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Abstract

In this thesis, we investigate some non-standard aspects of dark matter in the context of
weakly-interacting massive particles.

We first study the impact of searches for long-lived particles on dark matter models
with two concrete realizations: a simplified model which delivers displaced vertices and
an effective one which predicts the existence of bound states similar to R-hadrons. In
both cases, we find that non-standard signatures are essential in order to fully exploit the
potential of LHC for dark matter searches.

We then focus our attention on a non-minimal composite Higgs model which can
account for dark matter; the greater complexity of the model with respect to the simplest
case allows for thermal production of dark matter with a fine tuning which is significantly
lower than in other models. In addition, we find that also non-thermal production is
possible.
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Preface

In the present thesis, we investigate the properties of dark matter (DM) from the point of
view of particle physics; in particular, we focus our attention on the category of weakly-
interacting massive particles (WIMPs), which represents the most widely studied class
of DM candidates. The interest in WIMPs lies in the fact that their annihilation cross
section naturally points to the weak scale, making it possible to look for them with
different experimental techniques.

The original part of the present work is ideally divided in two parts: the first one is
dedicated to the study of the interplay between standard monojet searches and strategies
involving long-lived particles (LLPs), while in the second one we consider dark matter in
association with the hierarchy problem of the Standard Model (SM).

In chapter 1, we review the concepts of the SM which we will refer to in the following;
in particular, after a brief recap about the SM Lagrangian, we discuss in detail its global
symmetries, we outline the main aspects of electroweak precision tests and we present the
hierarchy problem, in particular related to the Higgs mass.

In chapter 2, we review some aspects of the DM problem; after discussing the main
experimental evidences which led physicists to believe that a large amount of invisible
matter exists in the universe, we focus our attention on the case of WIMPs, discussing
some of their properties, together with the experimental searches they can be looked for
with.

In chapter 3, which is based on refs. [1, 2], we focus on DM searches at the Large
Hadron Collider, studying the importance of those involving LLPs. We first study a
model which predicts the existence of displaced vertices, where an unstable dark particle
travels a macroscopic distance before decaying; the second model we consider, instead, is
characterized by a coloured particle belonging to the dark sector which can form bound
states with SM particles, similarly to what happens in supersymmetry. In both cases, we
show that experimental searches involving LLPs are essential in order to correctly explore
the parameter space of the models.

In chapter 4, which is based on ref. [3], we consider a possibility to address both the
DM and the hierarchy problems at once, in the context of composite Higgs (CH) models;
in particular, by considering a scenario which is beyond the minimal one, it is possible to
find interesting features which would be otherwise absent: this is precisely what happens
in the model we consider, where the DM can be produced via non-thermal effects. In
addition, we also find that the level of fine tuning which is required in order to correctly
reproduce the DM relic abundance and evade experimental constraints is significantly
lower than that of other non-minimal CH models which aim to address the DM problem.

Finally, we summarize the results and conclude in chapter 5.
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Chapter 1

The Standard Model of particle
physics

Elementary particle physics is the
quadrant of nature whose laws can
be written in a few lines with
absolute precision and the greatest
empirical adequacy.

Riccardo Barbieri

The Standard Model of particle physics constitutes the theoretical tool at our disposal
to understand and explain how nature behaves at the shortest distances we can probe;
developed since the 60’s by some of the most brilliant scientists of the last century (like in
the seminal papers [4–6], just to cite a few), it received many experimental confirmations,
culminated in 2012 with the discovery of the Higgs bosons at the Large Hadron Collider
(LHC) by the experiments ATLAS and CMS [7,8].

Despite its incredible success, we know that the SM cannot be the definitive answer to
the question “how does nature behaves at the shortest scales?”; in fact, there are several
arguments which do not find an answer in this framework: they are both theoretical
(quantum gravity, hierarchy problem, strong CP problem, cosmological constant problem,
etc.) and experimental (dark matter, neutrino masses, baryon asymmetry, etc.). This led
physicists to develop many beyond the Standard Model (BSM) theories.

Nevertheless, SM remains an extraordinary tool to study particle physics, and it must
be our guidance for the search of new physics (NP); for this reason, it is worth spending
some words on it before proceeding. In section 1.1, we recall the SM Lagrangian and some
of its features; in section 1.2, we discuss the global symmetries of the SM, while in sec-
tion 1.3 we briefly review the main aspects of precision measurements; finally, section 1.4
is dedicated to the hierarchy problem.

1.1 Standard Model Lagrangian

The Standard Model is a gauge theory based on the group:

GSM = SU(3)c × SU(2)L × U(1)Y , (1.1.1)

broken to SU(3)c × U(1)em after electroweak symmetry breaking (EWSB).

3



SU(3)c SU(2)L U(1)Y

qL =

(
uL
dL

)
3 2 1/6

uR 3 1 2/3
dR 3 1 -1/3

`L =

(
νL
eL

)
1 2 -1/2

eR 1 1 -1
H 1 2 1/2

Table 1.1: Field content of the SM (except for the gauge bosons): in the first two columns,
we indicate the representations under SU(3)c and SU(2)L, while in the last one we show
the value of the hypercharge. The generation index for the fermions is understood.

To recall the interactions dictated by the SM Lagrangian, it is convenient to consider
it as the sum of three contributions:

LSM = Lgauge
SM + Lflavour

SM + LEWSB
SM , (1.1.2)

where the first one describes the interactions between the fermions and the gauge bosons,
the second one the interactions between fermions and the Higgs, and the last one is
responsible for EWSB.

In the following, we consider these three contributions separately. The field content
is summarized in table 1.1, where we show the representations under SU(3)c and SU(2)L,
while for U(1)Y we indicate the value of the hypercharge; for clarity, we omit the generation
index. We then denote the Higgs doublet by H and the gauge fields as GA

µ , W a
µ and Bµ,

where A = 1, . . . , 8 and a = 1, . . . , 3 are SU(3)c and SU(2)L indices, respectively.

1.1.1 Gauge contribution

The first contribution is represented by the covariant kinetic terms for the fermions and
the field strengths:

Lgauge
SM =

∑
ψ

iψ̄γµDµψ −
1

4

∑
V

V i
µνV

µν
i , (1.1.3)

where ψ and V stand in general for fermions and gauge fields, respectively. In our con-
vention, the covariant derivative and the field strength are:

Dµ = ∂µ − igS GA
µ T

(3)
A − igW a

µ T
(2)
a − ig′BµY (1.1.4a)

V i
µν = ∂µV

i
ν − ∂νV i

µ + g(V )f
ijkV j

µV
k
ν , (1.1.4b)

where T
(3)
A , T

(2)
a and Y are the generators of SU(3)c, SU(2)L and U(1)Y in the appropriate

representation (the first two are λA/2 and σa/2 in the fundamental representation, with
λA and σa being the Gell-Mann and Pauli matrices, respectively).
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1.1.2 Flavour contribution

The second contribution is represented by the interactions between fermions and the Higgs
field. By restoring the flavour indices, we have:

Lflavour
SM = −y(u)

ij q̄L,i uR,jH
c − y(d)

ij q̄L,i dR,jH − y(e)
ij

¯̀
L,i eR,jH + h.c. , (1.1.5)

with Hc ≡ iσ2H
∗ and i, j being family indices.

As it is well-known, it is possible to diagonalize y(e) and either y(u) or y(d) with unitary
transformations.

After EWSB, eq. (1.1.5) is responsible for the generation of masses in the fermion
sector, giving rise to:

Lmass
SM = −m(u)

ij ūL,i uR,j −m(d)
ij d̄L,i dR,j −m(e)

ij ēL,i eR,j + h.c. , (1.1.6)

where m(f) = y(f) v/
√

2. Diagonalization of the mass matrices by means of bi-unitary
transformations then leads to the appearance of the Cabibbo-Kobayashi-Maskawa (CKM)
matrix V in the charged current.

The interactions between the fermionic mass eigenstates and the physical Higgs are
given by:

Lf−hSM = −m
(u)

v
ūuh− m(d)

v
d̄dh− m(e)

v
ēeh . (1.1.7)

1.1.3 EWSB contribution

The last contribution is represented by the Higgs Lagrangian:

LEWSB
SM = |DµH|2 −

(
µ2|H|2 + λ|H|4

)
. (1.1.8)

We use the convention in which the Higgs vacuum expectation value (VEV) is normalized
such that, in the unitary gauge:

〈H〉 =
1√
2

(
0
v

)
, (1.1.9)

and v ≡ (−µ2/λ)
1/2 ≈ 246 GeV. After EWSB, the potential for the physical Higgs

becomes:

V (h) =
m2
h

2
h2 +

m2
h

2v
h3 +

m2
h

8v2
h4 , (1.1.10)

with m2
h ≡ −2µ2 ≈ 125 GeV.

EWSB is responsible for the generation of masses for the W and Z bosons, given by:

m2
W =

v2g2

4
, m2

Z =
v2(g2 + g′2)

4
. (1.1.11)

The interactions between the gauge bosons and the physical Higgs are:

LW,Z−hSM =

(
m2
WW

+
µ W

µ
− +

m2
Z

2
ZµZ

µ

)(
2
h

v
+
h2

v2

)
. (1.1.12)

In terms of the weak angle, θw ≡ arctan g′/g, the SM then predicts:

ρ ≡ m2
W

m2
Z cos2 θw

= 1 . (1.1.13)

This value is in excellent agreement with experiments but, as we will see, can change
significantly in SM extensions.
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Figure 1.1: Main channels for Higgs production at LHC.
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Figure 1.2: Main channels for Higgs decay at LHC.

1.1.4 More about the Higgs

The discovery of the Higgs in 2012 was one of the greatest achievements of modern physics,
closing the circle around the success of the SM. On the other hand, however, there is a very
challenging issue (i.e., the hierarchy problem) which characterizes this particle, as we will
discuss later; for this reason, the Higgs sector constitutes the starting point for important
extensions of the SM. It is then useful to recall some aspects about Higgs physics before
going on.

The main channels for Higgs production at LHC are shown in fig. 1.1. The first
one (called gluon fusion) is the main contribution, but also the other ones are relevant
because of their signatures, and are called vector boson fusion (VBF), Higgs strahlung
and associated production, respectively. On the other hand, also the Higgs decay channels
are important signatures for LHC physics: the main ones are shown in fig. 1.2; of course,
given the measured mass of the Higgs, mh ≈ 125 GeV, the decay into two on-shell massive
gauge bosons is not allowed. The Higgs branching ratios (BRs), as functions of the Higgs
mass, are showed in fig. 1.3.

However, one could ask: “is the Higgs really a fundamental ingredient of the SM?”;
after all, it is the only elementary scalar, and it was initially introduced just to generate a
mass term for the gauge bosons and the fermions. A good approach to address this ques-
tion is represented by the Callan-Coleman-Wess-Zumino (CCWZ) formalism, developed
in the seminal papers [10, 11]; we review it in appendix A.

In order to apply the CCWZ prescription to the SM, we consider the breaking pattern
G → H, with G = SU(2)L × U(1)Y and H = U(1)em (SU(3)c does not play any role for
this discussion); we can then parametrize the standard coordinates, i.e. the would-be
Nambu-Goldstone bosons (NGBs) χa, as:

Σ = ei
2
v
χaT̂a , (1.1.14)

where T̂a = σa/2 are the broken generators. It is easy to show that Σ transforms

6



Figure 1.3: Higgs branching ratios as functions of the Higgs mass. Figure taken from
ref. [9].

precisely as required by CCWZ, i.e. eq. (A.2.7): in particular, under a transformation
g = exp{iαaLσa/2} exp{iαY Y } ≡ ULUY ∈ G, we have:

Σ→ ULΣ e−iαY
σ3

2 (1.1.15)

In order to have local invariance under G, we introduce a covariant derivative for Σ,
defined as:

DµΣ ≡ ∂µΣ− igWµ Σ + ig′BµΣ
σ3

2
, (1.1.16)

where Wµ ≡ W a
µσ

a/2 and g, g′ are the coupling constants; this definition is consistent
with eq. (1.1.15). The Lagrangian constructed out of Σ which induces EWSB is:

L(2)
Σ =

v2

4
Tr[(DµΣ)† (DµΣ)] , (1.1.17)

which is easily shown to be invariant under G. To show that this Lagrangian correctly
encodes the mechanism of EWSB, we first notice that we can rewrite it as:

L(2)
Σ =

v2

4
Tr[
(
Σ†DµΣ

)† (
Σ†DµΣ

)
] . (1.1.18)

It is then useful to introduce the field:

W̃µ ≡ Σ†WµΣ +
i

g
Σ† ∂µΣ , (1.1.19)

which is nothing but the gauge-transformation of Σ (with transformation matrix given by
Σ†). In this way, Σ†DµΣ = −igW̃µ + ig′Bµσ

3/2; with the definition of the gauge boson
masses in eq. (1.1.11), we obtain:

L(2)
Σ ⊃ m2

W W̃
+
µ W̃

µ
− +

1

2
m2
ZZ̃µZ̃

µ , (1.1.20)
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where we defined:

W̃±
µ ≡

W̃ 1
µ ∓ i W̃ 2

µ√
2

, Z̃µ ≡
g W̃ 3

µ − g′Bµ√
g2 + g′2

. (1.1.21)

We then see that eq. (1.1.20) reproduces both the gauge bosons masses and an infinite
series of interactions between them and the NGBs; in fact, if we expand Σ†DµΣ, we find:

W̃±
µ = W±

µ −
1

mW

∂µχ
± + . . . , Z̃µ = Zµ −

1

mZ

∂µχ
3 + . . . , (1.1.22)

with χ± being defined analogously to W±
µ . This analysis also shows that the mass eigen-

states W̃±
µ , Z̃µ are the result of the gauge bosons eating the NGBs.

With the analysis presented so far, it seems that the answer to the question “is the
Higgs really a fundamental ingredient of the SM?” is “no”; eq. (1.1.20), in fact, clearly
shows that a mass for the gauge bosons can be generated without any scalar boson in the
theory: what is really necessary is the set of NGBs χ’s, originated by the spontaneous
breaking SU(2)L ×U(1)Y → U(1)em. In particular, eq. (1.1.22) shows that the NGBs are
eaten by the gauge bosons, becoming the corresponding longitudinal components.

Similar considerations can be repeated for the fermions, for which the Lagrangian is:

L(f)
Σ = − v√

2
q̄L,i Σ

(
y

(u)
ij uR,j

y
(d)
ij dR,j

)
− v√

2
¯̀
L,i Σ

(
0

y
(e)
ij eR,j

)
+ h.c. , (1.1.23)

which can be easily shown to be invariant under G. Both eqs. (1.1.17) and (1.1.23) reduce
to the SM predictions in the unitary gauge, where the NGBs are set to zero and 〈Σ〉 = 1.

In the following, we only focus on quarks, the analysis for leptons being analogous.
Actually, it turns out that a theory like the one outlined so far suffers the violation of

perturbative unitarity in high energy interactions involving longitudinally-polarized gauge
bosons (see, e.g., ref. [12] for a nice review), such as in W+W− scattering; this issue can
be cured in at least two ways, which we are now going to review:

i) a first possibility is to introduce a new scalar boson h in the theory which is a singlet
under G, resulting in the Lagrangian [13]:

LΣ−h =
1

2
∂µh∂

µh+
v2

4
Tr[(DµΣ)† (DµΣ)]

(
1 + 2a

h

v
+ b

h2

v2
+ . . .

)
− V (h)

− v√
2
q̄L,i Σ

(
y

(u)
ij uR,j

y
(d)
ij dR,j

)(
1 + c

h

v
+ . . .

)
+ h.c. , (1.1.24)

where V (h) is some potential for h.

The three parameters a, b and c can then be tuned in such a way that perturbative
unitarity is recovered. The field h, in fact, enters in the scattering of gauge bosons
as well; W+W− scattering, for example, is unitarized for a = 1. On the other
hand, however, one has to make sure that also new processes involving h preserve
perturbative unitarity; it is possible to show that this is the case if b = a2 and ac = 1.
The combination of these three conditions leads to a = b = c = 1.

It is easy to realize that this choice for a, b and c is nothing but the SM (when the
higher-order interactions of h are neglected); in fact, if we introduce the doublet:

HΣ ≡
1√
2

Σ

(
0

h+ v

)
, (1.1.25)
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the standard interactions between the gauge bosons and the physical Higgs are
reproduced by the standard covariant kinetic Lagrangian for HΣ where DµHΣ ≡
∂µHΣ − ig/2W a

µσ
aHΣ − ig′/2BµHΣ.

We can also notice that perturbative unitarity is intimately linked to renormalizabil-
ity: in fact, it is straightforward to show that the Lagrangian written in terms of HΣ,
introduced to unitarize gauge bosons scattering, is renormalizable. In general, the
lack of perturbative unitarity can be traced in the lack or renormalizability.

As a final comment, if we take a < 1, we have violation of perturbative unitarity in
W+W− scattering at energies of the order of 4πv/

√
1− a2. Similar considerations

apply also to the other channels;

ii) another example in which perturbative unitarity is recovered, although in a com-
pletely different way, is in quantum chromodynamics- (QCD-)like theories. In QCD,
for example, pions exhibit the same feature we discussed above for W+W− scatter-
ing; here, however, no scalar particle enters the scene to cure the lack of perturbative
unitarity, but what happens is that a full tower of resonances (like the ρ) also par-
ticipate to scattering processes, compensating for the exchange of pions. Notice also
that QCD can be described with the formalism just introduced, with v substituted
by fπ ∼ O(90 MeV), the pion decay constant.

We can imagine QCD as a theory with an SU(2)L × SU(2)R invariance (ignoring the
third family of quarks), spontaneously broken by the quark condensate to SU(2)V ,
thus delivering 3 NGBs (the pions). We can then introduce a set of gauge fields by
gauging a subgroup SU(2)L×U(1)Y ; this implies the NGBs having non-vanishing cou-
plings to the currents which couple to the gauge bosons [14], leading to the generation
of a mass term for the gauge fields.

While this mechanism in real QCD would give a mass to the W boson more than three
orders of magnitude smaller than the observed one, we could imagine to introduce
new interactions, associated to a so-called technicolour gauge group and with a decay
constant f ∼ v. This idea is exactly the one behind the technicolour proposal by
Susskind [15].

While this discussion pointed out that in principle the Higgs boson is not a fundamental
ingredient of the SM, it is undoubtedly true that the discovery of a particle with the same
characteristics in 2012 ruled out technicolour-like models; nevertheless, the idea that
EWSB could be associated to a strong dynamics, still remains an intriguing possibility
for SM extensions.

1.2 Global symmetries of the Standard Model

Symmetries are a crucial aspect of modern physics; in a quantum field theory (QFT),
they dictate which operators can be present, what are the conserved quantities, and so
on. Also the SM exhibits symmetries, both local (gauge) and global; the global ones,
however, are peculiar, and we spend some words about them in this subsections.

As we will now discuss, SM global symmetries are special because they manifest as
accidental symmetries, i.e. symmetries which are such only at the renormalizable level.
We could expect these accidental symmetries to be the correct paradigm to describe
nature: after all, we have been used to deal with renormalizable theories for a long time,

9



especially after it was shown that the SM itself can be renormalized [16, 17]. From a
modern point of view, however, renormalizability is not a fundamental requirement for
a QFT anymore [18]: what really matters are locality and symmetries (in particular,
Lorentz and gauge invariance); in this perspective, the general idea is that a Lagrangian
contains all the local operators which are compatible with the symmetries, independently
of their canonical dimension.

If we follow this recipe for the SM, it is clear that LSM does not exhaust all the possible
interactions between the fields; in particular, it is only the renormalizable contribution to
an effective field theory (EFT) of the Standard Model, where infinitely other interactions
appear. We review some concepts of EFTs in appendix B. If we denote now as Lren

SM the
Lagrangian in eq. (1.1.2), we could write the effective SM Lagrangian as:

Leff
SM = Lren

SM + LNR
SM , (1.2.1)

where NR stands for “non-renormalizable”.
Accidental symmetries, then, are nothing but symmetries of Lren

SM which are not re-
spected by the full Lagrangian Leff

SM; surprisingly enough, nature obeys these symmetries
to a great extent. In addition, accidental symmetries are relevant because operators which
violate them can only be generated by LNR

SM, and as such their effects are more likely to
be observable, with respect to higher-order corrections to Lren

SM.

1.2.1 Number conservations and flavour symmetry

If Yukawa interactions were not there, the renormalizable SM Lagrangian would be in-
variant under the group:

Gacc = U(3)5 × U(1) , (1.2.2)

under which each fermion ψ transforms as ψ → Uψψ, Uψ ∈ U(3), and the Higgs as
H → eiαHH, αH ∈ R. Clearly, Yukawa interactions are present, but we are going to see
that we can think in terms of accidental and approximate symmetries in order to explain
many observational evidences.

Lepton and baryon number conservation

The flavour contribution Lflavour
SM , given in eq. (1.1.5), would be invariant under the group

defined in eq. (1.2.2) if the Yukawa couplings behaved like fields, called spurions, trans-
forming as:

U †qL y
(u)UdR e

−iαH = y(u) , U †qL y
(d)UdR e

iαH = y(d) , (1.2.3)

and similarly for the leptons. In general, these relations are not satisfied; however, if
there were a subgroup of Gacc under which Lflavour

SM is invariant, this would be a symmetry
group for all the renormalizable SM Lagrangian, describing then an accidental symmetry.
In order to look for this subgroup, it is convenient to go to a basis where the Yukawa
matrices are in the “most diagonal” form: since the latter can be diagonalized with bi-
unitary matrices, it is easy to show Gacc transformations can be employed to obtain:

y(u) → y
(u)
diag , y(d) → V y

(d)
diag , y(e) → y

(e)
diag , (1.2.4)

where V is the CKM matrix, and the diagonal Yukawa eigenvalues are positive. By
applying eq. (1.2.3) to this basis, it turns out that UuR , UqL , UeR , U`L have to be diagonal
with complex exponentials as matrix elements; on the other hand, the same condition
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Figure 1.4: Parton-level contribution to K0-K̄0 oscillations.

applied to y(d) implies that UqL = eiαq1, which in turn requires also UuR and UdR to be
proportional to the identity. Altogether, we obtain from eq. (1.2.3) the following relations
for the phases:

αuR − αqL − αH = 0

αdR − αqL + αH = 0 (1.2.5)

αi,eR − αi,`L + αH = 0 , i = 1, 2, 3

We therefore have 5 equations for 10 variables, meaning that 5 phases remain free: this
implies that a subgroup U(1)5 ⊂ Gacc is a group of symmetry transformations for all the
renormalizable SM Lagrangian.

A convenient basis for this U(1)5 leads to the conservation of total baryon number
(B), individual lepton number (Li) and hypercharge; while the first two are acciden-
tal symmetries, the hypercharge is not (it is a gauge symmetry the SM is constructed
on). Non-renormalizable operators which violate these accidental symmetry can lead to
features absent in the SM, such as neutrino masses, proton decay, etc..

