, in the extreme case in which the systematics
remain unchanged (become negligible) with respect to the current value, the limit is m; >
900 GeV (my > 1250 GeV) (the square root in eq. (3.2.8) is a monotonically increasing
function of 7, as long as /N; < ONy).

Bounds from R-hadrons

The colour charge of x» allows it to hadronize with SM particles, forming particles analo-
gous to the supersymmetric R-hadrons. If stable on detector timescales, these colourless
states can be detected via ionization signatures as they travel through the detector (with
a non-relativistic speed).

We use ATLAS bounds on R-hadrons [141], relative to a CM energy /s = 13 TeV
and integrated luminosity £ = 3.2fb~!; the relevant ones are those on gluinos, being y-
a colour octet.

To project current bounds to HL, we follow the procedure outlined in ref. [105], where
it is assumed that the number of background events simply scales with the luminosity and
that the signal acceptance-times-efficiency remains constant. The relevant results are the
background counts of ref. [141] (see table 3). Notice that in the HL projection, results are
limited by systematic uncertainties, rather than by statistics.

We simulated the pair production of ys’s at parton level with MADGRAPH, where the
model has been implemented using FEYNRULES [189]; we then applied the R-hadronization
routine from PyTHIA 8.230 [190].

The probability for x, to be stable at least up to the edge of the ATLAS calorimeter
is:

Pl > learo) = €xp <—gcalo) , (3.2.9)
lr

where f.,, = 3.6m is the transverse distance to the edge of the calorimeter and (7 =
pY/(maTy,), as before. This probability is applied on an event-by-event basis in order to
find the effective cross-section of events yielding at least one R-hadron. This relies on the
assumption that the lifetime of the resulting R-hadron is at least as long as the one of ys.
Following ref. [141], we assume that 90% of the x5’s form charged R-hadrons.
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Figure 3.10: Results from R-hadrons searches. Left: contours showing the value of d,
yielding a given production cross section for calorimeter-stable ys; we also show with the
blue, shaded region (dashed, black line) the region of the parameter space excluded by
current (projected) R-hadron searches performed by ATLAS. Right: corresponding lower
limit on d,, shown with the same colour convention.

The contours showing the interplay between the production cross section (rescaled
by the effective probability) and the mass of xs is shown in fig. 3.10, together with the
bounds from the ATLAS search; in addition, we also show a lower limit on d,, which
comes from the fact that if the latter is too small, the weight given by eq. (3.2.9) makes
the simulated cross section exceed the experimental bound.

We can then combine these bounds with those coming from MJ searches. We already
noticed that monojet ceases to be effective for small values of d,, since the latter make x»
long-lived enough to form R-hadrons rather than decay into the DM; when this is the case,
the relevant search is represented by R-hadrons, and the result is shown in fig. 3.11. In
general, every bound can be shown in terms of my rather than ms, since the mass splitting
Am is fixed by imposing the observed relic density (as discussed in section 3.2.1).

It is evident the complementarity of these two different searches, probing different
regions of the parameter space, both with the current and future luminosity.

Bounds from direct and indirect detection

Although a bit outside the main motivations for this model, we also checked if DD and
ID results can exclude part of the parameter space. As far as ID is concerned, we focus
on limits from antiproton fluxes [191]; it turns out that an upper bound on d,, as a
function of my, can be inferred from the upper limit on the annihilation cross section
o(x1x1 — gg9). The result is that these bounds are much weaker than those coming from
DD; in addition, they are even weaker than the requirement d,, < 1, in order for the EF'T
description to be valid. In particular, we found d, < 0.2 for m; = 1TeV and d, <1 for
my = 5TeV.

On the other hand, the relevant processes for DD are of the form y; ¢ — x1¢, and
two different diagrams contribute to the cross sections; since we are only interested in a
rough estimate, we consider the strongest bound coming from the constructive interference
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Figure 3.11: Combined bounds from MJ (blue) and R-hadrons (orange) searches; in both
cases, the darker region corresponds to the current limits, while the lighter one refers to
projections at high luminosity. Also the upper bound on d, coming from DD is shown
(red). In all the plane, the correct relic density is reproduced.

between the two contributions, and estimate the parton-level cross section as:

2
M

opp S 4 X dmad’ 1 (3.2.10)
1

where we used the proton mass m, as an estimate of the parton energy; this becomes:

dy \*(1TeV\?
—a3( _9x 2
opp S 1.55 x 10 (102> ( o ) cm” . (3.2.11)

We refer to the bounds from XENONIT [192], and we obtain an upper limit on d,, as
a function of the mass: such a bound is rather conservative, for the reasons explained
above, but it still leaves a large portion of the parameter space available. The result is
shown in fig. 3.11, together with the bounds coming from LHC searches.

Aside comment: about the EFT parametrization
As a final remark, we come back to the parametrization of the interaction Lagrangian
given in eq. (3.2.2); if we had used the general recipe for EFTs discussed in appendix B,

we should have written: )
_ 9x Y« —a v_._5 a
Lin = c 1672 m. X20" v x1GL, (3.2.12)

where ¢ is an O(1) real coefficient, and m, and g, are the parameters of the UV theory; the
factor of g2/16m% comes from the fact that dipole moment operators are usually generated
at loop level'.

The bounds on d,, shown in fig. 3.11, would then be translated into limits on the
effective scale A = m,/g.; the result is shown in fig. 3.12 for two different values of g, and
c¢ = 1. In particular, it turns out that the relevant experimental limits coming from LHC

'We thank Riccardo Rattazzi for pointing out this aspect.
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Figure 3.12: Current and future upper bounds on the effective scale A = m, /g, coming
from R-hadrons searches (green), together with lower limits coming from DD (red), for
g« = 0.1 (left panel) and g, = 47 (right panel). In both cases, we took ¢ = 1.

are those from R-hadrons searches, those from MJ being less restrictive; as can be seen,
the result strongly depends on the value of g,. In the same plot, we also recast the upper
limits on d, coming from DD experiments in terms of lower bounds on A.

Bounds from dijets

A last search strategy which could apply to our model is represented by dijets; if a pair of
X2’s is reproduced near rest, they could combine to form a QCD bound state analogous
to gluinonium, rather than decaying or forming R-hadrons. In particular, since the rate
of production is completely controlled by QCD, we can use the results of ref. [193] relative
to gluinonium to estimate the production of bound states made of two x»’s.

The strongest constraints on this channel come from limits on the dijets resonance
production; we use the model-independent analysis from ATLAS discussed in ref. [194],
making the conservative assumption of a narrow Gaussian width. We also assume that
the fitting function for the mass distribution used there also applies to high luminosity,
allowing us to project current bounds; to this purpose, we take the systematics to be
unchanged in going from low to high luminosity.

The results are shown in the left panel of fig. 3.13, together with the theoretical
production from ref. [193]; these limits assume that both the BR into dijets and the
acceptance (A) are equal to 1: this corresponds to the strongest limit possible, and the
real case BR x A < 1 is characterized by weaker bounds. The bound can also be recast
into an upper limit on the product BR x A, and is shown in the right panel of fig. 3.13.
Our model is not affected by values of BR x A larger than the theoretical bound of 1; as
can be seen, dijets constraints rule out the model for ms < 650 GeV if BR x A 2 0.1.

Overall, these bounds are rather conservative, for two reasons: on the one hand, the
production rate is computed at 14 TeV, whereas the constraints are reported at 13 TeV, so
that the corresponding production cross section would be smaller; on the other hand, we
assumed a narrow Gaussian width, while a broader one would have weakened the bounds,
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Figure 3.13: Current and projected limits from dijets searches. Left: currently (projected)
bounds on the dijet production cross section from the ATLAS experiment are shown
with the blue region (dashed line), together with the theoretical prediction (dotted, red
line). Right: corresponding bound on the product BR x A; the maximum possible value
BR x A =1 is shown as a dotted horizontal line.

as can be seen in fig. 5 of ref. [194].

3.A Appendices for the pDDM model

In the following, we present the appendices relative to the pDDM model; in particular, we
discuss the determination of the mass eigenstates, we provide more complete expressions
for the decay widths and effective cross sections, and we explain how we simulated the
events at LHC.

3.A.1 Mass eigenstates

The mass term of eq. (3.1.1) can be written as:
1
LoD —5 TLLMTL%—i—h.C., (3A1)

where npp = (Vrr \IICLR)T and M is a 2 X 2 symmetric matrix; the latter can be
diagonalized via a unitary rotation matrix U as M = UTmU, and if we denote by 6 the
corresponding angle, the requirements that off-diagonal entries of m vanish is:

)

2Mpcos20+ (my, —mp)sin20 =0 = O~ —, (3.A.2)
where in the last step we took into account that Mp > my . The mass eigenvalues are
mi2 = (my +mg)/2 F Mp; in terms of the mass eigenstates n p = Unp g, the mass
term can be written as £y D —1/2 ém&, where £ = nh° +n) = (& 52)T. By taking
into account that ¥ = (& — +°&)/v/2, it is easy to show that the kinetic term is not
canonically normalized; the correct normalization can be easily obtained by defining two

63



new fields x;,2 such that:

_ 5
{? = where a = ki, ke Z. (3.A.3)
2 = X2

For simplicity, we take &k = 1, so that the mass eigenstates are:

X1 = (\If Ue) (3.A.4a)

Xo = —= (U + 7€) | (3.A.4b)

EIHEI“’

with eigenvalues my o = Mp F (my + mg)/2. It is straightforward to show that xio are
Majorana fields.

3.A.2 Full expressions for decay widths and thermally-averaged
cross sections

In this appendix, we provide the formulas for the cross sections and the decay widths
which have been employed in the analysis.

In the limit my, Am < m;, we can approximate the decay width for the process
X2 = xaff as:

(f) 5
N o Am 3AmY (p2 | (p?
Paarr = ; /o8 LR { (1 2 m, ) CART

m2 16m? 2
— 2m% [(366%0) +33C(L)c§%) —|—36c§%) ) + — 3 — (2 (f)? +c§-4f)cg) + 205,{) )
Z/

10m? (. 3 A 65 A 2 2
| 10m] (1 m) (e + (f)) S (560 1 ol + 2ef))

Am? 2 my 2 my
A 7
(—m> ] +0
my

bro

The thermally averaged cross sections for the processes x;x; — ff and x1x2 — ff are,
respectively:

24m,Am 2 2
— —m12Z/ (2C(Lf) + C(Lf)cg) + 20%) )

= S0 ke oty
7 327 (1_ (m1+m2)2> my, (mq + my)

m%,

2 2 m2 2 2
[(Cgﬁ el > - / ; (C(Lf) — 6N 4 D )

+0 (é) (3.A.6a)
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OU)i; — —_
7 & 1 2m? 2x; + 3 2 m3, m? 2x; + 3
m%, @
(H2 . (N2 2
A S ( () (f))2 i
_ 3.A.6b
x; * 2m? ‘L B ) 2, +3|" ( )

where 1 = x = my /T and 22 = z (1 + Am/my).
The partial decay widths which have been used to determined the region of the pa-
rameter space where I'z//mz < 0.2 (see section 3.1.2) are:

(cL + cg)? (my + mg)? Am?
| =——Kmg |[l+ ————| | 1— 3.A.7
7 487 ma | L 2m?, m%, ( 2)
3
cr —cp)? 4m?2\ 2
T2 i = %mz (1 — m;) (3.A.7b)
Zl
N 4m3 2 2 m; 2 2
Uyrr= 2_247r mygiq |1 — 3 {(cgf) —i—cg) ) T (c(Lf) — 6cgf)cg) —i—cg) >} ,
f Z' zZ'
(3.A.7¢)
where:
2 2 2 2\ 2
Kz\/1—2%+(%) (3.A.8)
z z

3.A.3 Details about the analysis

The simulations for the DV and MJ analyses are made by means of MG5_aMCQNLOv2.4.2;
we limit ourselves to a parton level analysis. For the DV searches, we consider the process
high-py and the large J, the background is extremely low. We handle the decay of o
with the following steps:

1. we first generate 20k pp — x2X2j events, at the CM energy /s = 13TeV. Here, j
stands for the default multiparticle state containing quarks and the gluon;

2. we then generate 40k yo — x1 jJ events; only quarks from the first two families can
be produced, since we consider 1.5 GeV < Am < 8.0 GeV;

3. we then merge these two sets of events, replacing the sy in the 2 — 3 process with
its decay products, which we boost from the ys rest frame into the lab frame by
scaling the momenta and energy by By = p,,/my, and v = E,,/m,, respectively.
The system of 7 particles in the final state obtained this way is, for our purposes,
physically equivalent to the one we would have obtained if we had run the full process
at the MadGraph level. We have tested this procedure against direct decay of the x»
within the full 2 — 7-body process, and with decay of the x» particle by interfacing
the output 2 — 3-body .lhe file with BRIDGE [195], finding the equivalent final
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kinematic distributions in all cases, with our procedure substantially faster than
direct 2 — 7 production in MadGraph?.

The vertex and jet identification efficiency is model-dependent and depends on the details
of the detector [163], which we approximate by applying a relatively conservative flat
efficiency of 20%.

3.B Appendices for the chromo-electric DM model

In the following, we present the appendices relative to the chromo-electric DM model; in
particular, we provide the expressions for the effective cross sections, and we discuss the
Sommerfeld enhancement.

3.B.1 Full expressions for the thermally-averaged cross sections

In this appendix, we provide analytical expressions for the differential cross sections of
various (co)annihilation processes in the CM frame; we express them in terms of the

energies Fp o = ,/miz + p? of x12, and work in the CM frame, so that 6 is the angle

between incoming and outgoing momenta. In the processes involving a quark ¢, m,
denotes its mass.