Flavour symmetry

Flavour-changing neutral currents (FCNCs) represent processes in which either up- or
down-type (neutrino- or charged lepton-) flavours are involved, and where initial and
final states have different flavour number; this kind of processes is of great importance
because FCNCs are strongly suppressed in the SM, as we will briefly discuss: for this
reason, BSM effects have better prospects to be detectable. The prototypical example of
FCNC is represented by K0 − K̄0 oscillations, whose parton-level contribution is shown
in fig. 1.4; in the SM, such a process is heavily suppressed for three different reasons:

i) Loop suppression
FCNC processes arise at loop level in the SM. As far as the couplings between fermions
and both photon and gluon are concerned, they are flavour universal, i.e. they are
proportional to the unit matrix in flavour space; this is indeed guaranteed by gauge
invariance. Therefore, they are not responsible for the mixing between fermions of
different flavour.
As far as the couplings with the Z are concerned, they are also flavour universal, but
for a different reason: it is so because all mass eigenstates in a given representation
of SU(3)c × U(1)em come from interaction eigenstates in the same representation of
GSM. If this were not the case, non-universal couplings with the Z boson could be
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generated.
Finally, the Yukawa interactions with the Higgs are flavour diagonal, again not mixing
fermions with different flavours; this is once again a special feature of the SM, due
to the fact that all fermions are chiral (so that no bare mass term can be present)
and there is only one Higgs doublet. This latter aspect has the consequence that the
Yukawa and mass matrices can be simultaneously diagonalized.
We then conclude that FCNC processes cannot be generated at tree level, leading to
a first suppression due to loop factors.

ii) CKM suppression
A second reason why FCNC processes are suppressed has to be looked for in the
CKM matrix; clearly, flavour-changing processes are accompanied by non-diagonal
entries of the CKM matrices, which in the Wolfenstein parametrization [19] can
be schematically written as Vus, Vcd ∝ λ, Vcb, Vts ∝ λ2, Vub, Vtd ∝ λ3, and λ =
0.22465± 0.00039 [20].

iii) GIM suppression
A third source of suppression comes from the so-called Glashow-Iliopulos-Maiani
(GIM) mechanism [21], which predicts that no flavour-changing couplings with the
W boson exist if all the quarks in a given sector are degenerate in mass. To understand
this, let us consider the explicit example shown in fig. 1.4; the amplitude is estimated
to be:

MK0−K̄0
∼ g4

16π2

1

m2
W

∑
i,j

V †suiVuidV
†
suj
Vujd f

(
m2
ui

m2
W

,
m2
uj

m2
W

)
, (1.2.6)

where f is an O(1) function in its arguments. First of all, we can restrict the sum
over the first two generations because of the CKM suppression we discussed before;
in addition, because of the unitarity of the CKM matrix, we have V †suVud ≈ −V †scVcd,
so that: ∑

i

V †suiVuidf

(
m2
ui

m2
W

)
≈ V †scVcd

[
f

(
m2
c

m2
W

)
− f

(
m2
u

m2
W

)]

≈ V †scVcd f
′(0)

m2
c −m2

u

m2
W

, (1.2.7)

where in the last step we have expanded f in series. We clearly see that if the
all the quarks of a given sector (recall the we are neglecting the third generation)
are degenerate in mass, the amplitude vanishes. This is the essence of the GIM
mechanism.

The suppression of FCNC processes can also be traced in the accidental symmetries of
Lren

SM; in fact, both the smallness of masses for the first two generations and the form of
the CKM matrix comes from the fact that the Yukawa couplings can be approximated
(in an appropriate basis) as:

y(u),(d),(e) ≈ yt,b,τ

0 0 0
0 0 0
0 0 1

+ small contributions . (1.2.8)

12



In the limit where these small contributions are exactly zero, the flavour Lagrangian
in eq. (1.1.5) (and then the full renormalizable SM Lagrangian) is invariant a subgroup
of Gacc (defined in eq. (1.2.2)) where the transformation matrices act only on the first
two generations; this is nothing but the global group U(2)5 ⊂ Gacc. Since these small
contributions are not zero, we can understand the suppression of FCNC processes in
terms of an approximate, global U(2)5 symmetry.

Given that Gacc is broken only by the Yukawa interactions, and in the very peculiar way
we briefly recalled, the concept of minimal-flavour-violating (MFV) theory was introduced
in the literature [22]: an effective theory constructed from SM and the spurions satisfies
the MFV criterion if all non-renormalizable operators are invariant under Gacc (and CP ).

1.2.2 Custodial symmetry

We discussed in section 1.1.4 how the CCWZ formalism can be employed to discuss
EWSB; however, it turns out that the one in eq. (1.1.17) is not the most general term
allowed by symmetries. Actually, we should have considered the Lagrangian:

L(2)
Σ =

v2

4
Tr[(DµΣ)† (DµΣ)] + aT

v2

8
Tr2[Σ†DµΣσ3] , (1.2.9)

which leads to the prediction for the gauge boson masses:

m2
W =

v2g2

4
, m2

Z =
v2g2

4 cos2 θw
(1− aT ) ⇒ ρ =

1

1− aT
. (1.2.10)

The current experimental value, ρ = 1.00039±0.00019 [20], requires aT ∼ 10−4; in general,
we think of small values of dimensionless parameters as very much related to symmetry
arguments [23]: it is then natural to ask whether the smallness of the coefficient aT can
also be explained in terms of symmetries.

The Lagrangian in eq. (1.2.9) is invariant under local SU(2)L×U(1)Y transformations;
however, if aT = 0, it is invariant under a larger group, namely a global SU(2)L× SU(2)R
under which Σ → ULΣU †R, UL,R ∈ SU(2)L,R. To be more precise, SU(2)L × SU(2)R is a
symmetry group for eq. (1.2.9) only if also g′ = 0.

In general, SU(2)L × SU(2)R is broken in the SM Lagrangian:

- explicitly by g′, since the term proportional to it in DµΣ does not commute with general
SU(2)R transformations, but only with the corresponding third component;

- explicitly by Yukawa interactions, because y
(u)
ij 6= y

(d)
ij , as clear from eq. (1.1.23);

- spontaneously by the VEV of Σ, 〈Σ〉 = 1, being the latter invariant only under
transformations with UL = UR, i.e. only under the diagonal subgroup SU(2)V ⊂
SU(2)L × SU(2)R. This residual symmetry is called custodial symmetry [24–26].

The relation ρ = 1 remains valid at tree level, while corrections proportional to g′ and
y(u)− y(d) emerge at loop level. If the equalities g′ = 0 and y(u) = y(d) were respected, we
would have ρ = 1 to all orders in perturbation theory.

Actually, the custodial symmetry is not exact, since SU(2)L×SU(2)R is already broken
explicitly; in addition, it could be even more heavily broken by NP operators, analogously
to what happened with the term proportional to aT in eq. (1.2.9). However, the exper-
imental fact that ρ ≈ 1 is an indication that both g′ and y(u) − y(d) must be sufficiently
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small, making the custodial symmetry an approximate symmetry of the theory. Not to be
in contrast with experiments, then, one usually requires that also BSM extensions respect
the custodial symmetry, at least approximately.

If not for the sources of explicit breaking we have just discussed, the custodial symme-
try would be a symmetry of the whole SM Lagrangian after EWSB, including the Higgs
potential in eq. (1.1.8). If we parametrize the Higgs doublet as:

H =
1√
2

(
h1 + ih2

h3 + ih4

)
, (1.2.11)

the potential is only function of |H|2 =
∑

i h
2
i , and so invariant under an SO(4) symmetry

group; since SO(4) ' SU(2) × SU(2), we recognize the invariance of the potential under
SU(2)L × SU(2)R. Once the Higgs acquires a VEV, hi = 0 for i 6= 3, this symmetry is
explicitly broken to SO(3) ' SU(2), i.e. the custodial symmetry.

1.3 Electroweak precision tests

The weak sector of the Standard Model has been tested very accurately, in particular at
the Large Electron-Positron Collider (LEP), in the so-called electroweak precision tests
(EWPTs). The operators relevant for EWPTs do not violate any of the accidental symme-
tries we discussed before; their importance lies in the fact that their effects are measured
with a high level of accuracy, and can therefore be sensitive also to NP originating at
high scales. Examples of these observables are mW , mZ , WWγ and ZZγ couplings, the
asymmetry in left- and right-handed fermions in the final state, defined as:

AfLR ≡
Γ(Z → fLf̄R)− Γ(Z → fRf̄L)

Γ(Z → fLf̄R) + Γ(Z → fRf̄L)
, (1.3.1)

and so on.
In this kind of analysis, the parameters g, g′ and v are expressed in terms of the

electromagnetic fine structure constant αem (determined from γ∗ → e+e− scattering), the
Fermi constant GF (determined from µ decay) and the Z boson mass mZ ; the reason for
doing this is that the latter are measured with a high degree of accuracy. New physics
can then change the relation between g, g′, v and αem, GF , mZ .

In the following, we focus on universal theories of EWSB, defined as those theories
where the only gauge interactions of light fermions are of the type [27]:

Lint = ψ̄γµ(gT aW̄ a
µ + g′Y B̄µ)ψ , (1.3.2)

T a being the generators of SU(2)L and Y the hypercharge. In general, W̄ a
µ and B̄µ are

not the usual SM gauge bosons, but are rather a mixture of them with possible heavy
new gauge bosons. We consider only leptons and light quarks because these are the most
relevant particles for EWPTs. The SM can be considered a universal theory in the limit
in which the Yukawa couplings are set to zero.

In universal theories, important deviations from the SM reside in the oblique param-
eters, related to the vacuum polarization amplitudes of the SM gauge bosons. For this
reason, we introduce a uniform notation and define the vacuum polarization amplitude
for the gauge bosons I and J as:
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Iµ Jν
≡ iΠµν

IJ(q2) ≡ i
[
ΠIJ(q2)gµν −∆(q2)qµqν

]
, (1.3.3)

where q denotes the incoming momentum. The last term usually drops out of calculation
once this amplitude is dotted in a fermion current, since we are considering light fermions.

With the definition above, a positive value of ΠIJ gives a positive mass shift to the
gauge bosons:

m2
V → m2

V + ΠV V (m2
V ) . (1.3.4)

The masslessness of the photon requires that (see, e.g., ref. [28]1):

Πγγ(0) = 0 = ΠγZ(0) . (1.3.5)

It also useful to define:

Π′V V (0) ≡ dΠV V

dq2

∣∣∣∣
q2=0

. (1.3.6)

We can relate the parameters g, g′ and v to this polarization amplitudes as [29]:

1

g2
= Π′W+W−(0) ,

1

g′2
= Π′BB(0) , v2 = −4ΠW+W−(0) . (1.3.7)

The two oblique parameters which will be most relevant for us in the following are [27]:

Ŝ ≡ g2Π′W 3B(0) (1.3.8a)

T̂ ≡ 4

v2
[ΠW 3W 3(0)− ΠW 1W 1(0)] . (1.3.8b)

These are related to the S and T Peskin-Takeuchi parameters introduced in ref. [30]
by [29]:

S =
4 sin2 θw
αem

Ŝ , T =
T̂

αem

. (1.3.9)

It can be shown that the parameter T̂ is related to ρ by the relation T̂ = ρ− 1.
The current combined limits on S and T from GFitter are [31]:

S = 0.04± 0.08 , T = 0.08± 0.07 , (1.3.10)

where we assumed the oblique parameter U vanishing.
We conclude by recalling that other oblique parameters are defined and often used in

the literature; however, Ŝ and T̂ are the two that will be most relevant for our future
analysis.

1In quantum electrodynamics (QED), it is customary to normalize Π(q2) as Π(q2) = q2Π̃(q2), with
Π̃(q2) regular in q2 = 0.
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1.4 Hierarchy problem

Although its incredible success, for sure SM is not the ultimate theory of nature, but
rather an EFT; a complete description of gravity, for instance, is missing. Of course, one
can treat gravity within the SM in a perturbative way, i.e. by expanding general relativity
semiclassically; such a description is perfectly legitimate for energies much smaller than

the Planck mass, MPl ≡ (8πG)−
1
2 ≈ 2.4× 1018 GeV.

While the perturbative description of gravity breaks down at the Planck scale, it is
definitely possible (and even desired, as we are going to discuss) that some new physics
emerges before reaching quantum gravity energies; for this reason, we can think the SM
as an EFT of some underlying ultraviolet (UV) theory endowed with an intrinsic cutoff
ΛSM.

Independently of the specific UV theory, the considerations of section 1.2 and ap-
pendix B reveal that the SM has an intrinsic disturbing feature, called hierarchy problem2.
Such a problem is not a peculiarity of the SM; in general, in fact, theories with scalars can
suffer of the same feature. To illustrate this, let us consider theory for a real scalar field
φ (respecting a Z2 symmetry, for simplicity) emerging as an EFT from some unknown
theory defined above a scale Λ; the most general Lagrangian is:

Lφ =
1

2
∂µφ ∂

µφ+ λ2,0 φ
2 + λ4,0 φ

4 + λ6,0 φ
6 + λ8,0 φ

8 + . . .

+ λ2,2 φ
2∂µφ ∂

µφ+ λ4,2 φ
4∂µφ ∂

µφ+ . . .

+ λ2,4 φ
2(∂µφ ∂

µφ)2 + λ4,4 φ
4(∂µφ ∂

µφ)2 + . . .

+ . . .

≡
∑
I

λI OI . (1.4.1)

If we denote by ∆I the dimension of the operator OI , then each coefficient λI can be
parametrized as:

λI =
gI

Λ∆I−4
, (1.4.2)

with being gI dimensionless and expected to be O(1) in order to be able to perform a
perturbative expansion; this assumption is not a strict requirement, but turns out to be
valid in all examples of strongly-interacting theories we know.

This assumption, however, poses a problem: for the mass term, λ2,0 = g2,0Λ2 ≡ m2/2,
we need g2,0 � 1; if this were not the case, in fact, no quanta with energy much smaller
than Λ would exist (since the mass represents the minimum energy a particle can have),
and in turn no low-energy description would be possible; we are then forced to require
g2,0 � 1, although without a real motivation. This brief discussion represents the simplest
example of naturalness problem.

In general, naturalness is not a necessary condition for a theory [32], although it
is very deeply connected to an idea which guided physicists for centuries: the concept
of separation of scales; the idea is that processes happening at a given scale are not
affected by the ones taking place at much shorter distances. In general, we can think of
unnaturalness as the signal for the emergence of some new physics around the corner.

2In the following, with maybe an abuse of notation, we indifferently use the terms “naturalness” and
“hierarchy”.
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Figure 1.5: Main contributions to m2
h|SM coming from loops of t, gauge bosons and h.

If this is not the case, on the other hand, it would imply a strong correlation between
infrared (IR) and UV physics, invalidating the EFT approach [33].

It is important to stress that this discussion is not a mere consequence of the con-
sidering a large cutoff Λ for the theory; even with other regularization schemes, such as
dimensional regularization, there would be large contributions to the mass parameter of
φ, for example due to the interactions with some other scalar Φ with mass M � m (see
ref. [32] for a detailed discussion about this point).

1.4.1 Unnaturalness of the Higgs mass

Having discussed the bottom line of the naturalness problem, we can consider the case of
the Standard Model. (One of) the naturalness problem(s) is related to the mass of the
Higgs bosons; analogously to the previous example, we should write the mass term for
the Higgs, in the formulation where the SM is treated as an effective theory, as:

LH ⊃ cΛ2
SMH

†H . (1.4.3)

If we take ΛSM ∼ O(1015 GeV), this requires c . 10−26 in order to be in agreement with
experimental evidences.

We can discuss the problem in a more formal way with the following approach: in full
generality, we can assume that the UV theory predicts a mass for the Higgs boson given
by [27]:

m2
h =

∫ ∞
0

dE
dm2

h

dE
, (1.4.4)

where the integrand is a not specified function of the input parameters of the UV theory.
Since the integral is performed over all the possible energies, we can consider it as the
sum of two contributions:

m2
h =

∫ ΛSM

0

dE
dm2

h

dE
+

∫ ∞
ΛSM

dE
dm2

h

dE
≡ δm2

h

∣∣
SM

+ δm2
h

∣∣
BSM

, (1.4.5)

where the first term can be fully computed within the SM, while the second one depends
on the specific underlying UV theory. The main contributions to δm2

h|SM come from loops
of the top quark, the gauge bosons, and the Higgs itself, and are shown in fig. 1.5; the
result is:

δm2
h

∣∣
SM
≈ 3Λ2

SM

16π2v2

(
4m2

t − 2m2
W −m2

Z −m2
h

)
. (1.4.6)
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Once again, the underlying hypothesis in eq. (1.4.5) is that contributions coming from
scales which are very separated from each others do not interfere; but then, it is clear that
a problem arises: since by assumption ΛSM � v ∼ mh, a cancellation between δm2

h|SM and
δm2

h|BSM is necessary, although being the two terms completely unrelated. In particular,
we can estimate the minimum level of fine tuning ξ−1 that is needed as:

ξ−1 & δm2
h|SM

m2
h

∼ O
(

Λ2
SM

104 GeV2

)
. (1.4.7)

If, for example, ΛSM ∼ O(1014 GeV), we obtain ξ−1 & 1024, meaning that at least a 24
digits cancellation between two unrelated contributions must occur; this is the essence of
the hierarchy problem related to the unnaturalness of the Higgs mass.

1.4.2 Possible solutions

During the last few decades, many solutions to the Higgs naturalness problem were pro-
posed, relying on very different assumptions. We briefly recall here some ideas:

- a first possibility is that fields with masses much larger than the EWSB scale do not
exist. Such an assumption could be motivated by the fact that many open problems of
the SM require the existence of new physics at scales which are not much larger than
v. On the other hand, however, this hypothesis presents some problems as well: first of
all, no gauge coupling unification is possible, since grand unified theories (GUTs) are
usually associated to a scale ΛGUT ∼ O(1015 GeV); in addition, an even more serious
problem is represented by gravity: the latter is usually associated to the Planck scale,
MPl ∼ O(1018 GeV). A solution to this second problem was presented in the context
of large extra dimensions, where the real scale of gravity M∗ can be much smaller, e.g.
M∗ ∼ O(1 TeV), while the value of MPl is just the result of the compatification of extra
dimensions;

- a second possibility is that there exist fields much heavier than the EWSB scale, but the
Higgs is a composite, rather than fundamental, particle, made up of fermions belonging
to a new, strongly-interacting, sector. This is the idea, for example, of composite
Higgs [34–37]. If we denote by Λstrong the scale at which the strong dynamics confines,
we could expect corrections to the Higgs mass of the order δm2

h ∝ Λ2
strong; for this reason,

Λstrong ∼ O(1 TeV) is usually required;

- a third possibility is that the mass of the Higgs, considered as an elementary particle,
is kept small by symmetries. The most famous example of BSM model belonging to
this category is supersymmetry (SUSY) (see, e.g., refs. [38–40]), where large corrections
to the Higgs mass are avoided thanks to a cancellation between loop contributions of
bosons and fermions.

Although the plethora of proposals for BSM models, it is important to stress that all of
them seem to be more and more in tension with experimental results, given also that no
significant departure from the SM has been found.

In future developments of particle physics, naturalness arguments may remain valid
guiding principles anyway; if this is not the case, on the other hand, it would mean that
a deep change in the way we look at nature on small scales is necessary.
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Chapter 2

Dark matter

If this would be confirmed, we
would get the surprising result that
dark matter is present in much
greater amount than luminous
matter.

Fritz Zwicky

One very important missing piece of the SM is represented by dark matter: nowadays,
we know from experiment that most of the matter in the universe (more than 80%) is not
represented by ordinary baryons or leptons, but rather by a new, extra-ordinary form of
matter whose existence can be inferred by many indirect effects.

In this chapter, we review the main properties of DM and discuss quite in detail the
case of WIMPs, from both a theoretical and an experimental point of view.

2.1 History and evidences

The first mentions about a dark component of matter in the universe already appeared
in the 20’s [41], although we have to wait until 1933 for the first real evidence, due to the
work by Zwicky [42]. We now briefly review some of the main evidences that historically
brought to the awareness that most of the matter in the universe is dark:

- Zwicky studied the Coma Cluster, a group of more than 1000 galaxies, and applied the
virial theorem, stating that for a system in equilibrium:

2〈T 〉+ 〈V 〉 = 0 , (2.1.1)

where T and V are the kinetic and potential energies, respectively. He assumed the
size of the cluster to be R ∼ O(1 Mpc), and determined the mass of the galaxies from
measuring the velocity dispersions. By estimating the corresponding mass-to-luminosity
ratio and comparing it with the one of the close-by Kapteyn stellar system, he concluded
that the amount of matter in the cluster was more than 300 times larger than expected;
from this, he concluded that most of the matter had to be optically dark;

- another milestone in the history of DM is represented by the work of Rubin and Ford [43],
where they considered the rotation curves of stars in galaxies; Newton’s law predicts
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Figure 2.1: Rotation curve for the galaxy NGC 6503. Figure taken from ref. [44].

that the circular velocity vc of a star is related to its distance r from the center of the
galaxy by:

vc =

√
GNM(r)

r
, (2.1.2)

where GN is the Newton constant and M(r) is the mass enclosed in a sphere or radius
r:

M(r) =

∫
|x|≤r

d3xρ(x) , (2.1.3)

with ρ being the density. By assuming that the mass of a galaxy is within the disk, eq. (2.1.2)
implies that vc ∝ r−1/2 at large distances. However, observations suggest that the ve-
locities tend to a constant value for large r (see fig. 2.1). These results can be explained
if one assumes an additional component which behaves like ordinary matter from a
gravitational point of view, but is characterized by a density scaling as ρ ∝ r−2;

- another famous evidence for the existence of DM is represented by the so-called “Bul-
let Cluster” [45], where two clusters of galaxies collide. The image in fig. 2.2 clearly
shows that the baryonic component, i.e. the intercluster gas, is strongly affected by the
collision, whereas the gravitational potential, represented with the green lines, is not:
this suggests that the latter is not produced by the gas, but some other, extra-ordinary,
component of matter;

- according to General Relativity, gravity influences the path of light: this process is
known as gravitational lensing ; in particular, by studying how an image of distant
galaxies is distorted by a foreground object (a cluster, for instance), it is possible to
estimate the gravitational potential of the lens. In fig. 2.3, we show this effect due to
the cluster Abell 2218. With gravitational lensing, it has been inferred that most of the
matter is not visible;
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Fig. 1.—Left panel: Color image from the Magellan images of the merging cluster 1E 0657!558, with the white bar indicating 200 kpc at the distance of the
cluster. Right panel: 500 ks Chandra image of the cluster. Shown in green contours in both panels are the weak-lensing k reconstructions, with the outer contour
levels at k p 0.16 and increasing in steps of 0.07. The white contours show the errors on the positions of the k peaks and correspond to 68.3%, 95.5%, and
99.7% confidence levels. The blue plus signs show the locations of the centers used to measure the masses of the plasma clouds in Table 2.

TABLE 2
Component Masses

Component
R.A.
(J2000)

Decl.
(J2000)

MX

(1012 M,)
M∗

(1012 M,) k̄

Main cluster BCG . . . . . . . . 06 58 35.3 !55 56 56.3 5.5 ! 0.6 0.54 ! 0.08 0.36 ! 0.06
Main cluster plasma . . . . . . 06 58 30.2 !55 56 35.9 6.6 ! 0.7 0.23 ! 0.02 0.05 ! 0.06
Subcluster BCG . . . . . . . . . . 06 58 16.0 !55 56 35.1 2.7 ! 0.3 0.58 ! 0.09 0.20 ! 0.05
Subcluster plasma . . . . . . . . 06 58 21.2 !55 56 30.0 5.8 ! 0.6 0.12 ! 0.01 0.02 ! 0.06

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees,
arcminutes, and arcseconds. All values are calculated by averaging over an aperture of 100 kpc radius
around the given position (marked with blue plus signs for the centers of the plasma clouds in Fig. 1);
measurements for the plasma clouds are the residuals left over after the subtraction of the circularlyk̄

symmetric profiles centered on the BCGs.

Both peaks are offset from their respective BCGs by ∼2 j but are
within 1 j of the luminosity centroid of the respective component’s
galaxies (both BCGs are slightly offset from the center of galaxy
concentrations). Both peaks are also offset at ∼8 j from the center
of mass of their respective plasma clouds. They are skewed toward
the plasma clouds, and this is expected because the plasma con-
tributes about one-tenth of the total cluster mass (Allen et al. 2002;
Vikhlinin et al. 2006) and a higher fraction in nonstandard gravity
models without dark matter. The skew in each k peak toward the
X-ray plasma is significant even after correcting for the overlap-
ping wings of the other peak, and the degree of skewness is
consistent with the X-ray plasma contributing of the ob-"9%14%!8%
served k in the main cluster and in the subcluster (see"12%10%!10%
Table 2). Because of the large size of the reconstruction (34! or
9Mpc on a side), the change in k due to themass-sheet degeneracy
should be less than 1%, and any systematic effects on the centroid
and skewness of the peaks are much smaller than the measured
error bars.
The projected cluster galaxy stellar mass and plasma mass

within 100 kpc apertures centered on the BCGs and X-ray
plasma peaks are shown in Table 2. This aperture size was
chosen because smaller apertures had significantly higher k
measurement errors and because larger apertures resulted in a
significant overlap of the apertures. Plasma masses were com-
puted from a multicomponent three-dimensional cluster model
fit to the Chandra X-ray image (details of this fit will be given
elsewhere). The emission in the Chandra energy band (mostly
optically thin thermal bremsstrahlung) is proportional to the
square of the plasma density, with a small correction for the

plasma temperature (also measured from the X-ray spectra),
which gives the plasma mass. Because of the simplicity of this
cluster’s geometry, especially at the location of the subcluster,
this mass estimate is quite robust (to a 10% accuracy).
Stellar masses are calculated from the I-band luminosity of

all galaxies equal in brightness or fainter than the component
BCG. The luminosities were converted into mass by assuming
(Kauffmann et al. 2003) . The assumed mass-to-lightM/L p 2I

ratio is highly uncertain (and can vary between 0.5 and 3) and
depends on the history of the recent star formation of the gal-
axies in the apertures; however, even in the case of an extreme
deviation, the X-ray plasma is still the dominant baryonic com-
ponent in all of the apertures. The quoted errors are only the
errors on measuring the luminosity and do not include the
uncertainty in the assumed mass-to-light ratio. Because we did
not apply a color selection to the galaxies, these measurements
are an upper limit on the stellar mass since they include con-
tributions from galaxies not affiliated with the cluster.
The mean k at each BCG was calculated by fitting a two-

peak model, each peak circularly symmetric, to the reconstruc-
tion and subtracting the contribution of the other peak at that
distance. The mean k for each plasma cloud is the excess k
after subtracting off the values for both peaks.
The total of the two visible mass components of the sub-

cluster is greater by a factor of 2 at the plasma peak than at
the BCG; however, the center of the lensing mass is located
near the BCG. The difference in the baryonic mass between
these two positions would be even greater if we excluded the
contribution of the nonpeaked plasma component between the

Figure 2.2: Collision of two clusters of galaxies, also known as “Bullet Cluster”. In the
right panel, the event is shown in the X-ray; the green lines correspond to gravitational
equipotential surfaces. Figure taken from ref. [45]

Figure 2.3: Gravitational lensing from the cluster of galaxies Abell 2218.

- one of the strongest evidences for the existence of DM is represented by cosmology,
and in particular by the cosmic microwave background (CMB); the anisotropies in
temperature can be expanded in spherical harmonics as:

∆T

T
(θ, φ) =

∑
`,m

a`mY`m(θ, φ) , (2.1.4)

from which the power spectrum can be computed as:

DTT` =
`(`+ 1)C`

2π
, C` ≡

1

2`+ 1

∑
m

|a`m|2 . (2.1.5)

The CMB spectrum obtained by the Planck collaboration [46] is shown in fig. 2.4.
Important properties of DM can be deduced by the peaks in the power spectrum; in
fact, their angular position (measured in terms of `) gives us informations about the
cosmological parameters; in particular, the abundance of baryons reflects in the ratio
of the amplitudes of even and odd peaks. Observations indicate that the abundance of
baryons at 68% confidence level (CL) is given by [46]:

Ωbh
2 = 0.02233± 0.00015 , (2.1.6)
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Planck Collaboration: Cosmological parameters
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Fig. 1. Planck 2018 temperature power spectrum. At multipoles ` � 30 we show the frequency-coadded temperature spectrum
computed from the Plik cross-half-mission likelihood, with foreground and other nuisance parameters fixed to a best fit assuming
the base-⇤CDM cosmology. In the multipole range 2  `  29, we plot the power spectrum estimates from the Commander
component-separation algorithm, computed over 86 % of the sky. The base-⇤CDM theoretical spectrum best fit to the Planck
TT,TE,EE+lowE+lensing likelihoods is plotted in light blue in the upper panel. Residuals with respect to this model are shown in
the lower panel. The error bars show ±1� diagonal uncertainties, including cosmic variance (approximated as Gaussian) and not
including uncertainties in the foreground model at ` � 30. Note that the vertical scale changes at ` = 30, where the horizontal axis
switches from logarithmic to linear.

the best-fit temperature data alone, assuming the base-⇤CDM
model, adding the beam-leakage model and fixing the Galactic
dust amplitudes to the central values of the priors obtained from
using the 353-GHz maps. This is clearly a model-dependent pro-
cedure, but given that we fit over a restricted range of multipoles,
where the TT spectra are measured to cosmic variance, the re-
sulting polarization calibrations are insensitive to small changes
in the underlying cosmological model.

In principle, the polarization e�ciencies found by fitting the
T E spectra should be consistent with those obtained from EE.
However, the polarization e�ciency at 143 ⇥ 143, cEE

143, derived
from the EE spectrum is about 2� lower than that derived from
T E (where the � is the uncertainty of the T E estimate, of the
order of 0.02). This di↵erence may be a statistical fluctuation or
it could be a sign of residual systematics that project onto cali-
bration parameters di↵erently in EE and T E. We have investi-
gated ways of correcting for e↵ective polarization e�ciencies:
adopting the estimates from EE (which are about a factor of
2 more precise than T E) for both the T E and EE spectra (we
call this the “map-based” approach); or applying independent

estimates from T E and EE (the “spectrum-based” approach). In
the baseline Plik likelihood we use the map-based approach,
with the polarization e�ciencies fixed to the e�ciencies ob-
tained from the fits on EE:

⇣
cEE

100

⌘
EE fit

= 1.021;
⇣
cEE

143

⌘
EE fit

=

0.966; and
⇣
cEE

217

⌘
EE fit

= 1.040. The CamSpec likelihood, de-
scribed in the next section, uses spectrum-based e↵ective polar-
ization e�ciency corrections, leaving an overall temperature-to-
polarization calibration free to vary within a specified prior.

The use of spectrum-based polarization e�ciency estimates
(which essentially di↵ers by applying to EE the e�ciencies
given above, and to T E the e�ciencies obtained fitting the T E
spectra,

⇣
cEE

100

⌘
TE fit

= 1.04,
⇣
cEE

143

⌘
TE fit

= 1.0, and
⇣
cEE

217

⌘
TE fit

=

1.02), also has a small, but non-negligible impact on cosmo-
logical parameters. For example, for the ⇤CDM model, fitting
the Plik TT,TE,EE+lowE likelihood, using spectrum-based po-
larization e�ciencies, we find small shifts in the base-⇤CDM
parameters compared with ignoring spectrum-based polariza-
tion e�ciency corrections entirely; the largest of these shifts
are +0.5� in !b, +0.1� in !c, and +0.3� in ns (to be com-

7

Figure 2.4: CMB temperature power spectrum from Planck 2018. Figure taken from
ref. [46].

where, as we will see in section 2.3, we indicate by ΩXh
2 the ratio between the density

of a species X and the critical density of the universe.

On the other hand, the dark matter density is:

Ωch
2 = 0.1198± 0.0012 . (2.1.7)

Therefore, CMB not only tells us that a dark component of matter is present in the
universe, but also that it is about 5 times more abundant than the ordinary one.

All these observations, and others, also give important insights about the properties of
DM:

i) DM is dark, meaning that its coupling to photon must be strongly suppressed. This
constraint comes from the fact that DM does not contribute to the radiation back-
ground and that it cannot cool radiating photons.

In addition to the electromagnetic ones, also DM interactions with gluons have to be
suppressed;

ii) DM is collisionless, meaning that DM self-interactions are strongly suppressed; the
Bullet Cluster is a clear example of this property;

iii) DM behaves like a fluid, rather than having a granular structure; massive compact
halo objects (MACHOs) are potential astrophysical bodies which behave like DM.
Searches from microlensing excluded a dominant contribution to DM density from
MACHOs with masses in the range 10−7M� . m . 10M� [47];

iv) DM behaves classically, at least on the galactic scales where it is confined. Depending
on the particle nature of DM, we can infer a lower limit on its mass [48]:

- if DM is a boson, Bose-Einstein statistics allows one to have an arbitrarily large
number of particles per a single cell of phase space volume; the DM then behaves
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like a coherent field and, similarly to what happens for the hydrogen atom, its
stability can be formulated in terms of the uncertainty principle, requiring that:

∆x∆p . 1 , (2.1.8)

where ∆p ∼ mDMv and ∆x ∼ 2Rhalo. The most stringent bound comes by applying
this limit to dwarf galaxies, leading to:

mDM & 10−22 eV ; (2.1.9)

- if DM is a fermion, on the other hand, the halo mass can be estimated as:

Mhalo = mDMV

∫
d3p

1 + eβE(p)
. mDMR

3
halo(mDMv)3 . (2.1.10)

This estimate, applied to dwarf galaxies, leads to

mDM & 0.7 keV ; (2.1.11)

v) DM is not hot (i.e. it is non-relativistic at matter-domination equality), since oth-
erwise it would have erased structures; to quantify this statement more precisely, it
is useful to introduce the so-called free-streaming length, defined as the distance a
particle travels between its production and matter-radiation equality:

λFS ≡
∫ teq

t0

dt
v(t)

a(t)
. (2.1.12)

The integral is dominated by the relativistic regime, i.e. when v ∼ 1 and t < tnr; if
we assume radiation domination, we get [49]:

λFS ∼ 2
√
tnr ∼ 0.4 Mpc

1 keV

mDM

. (2.1.13)

In general, we can classify a DM candidate according to its free-streaming length, as:

- hot dark matter (HDM) if λFS � 1 Mpc;

- warm dark matter (WDM) if λFS ∼ 1 Mpc;

- cold dark matter (CDM) if λFS � 1 Mpc.

Hot relics also lead to a top-down picture, where large structures fragment into smaller
ones. On the contrary, cold relics lead to clustering of small structures into larger
ones.

Observations favour cold dark matter, but some room is left also to warm candidates;
interestingly enough, the latter could solve some tensions between observations and
predictions on small scales (such as the missing satellite [50] and the too big to fail [51]
problems);

vi) DM is stable, since we still see its effects nowadays. In principle, it is possible
it is unstable but extremely long-lived: recent bounds set a lower limit of τDM &
160 Gyr [52]. For our considerations, we can safely consider DM to be absolutely
stable.
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2.2 Main dark matter candidates

Historically, many models to explain the origin of DM were proposed, very different from
each others; during the time, as sensitiveness of experiments became higher and higher,
some of them have been completely ruled out, while for others the available parameter
space has been reduced.

We briefly review here some famous ideas proposed in the last few decades, without
the will of being exhaustive in any way. In general, DM candidates can be classified
depending to the fact that they belong or not to the category of WIMPs. We will discuss
in detail properties of WIMP candidates in the following, being the latter the core of this
work.

2.2.1 WIMP candidates

On general ground, WIMPs can be defined as non-baryonic massive particles which in-
teract weakly with the SM, are produced via the freeze-out mechanism and have a mass
in the range 2 GeV . mDM . 100 TeV [53], where the upper limit comes from violation
of unitarity in the annihilation cross section [54]. Although this vague definition, WIMPs
have been by far the most widely studied candidates of DM, since they arise in some of
the most well-motivated BSM proposals. In addition, they usually have interactions and
rates which can be probed with current and future experiments.

Among the most famous WIMP candidates, we can recall:

- lightest supersymmetric particle (LSP): supersymmetry is in general endowed with
the so-called R-parity, a symmetry which prevents large violations of baryon number
and consequent proton decay. Supersymmetric particles are usually assigned a value
PR = −1, while SM ones have PR = 1; as a consequence, the lightest state of the super-
symmetric spectrum is absolutely stable, leading to a possible DM candidate. Examples
of LSPs which can be DM candidates are the neutralino or the sneutrino;

- Kaluza-Klein (KK) states: theories with extra dimensions (see, e.g., refs. [55–57]) pre-
dict a full tower of states for each particle; as an example, in the case of only one
universal extra dimension (i.e., with all particles propagating in all the spacetime) com-
pactified on a S1/Z2 orbifold, the KK-parity conservation can make the lightest KK
particle a DM candidate [58];

- dark matter candidates in the form of WIMPs can be present in many other extensions
of the SM, as we will discuss in detail in the following: in chapter 3, we consider the case
in which a simple WIMP Lagrangian is added on top of the SM one, while in chapter 4
we consider the problem of DM associated to the hierarchy one.

2.2.2 Non-WIMP candidates

WIMPs are of course not the only possibility to account for DM. Some famous alternatives
to the WIMP paradigm are:

- axions: these are hypothetical particles firstly introduced to solve the strong CP prob-
lem; on top of the QCD Lagrangian, we can add the term:

Lθ =
θ

64π2
εµνρσG

µν
a Gρσ

a , (2.2.1)
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where Gµν is the (non-canonically normalized) gluon field strength. Such a terms vio-
lates both P and CP .

Let us now consider the effect of the redefinition of all the quark fields in the QCD
Lagrangian qf → eiαfγ

5
qf ; because of the chiral anomaly, this has the effect of changing

the QCD Lagrangian as:

LQCD → LQCD +
1

32π2
εµνρσG

µν
a Gρσ

a

∑
f

αf . (2.2.2)

By comparing this with eq. (2.2.1), we see that it is equivalent to shifting θ by θ →
θ+ 2

∑
f αf ; on the other hand, the field redefinition qf → eiαfγ

5
qf also affects the mass

term, leading to mf → e2iαf mf .

Given that the observables are usually computed with the path integral formalism,
where the fields are integration variables, the field redefinition cannot have any physical
consequence, and therefore observable quantities cannot depend separately on θ or on
the phases of the mass matrix, but only on the combination

eiθ
∏
f

mf . (2.2.3)

It is then evident that if any of the quark masses vanished, θ would not be physical (it
could be set to zero by redefining the massless quark field), and no P - or CP -violation
would be present in QCD. In general, it is always possible to redefine the quark fields
in such a way that θ = 0, but at the price of introducing P - or CP -violating phases
in the mass parameter. If, on the other hand, we define the quark fields in such a way
that all the mass parameters are real, a θ 6= 0 appears, leading to P - and CP -breaking;
in particular, it causes an anomalous dipole moment for the neutron. Experimental
measurements lead to a bound on θ of |θ| . 10−10, thus posing a naturalness problem.
A solution was found by Peccei and Quinn [59], who supposed the existence of a global
U(1)PQ spontaneously broken at a scale fa � ΛQCD; the corresponding NGB was called
axion [60]. According to the general discussion of appendix A, under a U(1)PQ the
axion field shifts: therefore, the only non-derivative term which is allowed is:

La =
1

64π2fa
a εµνρσG

µν
a Gρσ

a , (2.2.4)

where a is the axion field and fa is the axion decay constant. In this way, the smallness
of θ̄ can be seen as a dynamical problem, related to the minimum of the axion potential;
it can be shown that such a minimum is for a = 0, providing an elegant solution to the
strong CP problem.
Astrophysics sets a lower bound on the scale of breaking of U(1)PQ, namely fa &
107÷9 GeV.
The axion can be a viable DM candidate; recent studies showed that if it constitutes
the totality of dark matter, its mass is predicted to be ma ∼ O(20 µeV) [61].

- sterile neutrinos: from observations, we now know that neutrinos are massive particles.
On the other hand, however, the SM predicts their mass to be zero; possible mechanisms
to generate neutrino masses generally assume the existence of new heavy neutrinos,
which are singlets under GSM [62, 63]. If, however, also sufficiently light ones exist, say
with mν̃ ∼ O(keV), they can be DM candidates [64]. It is interesting to note that sterile
neutrino are usually WDM candidates;
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- primordial black holes (PBHs); the possibility that DM could be constituted by black
holes traces back to the 70s [65, 66]. PBHs are thought to form in the early universe
by overdensities in the primordial fluid. Currently, models predicting PBHs received
constraints from several searches (e.g., CMB, dwarf galaxies, lensing, γ-ray emission),
but PBHs with masses of O(10−12M�) can constitute the totality of dark matter [67];

- gravitino: if gravitino is the LSP, it can be a viable DM candidate. In this case, one
of the most stringent constraints comes from the requirement of avoiding overclosure of
the universe. While the gravitino can be a good WDM candidate for masses of O(keV),
if it is heavier, behaving as CDM, some mechanism is needed to dilute its density and
avoid overclosure. Also constraints from Big Bang nucleosynthesis are relevant, and
roughly set m3/2 . O(MeV);

- fuzzy dark matter (FDM): DM could be formed by ultra-light scalar particles, with
masses of O(10−22 eV) [68]; if this is the case, the associated de Broglie wavelength is
λdB ∼ O(1 kpc). Such a framework could alleviate some of the small scales problems of
DM, and could be motivated by models in string theory, where light scalar fields usually
appear.

2.3 Freeze-out production of WIMP dark matter

In this subsection, we discuss the cosmological history of WIMP dark matter in detail,
since this is the main focus of the future discussion.

Before discussing the relevant physics of freeze-out quantitatively, it is useful to get
a qualitative glimpse of what happens. The idea is relatively simple: to determine the
abundance of DM, one has to consider the interactions which change the number of DM
particles; if we assume that there exists only one dark matter particle, and denote it by
χ, the main contribution to this kind of interactions is:

χχ↔ SM SM , (2.3.1)

where SM stands for a generic Standard Model particle. We are deliberately ignoring all
possible indices and similar details, the general picture not being altered by them.

As long as this interaction can take place in both directions, DM is in equilibrium
with the rest of the plasma, and its number density distribution nχ follows the laws of
statistical mechanics; in particular, when the temperature drops below mχ and the DM
becomes non-relativistic, nχ becomes exponentially suppressed by the Maxwell-Boltzmann
factor e−mχ/T . If, however, the rate of interactions in eq. (2.3.1) becomes sufficiently small
compared to the expansion rate of the universe, DM is not able to annihilate anymore,
and its number density freezes-out to the asymptotic value n∞χ . The relevant quantities
to be compared are the rate of interactions Γχ = nχ〈σv〉 and the Hubble parameter H;
here v represent the relative velocity of two DM particles, and is v ∼ O(10−3). As a rough
estimate, we can consider the freeze-out to occur when:

Γχ . H . (2.3.2)

2.3.1 Standard freeze-out

To formalize the previous qualitative discussion, it is necessary to resort to the formal-
ism of Boltzmann equations; in general, the Boltzmann equation for the phase space
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distribution function f(p) can be written as [49]:

L̂[f ] = C[f ] , (2.3.3)

where the first term is the Liouville operator, while the second one represents a collision
term.

In the Friedman-Robertson-Walker (FRW) metric, eq. (2.3.3) for the DM number
density becomes:

ṅχ + 3Hnχ = gχ

∫
d3p

(2π)32E
C[f ] , (2.3.4)

where gχ is the number of internal degrees of freedom of χ.
If we consider a generic process χ + 1 + 2 + . . . ↔ a + b + . . . ≡ I ↔ F , the collision

term can be written as:

g

∫
d3p

(2π)3E
C[f ] = −

∏
{i∈I}

∏
{j∈F}

∫
dΠi dΠj (2π)4δ(Pf − Pi)

×
[
|M|2I→F fi(1± fj)− |M|

2
F→I fj(1± fi)

]
, (2.3.5)

where Pf and Pi are the final and initial momenta, respectively, and we defined:

dΠ ≡ g
d3p

(2π)32E
. (2.3.6)

Finally, the ±1 in eq. (2.3.5) applies to bosons and fermions, respectively.
We can now specialize to a simpler case, i.e. the two-to-two interaction χ+ψ ↔ a+ b;

to simplify the analysis, we make two assumptions: first, we assume CP invariance,
which implies that |M|2I→F = |M|2F→I ≡ |M|

2; the second assumption is the fact that
we can ignore both Bose condensation and Fermi blocking, in such a way that 1± f ≈ 1
(well motivated if we consider energies smaller than E − µ). With these hypotheses, the
Boltzmann equation becomes:

ṅχ + 3Hnχ = −
∫
dΠχdΠψdΠadΠb (2π)4δ(Pf − Pi)|M|2(fχfψ − fafb) . (2.3.7)

By exploiting energy conservation and introducing the equilibrium phase space distribu-
tion function, defined as f eq ≡ e−E/T , we can write:

fχfψ − fafb = e−
Eχ+Eψ

T

(
e
µχ+µψ

T − e
µa+µb
T

)
= f eq

χ f
eq
ψ

(
nχnψ
neq
χ n

eq
ψ

− nanb
neq
a n

eq
b

)
, (2.3.8)

where we took into account that eµ/T = n/neq. Since the term in parenthesis does not
depend on the momenta, eq. (2.3.7) becomes:

ṅχ + 3Hnχ = −〈σv〉
(
nχnψ −

nanb
neq
a n

eq
b

neq
χ n

eq
ψ

)
, (2.3.9)

where we defined the thermally-averaged cross section as:

〈σv〉 ≡ 1

neq
χ n

eq
ψ

∫
dΠχdΠψdΠadΠb (2π)4δ(Pf − Pi)|M|2f eq

χ f
eq
ψ (2.3.10)
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At this point, it is important to distinguish two different concepts of equilibrium: in
general, a particle is said to be in kinetic equilibrium (KE) if it follows its corresponding
distribution, i.e. Bose-Einstein of Fermi-Dirac; the condition of KE is usually fulfilled if
scatterings like χ + SM ↔ χ + SM are fast enough. A particle is instead in chemical
equilibrium (CE) if its chemical potential is related to the ones of the other particles it
interacts with, i.e. µχ + µψ = µa + µb for the reaction χ + ψ ↔ a + b. If a particle
is in both kinetic and chemical equilibrium, it is said to be in local thermal equilibrium
(LTE). By taking into account that eµ/T = n/neq, it is easy to see that in the presence of
chemical equilibrium the L.H.S. of eq. (2.3.9) vanishes: given that this equation can be
schematically written as nχH ∼ nχnψ〈σv〉 ≡ nχΓψ, the parenthesis can become O(1) if
Γψ . H, i.e. we can expect CE to break down when a species freezes-out [69].