X1X1 — gg

This channel proceeds via the exchange of x5 in ¢- and u-channel, with thermally-averaged
differential cross section:
dov B diE%
dQ  2m2mi (—2E1pcos + E? +m3 + p?)2 (2B pcos O + E? + m3 + p?)?
[ AE} (m3 + 2p*sin® )
+2E} (2m3p*(3 — 4 cos 20) + 4mj + p* sin® 0(— (7 cos 20 + 1)))
+ E} (m3p*(7 cos 40 — 12 cos 260 + 1))
+ E} (4m3p*(1 — 5cos 20) 4 4m§ + p° sin 26 sin 46)
— 4p? (mg + p2) 2 (p2 sin 6 — mg) ] (3.B.1)

X1X2 — g9

This channel proceeds via the exchange of x5 in t- and u-channel, the exchange of a gluon
in s-channel, and via the quartic vertex yix2 gg, with thermally-averaged differential cross

2In the case of direct 2 — 7 production in MadGraph, the extremely small width of the x5 leads to
an error in the final kinematic distributions. This is corrected by upscaling the width in the parameter
card by some factor, and rescaling the final cross-section by the same factor [196].
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section:
dov 3g§di
dQY 51272 E Eam? (E3 — p? cos? 0) 2
[ — 8E7p® (E3(1 — 2cos 20) + p* cos” 0)
+ 8E, Eqp? (E22 (4 — 5cos? 9) + p*cos? 6 (4 — 3cos? 0))
+ 8ELE, (E5 — p* cos® 0)
+ E3p® (4mims(1 — cos 20) + p*(3 cos 46 — 11))
+ p'mymy(cos 40 — 1) + p®(cos 46 + 7) cos? «9] (3.B.2)

X1X1 — 9q

This channel proceeds via the exchange of a gluon in s-channel, with thermally-averaged
differential cross section:

dow 2 \/ (Ey + Ey)? — 4m?2
dQ ~ 6Am2E, By (Ey + Es) %m?
[p2 (2m2 cos20 — (Ey + By) 2 cos®0) (Ey By — myms) ((Ey + Ey) 2 + 2m?2)]
(3.B.3)

X2X2 — g9

This channel proceeds via the exchange of x; in ¢- and u-channel, the exchange of a gluon
in s-channel and the exchange of x5 in ¢- and u-channel; the first two channels have an
amplitude proportional to di, while the others occur via QCD interactions, proportional
to ag. The thermally-averaged differential cross section reads:

dov 9g

dQ T 163842 EL (E2 — p?cos? f) 2
[E§p4(5 cos 40 — 12 cos 20 + 31) + 4B (5 cos 20 — 7)

— 24FS + p®(cos 40 — 4 cos 20 + 11) cos® §
3gzds
_l’_
51212m2(E3 — p? cos? 0)(—2Fspcos @ + E3 +m3 + p?)(2FEsp cos @ + E3 +m?2 + p?)

[4E§‘(m1m2 + 2p? sin? 0) + 2m1p2(—2m%m2 cos 20 + p*my(cos 40 + 1)
+ myp? sin® 0(3 cos 20 + 1)) — 2E3 (4m1p®mg cos 20 — 2m3msy — 4m?3p*sin® 6
+ p*sin® 0(5 cos 20 + 3)) + p®sin® (6 cos 20 — cos 460 + 3)]

dy E3
+

64m2mi(—2Fspcosf + E3 +m3 + p?)2(2Eypcos§ + E3 + m? + p?)?

[2E§(8m§ + 9p*sin? 0) + E5(m2p*(27 — 43 cos 20) + 32m] + 2p* sin® 6(3 — 14 cos 26))
+ E3(mip*(21 cos 46 — 34 cos 260 — 3)
— mip*(59 cos 20 + 5) + 16mS + 2p° sin? (4 cos 40 — 6(cos 20) — 3))
+ p*(m3 + p?)?(m3 (7 cos 20 + 9) + 2p* sin® 6(4 cos 20 + 3)) (3.B.4)
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X2X2 — 9q

This channel proceeds via the exchange of a gluon in s-channel, with thermally-averaged
cross section:

dov 3941/ E3 —m2 (E3 (m?+ p*cos® 0 — p?) 4 2E5 — m?Zp? cos® )
= .B.
dx) 204872 ] (3:B-5)

3.B.2 Sommerfeld enhancement

The modifications to the standard paradigm for the computation of the relic abundance
in presence of coloured particles can be studied by resorting to group theory considera-
tions [165]. If we consider a generic representation R of SU(N), the interactions can be
expressed in terms quadratic and quartic invariants; in particular, the Casimir invariant

C(R) and the Dynkin index T'(R), defined such that
(T°T"),; = 65C(R) , T{T*T"} = 6"T(R), (3.B.6)

where T denotes a generator of the representation R, can be used to construct the quartic
invariants:

Te{T°T*T*T"} = K,(R) = d(R)C?*(R) (3.B.7a)
d(A)C(A)T(R)

Te{T°T"T*T"} = K5(R) = d(R)C*(R) — 5 :

(3.B.7b)

where d(R) is the dimension of R and A stands for the adjoint representation.

When a coloured particle participates to the determination of the relic abundance,
then non-perturbative effects due to Sommerfeld enhancement can dramatically change
the result; in particular, for a single abelian massless vector, with potential V = ag/r,
the cross section is modified as:

Onon—pert. — S <%> Opert » (3B8)

where (3 is the velocity of the incoming particle, opers is computed with the standard
techniques, and S is defined as:

S(z) = — L (3.B.9)

1—em™

In the non-abelian case, the potential between two particles in the representations R and
R’ can be obtained by considering the decomposition of the the tensor product of the two
representations [197]:

g
V=— Tpr R Tg, . 3.B.10
; Z R (3.B.10)

The group theory decomposition into a sum of irreducible representations allows us to
write the potential as:

ag
V=oo (2@: Colg — Crl — (JR/1> : (3.B.11)
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In the case of interest for us, where R = 8 = R/, it can be finally shown that the
corrections from Sommerfeld enhancement to the annihilations into gluons and quarks
are, respectively [165]:

_ 1 1 1
Onon—pert. — -9 (_&ﬁ) + -9 (_%) + =9 (%) (3B12a)
Tpert  [yaxa—gg 6 p 3 26 2 p
Onon—pert. _ (_&&) ) <3B12b)
Opert X2Xx2—qq QB

69






Chapter 4

Dark matter within a composite
2HDM with extra singlets

Non-renormalizable theories are
just as renormalizable as
renormalizable theories.

Steven Weinberg

We discussed in detail the naturalness problem related to the SM Higgs, namely the
fact that one should expect my to be of the order of the cutoff under which the UV
theory reduces to the SM. As anticipated, a possible solution is to suppose that the
Higgs is not an elementary particle, but rather a composite object; if this is the case,
we have to distinguish two regimes: at low energies, the prediction for the Higgs mass
given by eq. (1.4.4) is like in the SM, i.e. it develops a quadratic divergence [27]; at
higher energies, however, quanta have a short enough wavelength to resolve the internal
structure of the Higgs, leading to a decreasing behaviour for dm3?/dE. We can imagine
this to happen at a confinement scale m, ~ 1/l,, where [, represents the physical size of
the Higgs. Overall, then, the integrand of eq. (1.4.4) is expected to grow linearly at small
energies, reach a peak at m, ~ O(1TeV) and then decay quickly.

This picture requires the existence of a new strongly-coupled sector, emerging from
an even more fundamental theory at a UV scale Ayy > m,, at which the theory is close
to a fixed point of the renormalization group (RG). The assumption is that no operators
with a scaling dimension considerably lower than 4 exist in the UV theory, so that no
parameters with positive dimension appear (contrarily to what happens, for example, in
the SM with the parameter p of eq. (1.1.8)); if this is the case, then no unprotected
scales are present in the fundamental theory. This aspect is crucial because it allows the
RG flow towards the IR to be sufficiently slow, requiring a “time” ¢ = log(Ayy/m.) to
depart from the fixed point and confine. This “time” can be arbitrarily long, resulting in
a strong suppression of m, with respect to Ayy; this mechanism, by which a scale m, is
generated starting from a theory without dimensionful parameters, is called dimensional
transmutation [198].

In CH models, we usually distinguish between composite and elementary sectors, the
latter containing all the SM states we know cannot be composite objects at the TeV scale;
since also the weak gauge bosons belong to this category, the composite sector must be
characterized by a global symmetry group G which contains the electroweak (EW) one,
G D Ggw = SU(2), x U(1)y. Similarly to what happens in QCD, the group G is expected
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to be spontaneously broken (roughly) at the confinement scale m, to a subgroup #,
delivering a number of NGBs; the Higgs is assumed to be one of them. The Higgs mass and
the potential, responsible for EWSB, are obtained by explicitly breaking G, making the
Goldstones become pseudo-Nambu-Goldstone bosons (pNGBs); such an explicit breaking
is obtained via the interactions between the composite and the elementary sectors. The
fact that the Higgs results as a pNGB is a key point: if this were not the case, in fact,
we should expect m; ~ m,; but then, analogously to what happens in QCD, also a
series of other resonances with masses of the order of m, would be present. The fact
that such states have not been observed forces us to consider m;, < m, ~ O(1TeV).
The interaction Lagrangian, responsible for the explicit breaking of G, must not contain
strongly relevant operators, in order to ensure the global symmetry to be approximate.

The minimal composite Higgs model (MCHM) is based on the breaking pattern
SO(5) — SO(4) [199], thus delivering 4 NGBs which constitute the Higgs doublet. By
slightly enlarging the groups, i.e. by considering the pattern SO(6) — SO(5), one has
the minimal CH model which also includes DM [200-204]. Other possibilities consid-
ered in the literature are SO(6) — SO(4) x SO(2) [202,205-207], SO(7) — G5 [208],
SO(7) — SO(6) [209-211], SO(7) — SO(b) [212], SU(4) x SU(4) — SU(4) [213,214],
SU(5) — SO(5) [215], and SU(6) — SO(6) [216-218].

In this chapter, which is based on ref. [3], we study in detail the breaking pattern
SO(7) — SO(5) x SO(2), which turns out to be a composite two-Higgs doublet model
(2HDM) with two extra singlet, the lightest of which will be a WIMP dark matter candi-
date. After the general discussion of section 4.1 about how EWSB can be addressed in CH
models, we discuss the theoretical aspects of the model in section 4.2; section 4.3 is dedi-
cated to the spectrum and the interactions of the pNGBs, while in sections 4.4 and 4.5 we
show how this model predicts thermal and non-thermal productions of DM, respectively.
Finally, the appendices are organized as follows: we discuss in appendix 4.A the identifica-
tion of the NGBs, we show how EWPTs and Higgs couplings fit constrain the parameter
space in appendix 4.B and we present a list of effective couplings in appendix 4.C.

4.1 Vacuum misalignment

The last ingredient which is needed in order for a CH model to be realistic is a way
to correctly account for EWSB; this is achieved through a mechanism known as vacuum
misalignment, which we now review. As a starting point, we introduce a reference vacuum
F, and assume that the NGBs are encoded in the field:

o(z) = ¢ FEOT R = () F (4.1.1)

where U(II) is the Goldstone matrix. Here, f is related to the energy scale m, by f =
m*/ Gx-

This construction, which is based on the CCWZ formalism, is reviewed in appendix A.
We then divide the generators in two subsets, according to their effect on the vacuum,
ie.:

{T°. 7"y . T°F=0 , T'F+#0, (4.1.2)

This choice is purely a convention, and other possibilities may exist.

Given that the new sector is endowed with a global symmetry group G, it must contain
the EW group Ggw, which is gauged by introducing the appropriate covariant derivatives.
Since G is spontaneously broken at a scale which is assumed to be much higher than the
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Figure 4.1: Schematic representation of vacuum misalignment. Left: in the first
parametrization, the reference vacuum F' is displaced by the VEV of the pNGBs; the
physical vacuum is not left invariant by the action of Ggw C H, leading to EWSB. Right:
in the second parametrization, the electroweak group Ggw is not orthogonal to the phys-
ical vacuum (which is orthogonal to #H, by definition); after the explicit breaking of G,
this leads to EWSB. In this parametrization, no VEV for the pNGBs is allowed.

weak one, two different choices regarding the embedding of Ggw are possible, as we now
review:

i) a first possibility is to assume Ggw to be entirely embedded in H, Gew C H C G;
with this particular choice for the embedding, once the group is gauged, the gauge
bosons W and B, only couple to the currents associated to the unbroken generators
Te.

Given that only a subgroup of G is gauged, the latter is explicitly broken (analogously
to the breaking of SU(2);, x SU(2)g in the SM due to the presence of ¢'). In addition,
as we will see in a concrete example, also the interactions between the NGBs and the
fermions explicitly break G.
As discussed in appendix A, a VEV for the NGBs II;’s is not physical, since it
can be eliminated via transformations belonging to G/H; this implies that if G is
unbroken, (¢) is parallel to F', and then invariant under Ggw: EWSB does not occur.
However, the explicit breaking of G due to the NGBs interactions with gauge bosons
and fermions generates a potential for the Goldstones, making them become pNGBs
which in turn leads to a VEV for the II;’s. This VEV now cannot now be eliminated
by symmetry transformations, since G is explicitly broken. The effect is that the
vacuum of the theory is not parallel to F' anymore, and therefore it is not invariant
under Ggw: the EW symmetry is spontaneously broken; this is schematically shown
in the left sketch of fig. 4.1.
The amount of EWSB depends on the projection of the physical vacuum (¢) on the
plane identified by #H (since it contains Ggw); if we define f = |F| and 0 =||(I1)||/ f,
the EWSB scale is:

v = fsinf. (4.1.3)

Being a dimensionless parameter, we expect in general § ~ O(1), so that v ~ f: if
this is the case, this construction reduces to the case of technicolour; in CH models,
instead, we demand 6 < 1, and we usually express this condition by requiring:

f=— < 1; (4.1.4)



ii) a second possibility is to assume that the EW group is embedded in a group #H’
which does not coincide with H; as long as the global symmetry is unbroken, such
a distinction is not physical, since one group can be always mapped into the other.
Similarly to the other case, however, the gauging of ‘H’' explicitly breaks G, and a
potential for the NGBs is generated, making them become pNGBs. After this explicit
breaking is not possible to align the two vacua (relative to H and H') anymore: in
particular, the physical vacuum of the theory, orthogonal to H, is not left invariant by
the action of H', leading to EWSB. This is represented in the right sketch of fig. 4.1.
In this parametrization, therefore, two sets of generators must be considered: a first
one, {Tp}, related to the breaking G — H, and a second one, {T'}, related to G — H';
the mapping between the two is obtained via a rotation matrix ry, and if we assume
the generators to be normalized as Tr{TAT?} = 648, we have:

To=reTr,". (4.1.5)

As a consequence, two Goldstone matrices can be introduced:

i%ﬂ i¥211,

U=U)=e , Upg=U(ly) =€"7 7, (4.1.6)

with II = II'T" and Iy = II'T;. In this parametrization, the pNGBs are defined
around the physical vacuum, and are not allowed to take any VEV.
The rotation matrix ry can be obtained by considering the Goldstone matrix in the
gauge basis {T'} with the NGBs set to the corresponding VEVs, i.e.:

ro = U ((II)) . (4.1.7)

Such an approach is used, for example, in refs. [219,220], and we will also exploit it
in our discussion.

These two parametrization are different, but equivalent; nevertheless, the second one has
the virtue that for breaking patterns different from SO(N) — SO(N — 1) (for which a
parametrization for the pNGBs analogous to the minimal scenario is always possible [27]),
one can expand the Goldstone matrix Uy in the fields but keep the exact expressions for
the parameters related to the vacuum.

4.2 Construction of the model

In this section, we discuss in detail the aspects of model building for the CH model based
on the breaking pattern SO(7) — SO(5) x SO(2); we adopt the second one of the two
parametrizations outlined above for vacuum misalignment, i.e. we assume the EW group
to be embedded in a subgroup H’' which does not coincide with .

As we will see, this breaking pattern delivers two SU(2), doublets, being effectively a
composite 2HDM, and two singlets.

We discuss in section 4.2.1 the embedding of the NGBs, while we show how they
are coupled to SM fermions and how the scalar potential is generated in sections 4.2.2
and 4.2.3, respectively.
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4.2.1 Goldstone embedding

It is convenient to introduce the generators in the gauge basis, SO(7) — SO(5)" x SO(2),
which is then related to the physical one by eq. (4.1.5):

?
(Tg)ab = _5 [Eaﬁv 5,3(1 5'yb + <5aa 541) - 6ab 540,)] (421&)
(TR)w = —% €08y 08a Oyp = (Oaa Oap — Oab O4a)] (4.2.1b)
(T5)ap = —é [Ousa 055 — 050 O] (4.2.1c)
(Ty)y = —é (G0 675 — 870 O (4.2.1d)
. ;
(T1> = [0ia O6b — O6a Oit) (4.2.1e)
. i
<T2> = [6ia 076 — 074 Oip) (4.2.1f)

where o, 8,7 =1,2,3,a,b=1,...,7,w=1,...,4and ¢ = 1,...,5. We indicate by 17, p
the generators of SO(4)" € SO(5)’, by Ts the remaining ones of SO(5)’, and by T3 that of
SO(2)'; finally, T} , are the broken generators.

If we define T4 = {T},, Tk, T5}, we have the following commutation relations:

ni Iy Ny i
[TDTIJ] = (tA)ijTA = [T27T2]] ) [TlaTg] = _E 5ijT2 ) [TA>T2] =0 ,
‘ ' (4.2.2)
Ti, TA = (#4) 19, 10Ty = —=T% . [T0 Ty = ——1T7
[1,2 ] ( )U 1,2 [1 2] \/52 [2 2] \/51
where ¢4 is the upper 5 x 5 block of T, together with:
(o3 N [e% Z (e} (o3 Z e
[TL,Rv Tf,R] = ZEaﬁVTz,R ) [TL ) T54] = _5 i, [TR7 T54] = 5 VA
(6% Z (6% Z
[TL ) T56] = 5 (60451? + €aBy TE?) ) [TR7 TSB] = 5 <_5C¥5Té + €apBy TE;Y) ) (423)
w1 ) i w w o
[Ts 7T5 2] - 5 €orwaws (TL3 + TR3) ) [TL ’ T}é] =0.

It is evident from eqgs. (4.2.1a) to (4.2.1f) that with this choice for the generators, a generic
G transformation is in the form:

TL,R i T5 T T
~ ~ I 1 2
{TL7TR7T57T27T17T2} ~y L,,A y (424)
T 0
Ty T
Ty 2

so that H' transformations are block-diagonal.
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We use the first letters of the alphabet for the indices of a generic SO(7) transformation,
a,b,c,--- = 1,...,7; because of its block-diagonal form, instead, an SO(5)" x SO(2)
transformation will have @,b, ... indices, where a = {i, u}, with i and p being SO(5)’
fiveplet and SO(2)" doublet indices, respectively. In the following, we do not make a
distinction between upper or lower indices; on the other hand, instead, their position is
important: the first index refers to the row, while the second one to the column.

In order to identify the transformations properties and the quantum numbers of the
NGBs, as well as the symmetries of the theory, it is convenient to consider the limit of no
misalignment, where ry = 1; in this case, the pNGB matrix takes the form:

 [Ose5 @ @
Mo = [_e7 o o or= (I ) (4.2.5)
\/§ _(I)é“ O 0 ’ (I)Q = (HG “e 1_[10)T7

and I = 1,...,10. The NGBs transform as a (5,2) of SO(5)" x SO(2)’, and as (5,2) =
2x 442 x 1 under SO(4) C SO(5)". It is then convenient to parametrize the two fiveplets
of NGBs as:

¢y = (¢1a77)T ) Py = (¢27 "{)T : (426)

It is sometimes useful to consider the bidoublet notation for ¢, 5, which is defined as usual
as:

Lo gk 4
o= —7= "o, +10,) , a=1,2, k=1,2,3. 4.2.7
bo = 5 (10700 +100) (4.2.7)
We will use the symbol ¢ for both the fourplet and the bidoublet notations, the correct
one being clear from the context.
From the discussion of appendix A, we see that the Goldstone matrix has aa indices
and transforms as:

Uaa = Jab Ups i (4.2.8)

As already stated in ref. [205], a VEV for the second doublet can lead to dramatic viola-
tions of EWPTs, in particular because of contributions to the T parameter. A possible
way out is given by discrete symmetries, which can prevent the appearance of the second
VEV. To this purpose, we introduce the discrete symmetry

Cy = diag(1,1,1,1,1,1,—1), (4.2.9)

acting on the NGBs matrix as as U — CyUC5, and on the NGBs as (®1, Py) — (P, — D).
We will come back to this symmetry later, when we will show that it is explicitly broken
by the interactions of the strong sector with SM fermions.

Another discrete symmetry which is useful to our purposes is the parity

P; = diag(1,1,1,1,—1,1,1), (4.2.10)

which can help in stabilizing the singlets, since (9, k) — —(n, k) under it.

Another symmetry we assume to be respected by the theory is C'P; in order to de-
termine the C'P-parities of the NGBs we must study the interactions between the strong
sector and SM fermions (see section 4.2.2). We will show that C'P remains unbroken in
this model.

The CCWZ construction does not take account of a contribution which arises at Oth
order in the perturbative expansion: the Wess-Zumino-Witten (WZW) term [221, 222],
which could in principle affect the stability of the pNGBs. In general, the parameter
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Field | SO(4)" | Cy | P,
$1 4 + | +
P2 4 - | +

n 1 + | =
K 1 - | =

Table 4.1: Representations under SO(4)" and parities under the discrete symmetries for
the NGBs.

controlling the anomalies is given by dgp. = %Tr (T.{Ty,T.}), where the T’s generically
denote the generators. In the model we study, no WZW anomaly emerges at the order we
consider; in addition, it is possible to prove that such a term does not emerge in general,
since the fifth de Rham cohomology group of SO(7)/SO(5) x SO(2) vanishes [223,224]".
This implies that the singlets remain stable, and therefore the discrete symmetry P; is
unbroken to all orders in the perturbative expansion.

We show in table 4.1 the representations of the NGBs under SO(4)" and the corre-
sponding parities under the discrete symmetries.

This discussion is valid in the case of no misalignment, ry = 1; in general, the gener-
ators which enter in eq. (4.2.5) are related to the ones in the gauge basis of egs. (4.2.1a)
to (4.2.1f) by eq. (4.1.5). As already stated, we will show that Cy is explicitly broken,
whereas P; and C'P are not; compatibly with these symmetries, the most general mis-
alignment between the physical and gauge basis is:

10 O 0O 0 0 O
01 0 0O 0 0 O
0 0 Co 0 0 O So
re=1 0 0 0 cg 0 s7 0 , (4.2.11)
00 O 0O 1 0 O
00 0 —S1 0 C1 0
0 0 —So9 0 0 0 Cy

where we defined sy 5 (¢12) =sinf; 5 (cosby2), with 61 2 = (Ily5)/ f; the form of 7y comes
from the fact that the C P-even NGBs are II; and Ilg, as we will show.
It is then convenient to define:

sinf; = \/gcosﬁ
sin 0y = \/Esinﬁ.

The previous discussion about a vanishing VEV for ¢, would translate into the require-
ment = 0. As we will discuss, although C; is effectively broken, bounds from EWPTs
require Ay < 0, and then § < 1.

According to the CCWZ prescription, the low-energy effective Lagrangian containing
the kinetic terms for the NGBs plus derivative interactions is (see eq. (A.2.31)):

(4.2.12)

Ly = 2Tr [d@aOn) | (4.2.13)

where dff) = z'Tr[U(;lDMUQTQI]THI is the d symbol in the physical basis, and the covariant
derivative is defined, in terms of the (non-canonically normalized) gauge fields A, =

"'We thank Joe Davighi for pointing out this mathematical aspect.
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gWiTE + ¢B,T}, as D, U = 0,U — iA,U. The masses for the W and Z bosons can be
obtained from eq. (4.2.13) by setting the NGBs to zero, and read:

g°f?
mi, = 1 (sin? 0, + sin” 6y) (4.2.14a)
2( .2 12
m3 = M(Sin2 0; +sin®6y) |1 — % (1 —cos4p)| . (4.2.14Db)

The SM prediction for myy is then correctly reproduced if we identify the Higgs VEV v

by the equation:
2

=l S

£

which is the usual definition of the ¢ parameter in CH models (cf. eq. (4.1.4)); on the
other hand, we see that my differs from the SM prediction by the factor

: (4.2.15)

1
3
my = m(ZSM) 11— i (1 —cos4B)| (4.2.16)

leading to a tree-level contribution to the p parameter defined in eq. (1.1.13) (or, equiva-
lently, to T) We will come back later to this aspect when discussing restrictions on the
parameter space from EWPTSs, but we can notice that this contribution is due to the fact
that the VEV (Ilg) breaks the custodial symmetry down to SO(2).

From eq. (4.2.13), it is also possible to find out the expressions for the Goldstone
bosons GG; which are eaten to give mass to W and Z; in general, they can be identified by
looking for interactions like —g/(2v/2)v MG W (see, e.g., ref. [225]). While the general
case can be found in appendix 4.A, we report here the expressions for ¢ 5 in the case of
no misalignment, 8 = 0, in which:

Gy + G —i(Hy — H.)
V2 V2
i(Gy —G-) Hy+ H_
¢1 = A2 CES VoI . (4.2.17)
Gy Hy
h Ag

Here, h is the physical Higgs, while Hy (Ap) represents the C'P-even (odd) component of
the second doublet.

4.2.2 Partial compositeness

In CH models, the interactions between the strong sector and SM fermions are usually
studied by resorting to the paradigm of partial compositeness [226]: the idea is that SM
quarks are linearly coupled to fermionic operators of the strong sector Oy, g; in principle,
the composite operators can be in any representation of the group G, but we consider
here the simplest case in which they are in the fundamental, Oz € 7 of SO(7) (for other
representations, see, e.g., ref. [210]). In the following, we mainly focus on the top quark,
since the corresponding Yukawa is the largest one, and it represents the main contribution
to the potential.
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The composite operators must be such to contain the SM quarks representations when
decomposed under Ggw, i.e. 21 13 1 1. In CH models, in general, one has to enlarge
the symmetry group in order to reproduce these representations; this is easily obtained
by considering an extra U(1)x, with X properly chosen (typically, X = 2/3). The hy-
percharge is then defined as Y = Ts + X. To determine which operators the left- and
right-handed quarks can couple to, we have to consider the decomposition of the 7% of

SO(7) under the EW group; this is:

T:=(51):(1,2):=2:8261: 12 &1z, (4.2.18)

2 2
3 3

win

under SO(5)" x SO(2)" and Ggw, respectively. According to table 1.1, we then see that
the right-handed quark ¢g can couple to both the singlet of SO(5)" and the 1 2 coming
from the 5; the left-handed quark ¢, instead, can only couple with the 2% coming from
the 5.

In partial compositeness, two equivalent approaches are possible: on the one hand,
one can assume the quarks to be part of G-incomplete multiplets; on the other hand, one
can consider the case where the couplings are promoted fo fields (called spurions) which
belong to some representation of G. We take the latter approach, being it suitable also
for the generation of the scalar potential. We then introduce the Lagrangian:

Ll =@ V" O +trVEOp +hec. (4.2.19)

where Yy, g denote the spurions, a = 1,...,7 is an SO(7) index and « = 1,2 is the flavour
index of the quark doublet.

The SM fermions are assumed to be even under both C; and P, implying for the
spurions the transformation properties:

Yir—=>CoVLr » Yir— PrYig. (4.2.20)

Equation (4.2.19) exhibits two “elementary” Symmetriesz a U(2)%!, under which the com-
ponents of ¢¢ and V¢ are rotated, and a U(1)%, under which tp and Vg are charged.
Compatibly with these symmetries, and with Py, the most general VEVs for the spurions

are:.
. T
oy (00 i 1000
yL——ﬁ (Z 10000 0> (4.2.21a)
Ye=yr (0 0 0 0 0 cos, isin6;)", (4.2.21D)

with y;, and yr real.

It is evident that (5 is explicitly broken by the VEV of )i unless 6, = 0.

In the following, it will be important to distinguish between two concepts of symme-
tries: we define spurionic the symmetries of the strong sector which are respected by
the Lagrangian before the spurions acquire a VEV; on the other hand, we define residual
the symmetries which are respected also once the spurions have acquired a VEV. In the
following, we assume that spurionic symmetries remain unbroken.

Similarly to what is done with the gauge fields, it is convenient to “dress” the spurions
and define:

Vi = (T; '} yL>a (4.2.22a)
Yr=1,"Uj Vr. (4.2.22b)

79



This definition is consistent with the standard one, i.e. Y = U'Y: this can be easily
checked by going to the basis of the VEV, where (Uy) = 1 and (U) = 7.

In general, the dressing procedure has the effect of starting from an object transforming
with an index a of G, and obtaining a new object which transforms with an index a of H;
it is then understood that whenever a barred quantity appears, barred indices are implicit.
The idea is now simple: we use the dressed spurions to write invariants under H, and
they will also be automatically invariant under the full G; in particular, we can consider
a low-energy effective Lagrangian coming from integrating out the composite operators
(notice that the pNGBs are included in the dressed spurions).

In the aligned limit, ry = 1, the dressed spurions transform as a (5,1) @ (1, 2) under
SO(5) x SO(2), with components given by:

s)", (M), (4.2.23)

where i = 1,...,5, while 4 = 1,2 being the index associated to SO(2). The effective
Lagrangian can then be constructed by combining the components above with d;;, 0, and
€.uv; the latter possibility, however, violates the Cs-spurionic and will not be considered.
In addition, only left-right combinations have to be included because of chirality. Finally,
the two invariants which can be constructed with ¢ symbols are not independent, due to
the singlet one can obtain by combining two 7. The interaction Lagrangian for the top
quark is then:
My o (va T (v &

Ly = s ar (Vi2), Vr2)"tr, (4.2.24)
where the factor m,/g? comes from dimensional analysis (see appendix B), and ¢ is
expected to be an O(1) coefficient.

From eq. (4.2.24), we can read both the top mass and the top-NGBs interactions; by
expanding around = 0, the top Yukawa coupling is easily obtained:

Y, ~ ctyLyR (v/1—¢&cosb, + Bsinby). (4.2.25)

Note that the parenthesis approaches 3 for §; — 7/2, leading to a potential suppression
of the Yukawa coupling; this can be compensated by considering slightly larger values of
either ¢; or YyrLyr/gs.

The same analysis could also be repeated for other quarks; however, since Y., < Y},
their role is less relevant, the only exception being possibly represented by the b quark;
in particular, since this choice does not have a major impact in what follows, we take
0, = 0. One potential issue of the model is due to FCNCs: as outlined in section 1.2.1, in
fact, a special feature of the SM is that Yukawa interactions are flavour diagonal because
the Yukawa and mass matrices can be simultaneously diagonalized. This is in general not
the case for a model with more than one Higgs doublet; however, as discussed in detail in
ref. [205], flavour problems can be avoided if the Yukawa matrices are aligned, i.e. if we
take 0, = 0. = 0, and 0; = 0, = 0. If this is the case, MFV is actually enforced, leading
to the so-called tipe-III composite Higgs model; in this case, if we generically denote by
Y} and Yy the couplings of the quark ¢ with the two doublets, we have Y/ oc Y. In the
following, we make this assumptions about the embedding of the quarks.