In order to discuss DM freeze-out, we refer to eq. (2.3.9), but in a simpler framework:
we study DM annihilations into light SM particles which are in equilibrium with the
plasma, i.e. χχ̄ ↔ SM SM. This assumptions allows us to consider SM states to be in
LTE, so that nSM = neq

SM. In this case, then, eq. (2.3.9) simply becomes:

ṅχ + 3Hnχ = −〈σv〉
(
n2
χ − neq

χ
2
)
, (2.3.11)

By defining now the quantities Y ≡ nχ/s, x ≡ mχ/T , where s = 2π2/45 g∗,ST 3 is the
entropy density, we can rewrite eq. (2.3.11) as:

dY

dx
≈ −s〈σv〉

xH
(Y 2 − Y 2

eq) , (2.3.12)

where we assumed that g∗,S does not depend on the temperature.
Let us now define the freeze-out temperature TF as the one at which the rate of the

interactions χχ̄ ↔ SM SM roughly equals the Hubble parameter; we then expect that
Y � Yeq if T � TF , so that:

1

Y∞
− 1

YF
≈
∫ ∞
xF

dx
s〈σv〉
xH

. (2.3.13)

Since freeze-out is not an instantaneous process, it is also natural to expect that YF � Y∞;
therefore, if we substitute the expressions for s and H, we arrive at:

Y∞ ≈
√

45

2
√

2π

1

mχMPl

∫ ∞
xF

dx
g∗,S√
g∗

〈σv〉
x2

, (2.3.14)

In order to determine the freeze-out temperature in a quantitative way, we introduce the
variable ∆ ≡ Y − Yeq, in terms of which eq. (2.3.12) reads:

d∆

dx
= −dYeq

dx
− s〈σv〉

xH
∆(2Yeq + ∆) . (2.3.15)

Since we expect that after freeze-out Yeq ceases to trace the equilibrium behaviour, we
define xF by the requirement that ∆(xF ) = αYeq(xF ), where α is an O(1) number. At
early times, x� xF , both ∆ and |d∆/dx| are small, and we can approximate the equation
above by setting d∆/dx ≈ 0; this then implies:

∆|x�xF ≈ −
xH

s〈σv〉
1

2 +
∆

Yeq

, (2.3.16)
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where we took into account that 1/Yeq dYeq/dx ≈ 1. If we now put in this equation the
constraint ∆(xF ) = αYeq(xF ), and equal it to αYeq(xF ), we obtain:1

xF ≈ log

[
2
√

90

(2π)
5
2

gχ√
g∗ xF

mχMPl〈σv〉
]

≈ 25 + log

[
1.67 gχ√
g∗ xF

mχ

100 GeV

〈σv〉
1 pb

]
. (2.3.17)

In getting this equation, we chose a value of α such that α(2 + α) = 1, i.e. α ≈ 0.4.
The relic density is then computed in terms of the dimensionless quantity:

Ωχh
2 ≡ ρχ

ρc
h2 , ρc ≡ 3M2

PlH
2 . (2.3.18)

From eq. (2.3.14), the DM abundance results in:

Ωh2 =
nχmχ

3M2
Pl

(
h

H

)2

=
s0Y∞mχ

3M2
Pl

(
1

100 km Mpc−1 s−1

)2

≈ π

3
√

90
g

(0)
∗,S

(
T0

MPl

)3
1∫ ∞

xF

dx
g∗,S√
g∗

〈σv〉
x2

(
1

100 km Mpc−1 s−1

)2

≈ 0.03∫ ∞
xF

dx
g∗,S√
g∗

1

x2

〈σv〉
1 pb

, (2.3.19)

where subscripts or superscripts 0 refer to quantities evaluated at the present epoch, as
usual. We show the behaviour of Y , as a function of x, in fig. 2.5; it is evident that larger
values of 〈σv〉 (denoted by 〈σA|v|〉 in the figure) lead to a smaller relic density today, in
accordance with eq. (2.3.19).

By taking into account that 1 pb ≈ 3× 10−26 cm3 s−1, if we assume that the integral
above is dominated by the region around xF ∼ O(25), and that g∗ ∼ g∗,S ∼ O(100), we
obtain:

Ωχh
2

0.1
∼ 3× 10−26 cm3 s−1

〈σv〉 ∼ 0.2
GF

σ
, (2.3.20)

where GF is the Fermi constant. Since the latter can be viewed as the scale associated
to the weak theory (as we discuss, e.g., in appendix B), we see that a roughly correct
relic abundance corresponds to an annihilation cross section of the order of typical weak
interactions; this feature represents the so-called WIMP miracle.

2.3.2 Exceptions to the standard paradigm

The one outlined above is the standard paradigm for WIMP freeze-out; however, several
exceptions to this picture are possible. In the famous paper [70], three of them are dis-
cussed in detail: coannihilations, annihilations into forbidden channels and annihilations

1Sometimes, a different criterium to determine xF is used: TF is defined as the temperature at which
nχ〈σv〉 = H(TF ). With this other definition, the only change is that in the R.H.S. of eq. (2.3.17),

√
xF

appears in the numerator [49].
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Figure 2.5: Dependence of Y as a function of x; larger values of the annihilation cross
section lead to a smaller relic abundance. Figure taken from ref. [49].

near poles. In the following, we very briefly recall the last two and discuss the first one
in detail. In addition, we also study the possible departure from chemical equilibrium,
since it will be relevant for our future discussion. In the literature, other exceptions to
the standard freeze-out mechanism have been studied (see, e.g., ref. [71]).

Annihilations into forbidden channels

The idea is that if a particular channel of DM annihilation is kinematically forbidden at
zero temperature, thermal effects can make it become accessible. If we denote by ψ the
final state of this channel, i.e. χχ̄ → ψψ̄, if the two states are such that mχ . mψ, the
net rate of annihilations does not vanish. Roughly, if (mψ −mχ)/mχ . 10%, this effect
can be appreciable.

In general, the consequence of including thermal effects is that in the plane mχ-Ωχh
2

all channels open up slightly before the mass of the products of DM annihilation.

Annihilations near a pole

If DM annihilations take place near a pole of the cross section, there is a significant en-
hancement of the annihilation cross section, and consequently a dip in the relic abundance.
We will encounter an example of this effect in chapter 4. Such an enhancement of the
cross section usually takes place if the Higgs can mediate DM annihilations in s-channel
and mχ ≈ mh/2.

Coannihilations

The previous discussion implicitly assumed the existence of a single particle belonging to
the dark sector; however, if more than one such states exist, the situation changes. Let
us assume a set of particles χi, i = 1, . . . , N charged under a symmetry which stabilizes
the lightest state (e.g., a Z2 symmetry under which the dark sector is odd and the SM
is even) exists, such that mχi < mχj if i < j; if we denote two generic Standard Model
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particles by SM and SM′, we can have three different types of processes, namely:

χi + χj ↔ SM + SM′ (2.3.21a)

χi + SM↔ χj + SM′ (2.3.21b)

χj ↔ χi + SM + SM′ , (2.3.21c)

which represent coannihilations, conversions and decays (with also the inverse processes).
By repeating the previous analysis, we can consider the Boltzmann equation for a

single species χi, which can be schematically written as [70]:

ṅχi + 3Hnχi = −
∑

j,SM,SM′

[
〈σijv〉

(
nχinχj − neq

χi
neq
χj

)
+
(
〈σ′ijv〉nχinSM − 〈σ′jiv〉nχjnSM′

)
+ Γij

(
nχi − neq

χi

) ]
, (2.3.22)

where σij, σ
′
ij are the cross sections for coannihilations and conversions, respectively, and

Γij is the decay width of χi.
It is important to notice that the three kinds of reactions in eqs. (2.3.21a) to (2.3.21c)

take place on very different time scales; for instance, if we compare the rate of conversions
with the one of coannihilations, we get:

〈σijv〉nχinχj
〈σ′ijv〉nχinSM

∼ nχj
nSM

∼
(mχj

T

) 3
2

e−
mχj
T ≈ 6× 108 , (2.3.23)

where we assumed the SM particles to be relativistic at freeze-out and took mχj/T = 25
for the last equality. Decay and inverse decay can in general be even faster.

Given that all χi’s eventually decay to χ1, the relevant quantity is the total number
density of dark particles, nχ ≡

∑
i nχi ; by summing over i in eq. (2.3.22), we obtain the

following equation for nχ:

ṅχ + 3Hnχ = −
∑
i,j

〈σijv〉
(
nχinχj − neq

χi
neq
χj

)
. (2.3.24)

In addition, since conversions and decays are so fast, they maintain the equilibrium be-
tween the χi’s, allowing us to approximate nχi/n

eq
χi
≈ nχ/n

eq
χ , and then:

ṅχ + 3Hnχ ≈ −〈σv〉eff

(
n2
χ − neq

χ
2
)
, (2.3.25)

which is precisely of the form of eq. (2.3.11), but written in terms of the effective cross
section:

〈σv〉eff ≡
∑
i,j

〈σijv〉
neq
χi

neq
χ

neq
χj

neq
χ
. (2.3.26)

The ratio neq
χi
/neq

χ can be simply written in terms of ∆i ≡ (mχi −mχ1)/mχ1 as:

neq
χi

neq
χ

=
gχim

3/2
χi e

−mχi/T∑
j

gχjm
3/2
χj
e−mχj /T

=
gχi(1 + ∆i)

3/2 e−x∆i∑
j

gχj(1 + ∆j)
3/2 e−x∆j

, (2.3.27)

where gχi denotes the number of internal degrees of freedom of χi.
Once the effective cross section is computed, the determination of the DM relic abun-

dance reduces to the problem of standard freeze-out for the effective number density nχ.
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Departure from chemical equilibrium

In the previous discussion, we claimed that in eq. (2.3.22) the reactions dictated by the
last two lines usually take place on much shorter time scales compared to the first one;
these processes are responsible for the maintenance of chemical equilibrium, as defined
in section 2.3.1, since they change the number of particles of a giving species.

Let us consider the case of only two dark particles, χ and ψ, and two Standard Model
ones, SM and SM′, and let us also assume for simplicity the dark states to be scalars
(the analysis for fermions follows straightforwardly, with simply the appearance of some
factors of 2); if we consider the conversion process χ+ SM↔ ψ + SM′, and assume that
all the SM states are in thermal equilibrium, the condition of CE implies:

nχ
neq
χ

=
nψ
neq
ψ

. (2.3.28)

If this condition breaks down, on the other hand, we have to resort to the full set of
Boltzmann equations. To this purpose, let us first consider the decay, ψ → χ+SM+SM′;
in this case, the contribution to the Boltzmann equation for χ is:

ṅχ + 3Hnχ ⊃
∫
dΠχdΠψdΠSMdΠSM′ (2π)4δ(Pf − Pi)|M|2(fψ − fχfSMfSM′)

=

(
nψ
neq
ψ

− nχ
neq
χ

)∫
dΠψ 2mψ Γψ e

−Eψ
T =

(
nψ
neq
ψ

− nχ
neq
χ

)
m2
ψT Γψ

2π2
K1

(mψ

T

)

=

(
nψ
neq
ψ

− nχ
neq
χ

)
neq
ψ

K1(xψ)

K2(xψ)
Γψ ≡

(
nψ −

nχ
neq
χ
neq
ψ

)
〈Γψ〉 ,

where we defined xψ ≡ mψ/T , took into account that neq = m2T/(2π2)K2(m/T ) and
considered the integral representation of the modified Bessel functions:

Kn(x) =

√
π(

n− 1
2

)
!

(x
2

)n ∫ ∞
1

dt (t2 − 1)
n−1/2

e−tx . (2.3.29)

It is now simple to write down the full Boltzmann equation for the DM particle χ, which
reads:

dYχ
dx

= − s

xH

[
〈σχχv〉(Y 2

χ − Y eq
χ

2) + 〈σχψv〉(Yχ Yψ − Y eq
χ Y eq

ψ )

+ 〈σχSMv〉Y eq
SM

(
Yχ −

Yψ
Y eq
ψ

Y eq
χ

)
− 〈Γψ〉

s

(
Yψ −

Yχ
Y eq
χ
Y eq
ψ

)

+ 〈σχχ→ψψv〉
(
Y 2
χ −

Y 2
ψ

Y eq
ψ

2 Y
eq
χ

2

)]
, (2.3.30)

where the thermal cross sections are defined analogously to eq. (2.3.10). The first line
concerns annihilations and coannihilations, the second one conversions and decays of ψ,
and the last one annihilations within the dark sector. An analogous equation obviously
holds for ψ as well.

From the discussion above, it is then clear that the last three terms are the ones
responsible for maintaining chemical equilibrium. If CE breaks down, the full set of
coupled equations for χ and ψ has to be solved.
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2.4 Experimental searches

WIMPs are by far the most widely studied candidates of dark matter: for this reason, also
a very intense program of experimental searches has been developed during the decades.
In this subsection, we discuss the three different strategies we can look for WIMP dark
matter with: direct detection (DD), indirect detection (ID) and LHC searches.

2.4.1 Direct detection

The history of direct detection dates back to the 80s, when it was first proposed [72]. As
we already stressed, the DM electromagnetic coupling, if any, must be very small; for this
reason, DM does not interact with electrons within an atom, but is able to scatter off the
nucleus. The main current DD experiments include XENON1T [73], PandaX [74] and
LUX [75].

What is experimentally measured is the recoil energy Er of the nucleus of mass mT ,
which can be easily estimated; in the center of mass (CM) frame, if v is the relative
velocity between the DM and the nucleus, the momentum transfer is:

|q| ≡ |pχ − pT | =
√

2p2
χ(1− cos θ) = µχTv

√
2(1− cos θ) , (2.4.1)

with θ and µχT being the angle between pχ and pT , and the reduced mass of the system,
respectively.

The maximum recoil energy is then:

Emax
r =

2µ2
χTv

2

mT

(2.4.2)

Typical ranges of Emax
r are 0.1 keV . Emax

r . 100 keV for DM masses in the range
10 GeV . mχ . 1 TeV and v ∼ 10−3. In addition, DD experiments usually have a lower
threshold Ethr

r below which events are not measured; this translates in a minimal velocity
for DM, which can be easily calculated from eq. (2.4.2) as:

vmin =

√
mTEthr

r

2µ2
χT

(2.4.3)

The rate R of interactions between χ and the nucleus is expected to be proportional to the
number of targets NT = MT/mT (with MT being the total target mass), the interaction
cross section and the DM flux; the differential rate per unit detector mass is:

dR

dEr
=

ρ0

mχmT

∫
d3v vf(v)

dσT

dEr
, (2.4.4)

where f(v) is the velocity distribution distribution, ρ0 ≈ 0.3 GeV cm−3 is the local DM
density and σT is the DM-nucleus cross section.

For our purposes, it will be important to distinguish between spin independent (SI)
and spin dependent (SD) interactions. Let us recall that a Dirac spinor can be written in
the Weyl representation as:

ur(p) =

(√
p · σ ξr√
p · σ̄ ξr

)
, (2.4.5)
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where σµ ≡ (1,σ), σ̄µ ≡ (1,−σ) and ξr is normalized such that ξ†r ξs = δrs. We are then
interested in the non-relativistic limit, where we can approximate:

√
p · σ ≈ √m− p · σ

2
√
m

,
√
p · σ̄ ≈ √m+

p · σ
2
√
m
. (2.4.6)

If we finally recall that in the Weyl basis γµ =

(
0 σµ

σ̄µ 0

)
and γ5 =

(
−1 0
0 1

)
, it is easy

to show that:

ūr(p)us(p
′) ≈ 2mδrs (2.4.7a)

ūr(p) γ
µus(p

′) ≈ 2mδrs δ
µ0 (2.4.7b)

ūr(p) γ
5us(p

′) ≈ −2δrs(p− p′) · s (2.4.7c)

ūr(p) γ
µγ5us(p

′) ≈ 4msi δrs δ
µi (2.4.7d)

Therefore, we see that while scalar and vector interactions are SI, axial-vector ones are SD.
In addition, pseudo-scalar interactions are SD and also suppressed by the small momentum
transfer.

Connection with experiments can be done in a quite model-independent way [76]; first
of all, as long as the mass of the particle mediating the interactions between DM and SM
quarks is larger than the transfer momentum, say mmed & O(100 MeV), the interaction
can be parametrized via an effective theory; in general, then, we can schematically write
the Lagrangian as (see appendix A of ref. [77]):

L(DD)
eff = ODMOq , (2.4.8)

The general approach is then to go from the partonic operator Oq to the operators On,p
which describe the interactions of the DM with the nucleons; if we consider Oq = λq q̄ Γ q
(where Γ indicates a generic Lorentz structure), this is obtained by the replacement Oq →
On +Op = fn n̄Γn+ fp p̄Γ p.

In order to map these operators to the ones describing the interaction with nucleus,
it is convenient to distinguish between SI and SD interactions involving the quarks:

a) spin-independent interactions
In this case, the nucleus-level operator is obtained by the replacement:

On +Op → OT = [Z fp + (A− Z)fn] T̄ ΓT , (2.4.9)

with T being the nucleus field, Z and A the atomic and mass number, respectively,
and Γ = {1, γµ}. We can further consider two possible cases:

i) scalar interaction

If we parametrize the effective Lagrangian as L(DD)
eff =

∑
q λq χ̄χ q̄q ≡ χ̄χOq, we

have:

fn,p =
∑

q=u,d,s

f
(n,p)
Tq

λq
mn,p

mq

+
2

27
fTG

∑
q=c,b,t

λq
mn,p

mq

, (2.4.10)

where f
(n,p)
Tq

are numerical coefficients determined experimentally and fTG = 1 −
f

(n,p)
Tu
− f

(n,p)
Td
− f

(n,p)
Ts

, together with f
(n)
Tu

= f
(p)
Td

(and the same for u ↔ d) and

f
(n)
Ts

= f
(p)
Ts

.
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The DM-nucleus cross section can be finally computed with the standard tech-
niques, taking into account the non-relativistic limit and eq. (2.4.7a), yielding
to:

σSI,T =
〈|M|〉2
16πs

≈ µ2
χT

π
[Z fp + (A− Z)fn]2 . (2.4.11)

ii) vector interaction

If we parametrize the effective Lagrangian as L(DD)
eff =

∑
q λq χ̄γ

µχ q̄γµq ≡ χ̄γµχOq,µ,
we have:

fn = λu + 2λd , (2.4.12)

and the same with u ↔ d for the proton; this basically follows from eq. (2.4.7b),
taking into account that q†q is the number of quarks and is conserved.

Similarly to the previous case, the DM-nucleus cross section is:

σSI,T =
〈|M|〉2
16πs

≈ µ2
χT

π
[Z fp + (A− Z)fn]2 . (2.4.13)

Given that in general different experiments use different nuclei, DD limits are usually
recast in terms of the cross section between the DM and the nucleons, which is defined
as:

σSI ≡ σSI,T|q=0

µ2
χN

µ2
χT

1

A2
, (2.4.14)

where q is the momentum transfer and µχN the DM-nucleon reduced mass, with the
nucleon mass defined as mN ≡ (mn +mp)/2.

b) spin-dependent interactions
In this case, the nucleus-level operator is obtained by the replacement:

On +Op → OT =

(〈Sp〉
JT

fp +
〈Sn〉
JT

fn

)
T̄ ΓT , (2.4.15)

where JT is the spin of the nucleus and Γ = {γ5, γµγ5}.
We can further consider two possible cases:

i) pseudo-scalar interaction

If we parametrize the effective Lagrangian as L(DD)
eff =

∑
q λq χ̄γ

5χ q̄γ5q ≡ χ̄γ5χOq,
we have:

fn,p =
∑

q=u,d,s

f
(5n,5p)
Tq

λq
mn,p

mq

, (2.4.16)

where, as for the scalar interactions, f
(5n,5p)
Tq

are numerical coefficients determined
experimentally.

The DM-nucleus cross section can be computed as for the previous cases, by
making the replacement |T̄ γ5T |2 → 4m2

TJT (JT + 1)q2; taking into account that θ
explicitly enters in the expression of |q| (cf. eq. (2.4.1)), we obtain:

σSI,T =

∫
dΩ
〈|M|〉2
64π2s

≈ 4

3π

µ6
χTv

4

m2
χm

2
T

JT (JT + 1)

(〈Sp〉
JT

fp +
〈Sn〉
JT

fn

)2

, (2.4.17)

from which it is clear the strong velocity suppression.
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Figure 12. The current experimental parameter space for spin-independent WIMP-

nucleon cross sections. Not all published results are shown. The space above the

lines is excluded at a 90% confidence level. The two contours for DAMA interpret

the observed annual modulation in terms of scattering of iodine (I) and sodium (Na),

respectively. The dashed line limiting the parameter space from below represents the

“neutrino floor” [112] from the irreducible background from coherent neutrino-nucleus

scattering (CNNS), see Sect. 3.4.

below m� = 1.8 GeV/c2 [120], extending the mass range into the sub-GeV regime down

to 0.14 GeV/c2. The result for the lowest masses was achieved using a 0.5 g sapphire-

crystal (Al2O3) with a threshold of 20 eV. The cryogenic crystal was operated above

ground without significant shielding for 2.27 hours, the background level in the region

of interest was 1.2 ⇥ 105 events/(kg⇥ d⇥ keVee) [121].

In a small window around 0.5-06 GeV/c2 the best exclusion limit around 3 ⇥
10�37 cm2 is from NEWS-G, a spherical proportional counter with 60 cm diameter and

filled with a Ne+CH4 (0.7%) gas-mixture at 3.1 bar (corresponding to 283 g) [122]. With

its low threshold of 36.5 eVee and the use of the low-A gas neon the instrument was

optimized to search for low-mass WIMPs.