A crucial point is that eq. (4.2.24) leads to the interaction ihAgty°t after the spurions
are set to the corresponding VEVs; such an interaction has two consequences: first, it
implies that Ay (i.e. the fourth component of ¢9) is C'P-odd, as anticipated; in addition,
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this term explicitly breaks Cs (the residual one, in the language introduced before), leading
in general to a non-vanishing VEV for the second doublet.

It also turns out that the two singlets n and s have opposite C'P-parities: we choose
1 to be even, and k to be odd.

4.2.3 Potential for the pNGBs

The scalar potential is generated by the explicit breaking of the Goldsonte symmetry;
since the composite sector is G-invariant, such a breaking can only come from interactions
between the composite and elementary sectors. Furthermore, given that elementary fields
do not couple with the Goldstone bosons directly, the potential cannot be generated
by loop diagrams with only elementary fields internal lines. As a consequence, an even
number of insertions of elementary couplings (denoted generically as gsy) is needed.

Following the discussion of appendix B, the potential can be schematically written as
(see, e.g., ref. [227]):

4 2 \ L BG kE /T
L«Hywzg(1$ﬂ> (iy) (i) 1/(7), (4.2.26)

where L is the number of loops at which the potential is generated, ye and pp count the
number of insertions of gauge and fermionic spurions, and V' is a dimensionless function
of its argument.

Fermionic contribution

The main source of explicit breaking of the Goldstone symmetry can be found in the
coupling of the composite sector with elementary quarks, and in particular with the top.
As anticipated, the generation potential is best studied with the method of spurions: for
the quark contribution, the Lagrangian is the same one which generates the top Yukawa
coupling, i.e. eq. (4.2.24).

We can then use the dressed spurions in egs. (4.2.22a) and (4.2.22b) to construct
invariants under SO(5) x SO(2) which in the end will be responsible for the breaking
of the symmetry, leading to the generation of the potential; given the two elementary
symmetries of eq. (4.2.19), all the invariants built from the Yukawa spurions have to be
combinations of the matrices:

Al = yraayobd (4.2.27a)

h@\‘

A% = yrayh (4.2.27b)

At lowest order, i.e. O(y?), in principle two invariants can be formed for each chirality;
however, they are not independent, as it can be seen by considering the trace of A.
From eqs. (4.2.22a) and (4.2.22b), we have:

TrA =A% = Py’ = A" (4.2.28)

which is independent of the NGBs, and therefore only contributes to the vacuum energy.
As a consequence, at lowest order, we are left with:
1) _ A (1 _ Adi
Ly =AL » Iy = A% (4.2.29)
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We can proceed in a similar way for the order O(y*): the invariants will be combinations
of Ap g, O, 0;; and d,,. With the VEVs given in eqgs. (4.2.21a) and (4.2.21b), the non-
vanishing invariants are:

1 AL AJL 1) _ ARij Aji 1 P )
IO = ATAG TV = AVAE L T = AT AL

(2,0) (1,1) 0 0,2) =

Toy =APAY . IO = ATAY, 10, = AJAY, (4.2.30)
3) _— A Gt A ai

I(0,2) =9 [AR AR} )

where the indices have to be interpreted as already indicated. While the operators in the
first line are generated at one loop, all the other ones are generated at two loops [205],
and are then suppressed by a further factor of g2/(4m)?, which can however be O(1). The
last invariant deserves one final comment: we consider only the imaginary part because
the “full” invariant A% A% only contributes to the vacuum energy (for a reason similar to
the previous one about A““) therefore, the real and imaginary parts are not independent.

The general form of the scalar potential in eq. (4.2.26) can be specialized for this case
as:

4
oy L) (i)
Wermion - Nc 1672 Z m C(TLL,TLR) I(”L;”R) 5 (4231)
nr,mR,t J*
where 70 is an invariant formed with ny p powers of Ay g, and c are O(1)
(nL,ng) (nL,nR)
coefﬁ(nents Since the fermions in the loop generating the potential are coloured there is
a factor N. = 3 accounting for the number of colours. Notice that I(nL ng) yi"Lyé"R,
which is the reason for the denominator in eq. (4.2.31).
Since we assume C'P-invariance, we take 053)2) = 0, given that the associated invariant
contains C'P-breaking terms.

It turns out that 08)0), cgl) 1) 08)0) 08)1) 025)2) 08)1) and 08)2) are the most relevant

coefficients for numerical estimates. We fix instead ¢'? to 1.

(2 0)

Gauge contribution

Another source of explicit breaking of the symmetry comes from gauge interactions, en-
coded in the Lagrangian:

Egauge =g W/{jjga + g/BM(JIlgS + J;{) , (4232)

int

where J% J“ and J% are the SU(2)., U(1)g and U(1)x currents, respectively.

Even in this case, it is convenient to resort to the method of spurions to identify the
operators that actually drive this breaking. Let us first focus on the term associated to
J 1’%’3; we promote the coupling ¢’ to a field and define:

= g\ T =g'T§. (4.2.33)
A=1

We can then write a formally invariant contribution to eq. (4.2.32) as

21
LE DY B,GYJh =B, Tr(G'J") (4.2.34)

int
A=1
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where G’ transforms as G’ — ¢ G’¢" under an element g € G.
It is then convenient to consider the dressed spurion

G =r; UG Upry (4.2.35)
whose components Gy = Tr [G'T*] organize in multiplets of SO(5) x SO(2) as:

21 = (10,1) @ (5,2) ® (1,1), (4.2.36)

associated to {11, Tr, T5}, {Tl,Tg} and T5, respectively.

The first observation is that a generic invariant must contain at least two powers of
G', because of the symmetry ' -+ -G’ , B, - —B,. In addition, to count and classify
the invariants, we can work at the leading order of G/, which actually coincides with G'.
We can thus organize the components of G as:

(G ()., s (4.2.37)
with 7 =1,...,10 being an index in the adjoint, while 2 = 1,...,5 and u = 1,2 being the
indices associated to SO(5) and SO(2), respectively. The invariant symbols we can use to
form invariants are 077, d;;, 0, and €,,: in principle, then, we would have 4 invariants;
however, the one which comes from the combination of §;; and €,, vanishes because of
symmetry considerations. In addition, it is easy to check that:

21 21 21
> TP (GTY) =Y T (GTY) =) G,3,. (4.2.38)
A=1 A=1 A=1

Since the Lh.s. is independent of the Goldstone bosons, the r.h.s. only contributes to the
vacuum energy. By taking this into account, we see that there are only two independent
invariants, which we take to be:

(Go) (), . GG (4.2.39)

Similarly to what we did for the fermionic contribution, it is convenient to express these
invariants in terms of matrix elements; we then introduce the notation:

Tt = ()" (g™, (4.2.40)

and define the invariants:

N
S o=
=
Il

|
Q
«
o

$ =~ (@) (@), =T .
¥ = -GG =T -
g

The analysis proceeds exactly the same way for the other two terms in eq. (4.2.32). For
the coupling g we can introduce the spurion G = G4 T4 = g T% and define:

robed = (G*)™(Ga)". (4.2.42)
The corresponding invariants are:
1) — Pijij
Ié ) = IR

(4.2.43)

2) —
TP = [ue
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Finally, also the term proportional to J% has to be considered: we denote the correspond-
ing spurion by G% = ¢’. Since a term of order (g;(f is a singlet under G and contributes
to the vacuum energy only, we are left with:

I = (G)" g . (4.2.44)
The only invariant we can build out of this object is:

3 =
I = e, T, (4.2.45)

g

which however violates the Cy-spurionic and therefore will not be considered in the fol-
lowing.
The potential given in eq. (4.2.26) can be specialized for the gauge contributions as:

gauge = 1671'2 Z Z 2 Cg I~ , (4246)

=1 g=g,9'
where céi)g, are O(1) coefficients.
Since the gauge contribution to the potential is subleading with respect to the fermionic
one, we fix all the c(;)g, to 1.

If we generically denote by ¢; the O(1) coefficients, we introduce three different ranges of
variations for them:

e strictly natural coefficients: 0.2 < |¢;| < 5;
e loosely natural coefficients: 0.1 < |¢;| < 10;

e unnatural coefficients: |¢;| < 0.1 or |¢;| > 10.

4.3 pNGBs dynamics

In this section, we discuss the dynamics of the pNGBs; in particular, section 4.3.1 is
dedicated to the structure of the vacuum of the theory, while we discuss the spectrum
and the interactions of the pNGBs in sections 4.3.2 and 4.3.3, respectively.

4.3.1 Structure of the vacuum

The pNGBs potential V' is given by the sum of the contributions in egs. (4.2.31) and (4.2.46);
its minimum can be found in terms of the misalignment angles ¢, and 6 (or, equivalently
from eq. (4.2.12), £ and () by solving for two of the free O(1) coefficients. We choose

(1)

to solve for 08)0) and Cii1y checking a posteriori that the solution lies within the desired

naturalness range. At leading order in y., p/g. < 1, we have:

1 1 1
2N.y; ¢ ( ) + 97 (N yi CE ) ) - 3920(9 ) 91202/)>

&= sin? 0, + sin? 6y ~
N.yjc (2 0)

(4.3.1)
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A tuning among the coefficients in the numerator must be imposed in order to reproduce
the desired fine tuning, the amount of which is of order A ~ ¢=1. As already discussed in
ref. [205], a hierarchy 0, < 6, i.e. § < 1, can be naturally obtained; in fact, we have:

sin 92 ~ Nc Cg?l)y%y%% sin 261‘,

 siné, 2¢2 (gfzcé}) + 2N, y%cg(l))l) cos 26;) .

(4.3.2)

In the following, we will be mainly interested in two regions of the parameter space:
0, ~ /2 and 0, ~ w/4. For 0, ~ /2, a strong suppression is naturally obtained,;
furthermore, for ¢’ < yg cos 20;, we have tan 3 ~ 32 /g2 tan 26; which is small for y;, < g..
For 0, ~ 7/4, instead, the term proportional to ¢’? cannot be neglected, but values of
B ~ 0.1 are still naturally obtained.

4.3.2 Spectrum of the pNGBs

Since [ is always naturally small in the regions of parameter space we consider, we can
perform a power expansion in the masses of the pNGBs obtained from the potential.
Because of the symmetries of the model, a non-diagonal mass matrix between 11 and Ilg
in general arises, and it can be diagonalized via an SO(2) transformation; it turns out
that the diagonalization angle « is a = 5.

Once the VEV of the theory is determined, i.e. the conditions on ¢ and S have been
imposed, we can find the expression for the Higgs mass; at leading order in ¢ and [, and
neglecting contributions from two loops and gauge invariants, we find:

N.f%¢ (2 4 ()

1
m; ~ 162 Yo yécgoé)(i’) + 4 cos 20, + cos 49t)>

Neg? o (oYL () | YR (1)
~ 87T2* m; <2EC(2’0) + gc(m)(?) + 4 cos 26, + cos 40t)) : (4.3.3)

where in the second line we substituted the expression for the top-Yukawa (cf. eq. (4.2.25));

we then solve for the coefficient Cg)o)v by using the experimental value m;, ~ 125 GeV.

A small value of g,, i.e. light top partners, helps to avoid a further tuning in order to
obtain the correct Higgs mass; for this reason, in the numerical analysis, we fix g, = 3

Given that the mass matrix is diagonal, the masses of other pNGBs, Hy, Ay, Hi, n
and x can be easily determined as functions of the remaining coefficients; to leading order
in &, these read:

2 2
2 Yr (1) Ut (2 2
my, ~ —Nc@ <c(071) + @6(171)) mZ cos(26,), (4.3.4a)
mh, & miy, (4.3.4b)
2
m
my, ~my, — Th’ (4.3.4¢)
m2~ N, 2B (D ﬁc@) m? cos® 0 (4.3.4d)
Y] ‘82 0,1) T g2 (L1 * Ly -
2 2
m? ~ Ncy—R D TL D ) 2 gin? Oy . (4.3.4e)
kK 872 0,1) * g2 (L) *
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Figure 4.2: Mass spectrum for ¢ = 0.061, § = 0.1 and g, = 3. The bands are obtained by

varying cgé?l) Eé)2) E?J)?) and cg)l) in the strictly natural range, |¢;| € [0.2,5].

As we can see, Hy, Ay and Hi are almost degenerate in mass. We assume in the following
that 7/4 < 0; < w/2 and ! 0 1), 8)1) > 0. When 6, =~ 7/2, also the first order in £ has to
be included in the estimate for my; it turns out that:

mi ~ N, cgé?l)é/R m? cos® 0, +§ . (4.3.5)

The spectrum is shown in fig. 4.2 for £ = 0.061 and § = 0.1, as well as different values
of 6(0,1)7 Cgé)z) 0832) and 6(1)1) The two most promising regions are for 6, ~ 7/2, where n
is by far the lightest pNGB (other than the SM Higgs), with a mass m, ~ O(100 GeV),
while all other pNGBs have O(1TeV) masses and do not participate directly to the
phenomenology; a second potentially interesting region is for 6, 2 7/4, where 1 and k
are very close in mass (but 7 is always lighter), both of O(1TeV); such a region could be
interesting for two reasons: on the one hand, there could be coannihilations between 7
and k, while on the other hand there could be non-thermal effect due to the decay of k

after its freeze-out.

4.3.3 Interactions among the pNGBs

In order to study the pNGBs interactions, it is convenient to consider separately those
coming from CCWZ and the ones coming from partial compositeness and the potential.

Interactions from CCWZ

The CCWZ Lagrangian in eq. (4.2.13) contains pNGB interactions with the SM gauge
bosons, as well as derivative interactions among the pNGBs. These can be effectively
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described as:

(2) 2 +1r7 M m2Z n b 2 >‘(V) 2 /\/(QV) 2
‘CH D»Ckin + meu W_ -+ TZ'LLZ 1 + —h + h 21}2 — N + W}i —+ ...

2 m2
5 (gHowm%VW:Wf + —gHOZ ZZ#Z“> H,

i kder
402

{ [©7(0,®1)" — (910,P1)°] + [25(0,D2)* — (920,P2)°] +

2
2 (D, Dy(0,D10"Dy) — (§10, D) (920, ®1)] + (@1 9, c1>2) ]

mwmz
2v

gH+VW ZH H+ + h.c. +. (436)

where Ly, contains the pNGB kinetic terms, kqer = 2£/3, and @ 5 are the two pNGB five-
plets of physical fields introduced in eq. (4.2.6); the expressions for the effective couplings
can be found in appendix 4.C. In writing the equation above, we neglected all the cou-
plings which break the custodial symmetry and which become negligible once the limits
from EWPTs are taken into account; we also omitted interactions with two gauge bosons
and two pNGBs, being less relevant for the phenomenology discussed in the following.

It is worth noticing that interactions with three pNGBs and two derivatives, such as
0,n O*nh, are absent from the Lagrangian above; this might seem surprising, since such
interactions have been long known to be present in similar scenarios, and their relevance
has been often stressed (see, e.g., refs. [200-202,210]). These usually arise from O(IT*)
terms, once the Higgs(es) takes a VEV; however, since we employ a parametrization
in which pNGBs do not take a VEV, these terms are not generated. Another way to
easily understand their absence is to set to zero the gauge and Yukawa couplings: in
this case, the global symmetry is exact and all vacua are degenerate, so that the SO(5)
and SO(5)" subgroups are physically equivalent. In this limit, the two-derivative NGBs
interactions start at O(II*) in both vacua (and are of the form specified in eq. (4.3.6)).
Now, switching on the gauge and Yukawa couplings selects SO(5) as the true vacuum;
however, since derivative interactions do not depend on these couplings, and since in our
descriptions fields do not take a VEV, the derivative interactions are not affected and
therefore cubic ones are not generated.

The connection with the description most commonly employed in the literature (where
NGBs are excitations around the gauge vacuum SO(5), with the Higgs taking a VEV)
can be easily obtained via a non-linear field redefinition (see, e.g., refs. [202,205]); for
example, in the limit of ; = 0 this is given by:

~2

h — h+ 91;77 +O0?), (4.3.7)
- 77h 2
n o= 3f + 067, (4.3.8)

where h and 7 are the physical fields in the gauge description.

Such a transformation generates cubic derivative interactions from the kinetic terms,
as well as non-derivative interactions from the pNGBs mass terms; the net effect of this
is to keep physical observables invariant under such transformations.
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Interactions with fermions and from the potential

The relevant interactions between pNGBs and SM quarks are:

g Ik Ink
L, D ——qq <k‘ h + kpyqHo — 25 n? + 27;;8) — %mqnﬂqv q. (4.3.9)

As far as the potential is concerned, instead, we have:

Vo-— gnh n*h — gnHOvnQH L vKZh — gﬁHOv/szo

2 2 2 2
_ % U2h2 _ )\ZLHO 772H§ + )\ZLAO 772143 + )‘n;u 772H+H_

_ g%;oh vh A2 — gA;Ho v HyA2 — gu wh HiH_ — gy, yovHoH H_

h 3 3 2 YHohh ;2
vh v H vh H h*H
Ax Ax s A
- 4’"” K2h? — 4H° K2HZ + 4A° KIAZ + 2H+ KIH, H_ . (4.3.10)

Finally, we can consider effective interactions between the pNGBs and the gluon, obtained
by integrating out the top at 1 loop; these read:

£y > ShGL, Gl + P GGl + PGl G (4.3.11)

Even in this case, the expressions for the effective couplings can be found in appendix 4.C.
We require them to be always less than 47 for perturbative reasons: this usually forces

cgé?l) to be smaller than 1.

4.4 Thermal dark matter scenario

From fig. 4.2, we see that a first region of interest is for 6, < m/2: in this case, n is much
lighter than all other pNGBs (with the exception of the Higgs) and is the DM candidate;
the abundance is generated through standard freeze-out. As already pointed out, in
addition, [ is naturally small, and no further tuning is necessary. Finally, we can see
from eq. (4.2.25) that the top mass is suppressed, requiring either a large ¢; or yLyr 2 gs:
for naturalness reasons, we choose the second option, and take y;, = 2, yg = 3 = g.; other
choices are possible, but we do not expect them to lead to a significant change in the
results.

In principle, also the region around 6, = 7/4 could be interesting, because coannihi-
lations between 7 and x could lead to a thermal relic abundance; we checked, however,
that this is not the case, and the correct relic density cannot be reproduced.

In section 4.4.1, we determine the relic abundance of DM predicted by the model; in
sections 4.4.2 to 4.4.4, we consider the limits from LHC searches, DD and ID, respectively,
while we summarize the results in section 4.4.5.

4.4.1 Relic Density

In the region 6; < 7/4, the main contribution to the DM relic density come from anni-
hilations of 1 into SM gauge bosons, Higgs and top quark; other contributions, such as

88



nm — VV* with V = W, Z, can be important at low masses, before the threshold for
on-shell production.

The thermally-averaged cross sections for the main annihilation channels are:

2
(TVrel) _ M m_%/ V) 2gnngv v° _ 29y o 9oV v?
rel/mm=VV 32mm2 vt |7 4m2 —mj +impTy  4m2 —mi
2m2 — m2\ 2 2
2+ (’7—2v> _ m_‘2/ (4.4.1a)
my, my
1 3gupAma 4Gty GHohh V*
Uvre - = 5 )\ + U . - = ° y
{0 Veet) -+ 64mm? " 4m2 —mj +im Ly, 4m2 —m3, + imp, Ly,
20200°  kaa(5m2 —m)|* [ 2
- - - (4.4.1Db)
h n K
9 3
<O'U 1> o iﬂg gnhkq U2 o gﬁHokHoq UQ 1 — m_g ’ (4 4 1C)
rel/nm—qq 4 4 |71 4m% — m% + amyly, 4m727 - m%{o m727 ’ h

with ay =1 (1/2) for W (2).
The thermally-averaged cross section for the process nnp — VV* is instead:

k? Nc(f) m4
<O—'Urel>7777—>VV* = Z S8 — (

29 gv v\
e AV) o 29IV YN 4.4.2
— 1536m0mz vt \ ™" + (ev: ) (442)

2 _ 2
m; —mj,

where we neglected the exchange of Hy in the s-channel, N is the number of colours of
the final state f, and:

2
v

= —¢F 2 —e2 1 42
Fley.¢ :/ g VYol Ay
(Ev: /) - (1-y)? & 4—dy + ey,

{ (7'(2V) + X%v)) [4y2 — 12}y + 83, + 35%/}

2 2
+ # [T(QV) (4y* — 1263y + 8e) + 3ey,)

4—dy+e}
+2x3y) (20° 4 1263y — 14y, — 3ey) ] } (4.4.3)
with:
N | 1 V=w
2v/2 =
ko) = N , = ’ , 4.4.4
W) g2+g'2 V) {CV X {CA , V =7 ( )

2

ey = 0¥ and ¢ = (my, +my,)/(2my,), fi and fo being the final states of V* decay.
Obviously, also the coefficients 71y and x(y) depend on the final states.

The relic abundance can then be computed using eq. (2.3.19), and the result is shown
in fig. 4.3. The darker (lighter) region is obtained by letting the coefficients vary inside
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Figure 4.3: Relic density as a function of the DM mass m,, for £ = 0.061 (corresponding
to f = 1TeV) and 8 = 0.1; the black line corresponds to the measured value Qh? =
0.1198 [46]. The dark (light) blue region is obtained by letting the coefficients in the
potential vary within the strictly (loosely) natural range (see section 4.2.3).

the strictly (loosely) natural range, with the nomenclature introduced in section 4.2.3.

The reason why a plateau appears for m, < my, is because the cross section is domi-
nated by annihilations into SM gauge bosons: since the latter do not depend on the ¢;’s,
the annihilation cross section is always bounded from below and, since Qh? ~ 1/{ov), this
corresponds to a maximum in the relic density. The situation changes at larger masses,
when new annihilation channels open up, where it is possible that a cancellation in the
main contributions to the effective cross section occurs: this is precisely the case in the
region m,, ~ 400 GeV of fig. 4.3, where 7 is sufficiently heavy so that the exchange of H
compensates the exchange of h in s-channel, the two contributions having opposite signs.
The consequence is an enhancement in the relic density, even if one could naively expect
it to decrease for large masses.

The most important effective coupling is gy, describing the interactions between two
h’s and one 7. It contributes to different processes with different signs, so it is non-trivial
to describe its role analytically; the results highly depend on the parameters & and (8
and, guided by EWPTs, we decide to focus our attention on & = 0.061 (corresponding
to f =1TeV) and § = 0.1. From fig. 4.3, we see that there are two good mass regimes
which give the correct relic density, Qh? = 0.1198 [46], for strictly natural coefficients:
m, ~ my/2 and m, =~ 150 GeV; a third one, at m, ~ 400GeV, also reproduces the
correct relic density if the coefficients are allowed to vary inside the loosely natural range.
However, as we will show, this high mass range is already excluded by DD experiments.
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4.4.2 LHC searches

In the region of parameter space where m,, < 62.5 GeV, the Higgs can decay into two DM
particles, h — nn. Experimental constraints on invisible Higgs decays have been obtained
by ATLAS and CMS [228,229] for various possible assumptions on the Higgs couplings to
SM particles. Since the couplings of the Higgs to quarks and gauge bosons in our model
are different from the SM ones, the widths of the decays into SM particles have to be
appropriately rescaled. The invisible branching ratio is defined as:

r
BRiy, = % , (4.4.5)
R
where nggj\f) is the correction to the SM decay widths due to the composite sector, and

for our model is
TS ~ 2T ww + 02T hozz + k2 Thgg + k2 Diss + Dhsrr (4.4.6)

Anyway, we do not expect a significant departure from the SM prediction, given the small
values of ¢ and 3 allowed by EWPTs. We take as an experimental bound BR;,, < 19%
at 95% CL [228]; at HL, LHC will reach a 95% CL exclusion sensitivity of 1.9%, while
future electron-positron colliders could be able to reach sub-percent precision (see, e.g.,
ref. [230] for a recent review of Higgs boson measurements at future colliders).

In our model, the invisible Higgs decay width is given by:

2 2
A L
Dhooy = gyt o (4.4.7)

which depends on the coefficients ¢;’s via the effective coupling g,,. The corresponding
prediction for the invisible branching ratio of the Higgs, obtained by letting the ¢;’s vary
inside the strictly (loosely) natural range are shown as dark (light) yellow regions in fig. 4.4;
the predictions of the model are always below the current bound, while HL-LHC will be
able to test most of this region of the parameter space with this kind of searches. On the
same plot, we show in blue the narrow region where the correct relic density is reproduced.

The production of n’s (either direct, or through the decay of some heavier scalars such
as Hy) could lead to missing energy traces; in this case, we should look at specific tags: in
our model, the most relevant ones will be one energetic jet, MJ, or two well-separated jets,
resulting in VBF signature. In both cases, it is important to include the effective coupling
of gluons to the massive scalars, given by eq. (4.3.11), since this gives the main contribution
to the production cross section. We implemented the model in FEYNRULES [189, 231]
and generated simulated events with MADGRAPH5 [188]; contributions from diagrams
involving Hy can be relevant, and were therefore included. For masses above 50 GeV,
neither monojet nor VBF put any constraints on the model, being the signal always at
least an order of magnitude below the experimental limits (see, e.g., refs. [96,232]) for
any value of £, § allowed by EWPTs.

Overall, DM searches at LHC do not put important constraints on the parameter
space of our model.
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Figure 4.4: Branching ratio of invisible Higgs decays as a function of the DM mass. The
dark (light) yellow region corresponds to strictly (loosely) natural O(1) coefficients. The
current bound, BR;,, < 0.19, is shown as a green solid line, while the HL-LHC prospect is
shown with the dashed line. Finally, the region of the parameter space where the observed
relic density is reproduced is shown in blue.

4.4.3 Direct detection

The DM candidate 7 can interact with quarks with both a contact interaction (cf. (4.3.9))
and an s-channel exchange of h and H,. According to the general discussion of sec-
tion 2.4.1, we can parametrize the interaction Lagrangian as:

eff _
LY =" amen*da. (4.4.8)
q
The coefficient a, is computed to:

L1g Jnh InH,
a =3 L}_g - (kq# — krog— “)] : (4.4.9)

The choice of aligning the Yukawa matrices in order to avoid FCNCs, discussed in sec-
tion 4.2.2, leads to a, = a. = a; and ag = a;, = a.

By repeating the steps that led to egs. (2.4.11) and (2.4.14), the spin-independent
nucleon cross section turns out to be:

2 2
75+ (A=2)f,
os1 = MXA; ( Jo )/ ) , (4.4.10)
Tm: A
with: )
for= > P, My + o fre > agmn,. (4.4.11)
q:u)d)s q:C,b,t
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We take f” = 0.026, fi” = 0.020 (and the opposite for p), £ = 0.043 = fi [77) and
fr, = 0.911 [233].

Given that the value of a, in eq. (4.4.9) depends on the coefficients ¢;, a cancellation
in the scattering amplitude can occur, allowing to evade bounds from DD; currently, the
strongest constrain comes from the XENONIT experiment [234].

As can be seen in fig. 4.5, the strongest restrictions on the parameter space of our
model come from DD; for this reason, we also show projections for the future XENONnT
experiment [235]; the majority of the parameter space, for the benchmark values of £ and
£ we consider, will be tested.

4.4.4 Indirect detection

We briefly discuss bounds from ID, although somewhat beyond our main interests. In
particular, we focus on limits from dwarf spheroidal galaxies (dSphs) given by Fermi-LAT,
and reported in ref. [81]; the relevant one for our model is given by DM-annihilation into
bb, and shown in fig. 2.7.

In the region m, ~ m;/2, only the direct process nn — bb has to be considered;
for larger m,, instead, also the intermediate productions of W, Z, h (and possibly other
NGBs) are important: as a conservative estimate, we assume that these intermediate
states completely decay into bb; we checked that the inclusion of the corresponding branch-
ing ratios does not alter the general results.

Similarly to what was done in ref. [210], we decide not to consider anti-protons bounds
from AMS-02, due to the still unclear size of the systematic uncertainties, and limit
ourselves to dSphs.

4.4.5 Discussion

As anticipated, there are three regions in which the correct relic density is reproduced,
at least with loosely natural O(1) coefficients: m,, =~ m;/2, m, ~ 150 GeV and m,, ~
400 GeV.

We choose as benchmark values £ = 0.061 (corresponding to f = 1TeV) and 5 = 0.1,
and we show the main results in the m,-g,;, plane in fig. 4.5 for loosely natural coefficients.
The orange (purple) hatched area is excluded by DD (ID), while in the blue one the correct
relic density is reproduced. The grey region finally corresponds to unnatural coefficients.

Low mass range (m, =~ my,/2)

In the first region, the correct relic density is reproduced for masses just below and just
above the on-shell Higgs production threshold of 62.5 GeV. The corresponding mass range
is clearly very narrow, being the correct relic abundance obtained thanks to the Higgs
resonance (this feature is the second of the exceptions described in section 2.3.2); since
there is no any dynamical argument for which the DM mass should be in such a narrow
range, this first region may be viewed as a rather ad hoc one.

Bounds from the Higgs invisible BR and ID do not exclude any parts of the region
where the correct relic density is obtained, while DD sets an upper bound on g,,. Anyway,
the relevant cross section for ID is below the current bound by just an O(1) factor, so that
we expect future ID experiments to be able to test this region. In addition, also HL-LHC
will probe a large portion of the parameter space (see fig. 4.4).
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Figure 4.5: Main results for £ = 0.061, 5 = 0.1 and loosely natural O(1) coefficients. The
blue region corresponds to the 3o-relic density contour; the orange and purple hatched
regions are excluded by DD and ID, respectively; the dashed, red lines correspond to
prospects of DD bounds from XENONNT; finally, the grey region corresponds to unnatural

O(1) coefficients.