Spin-dependent interactions As discussed in Sect. 2.1, bubble chambers filled with

targets containing the isotope 19F have the highest sensitivity to spin-dependent WIMP-

proton couplings. The best limit to date is from PICO-60, operated with 52 kg of C3F8

(octafluoropropane), see Fig. 13 (top). No excess of WIMP candidates was observed

Direct Detection of Dark Matter 33

Figure 13. Current status of the searches for spin-dependent couplings. (Top)

WIMP-proton interactions. The search is dominated by bubble chambers and

superheated droplet detectors which contain the isotope 19F. The results from the

much larger LXe detectors are an order of magnitude weaker. Also shown are limits

from indirect searches [131, 132]. (Bottom) WIMP-neutron interactions. The best

results are from LXe TPCs.

above the background expectation in a combined exposure of (1167+1404) kg⇥ day

(with thresholds of 3.3 keVnr and 2.45 keVnr, respectively), excluding spin-dependent

cross sections above 2.5 ⇥ 10�41 cm2 for 25 GeV/c2 WIMPs [91]. At low WIMP masses

between 2 and 4 GeV/c2, the best limits on spin-dependent WIMP-proton interactions

are from PICASSO which operated 32 superheated droplet detectors with a total mass

of 3.0 kg C4F10 [128]. The experiments are probing the same parameter space as the

neutrino telescopes IceCube, ANTARES and Super-Kamiokande, which constrain spin-

dependent WIMP-proton scattering via dark matter capture in the Sun (and subsequent

Figure 2.6: Current bounds from DD experiments. The space above each line is excluded
at 90%. Left: limits for SD interactions between DM and nucleon. The orange, dashed
line represent the irreducible background represented by neutrinos. Right panel: limits
for SD interactions between DM and proton. Figure taken from ref. [78].

ii) axial-vector interaction

If we parametrize the effective Lagrangian as L(DD)
eff =

∑
q λq χ̄γ

µγ5χ q̄γµγ5q ≡
χ̄γµγ5χOq,µ, we have:

fn,p =
∑

q=u,d,s

∆(n,p)
q λq , (2.4.18)

where, once again, ∆
(n,p)
q are numerical coefficients determined experimentally,

and ∆
(n)
u = ∆

(p)
d (and the same for u↔ d) and ∆

(n)
s = ∆

(p)
s .

The DM-nucleus is:

σSI,T =

∫
dΩ
〈|M|〉2
64π2s

≈ 4µ2
χT

π
JT (JT + 1)

(〈Sp〉
JT

fp +
〈Sn〉
JT

fn

)2

. (2.4.19)

Also for SD interactions, it is convenient to introduce a cross section for DM-nucleon
interactions; it is defined as:

σSI ≡ σSI,T|q=0

µ2
χN

µ2
χT

1

(〈Sp〉+ 〈Sn〉)2

JT
(JT + 1)

. (2.4.20)

Current bounds from DD are shown in fig. 2.6, for both SI and SD DM-nucleon cross
section. The characteristic shape can be understood as follows: from eq. (2.4.3), it is
easy to show that there is a minimum value of mχ the experiments are sensitive to, and
this corresponds to the weaker and weaker bound in fig. 2.6 for mχ . O(10 GeV); on the
other hand, we see from eq. (2.4.4) that the DM number density scales as m−1

χ , and this
explains why the limits also get weaker at large masses.

Another important effect is given by annual modulation: since the Earth is moving
around the Sun, while the DM is not expected to have a preferred direction of motion in
the galaxy, there is a net effect on the DM flux reaching the earth: in particular, the latter
is expected to be maximum in June, when the Earth moves in the opposite direction of
this net “DM wind”, while it is minimum in December. This is the effect claimed to be
observed by the DAMA/LIBRA experiment (see, e.g., ref. [79]).
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2.4.2 Indirect detection

A second strategy to look for DM is to seek for products of DM annihilation: even if, as
we stated before, dark matter annihilation is strongly suppressed, there is a non-vanishing
possibility for it to happen, especially in regions where the DM density is very high (such
as in dwarf galaxies, galactic centers etc.).

In general, only stable particles can reach the detectors: for this reason, electrons,
positrons, (anti-)protons, photons and neutrinos are sought for; annihilations of DM into
other SM particles reduce to these final products after decays.

Since ID is not a primary focus of this work, we will now simply recall some basic facts,
and consider the case in which photons are the final particles which reach the detector.
If we assume them to be produced within a volume dV located in the sky at the point
(r, θ, φ), where r is the distance form the detector, the expected flux of photons per unit
of energy and time is [80]:

dNγ

dE dt dV
=

(
dNγ

dE

)
0

A

4πr2

1

2
〈σv〉eff n(r) , (2.4.21)

where A is the area of the detector, 〈σv〉eff the thermally-averaged DM annihilation cross
section and n(r) the DM number density; the factor of 1/2 comes from the fact that the
final state is made of indistinguishable particles. In writing this expression, we assumed
that the energy of photons does not change between the emission and the reception.

If we integrate along the line of sight and over the solid angle, we obtain:

1

A

dNγ

dE dt
=
〈σv〉eff

m2
χ

(
dNγ

dE

)
0

J , (2.4.22)

where

J ≡ 1

8π

∫
dr dΩ ρχ(r) (2.4.23)

is the famous J-factor for annihilations. If we assume a Navarro-Frenk-White (NFW)
profile for the DM density, which goes as ρ(r) ∝ r−1 for small r, the dwarf satellite
galaxies of the Milky Way have J ∼ 1017÷20 GeV2 cm−5, while for the center of the Milky
Way J ∼ 1022 GeV2 cm−5. Despite the higher J-factor, the center of the galaxies are
much richer in astrophysical backgrounds than dwarf galaxies; for this reason, the latter
are usually good targets for ID experiments.

In addition, one should also consider the effect of redshift and absorption, which make
the energy of the final states not be constant from the emission to the reception.

Similarly to what happens with DD, experimental bounds are usually expressed in
terms on bounds on the cross section between DM and SM particles; we show in fig. 2.7
the upper bounds on the thermally-averaged DM annihilation cross section into bb̄ and
τ+τ− from the Fermi-LAT experiment.

2.4.3 LHC searches

In general, DM can also be produced at colliders, and its presence can be inferred by
an unbalance between initial and final energy in the detected tracks. An important
quantity in LHC searches for DM is the transverse momentum, pT ; if the take ẑ to be the
longitudinal beam direction, the transverse momentum for a particle of total momentum
p is defined as [82]:

pT ≡
√
p2
x + p2

y = p cos θ , (2.4.24)
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FIG. 1. Constraints on the DM annihilation cross section at 95% CL for the bb̄ (left) and ⌧+⌧� (right) channels derived from
a combined analysis of 15 dSphs. Bands for the expected sensitivity are calculated by repeating the same analysis on 300
randomly selected sets of high-Galactic-latitude blank fields in the LAT data. The dashed line shows the median expected
sensitivity while the bands represent the 68% and 95% quantiles. For each set of random locations, nominal J-factors are
randomized in accord with their measurement uncertainties. The solid blue curve shows the limits derived from a previous
analysis of four years of Pass 7 Reprocessed data and the same sample of 15 dSphs [13]. The dashed gray curve in this and
subsequent figures corresponds to the thermal relic cross section from Steigman et al. [5].
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FIG. 2. Comparison of constraints on the DM annihilation cross section for the bb̄ (left) and ⌧+⌧� (right) channels from this
work with previously published constraints from LAT analysis of the Milky Way halo (3� limit) [34], 112 hours of observations
of the Galactic Center with H.E.S.S. [35], and 157.9 hours of observations of Segue 1 with MAGIC [36]. Pure annihilation
channel limits for the Galactic Center H.E.S.S. observations are taken from Abazajian and Harding [37] and assume an Einasto
Milky Way density profile with ⇢� = 0.389 GeV cm�3. Closed contours and the marker with error bars show the best-fit cross
section and mass from several interpretations of the Galactic center excess [16–19].
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Figure 2.7: Upper bounds on the DM annihilation cross section into bb̄ (left) and τ+τ−

(right) from the Fermi-LAT experiment. Figure taken from ref. [81].

where θ is the polar angle. Given that, by definition, pT = 0 for incoming particles, the
presence of particles which escape the detector (DM is a possibility, but also neutrinos
behave similarly) can be inferred by summing over the transverse momenta of all outgoing
states; to this purpose, one defines the missing transverse momentum as:

/pT ≡ −
∑
i

pT,i , (2.4.25)

where the index i runs over all the detected tracks; the absolute value of this vector
is called missing transverse energy, and indicated with /ET or MET , and is of great
importance for DM searches.

LHC searches usually put some cuts in order to reduce the huge background; as an
example, constraints on the rapidity y or the pseudo-rapidity η, defined for a particle
respectively as

y ≡ 1

2
ln
E + pz
E − pz

(2.4.26a)

η ≡ ln cot
θ

2
, (2.4.26b)

are used; notice that these two quantities coincide for massless particles.
Other cuts are related to the separation between two jets; if we denote by φ the

azimuthal angle, and by ∆ the difference in a given quantity, the jet separation is usually
defined:

∆R ≡
√

∆η2 + ∆φ2 . (2.4.27)

Although different LHC searches can be the most relevant ones for different DM models,
“mono-X” signatures are almost always present; these can be, for instance, monojet
(MJ) (where “jet” stands for both quarks and gluons), mono-Higgs, mono-photon, and
are schematically represented in fig. 2.8.

Two different approaches have been widely used in the literature to study LHC sig-
natures of DM:

- effective models: in this case, non-renormalizable interactions between DM and SM
particles are included. This approach has the virtue to be very general, leading to
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Figure 2.8: Schematic representation of some of the main signatures for DM physics at
LHC: monojet, mono-Higgs and mono-photon, respectively.

bounds which are in principle applicable to a variety of different UV completion; on the
other hand, it has the drawback that the effective approach is not always reliable, given
the high energies reachable at LHC. Discussions about the EFT validity for DM can be
found, e.g., in refs. [83–92];

- simplified models: in this second approach, only renormalizable operators usually ap-
pear, and new particles are introduced to mediate interactions between DM and SM
fields (see, e.g., refs. [90,92,93]). These models are “simplified” because, for example, a
bare mass term for the new gauge bosons is usually explicitly introduced. While they
do not suffer of the problems of effective approaches related to the energies reached at
LHC, it is not guaranteed that simplified models can be easily embedded in concrete
UV theories.

In the following, we will discuss in detail two concrete realizations of these approaches,
one for each of them.
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Chapter 3

LHC interplay between dark matter
and long-lived particles

Since a particle cannot be sent
into the infinitely distant past, our
definition (of the scattering
amplitude) in terms of the
S-matrix makes no sense.

Michael Peskin - about unstable
particles

The majority of dark matter models predict LHC signatures in the form of monojet,
where the events are characterized by a highly energetic jet and a large amount of missing
transverse energy; great attention has been dedicated to this kind of searches, by both
the ATLAS and CMS experiments (see, e.g., refs. [94–97]).

Another scenario which has been receiving more and more attention is represented by
the possibility that unstable particles are produced at the LHC and travel a macroscopic
(on collider scales) distances before decaying; these particles are called long-lived particles.
This is not a feature which is absent in the Standard Model: massive SM particles, in
fact, have lifetime which span about 66 orders of magnitude (from τ ∼ 10−25 s for the
Z boson to τ & 1041 s for the proton), as schematically shown in fig. 3.1, taken from
ref. [98]. However, LLPs in the SM have masses . 5 GeV, so that particles with mass of
O(100 GeV) which can travel a macroscopic distances (cτ & 10−5 m) can be a smoking
gun for NP; in addition, SM particles which can be considered long-lived have a well-
understood background.

Long-lived particles in association of BSM physics have been studied in different con-
texts, such as supersymmetry or composite-Higgs models (see, e.g., refs. [99–105]); in the
context of DM model, this possibility has been considered in refs. [1, 2, 106–111].

Although LLPs offer excellent prospects for the discovery of NP, they also provide
experimental physicists with a serious challenge: standard reconstruction techniques may
reject events containing LLPs, precisely because of their unusual signatures, which can
look like noise or misidentified objects; for this reason, dedicated searches are needed, in
order the investigate the possible existence of LLPs. The awareness of both the poten-
tiality and the difficulty related to the searches for long-lived particles led to the creation
of the LHC LLP Community, whose aim is to fully exploit them for the study of NP at
the LHC; many more details about LLPs can be found in the recent white paper [98].
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1 Recently, a comprehensive collec-
tion of the vast array of theoretical
frameworks within which LLPs nat-
urally arise has been assembled as
part of the physics case document
for the proposed MATHUSLA exper-
iment [2]. Because the focus of the
current document is on the experimen-
tal signatures of LLPs and explicitly
not the theories that predict them,
the combination of the MATHUSLA
physics case document (and the large
number of references therein) and the
present document can be considered,
together, a comprehensive view of the
present status of theoretical motivation
and experimental possibilities for the
potential discovery of LLPs produced
at the interaction points of the Large
Hadron Collider.

1
Introduction

Document editors: James Beacham, Brian Shuve

Particles in the Standard Model (SM) have lifetimes spanning an
enormous range of magnitudes, from the Z boson (t ⇠ 2 ⇥ 10�25 s)
through to the proton (t & 1034 years) and electron (stable).
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Figure 1.1: Particle lifetime ct, expressed in meters, as a function
of particle mass, expressed in GeV, for a variety of particles in the
Standard Model [1].

Similarly, models beyond the SM (BSM) typically predict new
particles with a variety of lifetimes. In particular, new weak-scale
particles can easily have long lifetimes for several reasons, includ-
ing approximate symmetries that stabilize the long-lived particle
(LLP), small couplings between the LLP and lighter states, and sup-
pressed phase space available for decays. For particles moving close
to the speed of light, this can lead to macroscopic, detectable dis-
placements between the production and decay points of an unstable
particle for ct & 10 µm. 1

The experimental signatures of LLPs at the LHC are varied and,
by nature, are often very different from signals of SM processes. For
example, LLP signatures can include tracks with unusual ionization
and propagation properties; small, localized deposits of energy in-
side of the calorimeters without associated tracks; stopped particles
that decay out of time with collisions; displaced vertices in the inner

Figure 3.1: Particle lifetime cτ as a function of the mass M , for several SM particles.
Figure taken from ref. [98].

In this chapter, we discuss two DM models which are characterized by the presence of
LLPs: the first one, based on ref. [1], is a simplified model which delivers displaced vertices
(DVs); the second one, instead, is an effective theory where the LLP gives rise to bound
states similar to the R-hadrons which emerge in supersymmetry, and is based on ref. [2].
The two models are presented in sections 3.1 and 3.2, respectively. We show that in both
cases bounds from experimental searches looking for LLPs are crucial in order to constrain
the parameter space; in particular, these turn out to be complementary (and sometimes
even competitive) with more traditional searches based on MJ signatures. Extra details
about the two models are given in appendices 3.A and 3.B, respectively.

3.1 Pseudo-Dirac dark matter

Current DD experiments put strong constraints on the DM scattering cross section, espe-
cially in the SI case (see fig. 2.6); in particular, these bounds usually rule out näıve relic
density couplings in many models. A possible way out is represented by the breaking
of the crossing symmetry between different contributions: in particular, if the scattering
rate is suppressed, while the annihilation one is not, one could be able to evade current
DD bounds without an overproduction of DM.

In this section, we study the pseudo-Dirac dark matter (pDDM) model, first considered
in ref. [112] as an EFT; this is a simple extension of the SM where two dark Majorana
fermions are introduced, and are characterized by small mass splitting (similar situations,
realized also in a supersymmetric framework, were studied in refs. [113–117]). We extend
the analysis of ref. [112] by considering a simplified model version of it, allowing then the
interaction scale to be of O(TeV), by introducing a new gauge boson, denoted by Z ′: if
it is integrated out, the model reduces to the effective one studied previously

The remarkable aspect of the model is that the heavier state, χ2, can be produced with
an energy and a decay length which can lead to DVs at LHC, representing a promising
direction in the search for NP [103,104,118–147].

We introduce the model in section 3.1.1, we discuss current constraints on the param-
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eter space in section 3.1.2 and we show the results in section 3.1.3

3.1.1 Model Lagrangian

As a first case for the study of long-lived particles associated to DM, we consider the so-
called pDDM model; it is a simplified model which includes a Dirac fermion Ψ described
by a free Lagrangian which contains both a Dirac and a Majorana mass term, of the form:

L0 = Ψ̄(i/∂ −MD)Ψ− mL

2
(ΨcPLΨ + h.c.)− mR

2
(ΨcPRΨ + h.c.) , (3.1.1)

where PL,R = (1 ∓ γ5)/2 are the chiral projectors and the superscript c denotes the
charge conjugated. The “pseudo-Dirac” assumption consists in the fact that we take
MD � mL,R.

Such a state interacts with the SM via a dark gauge boson Z ′ with mass mZ′ whose
interactions are:

Lint = Ψ̄γµ(cLPL + cRPR)ΨZ ′µ +
∑
f

f̄γµ(c
(f)
L PL + c

(f)
R PR)f Z ′µ , (3.1.2)

where f is a SM fermion and we take the coefficients c’s to be real.
As already discussed in section 2.4.3, when dealing with simplified models, one usually

does not commit to studying a particular UV completion; the simplest scenario, however,
could be realized if we assume Ψ to be embedded in a fermion Θ which is a doublet
under a dark SU(2)′ symmetry, spontaneously broken through a Higgs-like mechanism by
a scalar field Φ′. Let us assume that v′ is the VEV of Φ′; the Dirac mass term is then
reproduced like in the SM. As far as the Majorana mass term is concerned, instead, we
can assume that new physics takes place at an even higher scale, and that it is responsible
for the appearance of a Weinberg operator 1/Λ Θ̄ (iσ2Φ′) (iσ2Φ′)†Θc; such an interaction
leads to a Majorana mass term for Ψ after Φ′ acquires a VEV. The hierarchy between
MD and mL,R can then be easily understood by taking into account that MD ∝ v′, while
mL = mR ∝ v′2/Λ ∼MD v

′/Λ. This simple UV completion is also anomaly-free; possible
anomalies, in fact, may arise from triangular diagrams involving U(1)-SU(2)-SU(2)′ and
U(1)-SU(2)′-SU(2)′ currents, but it is simple to show that if Z ′ couples to all the SM
fermions, they are not present.

Another example of a possible UV completion as a pseudo-bino model was discussed
in ref. [112]. In general, Z ′ cannot be associated to an abelian gauge symmetry, since the
latter would be explicitly broken by the Majorana mass terms.

Given that our goal is to study the interplay of DM and LLPs, we assume that the Z ′

gauge boson only couples to SM quarks, given that these are responsible for the interesting
phenomenology.

The two (Majorana) mass eigenstates of the free Lagrangian in eq. (3.1.1), denoted
by χ1,2, are:

χ1 =
i√
2

(Ψ−Ψc) (3.1.3a)

χ2 =
1√
2

(Ψ + Ψc) , (3.1.3b)

with masses m1,2 = MD ∓ (mL + mR)/2. Their derivation is explicitly discussed in
appendix 3.A.1. The spectrum of the dark sector therefore consists of the DM, χ1, a
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heavier companion χ2 and a gauge boson, Z ′, which we assume to be heavy (mZ′ ∼
O(1 TeV)); in the pseudo-Dirac limit, the two fermions are close in mass, i.e. ∆m ≡
m2 −m1 � m1.

In terms of these fields, the interaction Lagrangian in eq. (3.1.2) becomes:

Lint = L(χ1χ2)
int + L(χ1χ1)

int + L(χ2χ2)
int + L(f̄f)

int , (3.1.4)

where:

L(f̄f)
int =

∑
f

f̄γµ

[
c

(f)
L + c

(f)
R

2
− c

(f)
L − c

(f)
R

2
γ5

]
f Z ′µ (3.1.5a)

L(χ1χ2)
int = i

cR + cL
2

χ̄1γ
µχ2 Z

′
µ (3.1.5b)

L(χiχi)
int =

cR − cL
4

χ̄iγ
µγ5χi Z

′
µ , i = 1, 2 . (3.1.5c)

Remarkably, while the interactions between χ1 and χ2 occur via a vector coupling, those
of χ1 with itself (and the same for χ2) are characterized by axial-vector couplings; this
is indeed a consequence of the Majorana nature for the χ’s. These two structure lead to
different phenomenology for scatterings and annihilations [90, 93, 148, 149]; in particular,
given that scattering processes between χ1 and a nucleus are not energetic enough to
produce a χ2, interactions relevant for DD proceed via the axial-vector coupling only.
According to the discussion of section 2.4.1, then, we expect them to be SD; following the
classification of ref. [90], the relevant non-relativistic operators are:

ONR
4 = sχ · sN (3.1.6)

ONR
8 = sχ · v⊥ (3.1.7)

ONR
9 = isχ · (sN × q), (3.1.8)

where sχ,N is the spin of the DM and the nucleon, respectively, q is the momentum
transfer and v⊥ = v−q/2µχN , with v being the DM-nucleon relative velocity and µχN the
reduced mass of the system. Each of these operators is strongly suppressed with respect
to SI interactions [76,150–152], allowing the model to evade DD constraints [75,153,154].

The suppression of the axial-vector interaction could make it hard to reproduce the
correct relic density; as we will discuss, however, the presence of a slightly heavier partner,
χ2, leads to coannihilations, solving this potential issue.

Decay length

The interactions in eqs. (3.1.5a) and (3.1.5b) are responsible for the decay χ2 → χ1ff̄ ,
whose leading order width is:

Γχ2→χ1f̄f ≈
∑
f

N
(f)
c

480π3
(cL + cR)2

(
c

(f)
L

2
+ c

(f)
R

2
) ∆m5

m4
Z′
, (3.1.9)

where higher-order terms in ∆m/m1 and mf/m1 have been neglected; a more complete
expression for the decay width can be found in appendix 3.A.2. In the following, we focus
our attention on SM quarks, but the analysis can be easily extended to include leptons.
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The corresponding decay length length in the χ2-rest frame is (at leading order in
∆m/m1 and mf/m1):

L0 ≈ 2.94 m

[∑
f

N (f)
c (cL + cR)2

(
c

(f)
L

2
+ c

(f)
R

2
)]−1( mZ′

1 TeV

)4
(

1 GeV

∆m

)5

. (3.1.10)

The neglected contributions can give corrections of the order of 30%, but this estimate
correctly reproduces the order of magnitude of the decay length; in particular, for ∆m ∼
O(GeV) and mZ′ ∼ O(TeV), L0 is of the order of the radius of the ATLAS and CMS
detectors, allowing the observation of a signal in the form of DVs.