Intermediate mass range (m, =~ 150 GeV)

In the second region, m, 2 100 GeV, the most stringent bounds on the parameter space
come from DD and from the requirement of natural O(1) coefficient; LHC experiments

94



0.02

1.6

1.4

f[Tev]

1.0

0.8

0.6

140
my, [GeV]

Figure 4.6: The dark (light) blue region represents values of m, and f for which it
is possible to reproduce the correct relic density at 3o, evade DD constraints, all while
having strictly (loosely) natural coefficients ¢;. The red region is excluded by our combined
fit of EWPTs and Higgs couplings (see appendix 4.B), while the black horizontal line
corresponds to the benchmark value of f =1 TeV (£ = 0.061) we consider. The green,
dashed region corresponds to the projection with DD limits from XENONnT and strictly
natural coefficients.

are instead not relevant, and are not expected to significantly improve in the near future;
also bounds from ID, although consciously overestimated, do not exclude portions of the
parameter space where the correct relic density is reproduced.

Upper and lower bounds on m,, are set by DD results (cf. fig. 4.5); if we considered
strictly natural coefficients, then masses below 135 GeV would be excluded.

The feature at m, ~ 180GeV is because of a cancellation in the cross section for
nnm — tt, due to the different sign between the effective couplings g,, and g, m,, as can be
seen by looking at eq. (4.4.1c).

Among the three regions in which the correct relic density can be reproduced, this one
seems to be the most promising one: on the one hand, bounds from ID are pretty weak
and those from DD leave a significant portion of the parameter space available; on the
other hand, the relic abundance can be obtained with natural O(1) coefficients, without
the need of extra fine tuning.

On the one hand, by decreasing the value of £ we enlarge the good mass range; on
the other hand, this comes at the price of a higher level of fine tuning. For this reason,
it is interesting to investigate how the correct DM mass range varies with varying fine
tuning; we show the result in fig. 4.6. We see that this models allows for small values of
f,up to f = 750 GeV for strictly natural coefficients, and even below 600 GeV for loosely
natural ones. The upper bound on £ comes from a combination of bounds from EWPTs
and Higgs couplings fit: we discuss these constraints in appendix 4.B.

This result should be compared to other similar non-minimal composite DM models
in the literature, for which significantly larger values of f were found to be necessary (see,
e.g., refs. [202,209)).
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What happens by varying ( is less trivial: in principle, an increase of 5 would result
in a larger dependence on the subleading terms and on the ¢;’s; however, we verified that
this is not the case for the values of § allowed by EWPTs.

Large mass range (m,, ~ 400 GeV)

The third region of interest is for m,, ~ 400 GeV; as already stated, it turns out that
a cancellation between the exchanges of h and Hj in s-channel takes place in the main
contributions to the annihilation cross section. Despite this enhancement, the correct
relic density can only be reproduced with loosely natural O(1) coefficients.

As can be seen from fig. 4.5, the benchmark point we consider is already excluded by
current DD constraints; in order to evade this bounds, we should take £ < 0.01; since
this would spoil the virtue of the model, i.e. delivering a viable DM candidate with a
relatively low fine tuning, we do not study this region of the mass range any further.

4.5 Non-thermal dark matter scenario

The greater complexity of the SO(7) — SO(5) x SO(2) breaking pattern with respect to
the minimal case can lead to a richer DM phenomenology; in particular, the larger number
of pNGBs can lead to DM production mechanisms others than standard freeze-out. This
can naturally happen in the region around 6, = /4, where the DM candidate, 7, is almost
degenerate in mass with the other singlet, x (cf. fig. 4.2).

If n and x are sufficiently close in mass, it is possible that s also undergoes thermal
freeze-out, and later decays; because of P;, which remains unbroken, the final state must
include one 7): in this scenario, then, it is possible to have a non-thermal production of
DM, as opposed to standard thermal freeze-out.

Because of C'P, which is also unbroken, the main decay channels are kK — nAy and
Kk — nqq; it turns out that only the latter is kinematically allowed, resulting in a further
suppression for the decay width due to phase-space.

The decay width for the process kK — nqq is:

m£+m% —4m2

2 q

3 m o [T e ) )
Dingg = 3273m,, v_4q|gmsq| / dQO\/ q(Q) - m% (mi + m,, — 2m,.qo)
m

n

4m3
- — , (4.5.1)
mZ +m? — 2m.qo

where the expression for the effective coupling g, is reported in appendix 4.C.

The lifetime of x has to be compared to the age of the universe when 7 freezes-out
(which roughly corresponds to the one of the freeze-out of k, because of the small mass
splitting), which is given by:

t 152 [1MeV)?
r o ( © ) 22, (4.5.2)
Ls \ Y%, EU my

with g. g =~ 100 being the effective number of relativistic species in the early universe
at freeze-out and xp ~ 25. Given that I'y_,,45 o< mg, it Am,,, = m, —m, > 2m,, the
decay is completely dominated by the ¢t final state, and it always takes place before k
freezes-out.
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Figure 4.7: Relic density from non-thermal DM production for ¢ = 0.01, 8 = 0.2, y, =
1 = ygr, g« = 3 and loosely natural O(1) coefficients. The blue region corresponds to the
3o-relic density contour; the orange hatched region is excluded by DD; in the grey region
the O(1) coefficients lie outside the range [0.1, 10].

If the decay is sufficiently slow, then, two independent contributions participate to the
determination of the relic density: on the one hand, n undergoes standard freeze-out; on
the other hand, the temporary abundance of x is completely converted in DM, given that
one 7 is produced per decay. The total abundance of 7, at the end of k-decays, is given
by (see, e.g., ref. [236]):

Qpath? = Qh? + % Q.02 (4.5.3)

Given that Hy, Ag, Hy are all lighter than 7, they also have to be included as final states
of - and k-annihilations; on the contrary, as in standard coannihilations, conversion
processes between 1 and x are not relevant for the final relic density determination.

We do not report the formulas of the annihilation cross sections, but these can be
easily determined from the interactions in eqgs. (4.3.6) and (4.3.9) to (4.3.11).

When non-thermal effects take place, it turns out that the two contributions to the
relic density are of the same order, i.e. €2, ~ Q,. Compared to the thermal case, however,
a higher level fine tuning on £ is needed in order to evade DD constraints.

Similarly to fig. 4.5, we show in fig. 4.7 the results in the m,-g,;, plane, for { = 0.01,
B =02y, =1=yg, g. = 3; in the whole plane, O(1) coefficients are allowed to vary
within the loosely natural range. Even for non-thermal effects, DD sets the strongest
bounds on the model, while ID is completely ineffective. In this plot, the mass splitting
is always in the range 20 GeV < Am,,, < 50 GeV.

As one can see from eq. (4.3.4d), this range of masses for m, roughly corresponds to
0; =~ 7 /4, as anticipated. While large mass splittings tend to favour a fast decay for &,
non-thermal effects are always possible for small mass differences, although a larger and
larger unnaturalness of the coefficients is required, (corresponding to a larger and larger
fine tuning for Am,,,/m,).

Despite the higher fine tuning which is needed, the non-thermal production mechanism
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for DM represents an intriguing feature; we think this is one of the most peculiar and
interesting aspects of the model. The greater level of complexity with respect to the
minimal case has been traded for a richer spectrum of NGBs which can play an active
role in DM phenomenology.

4.A Identification of the physical fields

In this appendix, we provide the general expressions for the embedding of NGBs, and the
identification of physical particles.
We parametrize the two fourplets as:

(kT —h7) L+
V2 V2
4 i it &)
V2 V2
V2 V2

ho + hg i(§ — &)

V2 V2

From eq. (4.2.13) we then obtain the expressions for the eaten Goldstones G and G°,
which read:

G* = Fi(h* cos B + £ sin B) (4.A.2a)
G° = ! {ho_hécosﬁ 1—{sin25+usin5\/l—500825}

\/1—2(1—COS46) V2 V2

(4.A.2b)
The orthogonal fields H4 and Ay can then be easily found:
Hy = Fi(—h*sin § + £F cos B) (4.A.3a)

Ay = : i [— ho\;ihé sin By/1 — £cos? 5 + fo\;;f)k cos 31/ 1 — € sin? B}

\/1 — (1= cos4p)

(4.A.3b)
These formulas are easily inverted to give:
1
I, = — [(G"+ G )cos B — (H" + H)sin 3] (4.A 4a)
V2
My = — [(GT — G )cos B — (H" — H)sin §] (4.A.4D)
V2
1
I3 = [GO cos B1/1 — €sin? B — A%sin B+/1 — £ cos? 3 (4.A.4¢)
§
1—2(1—cos4p)
4
I = H2|B—>B+7r/2 ;o 7 =-— H1|6—>ﬁ+7r/2 ;o g =— H3|,3—>3+7r/2 ) (4‘A-4d)
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which reduce to eq. (4.2.17) for g = 0.
We define the two remaining degrees of freedom as:
ho + hg o + &
V2o V2 o
These states cannot be identified with the SM Higgs h and the C'P-even component of
the second doublet Hy, since in general the latter are related to h and H, by the rotation:

h cosa —sina h
(HO) N <sina cos a ) (ﬁo) ' (4.A.6)

As we discuss in text, it turns out that, at leading order, a =~ (.

iL _goE—

(4.A.5)

4.B Bounds from EWPTs and Higgs couplings fit

In this appendix, we discuss the restrictions on the parameter space coming from Higgs
couplings fit and EWPTs.
In general, given a set {z;} of values for some variable X, we can compute the y? as:

2 2\ 1
ihj
where 1, is the expected value of ; and o2 is the covariance matrix. In this parametriza-
tion, X should be thought as a vector, possibly encoding different physical variables.
The covariance matrix o2 can be obtained from the correlation matrix p as:

07, = 0ipijo; (nosumoveri,j), (4.B.2)

where o; = \/0_2-22- is the uncertainty on x;.

Let us suppose that the x? in eq. (4.B.1) is minimized for the set {z;}; if the z;’s are in
turn functions of other variables {y;}, and we denote by {;} the values of y; corresponding
to the minimum chi squared, we can approximate x? for y; ~ i as:

v)+ Z aiayj 5 (ys —95) = X*(9) + Z Dy 5= 5;) - (4B3)

Therefore, the minimum of the x? has been shifted from zero to x%(7), which in general
does not vanish. However, what matters in order to determine if a given set of values {y; }
is excluded or not, is not x?, but the difference Ax? = x? — x%().

From 05, it is possible to compute the uncertainties on y;, and then to obtain the new
correlation matrix by inverting eq. (4.B.2).

4.B.1 Higgs couplings fit

For the fit on Higgs couplings, we refer to [237]; in fig. 22, the correlation matrix in terms
of the modifiers {kyz, Azg, Mg, Awz, Ayz, Arz, Aoz} 1s reported:

1 —0.07 —0.17 —050 —057 —0.26 —0.26
—0.07 1 038 —057 —0.33 —0.33 —0.48
—0.17 038 1 —019 —0.13 —0.19 0.30
p=|-050 —057 —019 1 048 026 0.41 (4.B.4)
—0.57 —033 —0.13 048 1 034 0.3
026 —0.33 —0.19 026 034 1 027
026 —048 030 041 035 027 1
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The definitions of the modifiers, together with the corresponding best-fits and uncertain-
ties, is reported in table 10 of the same paper; in general, a modifier is defined as the
ratio between some process and the corresponding one predicted by SM, i.e. x; = o;/0M
or k; = Iy /TEM,

For simplicity, we consider the mean uncertainty for each modifier, so that:

Kz = “Zi’z — 1.06 4+ 0.07
Azg= 22 =1.0640.14
kg

k
Aig = — = 1.09 £ 0.14
kg

Mz = =099 +0.09 (4.B.5)
9z
_ Ky
Az = -2 = 0.95 £ 0.08
9z
Ay =T =0.95+0.13
9z
ky
Moz = 2 = 0.91£0.17
9z

where for {gw, 9z, ks, ki } we used a different notation with respect to ref. [237], since these
are effective couplings which can be directly computed for our model (see appendix 4.C).
From table 7 of ref. [237], we read the expressions of {k,, k., k1, } in terms of these effective
couplings:

ry = 1.04k7 4 0.002k; — 0.04kk, (4.B.6a)

K2 = 1.59g3, + 0.07kf — 0.67gwk; (4.B.6b)
ky = (0.22g7, + 0.03g7 + 0.58k; + 0.08x2 + 0.0023k2 + 0.06x7 4 0.03k

+0.0015k 4, + 0.0004x7 + 0.00022%,) /(1 — BRgsy) , (4.B.6¢)

where BRggy included BSM effects to the Higgs branching ratio. We take for simplicity
Kr = Ky = Ks = ky, ke = ky, K(z,) = 1 and BRpgy = 0.

By using these relations, and following the discussion around eq. (4.B.3), we can de-
termine mean values, uncertainties and correlation matrix for the set of effective couplings
{9w, 9z, kv, k¢ }; the result is:

qw 1.041 £0.076 1 066 031 0.83
gz | | 1.066 £ 0.096 1066 1 0.02 0.65
ky | | 1.038 +0.087 » P 1031 002 1 057 (4.B.7)

ks 1.025 £ 0.153 0.83 0.65 0.57 1

We can now substitute the expressions of the effective couplings reported in appendix 4.C
and obtain the bounds on (¢, 5,0;,0,) coming from the fit of the Higgs couplings. The
result is shown in fig. 4.8 for 6, = 0 and the maximum and minimum values of 6, we
considered in the analysis: for each of them, the region of the parameter space on the
right of the corresponding line is excluded at 95% CL.
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Figure 4.8: Bounds on the parameter space coming from the fit of Higgs couplings for
0, = 0. The region on the right of each line is excluded at 95% CL.

4.B.2 EWPTs

EWPTs put strong bounds on CH models, since oblique parameters usually receive contri-
butions for three main reasons: corrections to gauge bosons propagators due to the NGBs
which run in the loop, the appearance of vector resonances and the presence of fermionic
states (see, e.g., [27]); we call these three contributions to the oblique parameters IR,
UV and fermionic, respectively. An additional one comes from the fact that the custo-
dial symmetry is broken, as discussed in section 4.2.1. We denote this last contribution
2HDM.

In order to determine the corrections to the oblique parameters S and T due to these
effects, we make some simplifying assumptions: we use naive dimensional analysis (NDA)
to estimate the UV contribution, we neglect the fermionic one from the top partners
because it is generated at 1-loop, and we consider the leading order due to the IR and
2HDM effects. The 2HDM is easily read from eq. (4.2.16) by taking into account that
T = p — 1. The various corrections are:

ASip ~ 192 I ¢log ( h?) AT ~ —g’j; ¢ log (U_%L!?) (4.B.8a)
ASyy ~ Z“Zf ATyy ~0 (4.B.8b)
AStermion = 0 AT fermion = 0 (4.B.8c)
ASspy ~ 0 ATyupy & % [1 — cos 4] (4.B.8d)

Notice that the IR and UV contributions are the same as in the MCHM, at least at leading
order.
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Figure 4.9: Top: contributions to the oblique parameters S and 7T for our model. Bottom:

95% CL bounds on & and f for g, = 3.

Due to the smallness of 3, the last contribution contributes positively to the T pa-
rameter, and this is a fundamental result for our model, as we can see form in the top
panel of fig. 4.9: the continuous and dashed contour represent the 68% and 95% CL from
EWPTs; we show in blue the different contributions to S and 7. In the bottom panel,
instead, we show the 95% CL in the (§,) plane; in this case, the result is not affected by
0; and 6, but only depends on g,, which we take equal to 3. The exclusion is computed
in a similar way to what we did for the fit on the Higgs couplings, with mean value and
uncertainty on S and T reported in eq. (1.3.10),

S=004£008 , T=008=£0.07, (4.B.9)
and taking into account that S ~ $/119 and T ~ T'/129 [29]
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Figure 4.10: Combined results from Higgs fit and EWPTs bounds in the (£, ) plane for
0, = 0,9, = 3 and two different values of ;. The region which is not enclosed in the solid
(dashed) contour is excluded at 95% (68%) CL.

4.B.3 Combined results

We can combine the two types of bounds discussed above and obtain the overall restriction
on the parameter space (mainly ¢ and /3): to this purpose, we consider the ratio between
the two likelihoods:

>
I
Lalie

: (4.B.10)

where Ly and £, are related to the null and alternative hypothesis, respectively. By taking
into account that x? ~ —2log A (Wilks’ theorem), we can simply sum the x?’s from the
Higgs fit and EWPTs; the result is shown in fig. 4.10 for the two reference values of 6;
we considered in the analysis, §, = 0 and g, = 3. In order to be conservative, we take
¢ < 0.08 as the benchmark bound from combined Higgs and EWPTs limits, as shown
in fig. 4.6.

4.C Expressions of the effective couplings

In this appendix, we provide the expressions of the effective couplings which appear
in egs. (4.3.6) and (4.3.9) to (4.3.11); to this purpose, it is convenient to introduce the
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following set of rescaled coefficients:

~ 1 ~ !

&l = N. CEl?o) VL &) = Ne CEO)l) Yr ¢ = Ne CEQ)O yr/9g.

~ 1 ~ 2

& = N. CEl?l) YLYR/ 9 ¢y =N CEO ) Ur/ 95 ¢y = N CEQ)O i/ (4)°
. 2 2 ]) _ 3 2
A7 = Neclhy v/ (4m)" &) = Necloy i/ (4n)" &) = Nec(g v/ (4)

éél) — c;}) g/2 6572) = Cg/)gﬂ
~3) — (1) .2 ~4) _ (2) 2
Cé):C§)g é)zcg/g

In the following, we provide the list of all the effective couplings used in the computations.
The couplings have been listed separately depending on the particles involved in the
interaction.

4.C.1 Interactions between NGBs and gauge bosons

As far as the couplings between the NGBs and the W and Z bosons, reported in eq. (4.3.6),
are concerned, we have:

gy =V1-€ bp=1-2¢ (4.C.1a)

V) ~ V) ~ 2
AN 2 M) =g, (4.C.1D)
3
JHW =~ —% ) 9Hyz = % ) gH, vV =~ §8 (4-0-10)

The 1-loop couplings with the gluons (cf. eq. (4.3.11)), instead, we have:

Qg 4m?

gon = =t — [l + (1 —7)f(m)] Th = —5, (4.C.1d)
g & m’%

., Qs 4m?

Gty = —i kZHOtS_ﬂ_THO[l + (1 =7, f(Thy)] TH, = m—%{()? (4.C.1e)
mg

Yan zgtg -+ 1 =71)f(m)] ™= (4.C.1f)
n

where f(7x) is the usual function appearing for gluon effective couplings (see for instance
eq. (1.198) of [238]).

Notice that since this vertex is generated by a quark-loop the resulting coupling for
Hy and n will be suppressed by a factor £ with respect to the one to the SM Higgs and so
it is not expected to play a relevant role, although it has been included in our simulations.
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4.C.2 Interactions between NGBs and fermions

Interactions with SM quarks, given by eq. (4.3.9), have effective couplings:

k1 — —g - gc(fjs(?; jczqeiq)) , (4.C.2a)
9q = —2565;)(?—%, (4.C.2b)
iy ~ 2¢sin(40) + (—6 + 5)1;1:(5;@(5— _222992))+ 4€sin(28 + 2a,0,) | (4.C.20)
Grg & _2%5@?65—%, (4.C.2d)
Gnrg = —iag€ tan(f — agly) . (4.C.2¢)

with a, =1 (—1) for quarks with charge 2/3 (—1/3).

4.C.3 Interactions among pNGBs

Finally, the effective couplings between the pNGBs, responsible for the interactions in eq. (4.3.10),
are expanded in ¢ and ; the first orders are:

2
Gnh R — % cos” 0, [265) — &7 + 26 + 2 cos(20,) (6P + &®))]

2
%0 (26,)(22) + 267
2
62
— T cot? Qt[ — 25?38) -2 cos(ZQt)(E?(f) + 6?35) + 2657) — 658))
+ & cos(46;)] (4.C.3a)

2

Aph, 2 ﬁ cos® 0, [26) — 6617 + 76D — 6218 — 6 cos(26;) (&Y + &)

4n? = (201)(c7 +26,7)
GeB? 2 ) 12 L as) 4 0xT) _ ax(®)
247?2 cot” 0, [ + 3c + 20 — 6cy

— c08(26,) (TP + 687 + 148 — 6¢®)) + 3¢ cos(46,)]  (4.C.3Db)
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~1—p?

9:0" v ) 4 &) &9 3¢ 5
AN 48P 4 &) 4 & — 1662 + & — 32600 + 269
].671'2 mh |: g Yy Yy
— c08(20,)(14&Y — 2&%) + 29¢(1 — 2¢(%))
+8csc? 0, (67 + 2¢7) + &P cos(46,)] (4.C.3¢)
2
m
YH, _Qh (1 BQ)
v
2
- % [0 + 6@ 1 & 4 & 1 &5 4 26®) 1 cog(26,)(26) — &V + 26®))
+ 52(15) cos(46;)]
2
Z 62 [cos 6; + cos(36’t)]( @ 4 20(7))
v
52
+ S i {15( (V&) 4 &) 4 e 4 66) 4 268y
+ cos(20,) (148 + 6¢0) + 25¢L6¢1%)) + 156%) cos(46;) (4.C.3d)
9:

9Hohh = 5 5

) [ [ (1 + c( ) + 0(3) + 0(4) + 51(/5) + 253(/8)} + cos(29t)(46§/ + 60(5) + 50( )+ 60(8))

+ 36?55) cos(49t)]

52

o7 cot(26’t)[0089t—|—cos(36’t)]( (2) —1-20(7)) (4.C.3e)
2
ApHy R — % cos® 0, [26;5) - c( ) — 20( ) — 2COS(2(9,5)(5§/5) - 6;8))]
T
62
+ 22 517 { — 3¢l +2¢l0) — 668 — cos(26,) (767 + 667 + 146D + 621
— 3¢ cos(40t)} (4.C.3f)
A\ BB ) | A®) | 20) L 20 4 5) 4 95 90,1(26) _ & 4 958)
Ho o2 |0 +¢&7 + ¢+ ¢, + ¢ + 267 —cos(20)(2¢,” — ¢, +2¢,”)
3 2
+ 63(/5) Cos(49t)] + 3;2 tan 0; cos(20;)(¢; 2) 20(7)) (4.C.3g)
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Gnitg N33 [ ) 4 20( )+ 2cos(29t)( (2) 4 0(5) + 20( ) 4+ (8)) + 6755) cos(49t)}

372
g5
— 4* 5 tan 6, cos(29t)( )—1—20(7)) (4.C.3h)
m
2
g; 812 m? 5 5
Jaoh X3 { 2 th +c ( )+ c(g) + cos(26,)(2¢ cz(f) + 20?88)) + cos(40t)( 6) 1 0(8))]
9:8 2) (1)) a2
~ (@ + 2¢(7) cos®(26;)
m
2827 16
_ 50 ™ mi + 7801 4 782 4 78 4 76 4 166 4+ 7P + 3260 + 146®)
1672 g2 v? g
+ cos(260,) (1487 + 665 4 2567 4 62))
— 16 csc (29t)( (2) 4 20(7)) + 70( ) cos(46,) (4.C.31)
~ 9. (1) (2) 53) (4) 4 z(5) (8) o7 (8)
antis B = g5 |G +é) ey ey e +26 — cos(200) (26, — ¢ +2¢,7)
g5
+ 52(/5) cos(49t)] + 52 tan 6, cos(20t)( 2) | 20(7)) (4.C.3j)
e
Grh =~ 8_7:2 sin? 6, [6757) — 4(6;5) — 61(/8)) cos” 6y
52
87r2 [ ¢y + 20( ) — 2008(29,5)( (2) c( ) 4 20( ) 4 63(/8)) + 625) cos(46,)]
(4.C.3k)
ﬁ 8 5 /82 2 7
Guto & = 5 +(C, i® — & )COS(QHt)) 2 tan 6, cos(29t)( ) + 20( ) (4.C.31)
72

Awh & % sin’ Gt(égj) — 4 cos® Qt(ég(f) — E?(f)))

2
+ =2 9.5 { — 3¢l + 260 — 668 + cos(260,) (56 + 661 + 1067 + 661)

2472
- 35&5) COS(49t):| (4.C.3m)
2
)\HHO ~ — 25;2 [2 (26?57) -+ (2)) COS Qt — sin Qt (4 2) + 1].C(7)) + 192 Sin4 et (655) I EZSS))
9:8
+ 24’: ~[3 — 5cos(26,)] csc 0, sec 0, cos(260,) (87 + 287

g2p°

T g2 {130 3~é5) + 265;) _ 60(8) _ COS(ZQ¢)(13C(2) . 30( ) n 260( ) 65288))
s

+ 2(csc? ; — 4 sec® 0;) (¢ @ 4 20(7)) (4.C.3n)
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2

Ajag & ;2 cos? 0, [26;5) — E(y7) — 26;8) 2 cos(20:)(¢, o) — ~(8))}
52
242 5 e y2 - 30( )+ 20( ) — 661(/8) — cos(20)(7¢; @) 4 60( ) 4+ 140( )+ 60(8))
m
—36?85) cos(46;)] (4.C.30)
2
9« ~ ~ ~ ~ ~
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Chapter 5

Summary and conclusions

The existence of dark matter is a clear signal that the Standard Model cannot be the
definitive theory to describe particle physics. While many experimental evidences show
unequivocally that DM exists, it not clear what its real nature is; an appealing possibility
is that it is in the form of WIMPs, characterized by an annihilation cross section of the
order of the weak scale and mass in the GeV-TeV range. In order to test this possibility,
many experiments have been built, and also LHC provides a unique opportunity in this
perspective.

In this work, we first focused on this aspect, i.e. we investigated the potential of LHC
in exploring the parameter space of DM models. Our interest pointed towards signatures
others than the standard monojet and, in particular, we considered the possibility in
which LLPs are produced; such a scenario has been receiving an increasing attention,
especially because the expected background in the SM can be extremely small.

In chapter 3, we first studied the pDDM model, characterized by two Majorana
fermions x;2 almost degenerate in mass; this simple extension of the SM predicts the
existence of DVs, whose potential lies in the fact that the expected SM background is
very low. We studied the sensitivity of MJ and DVs to the parameter space and projected
the current limits to high luminosity, showing that searches for displaced vertices are es-
sential in order to properly constrain the model. We then considered the chromo-electric
DM model, where a coloured particle can lead to bound states similarly to what happens
in SUSY; we then applied experimental bounds from R-hadrons searches, comparing them
with those from MJ, and projected the current limits to high luminosity, showing that
also in this case a complementarity between the searches exists; in particular, while MJ
ones can exclude all values of d, up to a maximum DM mass, R-hadrons searches can
explore regions of the parameter space with smaller couplings but larger masses.

Overall, we showed that, if present, LLPs signatures can represent a smoking gun
for new physics. Given that these kind of searches are particularly challenging from an
experimental point of view, and that dedicated methods are also required in order to
correctly reconstruct the background, it is essential to pursue in this direction to fully
exploit the potential of LHC.

In chapter 4, we studied a non-minimal CH model characterized by two doublets and
two singlet, the lightest of which is the DM candidate. We showed that it is possible to
evade current experimental constraints (mainly direct detection) with the minimum fine
tuning allowed by EWPTs, whereas a higher compositeness scale is usually required by
other CH models which aim to address for DM. In addition, we also studied the possibility
of reproducing the relic abundance of dark matter via non-thermal effects; although a
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higher fine tuning is required in this framework, this possibility is only possible thanks to
the greater complexity of the model, and we think it represents one of its most interesting
features.

While the existence of dark matter is incontrovertible in the light of observations, we
are far from knowing its real nature; the WIMP paradigm is just one possibility, but we
are not guaranteed at all it is the correct one. For this reason, it is essential to keep on
studying this fascinating problem if we aim to properly understand nature.
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Appendix A
CCWZ formalism

A.1 Geometrical interpretation

Before considering the full CCWZ construction, it is useful to first have a geometrical
interpretation of the results we are going to obtain.

Let us suppose we have a theory of scalar fields ¢ = (o1, p2,...); the set ¢ can be
thought as a set of coordinates on some manifold M. Let ¢y be the field configuration
which minimizes the scalar potential, and G a symmetry group which acts on the fields
as ¢ — T,(¢), where g € G; let g be the algebra of G.

We assume that ¢q is not invariant under the full group G, but only under a subgroup
H={heG:Thpo) = ¢o}: this means that the symmetry is spontaneously broken. We
denote by {7} the set of generators of H, which span a subalgebra % of g. In general,
then, ¢q is left invariant only by the transformations 7T}, with h € H; let us denote by N
the submanifold of M generated by T} (¢), for each g € G. As we will see, the Goldstone
bosons can be viewed as coordinates on V.

We choose a set {T “} which do not leave ¢, invariant, i.e. T{Ti}(qﬁo) # ¢p; these
generators belong to the coset G/H and are a basis of a vector space 6 C g. Given
that the sets {7} and {77} are linearly independent, the algebra g decomposes in the
direct sum g = A @ 6 (the sum is at the level of vector spaces and not of algebras, since
in general 6 is not a subalgebra). In addition, & is defined only modulo the action of
unbroken generators.

The only assumption behind the CCWZ construction is that ¢ is invariant under H,
meaning that for each 7% € 6 and h € H, then hT'h™! € 6 (this is called ‘invarinace’ of
6 because H acts on 17 as if they were in the adjoint representation): this requirement is
equivalent to say that [T, T ‘] € 6, which is always satisfied for compact H [27].