The mean decay length in the laboratory frame is then simply:

Llab
0 = βγ L0 , (3.1.11)

where βγ ≡ p2/m2 is the boost factor for χ2. The decay length Llab of a particle in the
detector then follows the probability distribution:

P (Llab) =
1

Llab
0

e−L
lab/Llab

0 . (3.1.12)

If we denote by pT2 the momentum of χ2 in the transverse direction, we can then define
a transverse decay length as Llab

T,0 ≡ L0 p
T
2 /m2. Following ref. [155], the total probability

that the particle travels a transverse distance larger than some threshold L can then be
approximated by simulating and averaging over a large number N of events,

P (Llab
T > L) =

1

N

N∑
i=1

exp

(
− L

Llab
T,0(pT2 = pT2,i)

)
. (3.1.13)

Relic density

Given that this model predicts the existence of two states which are very close in mass,
coannihilations can be important in the determination of the DM relic density. The
effective cross section is given by eq. (2.3.26), and in this case it simplifies to:

〈σv〉eff =
1

(1 + α)2

(
〈σv〉11 + 2α〈σv〉12 + α2〈σv〉22

)
, (3.1.14)

where α ≡ (1 + ∆m/m1)3/2e−x∆m/m1 , x ≡ m1/T and 〈σv〉ij ≡ 〈σv〉χiχj→ff̄ .
The complete expressions for the thermally-averaged cross sections are reported in eqs. (3.A.6a)

and (3.A.6b); however, the leading-order effective cross section is:

〈σv〉eff ≈
∑
f

N
(f)
c

16π
(cL + cR)2

(
c

(f)
L

2
+ c

(f)
R

2
) m2

1

m4
Z′

≈ 0.08
∑
f

N (f)
c (cL + cR)2

(
c

(f)
L

2
+ c

(f)
R

2
)( m1

100 GeV

)2
(

1 TeV

mZ′

)4

〈σv〉WIMP ,

(3.1.15)

with 〈σv〉WIMP ≡ 3× 10−26 cm3 s−1 being the typical WIMP annihilation cross section.
From eqs. (3.A.6a) and (3.A.6b), we see that the self-annihilations are velocity suppressed,
making the coannihilation contribution be the most important one in the determination
of the effective cross section.

The relic density can be then computed by resorting to eqs. (2.3.17) and (2.3.19); in
this case, gχ is actually given by gχ = gχ1(1 + α), where gχ1 = 2.
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Link between decay length and relic abundance

By comparing eqs. (3.1.9) and (3.1.15), we see that the decay width of χ2 and the effective
cross section depend the same way on the coefficients c’s; this is simply because the main
contribution to 〈σv〉eff comes from the same vertex which controls the decay, i.e. χ1χ2 -ff̄ .

This fact only holds for the leading contribution to 〈σv〉eff , but it turns out to be a good
approximation in the limit of small quark masses, mf ≈ 0, where the self-annihilations
are velocity suppressed (see eq. (3.A.6b)). As already noticed in ref. [112], this allows for
a link between two observables which are in principle completely unrelated: the χ2 decay
length (collider property) and the DM relic density (cosmological property).

In particular, the DM abundance can be expressed as a function of L0 and the other
parameters of the model as:

Ωh2

0.1194
≈ 1.26

xF√
g∗

1

1 +
1

2xF

(
1− k
1 + k

)2

(
L0

1 m

)(
100 GeV

m1

)2(
∆m

1 GeV

)5

, (3.1.16)

where k ≡ cR/cL.
Thus, we can estimate the value of L0 for given (m1,∆m, k) by imposing the observed

value for Ωh2. In addition, we see that for given L0, eq. (3.1.16) does not depend on mZ′ ,
and since xF ∼ O(20), then if k & 0, it depends only very mildly on k.

If one is able to infer L0 (from DVs) and ∆m (from the edge of di-jet distributions) by
collider measurements, then it would be possible to make a prediction for the DM mass
m1.

3.1.2 Constraints on the parameter space

The parameter space of the model is spanned by the set:

{m1,∆m,mZ′ , cL, cR, c
(f)
L , c

(f)
R }. (3.1.17)

In order to avoid a full scan over the entire seven-dimensional parameter space, we can
motivate benchmark points and apply a number of constraints before performing the
main analysis; we will leave {m1,∆m} free. Our signals of interest are not sensitive to

the chirality of the quarks, so that we can set c
(f)
R = −c(f)

L without loss of generality; this
leads to a pure axial-vector coupling between the Z ′ and SM quarks. We have checked that
perturbative unitarity is not violated for the values of masses and couplings considered in
our analysis [148].

A first restriction on the parameter space could be represented by DD; in ref. [156] a
general estimate for the SD cross section is presented and, adapted to our model, reads:

σSD ≈ 2.4× 10−42 cm2 (cR − cL)2 c
(f)
L

2
(

1 TeV

mZ′

)4 ( µχN
1 GeV

)2

. (3.1.18)

Such an estimate can be obtained by combining eqs. (2.4.19) and (2.4.20) and assuming
that λq in eq. (2.4.18) is the same for all quarks. It turns out that current DD limits,
such as those from LUX [157], are weaker than other constraints; for this reason, we do
not consider DD in the following.

The relative magnitude of the axial-vector (χiχi) and vector (χ1χ2) couplings is con-
trolled by the ratio k = cR/cL; they are proportional to |cR−cL| and |cR+cL|, respectively,
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so that the first one vanishes in the limit k → 1, while the second one for k → −1. The
interplay between these two contributions is important for the potential observability of
displaced vertices, and so we choose two benchmarks for k: k = −0.8 and k = 0.

Note that a degeneracy arises because in all relevant observables, cL,R always appear
as either |cL + cR|2 or |cL − cR|2; as a consequence, the (cL,cR) plane is divided into
four equivalent wedges separated by the straight lines k = −1, k = 1. Any point in
one of the four wedges can be mapped onto a point in any of the other three with no
change in the phenomenology; concretely, choosing k = −0.8 (0) is equivalent to choosing
k−1 = −0.8 (0) (by appropriately rescaling the coefficients); similarly, the transformation
(cL, cR)→ −(cL, cR) has no effect.

Dijets searches

Dijet searches put upper bounds on the couplings between the Standard Model and the
dark mediator. We refer to the results of ref. [158]: in particular, in its figure 4, limits on
the coupling between Z ′ and SM quarks in an axial-vector simplified model are shown.
These constraints derive from a limit on Z ′ production rate, weighted by its branching
ratio into quarks: for this reason, the bounds are sensitive to the ratio between Z ′ cou-
plings with DM and quarks. In particular, the analysis of ref. [158] assumes a negligible
coupling to DM, which provides the strongest limit on the coupling with quarks. In order
to be conservative, we directly apply those constraints, although the presence of Z ′-DM
coupling would weaken the bounds.

In our notation, the coupling which is constrained is c
(f)
L , given that we are considering

the case c
(f)
L = −c(f)

R . We consider three benchmark values: c
(f)
L = 0.07, c

(f)
L = 0.13 and

c
(f)
L = 0.25 for mZ′ = 1.5 TeV, mZ′ = 2.5 TeV, mZ′ = 3.5 TeV, respectively; these are

arbitrarily large values compatible with dijets constraints. We assume these couplings to
be universal, i.e. to be the same for all quarks and to be independent of m1 and ∆m.

Relic Density

For given m1, ∆m and mZ′ (and then also c
(f)
L ), we can determine the contour corre-

sponding to the observed DM relic density in the (cL, cR) plane; we take, for the observed
value, Ωh2 = 0.1194 [159]. This value is shown as a red line (with orange 3σ-contour)
in fig. 3.2, for three different values of m1. The benchmark for k is a straight line in this
plane, and is shown in blue. This line intercepts the relic density contour in two points;
given that the phenomenology is invariant under the replacements (cL, cR) → −(cL, cR)
and k → k−1, a unique pair of coefficients is effectively determined. We choose the point
for which cL < 0 and cR > 0.

Z ′ width

A second restriction on cL and cR comes from a kinematic argument: given that we treat
Z ′ as a physical intermediate state which is exchanged in the s-channel, it is necessary
for its decay width to be small, i.e. ΓZ′ � mZ′ .

In eqs. (3.A.7a) to (3.A.7c), we provide the expressions for the partial decay widths
of Z ′: in general, ΓZ′/mZ′ ∝ (cL ± cR)2. Requiring this ratio to be less than some critical
value identifies an elliptic region in the (cL, cR) plane (with the other parameters being
fixed); we choose this ratio to be ΓZ′/mZ′ ≤ 0.2, which ensures that the Breit-Wigner
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Figure 3.2: Interplay between the DM relic abundance (red line with orange 3σ-contour)
and the requirement ΓZ′/mZ′ ≤ 0.2 (green region) in the (cL, cR) plane for mZ′ = 1.5 TeV,
∆m = 5 GeV, k = −0.8 (blue line) and different values of m1.

approximation is sufficiently accurate [160, 161]. The corresponding allowed region is
shown in green in fig. 3.2.

As we can see from fig. 3.2, too small values of m1 make the intercept between the
relic density contour and the straight line corresponding to a fix k fall outside the allowed
green region; on the other hand, too large masses tend to pick small values of cL and cR,
which represent a problematic situation from a numerical point of view which we decide
to avoid. Overall, then, this procedure also selects an allowed range of values for m1,
which we summarize in table 3.1. We choose the same range of ∆m for all the values of
mZ′ , namely 1.5 GeV ≤ ∆m ≤ 8.0 GeV.

3.1.3 Results

After discussing the model and the restrictions on the parameter space, we can move
to the analysis and the results. As most of the DM models, also the pDDM is sensible
to MJ searches; in addition, however, it can also leave a trace at LHC in the form of
DVs, as anticipated. We discuss in the following how these two different strategies are
complementary for exploring the parameter space of the model, and we show that DVs
can be even competitive with MJ searches in the future.
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mZ′ = 1.5 TeV mZ′ = 2.5 TeV mZ′ = 3.5 TeV

c
(f)
L 0.07 0.13 0.25

m1 ≥ 525 GeV 850 GeV 1100 GeV
m1 ≤ 700 GeV 1200 GeV 1600 GeV

mZ′ = 1.5 TeV mZ′ = 2.5 TeV mZ′ = 3.5 TeV

c
(f)
L 0.07 0.13 0.25

m1 ≥ 375 GeV 550 GeV 650 GeV
m1 ≤ 700 GeV 1200 GeV 1600 GeV

Table 3.1: Allowed range ofm1 and choice for c
(f)
L , for different values ofmZ′ , and k = −0.8

(top) and k = 0 (bottom).

Monojet analysis

Monojet searches look at signatures characterized by an energetic jet and a large amount
of /ET , and are performed by both the ATLAS and CMS experiments; we use the results
from ref. [94], corresponding to an ATLAS analysis at 13 TeV with 3.2 fb−1 of integrated
luminosity.

In signatures relevant for MJ, the production of DM can be explored using events
where the jet is emitted in the form of initial state radiation (ISR); in addition, also the
joint production χ1-χ2, followed by a decay of χ2, would lead to MJ signatures.

We simulated the processes

pp→ χ1,2χ1,2j , with χ2 → χ1jj (3.1.19)

with the choice of couplings and mass ranges discussed in table 3.1; we then applied the
selection cuts performed by the ATLAS search to determine the current regions of the
parameter space which are excluded. As described in ref. [94], the search is divided in
seven signal regions, denoted by IM1-IM7, which differ from the cuts on the /ET , which
go from 250 GeV to 750 GeV; they also provide upper limits on the cross section at 95%
CL, denoted by 〈σ〉95

obs, ranging from 553 fb to 19 fb.
The results strongly depend on the value of k: in particular, if k = −0.8, only the

mass m1 = 525 GeV for mZ′ = 1.5 TeV is currently excluded among the ones simulated;
on the other hand, for k = 0 all the DM masses below m1 = {550 GeV, 800 GeV, 850 GeV}
for mZ′ = {1.5 TeV, 2.5 TeV, 3.5 TeV} are already ruled out. The fact that larger values
of mZ′ correspond to larger currently excluded DM masses follows from the selection
procedure for the couplings we discussed in section 3.1.2: in particular, we showed that
larger couplings are typically selected for heavier Z ′.

In order to project the current bounds to high luminosity (HL), we have to estimate the
corresponding uncertainties on the SM backgrounds; the latter are dominantly represented
by Zj → νν̄j and Wj → `ν`j. Exclusions at high luminosities could be carried out by
simulating the background (see, e.g., ref. [162]); another possibility, however, is to rescale
the current constraints, and we decide to follow this second approach. In particular, it
is important to consider statistical and systematic uncertainties separately: in ref. [94],
the systematic errors on the background are reported, ranging from 2% for IM1 to 4%
for IM7 (section 7.1); in addition, also the total number of expected number of events at
3.2 fb−1 is given, together with the associated uncertainty (table 7). As an example, we

49



q

Z ′
χ2

χ2

Z ′

Z ′

p

p

χ1

j

j

j

j

χ1

j

Figure 3.3: Schematic representation of the process leading to 2 DVs.

can consider the signal region IM7, where the expected number of event is N = 167± 20
at 95% CL; by taking into account that the statistical uncertainty is δN st =

√
N , we

have δN st = 13 and then δN sys = 15, corresponding to 7.8% and 9.0%, respectively.
The relative statistical error scales with the inverse square root of the number of events
(and then of the luminosity), δ(stat) ∝

√
L−1; on the other hand, it is not easy to predict

how the systematic uncertainty changes with the luminosity: for this reason, we decide
to parametrize it as δ(sys)(L2) = r δsys(L1), where L1,2 denote two different integrated
luminosities. If we take, for example, r = 0.4, we determine the expected number of SM
events at 100 fb−1 to be N = 5219± 201 at 95% CL, corresponding to a bound on the NP
cross section of 〈σ〉95 ≈ 4 fb; in getting this bound, we assumed the number of observed
events to be compatible with the background expectation.

At high luminosities, it is possible that at a better control on systematics is achieved
or, on the other hand, that the high-luminosity environment leads to a degradation of
the understanding of the SM backgrounds, and then to larger relative systematic uncer-
tainties; for this reason, we take as a benchmark bound on the cross section 〈σ〉95 = 5 fb,
corresponding to a total uncertainty on the SM background of about 10%; we use this ref-
erence value also for projections at even higher luminosities, up to L = 1000 fb−1, simply
neglecting the statistical contribution. The bounds from current and projected MJ can
be found in fig. 3.5, together with the limits from DVs; as can be seen, they are rather
independent of ∆m, given that MJ cuts mostly select events where the jet comes as ISR.

Displaced vertices analysis

Displaced vertices are a smoking gun for BSM physics, with the expected background
coming from vertex misidentification only. As anticipated, pDDM model delivers DVs
if χ2 is produced and travels an appreciable distance before decaying. The strongest
signal is expected from the process pp → χ2χ2 j → χ1χ1 jjjjj, which is schematically
shown in fig. 3.3: the presence of two χ2’s can lead to two DVs, for which the expected
background is extremely small. The presence of ISR is responsible for the two χ2’s not
to be in the back-to-back configuration; as a consequence, /ET increases, and allows us
to trigger on events with high-pT + /ET . In addition, we are interested in the region of
the parameter space for which ∆m . 10 GeV, so that the jets emitted from the decay
of χ2 have pT ∼ O(1 GeV): these are too soft to be triggered on, but can be of help for
the offline analysis and for DVs identification. We simulate the events at parton level as
outlined in appendix 3.A.3.
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Figure 3.4: Probability that χ2 decays in either the ATLAS inner detector (left panel)
or muon solenoid (right panel) for mZ′ = 1.5 TeV and with the couplings determined as
discussed in section 3.1.2.

In order to deliver DVs, our model must at least admit a region of the parameter
space in which χ2 is enough long-lived to reach the inner detector of the experiment
under consideration. We refer to ATLAS, and in particular to ref. [163], for the analysis;
the decay must then occur in either the inner detector, with size 0.05 m < r < 0.3 m or
in the muon solenoid, where 3.8 m < r < 7.2 m. We can compute the probability for
χ2 to decay in these two ranges of lengths by resorting to eq. (3.1.13), and the result is
shown in fig. 3.4 for mZ′ = 1.5 TeV; notice that with the couplings fixed as described
in section 3.1.2, the decay length is only function of {m1,∆m,mZ′}. In particular, it is
possible to notice that this probability can be significantly different from zero, especially
in the inner detector.

In ref. [163], bounds on the number of events with two DVs at a CM energy
√
s = 8 TeV

are given; given that our process has high-pT and large /ET , the best limits come from
the jets + /ET trigger. As already stated, the expected background is extremely small
(of the order of 10−4 events, cf. table IX), at 20.3 fb−1 of integrated luminosity and with
the cuts pT > 120 GeV and MET > 200 GeV. In order to make sure that the expected
background remains approximately zero even at

√
s = 13 TeV, we rescale the cuts to

pT > 200 GeV and MET > 300 GeV. These cuts make the pseudo-rapidity η small, so
that no events are found in the barrel endcap.

The jets + MET trigger requires at least 7 tracks per vertex; whilst a full detector
simulation is beyond the scope of our work, we have performed a Delphes-level [164]
analysis of the process for several benchmark points in parameter space and found that
approximately 25% to 50% of vertices passed this track requirement. In addition, we do
not make a precise evaluation of the efficiency for the vertex reconstruction, but consider
a benchmark value of 20%; such a choice may be viewed as an optimistic scenario for
near-future displaced-vertex experimental analyses, and further emphasises the need for
an increased focus on this signal by ATLAS and CMS.

We show the results in fig. 3.5, where we project current bounds to higher luminosities:
{100 fb−1, 300 fb−1, 1000 fb−1}, respectively. As anticipated, we rescale the number of
events by an efficiency coefficient which we take to be 20% (for each vertex); given that
the expected background is approximately zero, we can exclude a point of the parameter
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Figure 3.5: Current and future bounds coming from MJ and DVs. The colourbar refers
to the number of events which pass the cuts at an integrated luminosity of 1000 fb−1,
and the region inside the white, dashed line is excluded at 95%CL; we show the same
region also for 100 fb−1 and 300 fb−1 (in blue and orange, respectively). The grey portion
of the parameter space is instead currently ruled out by MJ searches, while the red line
corresponds to the future projection at 1000 fb−1.

space at 95% CL if at least three events pass the cut (this simply comes from a Poisson
distribution with 0 events). In the same plot, also limits from MJ are shown: in particular,
future prospects are shown with the red, dashed line, and correspond to a total SM
uncertainty of 10%, as described above. We show the the results for the two benchmark
choices of k and different values of mZ′ . As can be seen, for k = 0 a significant region of
the parameter space is already excluded by MJ.

As expected, the result strongly depends on the value of k; as k → −1, the decay
length of χ2 increases (cf. eq. (3.1.9)), and a larger number of decays takes place within
the detector volume; at the same time, the coupling χ2χ2 Z

′ increases, maximising the
production cross section. Therefore, the strongest constraints come when k is close to −1,
but not so much that χ2 decays outside the detector.

Finally, it is interesting to see that while the signal is maximum for small mZ′ , larger
mediator masses allow us to probe larger m1.

52



3.2 Chromo-electric dark matter

As discussed in section 2.1, DM must have (if any) extremely small electric and colour
charge, and must be stable on cosmological timescales. It is however possible that the
dark matter is just the lightest state of a full dark sector, in which some states can carry
charges; in particular, the case in which some dark particles are coloured have recently
attracted interest [155,165–167]. Such a scenario can be particularly interesting for LHC,
where the production cross section can be significantly enhanced by QCD effects.

A great deal of phenomenological properties of coloured dark sectors are rather general,
i.e. they only depend on the representation of the coloured states under SU(3)c [165]; on
the other hand, however, specific features do depend on the particular model and the
interactions between the dark sector and the SM.

A simple implementation of this idea could be obtained by considering an effective
theory in which the dark states are fermions and communicate with the SM via a d = 5
operator coupling the gluons and the heavier dark particle. Such a scenario is particularly
interesting for LHC phenomenology because the coloured state could hadronize in bound
states; in the supersymmetric context, this is a well-known possibility, and such bound
states are called R-hadrons [168] (for more recent papers on the topic see, e.g., refs. [140,
141, 169–171]). In the following, we maintain the same terminology, although we do not
refer to any supersymmetry; in addition, given that the heavier particle interacts with
the DM through the d = 5 operator, it is possible for it to travel macroscopic distances
before decaying.

In section 3.2.1, we discuss the theoretical aspects of the models, while in section 3.2.2
we show the relevant experimental analyses.

3.2.1 Model Lagrangian

A possibility to couple DM to coloured SM particles is by considering a dark sector with
more than one state, with some of the heavy ones being coloured [167, 172–179]. We
consider a simple extension of the SM, where we add on top of it two Majorana fermions,
denoted by χ1 and χ2, with masses m1 and m2 ≡ m1 + ∆m, and we assume that the
heavier one is charged under SU(3)c.

Couplings to quarks can be obtained at the renormalizable level by assuming the
heavier state to be in the fundamental representation [167,180,181]; a coupling to gluons,
instead, can be achieved through effective operators, starting at d = 5, with χ2 being in
the adjoint representation. We consider the latter possibility, and introduce the following
free Lagrangian:

L0 =
1

2
χ̄1

(
i/∂ −m1

)
χ1 +

1

2
χ̄a2
(
i /D −m2

)
χa2 , (3.2.1)

with a being the colour index in the adjoint representation.
The interaction with the gluons mimics the (chromo-)electric and (chromo-)magnetic

dipole moments, and we parametrize it as (see, e.g., refs. [182,183]):

Lint =
i

2m1

χ̄a2σ
µν
(
µχ − idχγ5

)
χ1G

a
µν , (3.2.2)

where σµν ≡ i/2[γµ, γν ] and Ga
µν is the canonically normalized gluon field strength.

The two operators in the equation above lead to similar phenomenological results,
and do not interfere with each others in the determination of the observables which are of
interest for us; for this reason, we limit our attention to the operator proportional to dχ.
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1

m2
1

22
3π α2

S
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1

m2
2

27π α2
S

32

1

m2
2

Table 3.2: Leading order contributions to the cross sections 〈σv〉χiχj→SMSM . αs denotes
the strong coupling, while v is the relative velocity in the χi-χj CM frame.

The interactions between the dark sector and the SM are therefore completely de-
scribed in terms of the parameters {m1,∆m, dχ}; a first requirement is dχ � 1: this
is because it can be formally identified as dχ ∼ m1/Λ, with Λ identifying the scale of
some underlying NP. We will come back to this point later, when we will briefly make a
connection between the parametrization of eq. (3.2.2) and the general language of EFTs
discussed in appendix B.

Being heavier than the DM, χ2 decays into it: the leading process is χ2 → χ1g, whose
decay length can be simply computed to be:

Γχ2 =
d2
χ

π

∆m3

m2
1

(
1 +

∆m

2m1

)3

(
1 +

∆m

m1

)3 ≈
d2
χ

π

∆m3

m2
1

. (3.2.3)

Given that dχ is assumed to be small, it is possible that χ2 travels macroscopic distances
before decaying, being in fact a LLP.