Let us consider a particular ¢ € N sufficiently close to ¢g; ¢ is said to correspond to a
set of Goldsonte coordinates Gy,i = 1,...,dim G—dim H if ¢ = Ty (dy), with U = ¢ T", If
this is the case, the Goldstone coordinates are nothing but the transformation parameters
that send from ¢ to ¢, as shown in fig. A.1. In this sense, the Goldstone bosons also
represent coordinates on the submanifold /V, at least in a vicinity of ¢. In addition, since
G is only spontaneously broken (meaning that the potential is invariant under the action
of G), ¢ has the same energy as ¢, so that the Goldstone coordinates G; parametrize a
degenerate vacuum.

The next step is to understand how U transforms under a transformation g € G. Given
a point ¢ = Ty (¢g) € N, we consider the transformation 7,(¢): the CCWZ construction
ensures, as we will see, that there exists a U’ = U'(g, G;) such that T,(¢) = Ty (¢o); in
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Figure A.1: Geometrical visualization of the CCWZ formalism.

particular, it always exists an h = h(g, G;) € H such that U’ = gUh™ (g, G;).

A.2 General construction

We now formalize the general idea outlined above. As already stated, we consider a sym-
metry group § which is spontaneously broken to a subgroup H, and divide its generators
{T4} (normalized in such a way that Tr(TAT?) = d5) in two sets {T% T*} such that:

JF : TF=0 , T'F+#0, (A.2.1)

where F' is a reference vacuum (which in general does not coincide with the physical
vacuum).

Starting from F', we see that good candidates to be (modulo a normalization factor)
Goldstone bosons are encoded in:

Fop= @ p. (A.2.2)

The 04(x)’s being good candidates to represent Goldstone bosons is because for constant
04 the one above is a symmetry transformation, leading to a configuration with the same
energy as the vacuum; for spacetime-dependent 04(z), then, only derivative terms can
arise: it this was not the case, i.e. if 04(z) had a potential, the latter would not vanish
in the limit 04 (z) — const., leading to an energy different from the one of F'. Not having
a potential, and in particular not having a mass, the 64(z)’s are then good candidates to
be Goldstone bosons.

However, some of the 04(x)’s are redundant and non physical; in general, in fact, an
element group g € G can be decomposed as [27]:

. A e 2 a
g= ewcAT — ewle emaT , (A23)

and the last term does not have effect when acting on F'. We then assume the Goldstone
bosons II;(x) to be encoded in:

$(x) = UMF | U= 7hET = 716 (A.2.4)

In the following, we use the symbol II(z) for both the Goldstone matrix, IT;(x)7", and the
length of the Goldstone vector, y/I1%(z), the correct one being clear from the context.

As already anticipated, we want to understand how U[II] transforms under a generic
group element g € G, i.e. to determine a transformation

1, (x) — IT)(z) (A.2.5)
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which is a symmetry transformation of ¢(z). A naive answer would be U — ¢gU, but
this is not valid because in general gU € G, and so ¢ would not be made out of broken
generators only anymore. However, we know from eq. (A.2.3) that gU can be expressed
as the product of an element of G/H and one of H; we can then write:

gUM] = U[IT'| (11, g) , (A.2.6)

where h(Il, g) € H depends on the particular g and on the Goldstone fields (and then also
on spacetime coordinates ). We then found that under a G transformation the Goldstone
matrix transforms to:

Ulll') = gUM] A (I, g) . (A.2.7)

From eq. (A.2.4), we also see that under this transformation:

=99, (A.2.8)

Being the symmetry only spontaneously broken, the transformation above has to be re-
spected also by the effective Lagrangian for the Goldstone bosons, and for this reason
only peculiar terms are allowed.

Since all this treatment is independent of the representation of the generators, the
Goldstone matrix U[II] can be defined for any representation of the generators 7. Fur-
thermore, the important symmetry to classify allowed operators is given by G: from this
point of view, the symmetry is not really broken, in the sense it affects the allowed opera-
tors in the effective Lagrangian. Finally, given that II; has some complicated dependence
on I1;, it is said to transform non-linearly.

In general, the commutation relations for the generators {T} can be classified as:

[Ta, Tb] — ,ifabcTc (A29a)
e, Tz] _ Z'faijffj (A.2.9b)
[Ti, Tg] = g flakTk 4 g fidape (A.2.9¢)

where the absence of % in the first equation is due to the fact that # is a subalgebra,
while the absence of f%* in the second one comes from the hypothesis that H is a compact
subgroup, as already stated. In addition, for symmetric cosets, also f* = 0; this is
realized if there exists an automorphism T — —T, which can be associated with a Z,
symmetry on the Goldstone bosons.

It is then useful to define:

fabc
faij

i (T%), (A.2.10a)
i (T%) (A.2.10b)

ij

where in the first line we defined the generators of the adjoint representation Ay of %,
while in the second one we have a set of matrices {7}¢} which forms another representation
R, of #; in general, the latter can be identified from:

Ag=AydR,. (A.2.11)

It is now interesting to see how the Goldstone bosons transform under symmetry trans-
formations:
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i) transformation under H.

ii)

In this case g = h € H, and we have:

Mﬂm:h<1+ﬁgﬂﬁ“h”>hlh

[ SR .
:Lm§m@ummmm+m%m.h

| \/5 all g T
= 1+ZTH1T](6 an)ji+"‘ h =
= FTETI),  Z [T ] (A.2.12)

which is precisely in the form of eq. (A.2.7).
From eq. (A.2.4), we see that the Goldsonte bosons transform as:

IT; — ("™ 11

i (A.2.13)
which implies that Ry, is nothing but the representation the Goldstone bosons trans-
form with under the action of H. In addition, H acts linearly on the Goldstone
bosons.
From eq. (A.2.13), it is also possible to determine how the Goldstone matrix changes
under infinitesimal transformations; by taking into account eq. (A.2.10), in fact, we
get:

T — 14 i foiill; T =TT + o [T, 11 ; (A.2.14)

transformation under G/H.

In this case g = gg/u € G/H, and there is no an easy way to study the transfor-
mation properties of the Goldstone bosons but considering infinitesimal transforma-
tions; however, it is not necessary to resort to eq. (A.2.7), but it suffices to consider
gg/n U[I1], since it is automatically an element of the coset G/H. This is:

V2

(mmzwmmm:1+mﬁ+pfmﬁ+”w (A.2.15)
which implies that:

H~+H4~iwx+0<aga+ > (A.2.16)
1 1 \/51 f 5 [/

which is the famous shift symmetry of the Goldstone bosons, which only allows for
derivative terms involving them, preventing a potential.

A simple case which can be treated exactly is when we consider the VEV (II;) of the
Goldstones, and take gg/ = U ~1: in this case, we obtain:

(Il;) — 0, (A.2.17)
which implies that the VEV of the Goldstone bosons is not physical.

114



A.2.1 d and e symbols

The two fundamental objects to construct the Goldstone Lagrangian are the d, and e,
symbols, defined from the Goldstone matrix U[Il]. Since we saw that, schematically,
[T,T] ~T+ T, we can write:

iU MO UM] =d T + et T* = dy + ey, (A.2.18)

where d € Ry and el € Ay
Taking into account that h € H is spacetime-dependent because it depends on the
Goldsonte fields II's, we have that under a group transformation:

iU 0, U] — i h U [0, Uh " + i hd,h . (A.2.19)

Given that the last term is an element of H, we identify the transformation properties of
d, and e, as:

d, — hd,h™! (A.2.20a)
e, — hle, +id,)h". (A.2.20b)

The first equation, once written in components, reads:

i i T2 j
dy, — (") (A.2.21)
showing that d}i transforms like the Goldstone fields II's; this is natural, since it can be
easily shown from eq. (A.2.18) that:

V2

: . Tl 12
du:_TaﬂH +O< ) .

e (A.2.22)
However, differently from IT’, d, transforms with Ry, under the full group G, and not only
an H-transformation. For this reason, it is more convenient to write down the effective
Lagrangian starting from d, rather than from the Goldstone fields. On the other hand,
from eq. (A.2.20b) it also follows that e, transforms like a (non-canonically normalized)
gauge field, and as such it can be adopted to construct covariant derivatives and field
strengths.

The general idea is to use d, and e, to write down the effective Lagrangian for the
Goldstone fields; as we have just shown, if we write a Lagrangian which is invariant under
‘H, it is automatically invariant under the full group G as well. The simplest operator we
can consider is the one which only contains two derivatives, and it can be constructed
from two d symbols (since Ry is real for compact H), leading to a kinetic term in the
Lagrangian of the form:

L£P = f—QTr[d ") = Lo, mmiortr + Y o {(an)2 (E) n] (A.2.23)
II - 4 14 - 2 M - f ) e

which provides the kinetic term for the Goldstones plus an infinite series of derivative
interactions.
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A.2.2 Local invariance

The present formalism can be extended to include spacetime-dependent group transfor-
mations. To this purpose, we introduce a set of gauge fields:

Ay= ASTA o A 55 (A, +i0,)97 = AW (A.2.24)

with g = g(x) € G being a local transformation.
In this definition, A, is non-canonically normalized; in fact, when restricted to the
Standard Model, it reads:

ABM = g WoTP + g B, Yy . (A.2.25)

The gauging procedure then consists, as usual, in modifying the Lagrangian by adding
a coupling between the gauge field and an appropriate current to keep into account the
spacetime-dependent nature of the group elements g, i.e.:

L— L+ J} AN (A.2.26)

It can be convenient to consider the case in which the full group G is gauged, and only at
the end decouple the unwanted gauge fields by setting to zero the corresponding coupling
constants; the advantage of this procedure lies in the fact that it allows for local invariance
under the full G, with the gauge fields transforming as in eq. (A.2.24).

It also convenient to introduce a new object A, called dressed gauge field, defined as:

A, =AY = U] (A, +40,) U[M]. (A.2.27)

The object A, is extremely useful because of its transformation property: in fact, under
an element g(x) € G:

A, — (AU qe (A0 )W 2 A0 Z (A, gt (A2.28)

Therefore, the dressing procedure allows one, starting from an object transforming with
the full group G, to obtain a quantity which transforms under the subgroup . The same
logic is used, e.g., in composite Higgs models to write the effective Lagrangian responsible
for the interactions between the (pseudo-)Nambu-Goldstone bosons and the SM fermions.

In analogy with eq. (A.2.18), we can define the d and e symbols for the case of local
invariance as:

A, = U] (A, +i0,) U] = d,[A] + e,]A]. (A.2.29)

This definition is consistent because it reduces to eq. (A.2.18) in the ungauged limit
A, =0.

Analogously to the previous analysis, the transformation properties of these symbols
are:

d,JA] = hd,[A]h! (A.2.30a)
e [A] = h(e Al +i0,)h . (A.2.30b)

In addition, the two-derivatives Lagrangian simply generalizes to:
f2
L2 = T (d[Ald[A]) (A.2.31)

which also provides the interactions between the Goldstone bosons and the gauge fields.
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Appendix B

Effective field theories

In its simplest formulation, an EFT can be thought as characterized by two dimensionful
quantities: a(n inverse) length scale m., identifiable with the scale at which the short-
distance interactions take place, and a coupling 0 < g, < 47w. We sometimes call m, a
mass, with a slight abuse of notation, for a reason that will be clear in the following.!

At distances much larger than m;!, we can describe the theory with an effective
Lagrangian, where the heavy fields have been integrated out. We assume that the general
form of the effective Lagrangian is:

4
Lop = 2 f < 9 99 g*¢> : (B.1.1)

Y
g2~ \m my P

where £ is a dimensionless function of its argument.

The equation above goes under the name of “SILH power-counting”, named after
the model where it was first introduced [239]. The particular form of eq. (B.1.1) is an
assumption, but it is well motivated by many phenomenological models: for example,
in the maximally strongly coupled case, g, ~ 4w, eq. (B.1.1) correctly reproduces the
predictions from naive dimensional analysis [240,241]. In addition, as we will see below,
its applicability goes beyond the case of a strongly interacting sector.

It is then easy to derive the dimensions of m, and g, in terms of length (L) and energy
(E) by restoring the physical units & # 1: in particular, one easily finds from eq. (B.1.1)
that [m.] = L' and [g.] = [1]7"/* = E-Y2L"Y/2 (we are still working with ¢ = 1). It is
then evident that eq. (B.1.1) automatically provides canonically normalized fields without
explicit factors of A in the Lagrangian.

This simple power-counting rule has two important consequences: first of all, it shows
that the “real” couplings in the SM are the Yukawa’s, y, and the square of the gauge cou-
plings, asar o g2y, In addition, eq. (B.1.1) allows us to estimate the effective Lagrangian
also in the case where some heavy fields are integrated out at loop level; given that a
factor of //(167%) will appear for every loop, and that m, and g, are the only dimension-
ful parameters of the strong sector, the most general form of the effective Lagrangian is
(restoring natural units) [27,239]:

4 2
Lo — M [ﬁ(o) ( 9 79*¢ gs ) L9 ( 0 ’9*925 gm) +} . (B12)

) )
g2 My My mi’/Q 1672 My My miﬂ

where the dots stand for higher loops.

L Actually, m, is a mass in units of h, i.e. [m.] = M/[h], if we work with ¢ = 1.
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Another parametrization, sometimes used in the literature (see, e.g., [83]), is equiv-
alent to eq. (B.1.1) and somehow more transparent. If we imagine to have an effective
Lagrangian L.¢, we can imagine to decompose it in two contributions according to renor-
malizability, similarly to what we did in section 1.2:

L= Lo+ Y ¥ O, (B.1.3)

d>4,i

where Oi(d) is a gauge-invariant operator of energy dimension (in natural units) d. The

(d)

coefficients ¢;’ will be functions of m, and g,, the only dimensionful parameters of the

underlying UV theory; in particular, if Ogd) is made of n; fields ¢; of spin s; and k;
derivatives, then [O\?] = [A|"/2L~¢ (remember that [¢;] = [A]"/2L~(*D), with d =

7

n;(s; + 1) + k;. By restoring the physical units, we then obtain:

?’Li—2

[C(d)} — [H L [(’)(d)} - (B2 [t o Cl(d) 9

7 A

v (B.1.4)
This power counting could also have been obtained directly from eq. (B.1.2) by expanding
it in the arguments of L. Even in this case, a suppression of ¢g?/(167%) appears in the
estimate of cgd) if the operator is generated at 1-loop.

As a final remark, we want to stress that from the SILH power counting we can also
appreciate the difference between the concepts of scales and masses [242]. If we consider

an effective operator of the form:

1
™ A4

cO ok, (B.1.5)

where n and k were defined above, from eq. (B.1.4) we immediately obtain:

iy

n—2 °
d—4

g+

A~ (B.1.6)

A is what we refer to as a scale, and we see that it is the product of a mass by some power
of the corresponding coupling. In the prototypical example of the weak theory, we can
make the identification A ~ Gp~7 ~ my /g; we then see that while the scale identifies
where perturbative unitarity breaks down in the absence of new degrees of freedom, the
mass is associated to the energy at which new states can be produced.
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