Relic density

The first requirement on the model is the correct reproduction of the DM relic abundance;
this is determined by the processes χi χj → SM SM, and the leading order expressions
for the corresponding cross sections are reported in table 3.2. More complete expressions,
used for the simulations, can be found in appendix 3.B.1.

A first modification to the standard paradigm is represented by coannihilations, which
become relevant if ∆m � m1; similarly to the pDDM model, the effective cross section
defined in eq. (2.3.26) is:

〈σv〉eff =
1

(1 + α)2

(
〈σv〉11 + 2α〈σv〉12 + α2〈σv〉22

)
, (3.2.4)

with α ≡ gχ2/gχ1(1 + ∆m/m1)3/2e−x∆m/m1 , x ≡ m1/T and 〈σv〉ij ≡ 〈σv〉χiχj→SM SM; the
numbers of degrees of freedom of χ1 and χ2 are gχ1 = 2 and gχ2 = 16, respectively. The
relic abundance is then computed in the standard way through eqs. (2.3.17) and (2.3.19),
where gχ is now gχ = gχ1(1 + α).

54



1 2 3 4 5 6 7
m1 [TeV]

0

20

40

60

80

100

120

140

∆
m

[G
eV

]

P
erturbative

Som
m

erfeld

Figure 3.6: Profile of the observed DM relic density, Ωh2 = 0.1194 [159], in the (m1,∆m)
plane, together with the corresponding 3σ-contours; both the perturbative (blue) and
Sommerfeld-enhanced (orange) result are shown.

A second important effect is due to the Sommerfeld enhancement, a non-perturbative
effect which is due to the exchange of soft gluons between coloured particles in the initial
state [184–186]. Model-independent treatments of this effect can be found in refs. [155,
165]; in these analyses, the relic density is assumed to be dominated by QCD effects (the
case in which the DM contributes negligibly to coannihilations has also been considered
in the general context of sterile coannihilations in ref. [187]).

We refer to the general analysis of ref. [165] for the treatment of the Sommerfeld
enhancement, since also for our model it is reasonable to assume that coannihilations are
dominated by QCD effect because of the smallness of dχ (cf. table 3.2); we review some
relevant aspects of Sommerfeld enhancement in appendix 3.B.2.

The relic density profile Ωh2 = 0.1194 [159] can be found in fig. 3.6; there, we show both
the perturbative result obtained from eq. (3.2.4) and the one which takes the Sommerfeld
enhancement into account. As can be seen, the correction significantly affects the result,
and cannot be neglected.

Given that the relic abundance does not depend on dχ (up to small corrections), the
number of free parameters can be reduced by imposing the correct value of Ωh2, and using
it to fix, for instance, ∆m; this way, the decay width of χ2 in eq. (3.2.3) only depends on
the DM mass and dχ. As anticipated, the smallness of dχ can lead to macroscopic decay
lengths; we show in fig. 3.7 the value of the decay length 1/Γχ2 , as functions of m1 and
dχ. We see that in order for χ2 to travel a distance of at least O(10−3 m), values of dχ as
small as 10−7 ÷ 10−6 are in general needed.

Departure from chemical equilibrium

As discussed in detail in section 2.3.2, the general formula for the effective thermal cross
section in presence of coannihilations, eq. (2.3.26), is obtained under the assumptions that
conversion processes and decays are much faster than annihilations; in other words, it is

55



0.1cm

1cm

10cm

1m

10m

100m

Figure 3.7: Decay lengths in the rest frame of χ2 for the process χ2 → χ1g; in all the
(m1, dχ) plane, the observed DM relic density is reproduced.

assumed that CE holds. While this is true in most of the situations, especially when
the requirement of reproducing the correct DM abundance is imposed, in some special
circumstances it can cease to be true.

In the model we are considering, as we showed, the relic density is independent of
the coefficient which couples the dark sector and the SM (dχ), leaving it a basically free
parameter; since we are interested in small values of dχ (in such a way that χ2 is a LLP), it
is in principle possible that CE breaks down, given that the same parameter also controls
conversion processes. In order to verify this condition, we have to evaluate the ratios
Γχiχj/H, where Γχiχj generically represents the rate of a process involving χi and χj: it
can be the scattering χ2 χ2 → χ1 χ1, the decay χ2 → χ1 g, the conversions χ2 g → χ1 g
and χ2 q → χ1 q, as well as all the inverse reactions.

Since the rates of (inverse) decay and conversions are proportional to d2
χ, whereas that

of scattering scales as d4
χ, the latter is expected to be the smallest one, and therefore

negligible for determining CE. When the largest of all these rates, denoted by Γ
(max)
χiχj

becomes smaller than the Hubble parameter, we can consider CE to break down; if this is
the case, we should resort to the full set of Boltzmann differential equations, as described
in section 2.3.2.

It is reasonable to assume that scattering with gluons is the ultimate responsible
for maintaining chemical equilibrium, since the corresponding cross section scales as
〈σv〉χ2 g↔χ1 g ∝ αS d

2
χ (cf. eq. (3.B.2)). We show the ratios Γχiχj/H as functions of temper-

ature in fig. 3.8, for m1 = 1 TeV and dχ = 10−6 (in the direction χ2 → χ1): as can be seen,
the scattering processes actually have the largest rates; in addition, we verified that also
for different DM masses the scattering with gluons is always the main contribution. Since
the CE has to be maintained until the DM freeze-out, and since the rate is monotonically
decreasing with the temperature, we can simply evaluate it at freeze-out, 20 . xF . 30;
from fig. 3.8, we see that for dχ = 10−6, the ratio Γ/H is roughly 104. By rescaling it
with dχ, we finally find that CE ceases to be valid for dχ . 10−8.
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Figure 3.8: Ratios Γχiχj/H for different processes as functions of the temperature, for
m1 = 1 TeV and dχ = 10−6: in particular, scattering, decay and conversion are shown in
blue, red and green, respectively.

Given that the resolution of the full set of Boltzmann equation is not the main goal
of the model, we consider in the following values dχ & 10−8, in order to be in the regime
of chemical equilibrium.

3.2.2 LHC analysis

Like most of the DM models, also this one predicts monojet signatures at LHC; in ad-
dition, however, also bounds from R-hadrons searches apply, given that χ2 can travel a
macroscopic distance and then hadronize; finally, also dijets signatures could arise, from
the production and fragmentation of a bound state of two χ2’s. We are going to review
these different searches in this subsection.

Bounds from monojet

The main channel of production of dark particles which is relevant for MJ is pp→ χ2 χ2 j,
the other ones being suppressed by powers of dχ; we apply recent bounds from the ATLAS
experiment presented in ref. [96], which select events with large /ET and at least one high-
energy jet, with CM energy

√
s = 13 TeV and an integrated luminosity of 36.1 fb−1.

Events are required to satisfy the conditions: /ET > 250 GeV, leading-pT > 250 GeV,
|η|leading jet < 2.4; in addition, at most four jets with pT > 30 GeV and |η| < 2.8 are
allowed; finally, the condition ∆φ(jet, /pT ) > 0.4 must be satisfied for each selected
jet. As usual for this kind of analyses, different signal regions are used, differing from
each others by the cut on /ET ; in particular, the latter is /ET > 250 GeV for IM1, and
goes up to /ET > 1000 GeV for IM10. We simulate parton-level events using Mad-
graph5 aMC@NLO [188], then apply these cuts.

Constraints from MJ searches only apply if χ2 decays promptly, i.e. within the beam-
line radius, `beam = 2.5 cm; otherwise, if it enters the detector material, it will form an
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Figure 3.9: Ratio between the simulated cross section and the bounds coming from ref. [96]
as functions of the different signal regions; the DM mass is m1 = 860 GeV.

R-hadron within a very short timescale, of roughly Λ−1
QCD ∼ 10−24 s. We take this into

account by considering the probability for each χ2 to decay with transverse decay length
`T less than `beam [155]:

P(`T < `beam) = 1− exp

(
−`beam

`T

)
, (3.2.5)

where `T = pT2 /(m2 Γχ2) is the transverse distance travelled by χ2. Each event is weighted
by this probability in order to find the effective cross-section where χ2 decays promptly.
We assume that all the coloured particles reaching the detecting stage hadronize.

In order to obtain a limit on the number of new physics events NNP, we apply for
both current and future luminosities a χ2 analysis with 95% CL with unit efficiency and
acceptance, according to ref. [165]:

χ2 =
[Nobs − (NSM +NNP)]2

NNP +NSM + σ2
SM

, (3.2.6)

where the error on the SM background is assumed to be normally distributed.
In order to determine which of the then signal regions of ref. [96] gives the strongest

constraint on our model, we consider (for a given value of m1) the ratio between the cross
section we simulated and the bound coming from the experimental search; the result is
shown in fig. 3.9 for m1 = 860 GeV, leading to the strongest bound coming from IM9
(identified by the cut /ET > 900 GeV). Given that different values of m1 change both the
value of the simulated cross section and the kinematic distribution of the particles, it is
not trivial to recast the bound of fig. 3.9 into limits on the DM mass.

For the signal region IM9, the number of events is (see table 5 of ref. [96]):

NSM = 464± 34 , Nobs = 468 . (3.2.7)

If we then apply eq. (3.2.6), we find that, at 95% CL, the number of NP events isNNP < 85,
leading to the bound σNP < 2.4 fb at 36.1 fb−1 of integrated luminosity. By using this
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value, we set a lower bound on the DM mass of m1 > 860 GeV for dχ & 2 × 10−7. The
full exclusion on the parameter space from current MJ searches is shown in fig. 3.11 with
the blue region. For a given value of m1, a lower limit on dχ is set by the requirement
that χ2 decays promptly in order not to reach the detector and form R-hadrons.

Next, we project the bounds from MJ to higher luminosity by following the strat-
egy already adopted for the pDDM model; in particular, if we assume that the relative
systematic error scales as δsys(L2) ≡ r δsys(L1) with the luminosity, we can translate an

upper bound σ
(max)
NP (L1) on the NP cross section at the luminosity L1 into a bound on the

same quantity at the luminosity L2 as:

σ
(max)
NP (L2) = σ

(max)
NP (L1)

√
r2 +

(L1

L2

− r2

)
N1

δN2
1

, (3.2.8)

where N1 and δN1 refer to the luminosity L1.
We extrapolate the current bounds to L2 = 3000 fb−1, in an optimistic scenario where

the systematic uncertainties reduce by a factor of 2 with respect to the current ones; in
this case, the lower limit on the DM mass becomes m1 > 1020 GeV, and is shown with
the light, blue region in fig. 3.11. Finally, in the extreme case in which the systematics
remain unchanged (become negligible) with respect to the current value, the limit is m1 >
900 GeV (m1 > 1250 GeV) (the square root in eq. (3.2.8) is a monotonically increasing
function of r, as long as

√
N1 < δN1).

Bounds from R-hadrons

The colour charge of χ2 allows it to hadronize with SM particles, forming particles analo-
gous to the supersymmetric R-hadrons. If stable on detector timescales, these colourless
states can be detected via ionization signatures as they travel through the detector (with
a non-relativistic speed).

We use ATLAS bounds on R-hadrons [141], relative to a CM energy
√
s = 13 TeV

and integrated luminosity L = 3.2 fb−1; the relevant ones are those on gluinos, being χ2

a colour octet.
To project current bounds to HL, we follow the procedure outlined in ref. [105], where

it is assumed that the number of background events simply scales with the luminosity and
that the signal acceptance-times-efficiency remains constant. The relevant results are the
background counts of ref. [141] (see table 3). Notice that in the HL projection, results are
limited by systematic uncertainties, rather than by statistics.

We simulated the pair production of χ2’s at parton level with Madgraph, where the
model has been implemented using FeynRules [189]; we then applied theR-hadronization
routine from Pythia 8.230 [190].

The probability for χ2 to be stable at least up to the edge of the ATLAS calorimeter
is:

P(` > `calo) = exp

(
−`calo

`T

)
, (3.2.9)

where `calo = 3.6 m is the transverse distance to the edge of the calorimeter and `T =
pT2 /(m2 Γχ2), as before. This probability is applied on an event-by-event basis in order to
find the effective cross-section of events yielding at least one R-hadron. This relies on the
assumption that the lifetime of the resulting R-hadron is at least as long as the one of χ2.
Following ref. [141], we assume that 90% of the χ2’s form charged R-hadrons.

59



1000 1500 2000
m2 [GeV]

−6

−4

−2

0

lo
g 1

0
(σ
/p

b
)

Current bound

Future bound

1.5× 10−7

3.0× 10−7

4.5× 10−7

6.0× 10−7

7.5× 10−7

9.0× 10−7

dχ

750 1000 1250 1500 1750
m2 [GeV]

10−8

10−7

d
χ

Current bound

Future bound

Figure 3.10: Results from R-hadrons searches. Left: contours showing the value of dχ
yielding a given production cross section for calorimeter-stable χ2; we also show with the
blue, shaded region (dashed, black line) the region of the parameter space excluded by
current (projected) R-hadron searches performed by ATLAS. Right: corresponding lower
limit on dχ, shown with the same colour convention.

The contours showing the interplay between the production cross section (rescaled
by the effective probability) and the mass of χ2 is shown in fig. 3.10, together with the
bounds from the ATLAS search; in addition, we also show a lower limit on dχ, which
comes from the fact that if the latter is too small, the weight given by eq. (3.2.9) makes
the simulated cross section exceed the experimental bound.

We can then combine these bounds with those coming from MJ searches. We already
noticed that monojet ceases to be effective for small values of dχ, since the latter make χ2

long-lived enough to form R-hadrons rather than decay into the DM; when this is the case,
the relevant search is represented by R-hadrons, and the result is shown in fig. 3.11. In
general, every bound can be shown in terms of m1 rather than m2, since the mass splitting
∆m is fixed by imposing the observed relic density (as discussed in section 3.2.1).

It is evident the complementarity of these two different searches, probing different
regions of the parameter space, both with the current and future luminosity.

Bounds from direct and indirect detection

Although a bit outside the main motivations for this model, we also checked if DD and
ID results can exclude part of the parameter space. As far as ID is concerned, we focus
on limits from antiproton fluxes [191]; it turns out that an upper bound on dχ, as a
function of m1, can be inferred from the upper limit on the annihilation cross section
σ(χ1χ1 → gg). The result is that these bounds are much weaker than those coming from
DD; in addition, they are even weaker than the requirement dχ � 1, in order for the EFT
description to be valid. In particular, we found dχ ≤ 0.2 for m1 = 1 TeV and dχ ≤ 1 for
m1 = 5 TeV.

On the other hand, the relevant processes for DD are of the form χ1 q → χ1 q, and
two different diagrams contribute to the cross sections; since we are only interested in a
rough estimate, we consider the strongest bound coming from the constructive interference
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Figure 3.11: Combined bounds from MJ (blue) and R-hadrons (orange) searches; in both
cases, the darker region corresponds to the current limits, while the lighter one refers to
projections at high luminosity. Also the upper bound on dχ coming from DD is shown
(red). In all the plane, the correct relic density is reproduced.

between the two contributions, and estimate the parton-level cross section as:

σDD . 4× 4παsd
2
χ

m2
p

m4
1

, (3.2.10)

where we used the proton mass mp as an estimate of the parton energy; this becomes:

σDD . 1.55× 10−43

(
dχ

10−2

)2(
1 TeV

m1

)2

cm2 . (3.2.11)

We refer to the bounds from XENON1T [192], and we obtain an upper limit on dχ, as
a function of the mass: such a bound is rather conservative, for the reasons explained
above, but it still leaves a large portion of the parameter space available. The result is
shown in fig. 3.11, together with the bounds coming from LHC searches.

Aside comment: about the EFT parametrization
As a final remark, we come back to the parametrization of the interaction Lagrangian
given in eq. (3.2.2); if we had used the general recipe for EFTs discussed in appendix B,
we should have written:

Lint = c
g2
∗

16π2

g∗
m∗

χ̄a2σ
µνγ5χ1G

a
µν , (3.2.12)

where c is an O(1) real coefficient, and m∗ and g∗ are the parameters of the UV theory; the
factor of g2

∗/16π2 comes from the fact that dipole moment operators are usually generated
at loop level1.

The bounds on dχ, shown in fig. 3.11, would then be translated into limits on the
effective scale Λ ≡ m∗/g∗; the result is shown in fig. 3.12 for two different values of g∗ and
c = 1. In particular, it turns out that the relevant experimental limits coming from LHC

1We thank Riccardo Rattazzi for pointing out this aspect.
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Figure 3.12: Current and future upper bounds on the effective scale Λ ≡ m∗/g∗ coming
from R-hadrons searches (green), together with lower limits coming from DD (red), for
g∗ = 0.1 (left panel) and g∗ = 4π (right panel). In both cases, we took c = 1.

are those from R-hadrons searches, those from MJ being less restrictive; as can be seen,
the result strongly depends on the value of g∗. In the same plot, we also recast the upper
limits on dχ coming from DD experiments in terms of lower bounds on Λ.

Bounds from dijets

A last search strategy which could apply to our model is represented by dijets; if a pair of
χ2’s is reproduced near rest, they could combine to form a QCD bound state analogous
to gluinonium, rather than decaying or forming R-hadrons. In particular, since the rate
of production is completely controlled by QCD, we can use the results of ref. [193] relative
to gluinonium to estimate the production of bound states made of two χ2’s.

The strongest constraints on this channel come from limits on the dijets resonance
production; we use the model-independent analysis from ATLAS discussed in ref. [194],
making the conservative assumption of a narrow Gaussian width. We also assume that
the fitting function for the mass distribution used there also applies to high luminosity,
allowing us to project current bounds; to this purpose, we take the systematics to be
unchanged in going from low to high luminosity.

The results are shown in the left panel of fig. 3.13, together with the theoretical
production from ref. [193]; these limits assume that both the BR into dijets and the
acceptance (A) are equal to 1: this corresponds to the strongest limit possible, and the
real case BR × A < 1 is characterized by weaker bounds. The bound can also be recast
into an upper limit on the product BR × A, and is shown in the right panel of fig. 3.13.
Our model is not affected by values of BR×A larger than the theoretical bound of 1; as
can be seen, dijets constraints rule out the model for m2 . 650 GeV if BR× A & 0.1.

Overall, these bounds are rather conservative, for two reasons: on the one hand, the
production rate is computed at 14 TeV, whereas the constraints are reported at 13 TeV, so
that the corresponding production cross section would be smaller; on the other hand, we
assumed a narrow Gaussian width, while a broader one would have weakened the bounds,
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Figure 3.13: Current and projected limits from dijets searches. Left: currently (projected)
bounds on the dijet production cross section from the ATLAS experiment are shown
with the blue region (dashed line), together with the theoretical prediction (dotted, red
line). Right: corresponding bound on the product BR×A; the maximum possible value
BR× A = 1 is shown as a dotted horizontal line.

as can be seen in fig. 5 of ref. [194].

3.A Appendices for the pDDM model

In the following, we present the appendices relative to the pDDM model; in particular, we
discuss the determination of the mass eigenstates, we provide more complete expressions
for the decay widths and effective cross sections, and we explain how we simulated the
events at LHC.

3.A.1 Mass eigenstates

The mass term of eq. (3.1.1) can be written as:

L0 ⊃ −
1

2
nLMncR + h.c. , (3.A.1)

where nL,R ≡ (ΨL,R Ψc
L,R)T and M is a 2 × 2 symmetric matrix; the latter can be

diagonalized via a unitary rotation matrix U as M = UTmU , and if we denote by θ the
corresponding angle, the requirements that off-diagonal entries of m vanish is:

2MD cos 2θ + (mL −mR) sin 2θ = 0 ⇒ θ ≈ θ

4
, (3.A.2)

where in the last step we took into account that MD � mL,R. The mass eigenvalues are
m1,2 = (mL + mR)/2 ∓MD; in terms of the mass eigenstates n′L,R ≡ U nL,R, the mass

term can be written as L0 ⊃ −1/2 ξ̄mξ, where ξ ≡ n′R
c + n′L ≡ (ξ1 ξ2)T . By taking

into account that Ψ = (ξ2 − γ5ξ1)/
√

2, it is easy to show that the kinetic term is not
canonically normalized; the correct normalization can be easily obtained by defining two
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new fields χ1,2 such that:{
ξ1 ≡ aγ5χ1

ξ2 ≡ χ2

where a = ki, k ∈ Z . (3.A.3)

For simplicity, we take k = 1, so that the mass eigenstates are:

χ1 =
i√
2

(Ψ−Ψc) (3.A.4a)

χ2 =
1√
2

(Ψ + Ψc) , (3.A.4b)

with eigenvalues m1,2 = MD ∓ (mL + mR)/2. It is straightforward to show that χ1,2 are
Majorana fields.

3.A.2 Full expressions for decay widths and thermally-averaged
cross sections

In this appendix, we provide the formulas for the cross sections and the decay widths
which have been employed in the analysis.

In the limit mf ,∆m � m1, we can approximate the decay width for the process
χ2 → χ1ff̄ as:

Γχ2→χ1f̄f =
∑
f

N
(f)
c

480π3
(cL + cR)2 ∆m5

m4
Z′

{(
1− 3

2

∆m

m1

)(
c

(f)
L

2
+ c

(f)
R

2
)

−
m2
f

2m2
1

[(
36c

(f)
L

2
+ 33c

(f)
L c

(f)
R + 36c

(f)
R

2
)

+
16m2

1

m2
Z′

(
2c

(f)
L

2
+ c

(f)
L c

(f)
R + 2c

(f)
R

2
)

+
10m2

1

∆m2

(
1− 3

2

∆m

m1

)(
c

(f)
L + c

(f)
R

)2

− 65

2

∆m

m1

(
2c

(f)
L

2
+ c

(f)
L c

(f)
R + 2c

(f)
R

2
)

− 24m1∆m

m2
Z′

(
2c

(f)
L

2
+ c

(f)
L c

(f)
R + 2c

(f)
R

2
)]}

+O
[(

∆m

m1

)7
]

+O
[(

mf

m1

)4
]
.

(3.A.5)

The thermally averaged cross sections for the processes χiχi → ff̄ and χ1χ2 → ff̄ are,
respectively:

〈σv〉12 =
∑
f

N
(f)
c

32π

(cL + cR)2(
1− (m1 +m2)2

m2
Z′

)2

(m1 +m2)2

m4
Z′

√
1−

4m2
f

(m1 +m2)2

[(
c

(f)
L

2
+ c

(f)
R

2
)
−

m2
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(3.A.6a)
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〈σv〉ii =
∑
f

N
(f)
c

8π

(cL − cR)2(
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i

m2
Z′

2xi + 3

xi
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c
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R

)2 xi
2xi + 3

]
, (3.A.6b)

where x1 ≡ x = m1/T and x2 ≡ x (1 + ∆m/m1).

The partial decay widths which have been used to determined the region of the pa-
rameter space where ΓZ′/mZ′ ≤ 0.2 (see section 3.1.2) are:

ΓZ′→χ1χ2 =
(cL + cR)2

48π
K mZ′

[
1 +

(m1 +m2)2

2m2
Z′

](
1− ∆m2

m2
Z′

)
(3.A.7a)

ΓZ′→χiχi =
(cR − cL)2

96π
mZ′

(
1− 4m2

i

m2
Z′

) 3
2

(3.A.7b)

ΓZ′→f̄f =
∑
f

N
(f)
c

24π
mZ′

√
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f
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Z′

[(
c
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2
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−
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(
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(f)
L c
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(f)
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)]

,

(3.A.7c)

where:

K ≡
√

1− 2
m2

1 +m2
2

m2
Z′

+

(
m2

2 −m2
1

m2
Z′

)2

(3.A.8)

3.A.3 Details about the analysis

The simulations for the DV and MJ analyses are made by means of MG5 aMC@NLOv2.4.2;
we limit ourselves to a parton level analysis. For the DV searches, we consider the process
pp → χ2χ2 j → χ1χ1 jjjjj. As described in main text, because of the two DVs, the
high-pT and the large /ET , the background is extremely low. We handle the decay of χ2

with the following steps:

1. we first generate 20k pp→ χ2χ2 j events, at the CM energy
√
s = 13 TeV. Here, j

stands for the default multiparticle state containing quarks and the gluon;

2. we then generate 40k χ2 → χ1 jj events; only quarks from the first two families can
be produced, since we consider 1.5 GeV ≤ ∆m ≤ 8.0 GeV;

3. we then merge these two sets of events, replacing the χ2 in the 2→ 3 process with
its decay products, which we boost from the χ2 rest frame into the lab frame by
scaling the momenta and energy by βγ = pχ2

/mχ2 and γ = Eχ2/mχ2 respectively.
The system of 7 particles in the final state obtained this way is, for our purposes,
physically equivalent to the one we would have obtained if we had run the full process
at the MadGraph level. We have tested this procedure against direct decay of the χ2

within the full 2→ 7-body process, and with decay of the χ2 particle by interfacing
the output 2 → 3-body .lhe file with BRIDGE [195], finding the equivalent final
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kinematic distributions in all cases, with our procedure substantially faster than
direct 2→ 7 production in MadGraph2.

The vertex and jet identification efficiency is model-dependent and depends on the details
of the detector [163], which we approximate by applying a relatively conservative flat
efficiency of 20%.

3.B Appendices for the chromo-electric DM model

In the following, we present the appendices relative to the chromo-electric DM model; in
particular, we provide the expressions for the effective cross sections, and we discuss the
Sommerfeld enhancement.

3.B.1 Full expressions for the thermally-averaged cross sections

In this appendix, we provide analytical expressions for the differential cross sections of
various (co)annihilation processes in the CM frame; we express them in terms of the

energies E1,2 =
√
m2

1,2 + p2 of χ1,2, and work in the CM frame, so that θ is the angle

between incoming and outgoing momenta. In the processes involving a quark q, mq

denotes its mass.

χ1χ1 → gg

This channel proceeds via the exchange of χ2 in t- and u-channel, with thermally-averaged
differential cross section:

dσv

dΩ
=

d4
χE

2
1

2π2m4
1 (−2E1p cos θ + E2

1 +m2
2 + p2) 2 (2E1p cos θ + E2

1 +m2
2 + p2) 2[

4E6
1

(
m2

2 + 2p2 sin2 θ
)

+ 2E4
1

(
2m2

2p
2(3− 4 cos 2θ) + 4m4

2 + p4 sin2 θ(−(7 cos 2θ + 1))
)

+ E2
1

(
m2

2p
4(7 cos 4θ − 12 cos 2θ + 1)

)
+ E2

1

(
4m4

2p
2(1− 5 cos 2θ) + 4m6

2 + p6 sin 2θ sin 4θ
)

− 4p2
(
m2

2 + p2
)

2
(
p2 sin4 θ −m2

2

) ]
(3.B.1)

χ1χ2 → gg

This channel proceeds via the exchange of χ2 in t- and u-channel, the exchange of a gluon
in s-channel, and via the quartic vertex χ1χ2 gg, with thermally-averaged differential cross

2In the case of direct 2 → 7 production in MadGraph, the extremely small width of the χ2 leads to
an error in the final kinematic distributions. This is corrected by upscaling the width in the parameter
card by some factor, and rescaling the final cross-section by the same factor [196].
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section:

dσv

dΩ
=

3g2
sd

2
χ

512π2E1E2m2
1 (E2

2 − p2 cos2 θ) 2[
− 8E2

1p
2
(
E2

2(1− 2 cos 2θ) + p2 cos2 θ
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+ 8E1E2p
2
(
E2

2

(
4− 5 cos2 θ
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+ p2 cos2 θ

(
4− 3 cos2 θ

))
+ 8E3

1E2

(
E2

2 − p2 cos2 θ
)

+ E2
2p

2
(
4m1m2(1− cos 2θ) + p2(3 cos 4θ − 11)

)
+ p4m1m2(cos 4θ − 1) + p6(cos 4θ + 7) cos2 θ

]
(3.B.2)

χ1χ1 → qq̄

This channel proceeds via the exchange of a gluon in s-channel, with thermally-averaged
differential cross section:

dσv

dΩ
=
g2
sd

2
χ

√
(E1 + E2) 2 − 4m2

q

64π2E1E2 (E1 + E2) 3m2
1[

p2
(
2m2

q cos 2θ − (E1 + E2) 2 cos2 θ
)

(E1E2 −m1m2)
(
(E1 + E2) 2 + 2m2

q

)
]

(3.B.3)

χ2χ2 → gg

This channel proceeds via the exchange of χ1 in t- and u-channel, the exchange of a gluon
in s-channel and the exchange of χ2 in t- and u-channel; the first two channels have an
amplitude proportional to d2

χ, while the others occur via QCD interactions, proportional
to αS. The thermally-averaged differential cross section reads:

dσv

dΩ
=− 9g4

s

16384π2E4
2 (E2

2 − p2 cos2 θ) 2[
E2
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4(5 cos 4θ − 12 cos 2θ + 31) + 4E4

2p
2(5 cos 2θ − 7)

− 24E6
2 + p6(cos 4θ − 4 cos 2θ + 11) cos2 θ
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+
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]

+
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(3.B.4)
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χ2χ2 → qq̄

This channel proceeds via the exchange of a gluon in s-channel, with thermally-averaged
cross section:

dσv

dΩ
=

3g4
s

√
E2

2 −m2
q

(
E2

2

(
m2
q + p2 cos2 θ − p2

)
+ 2E4

2 −m2
qp

2 cos2 θ
)

2048π2E7
2

(3.B.5)

3.B.2 Sommerfeld enhancement

The modifications to the standard paradigm for the computation of the relic abundance
in presence of coloured particles can be studied by resorting to group theory considera-
tions [165]. If we consider a generic representation R of SU(N), the interactions can be
expressed in terms quadratic and quartic invariants; in particular, the Casimir invariant
C(R) and the Dynkin index T (R), defined such that

(T aT a)ij ≡ δijC(R) , Tr{T aT b} ≡ δabT (R) , (3.B.6)

where T denotes a generator of the representation R, can be used to construct the quartic
invariants:

Tr{T aT aT bT b} ≡ K1(R) = d(R)C2(R) (3.B.7a)

Tr{T aT bT aT b} ≡ K2(R) = d(R)C2(R)− d(A)C(A)T (R)

2
, (3.B.7b)

where d(R) is the dimension of R and A stands for the adjoint representation.
When a coloured particle participates to the determination of the relic abundance,

then non-perturbative effects due to Sommerfeld enhancement can dramatically change
the result; in particular, for a single abelian massless vector, with potential V = αS/r,
the cross section is modified as:

σnon−pert. = S

(
αS
β

)
σpert , (3.B.8)

where β is the velocity of the incoming particle, σpert is computed with the standard
techniques, and S is defined as:

S(x) = − πx

1− eπx . (3.B.9)

In the non-abelian case, the potential between two particles in the representations R and
R′ can be obtained by considering the decomposition of the the tensor product of the two
representations [197]:

V =
αS
r

∑
a

T aR ⊗ T aR′ . (3.B.10)

The group theory decomposition into a sum of irreducible representations allows us to
write the potential as:

V =
αS
2r

(∑
Q

CQ1Q − CR1− CR′1
)
. (3.B.11)

68



In the case of interest for us, where R = 8 = R′, it can be finally shown that the
corrections from Sommerfeld enhancement to the annihilations into gluons and quarks
are, respectively [165]:

σnon−pert.

σpert

∣∣∣∣
χ2χ2→gg

=
1

6
S

(
−3αS

β

)
+

1

3
S

(
−3αS

2β

)
+

1

2
S

(
αS
β

)
(3.B.12a)

σnon−pert.

σpert

∣∣∣∣
χ2χ2→qq̄

= S

(
−3αS

2β

)
. (3.B.12b)
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Chapter 4

Dark matter within a composite
2HDM with extra singlets

Non-renormalizable theories are
just as renormalizable as
renormalizable theories.

Steven Weinberg

We discussed in detail the naturalness problem related to the SM Higgs, namely the
fact that one should expect mh to be of the order of the cutoff under which the UV
theory reduces to the SM. As anticipated, a possible solution is to suppose that the
Higgs is not an elementary particle, but rather a composite object; if this is the case,
we have to distinguish two regimes: at low energies, the prediction for the Higgs mass
given by eq. (1.4.4) is like in the SM, i.e. it develops a quadratic divergence [27]; at
higher energies, however, quanta have a short enough wavelength to resolve the internal
structure of the Higgs, leading to a decreasing behaviour for dm2

h/dE. We can imagine
this to happen at a confinement scale m∗ ∼ 1/l∗, where l∗ represents the physical size of
the Higgs. Overall, then, the integrand of eq. (1.4.4) is expected to grow linearly at small
energies, reach a peak at m∗ ∼ O(1 TeV) and then decay quickly.

This picture requires the existence of a new strongly-coupled sector, emerging from
an even more fundamental theory at a UV scale ΛUV � m∗, at which the theory is close
to a fixed point of the renormalization group (RG). The assumption is that no operators
with a scaling dimension considerably lower than 4 exist in the UV theory, so that no
parameters with positive dimension appear (contrarily to what happens, for example, in
the SM with the parameter µ of eq. (1.1.8)); if this is the case, then no unprotected
scales are present in the fundamental theory. This aspect is crucial because it allows the
RG flow towards the IR to be sufficiently slow, requiring a “time” t = log(ΛUV/m∗) to
depart from the fixed point and confine. This “time” can be arbitrarily long, resulting in
a strong suppression of m∗ with respect to ΛUV; this mechanism, by which a scale m∗ is
generated starting from a theory without dimensionful parameters, is called dimensional
transmutation [198].

In CH models, we usually distinguish between composite and elementary sectors, the
latter containing all the SM states we know cannot be composite objects at the TeV scale;
since also the weak gauge bosons belong to this category, the composite sector must be
characterized by a global symmetry group G which contains the electroweak (EW) one,
G ⊃ GEW = SU(2)L×U(1)Y . Similarly to what happens in QCD, the group G is expected
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to be spontaneously broken (roughly) at the confinement scale m∗ to a subgroup H,
delivering a number of NGBs; the Higgs is assumed to be one of them. The Higgs mass and
the potential, responsible for EWSB, are obtained by explicitly breaking G, making the
Goldstones become pseudo-Nambu-Goldstone bosons (pNGBs); such an explicit breaking
is obtained via the interactions between the composite and the elementary sectors. The
fact that the Higgs results as a pNGB is a key point: if this were not the case, in fact,
we should expect mh ∼ m∗; but then, analogously to what happens in QCD, also a
series of other resonances with masses of the order of m∗ would be present. The fact
that such states have not been observed forces us to consider mh � m∗ ∼ O(1 TeV).
The interaction Lagrangian, responsible for the explicit breaking of G, must not contain
strongly relevant operators, in order to ensure the global symmetry to be approximate.

The minimal composite Higgs model (MCHM) is based on the breaking pattern
SO(5) → SO(4) [199], thus delivering 4 NGBs which constitute the Higgs doublet. By
slightly enlarging the groups, i.e. by considering the pattern SO(6) → SO(5), one has
the minimal CH model which also includes DM [200–204]. Other possibilities consid-
ered in the literature are SO(6) → SO(4) × SO(2) [202, 205–207], SO(7) → G2 [208],
SO(7) → SO(6) [209–211], SO(7) → SO(5) [212], SU(4) × SU(4) → SU(4) [213, 214],
SU(5)→ SO(5) [215], and SU(6)→ SO(6) [216–218].

In this chapter, which is based on ref. [3], we study in detail the breaking pattern
SO(7) → SO(5) × SO(2), which turns out to be a composite two-Higgs doublet model
(2HDM) with two extra singlet, the lightest of which will be a WIMP dark matter candi-
date. After the general discussion of section 4.1 about how EWSB can be addressed in CH
models, we discuss the theoretical aspects of the model in section 4.2; section 4.3 is dedi-
cated to the spectrum and the interactions of the pNGBs, while in sections 4.4 and 4.5 we
show how this model predicts thermal and non-thermal productions of DM, respectively.
Finally, the appendices are organized as follows: we discuss in appendix 4.A the identifica-
tion of the NGBs, we show how EWPTs and Higgs couplings fit constrain the parameter
space in appendix 4.B and we present a list of effective couplings in appendix 4.C.

4.1 Vacuum misalignment

The last ingredient which is needed in order for a CH model to be realistic is a way
to correctly account for EWSB; this is achieved through a mechanism known as vacuum
misalignment, which we now review. As a starting point, we introduce a reference vacuum
F , and assume that the NGBs are encoded in the field:

φ(x) = ei
√

2
f

Πi(x)T̂ iF ≡ U(Π)F , (4.1.1)

where U(Π) is the Goldstone matrix. Here, f is related to the energy scale m∗ by f ≡
m∗/g∗.
This construction, which is based on the CCWZ formalism, is reviewed in appendix A.
We then divide the generators in two subsets, according to their effect on the vacuum,
i.e.:

{T a, T̂ i} : T aF = 0 , T̂ iF 6= 0 , (4.1.2)

This choice is purely a convention, and other possibilities may exist.
Given that the new sector is endowed with a global symmetry group G, it must contain

the EW group GEW, which is gauged by introducing the appropriate covariant derivatives.
Since G is spontaneously broken at a scale which is assumed to be much higher than the
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θ

F

H ⊃ GEW
v

rθ

H′ ⊃ GEW

H

Figure 4.1: Schematic representation of vacuum misalignment. Left: in the first
parametrization, the reference vacuum F is displaced by the VEV of the pNGBs; the
physical vacuum is not left invariant by the action of GEW ⊂ H, leading to EWSB. Right:
in the second parametrization, the electroweak group GEW is not orthogonal to the phys-
ical vacuum (which is orthogonal to H, by definition); after the explicit breaking of G,
this leads to EWSB. In this parametrization, no VEV for the pNGBs is allowed.

weak one, two different choices regarding the embedding of GEW are possible, as we now
review:

i) a first possibility is to assume GEW to be entirely embedded in H, GEW ⊂ H ⊂ G;
with this particular choice for the embedding, once the group is gauged, the gauge
bosons W a

µ and Bµ only couple to the currents associated to the unbroken generators
T a.
Given that only a subgroup of G is gauged, the latter is explicitly broken (analogously
to the breaking of SU(2)L×SU(2)R in the SM due to the presence of g′). In addition,
as we will see in a concrete example, also the interactions between the NGBs and the
fermions explicitly break G.
As discussed in appendix A, a VEV for the NGBs Πi’s is not physical, since it
can be eliminated via transformations belonging to G/H; this implies that if G is
unbroken, 〈φ〉 is parallel to F , and then invariant under GEW: EWSB does not occur.
However, the explicit breaking of G due to the NGBs interactions with gauge bosons
and fermions generates a potential for the Goldstones, making them become pNGBs
which in turn leads to a VEV for the Πi’s. This VEV now cannot now be eliminated
by symmetry transformations, since G is explicitly broken. The effect is that the
vacuum of the theory is not parallel to F anymore, and therefore it is not invariant
under GEW: the EW symmetry is spontaneously broken; this is schematically shown
in the left sketch of fig. 4.1.
The amount of EWSB depends on the projection of the physical vacuum 〈φ〉 on the
plane identified by H (since it contains GEW); if we define f ≡ |F | and θ ≡‖〈Π〉‖/f ,
the EWSB scale is:

v = f sin θ . (4.1.3)

Being a dimensionless parameter, we expect in general θ ∼ O(1), so that v ∼ f : if
this is the case, this construction reduces to the case of technicolour; in CH models,
instead, we demand θ � 1, and we usually express this condition by requiring:

ξ ≡ v2

f 2
� 1 ; (4.1.4)
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ii) a second possibility is to assume that the EW group is embedded in a group H′
which does not coincide with H; as long as the global symmetry is unbroken, such
a distinction is not physical, since one group can be always mapped into the other.
Similarly to the other case, however, the gauging of H′ explicitly breaks G, and a
potential for the NGBs is generated, making them become pNGBs. After this explicit
breaking is not possible to align the two vacua (relative to H and H′) anymore: in
particular, the physical vacuum of the theory, orthogonal toH, is not left invariant by
the action of H′, leading to EWSB. This is represented in the right sketch of fig. 4.1.
In this parametrization, therefore, two sets of generators must be considered: a first
one, {Tθ}, related to the breaking G → H, and a second one, {T}, related to G → H′;
the mapping between the two is obtained via a rotation matrix rθ, and if we assume
the generators to be normalized as Tr{TATB} = δAB, we have:

Tθ = rθ T r
−1
θ . (4.1.5)

As a consequence, two Goldstone matrices can be introduced:

U ≡ U(Π) = ei
√

2
f

Π , Uθ ≡ U(Πθ) = ei
√

2
f

Πθ , (4.1.6)

with Π ≡ ΠiT̂ i and Πθ ≡ ΠiT̂ iθ . In this parametrization, the pNGBs are defined
around the physical vacuum, and are not allowed to take any VEV.
The rotation matrix rθ can be obtained by considering the Goldstone matrix in the
gauge basis {T} with the NGBs set to the corresponding VEVs, i.e.:

rθ ≡ U (〈Π〉) . (4.1.7)

Such an approach is used, for example, in refs. [219, 220], and we will also exploit it
in our discussion.

These two parametrization are different, but equivalent; nevertheless, the second one has
the virtue that for breaking patterns different from SO(N) → SO(N − 1) (for which a
parametrization for the pNGBs analogous to the minimal scenario is always possible [27]),
one can expand the Goldstone matrix Uθ in the fields but keep the exact expressions for
the parameters related to the vacuum.

4.2 Construction of the model

In this section, we discuss in detail the aspects of model building for the CH model based
on the breaking pattern SO(7) → SO(5) × SO(2); we adopt the second one of the two
parametrizations outlined above for vacuum misalignment, i.e. we assume the EW group
to be embedded in a subgroup H′ which does not coincide with H.

As we will see, this breaking pattern delivers two SU(2)L doublets, being effectively a
composite 2HDM, and two singlets.

We discuss in section 4.2.1 the embedding of the NGBs, while we show how they
are coupled to SM fermions and how the scalar potential is generated in sections 4.2.2
and 4.2.3, respectively.
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4.2.1 Goldstone embedding

It is convenient to introduce the generators in the gauge basis, SO(7)→ SO(5)′× SO(2)′,
which is then related to the physical one by eq. (4.1.5):

(TαL )ab = − i
2

[εαβγ δβa δγb + (δαa δ4b − δαb δ4a)] (4.2.1a)

(TαR)ab = − i
2

[εαβγ δβa δγb − (δαa δ4b − δαb δ4a)] (4.2.1b)

(T ω5 )ab = − i√
2

[δωa δ5b − δ5a δωb] (4.2.1c)

(T2)ab = − i√
2

[δ6a δ7b − δ7a δ6b] (4.2.1d)

(
T̂ i1

)
ab

= − i√
2

[δia δ6b − δ6a δib] (4.2.1e)

(
T̂ i2

)
ab

= − i√
2

[δia δ7b − δ7a δib] (4.2.1f)

where α, β, γ = 1, 2, 3, a, b = 1, . . . , 7, ω = 1, . . . , 4 and i = 1, . . . , 5. We indicate by TL,R
the generators of SO(4)′ ⊂ SO(5)′, by T5 the remaining ones of SO(5)′, and by T2 that of
SO(2)′; finally, T̂1,2 are the broken generators.

If we define TA ≡ {TL, TR, T5}, we have the following commutation relations:

[T̂ i1, T̂
j
1 ] =

(
tA
)
ij
TA = [T̂ i2, T̂

j
2 ] , [T̂ i1, T̂

j
2 ] = − i√

2
δijT2 , [TA, T2] = 0 ,

[T̂ i1,2, T
A] =

(
tA
)
ij
T̂ j1,2 , [T̂ i1, T2] =

i√
2
T̂ i2 , [T̂ i2, T2] = − i√

2
T̂ i1 ,

(4.2.2)

where tA is the upper 5× 5 block of TA, together with:

[TαL,R, T
β
L,R] = iεαβγT

γ
L,R , [TαL , T

4
5 ] = − i

2
Tα5 , [TαR , T

4
5 ] =

i

2
Tα5 ,

[TαL , T
β
5 ] =

i

2

(
δαβT

4
5 + εαβγ T

γ
5

)
, [TαR , T

β
5 ] =

i

2

(
−δαβT 4

5 + εαβγ T
γ
5

)
,

[T ω1
5 , T ω2

5 ] =
i

2
εω1ω2ω3 (T ω3

L + T ω3
R ) , [TαL , T

β
R] = 0 .

(4.2.3)

It is evident from eqs. (4.2.1a) to (4.2.1f) that with this choice for the generators, a generic
G transformation is in the form:

{TL, TR, T5, T2, T̂1, T̂2} ∼




TL,R T5

T5 0

T2

T̂1 T̂2

T̂1

T̂2

, (4.2.4)

so that H′ transformations are block-diagonal.
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We use the first letters of the alphabet for the indices of a generic SO(7) transformation,
a, b, c, · · · = 1, . . . , 7; because of its block-diagonal form, instead, an SO(5)′ × SO(2)′

transformation will have ā, b̄, . . . indices, where ā = {i, µ}, with i and µ being SO(5)′

fiveplet and SO(2)′ doublet indices, respectively. In the following, we do not make a
distinction between upper or lower indices; on the other hand, instead, their position is
important: the first index refers to the row, while the second one to the column.

In order to identify the transformations properties and the quantum numbers of the
NGBs, as well as the symmetries of the theory, it is convenient to consider the limit of no
misalignment, where rθ = 1; in this case, the pNGB matrix takes the form:

Π = T̂ IΠI ≡ − i√
2

05×5 Φ1 Φ2

−ΦT
1 0 0

−ΦT
2 0 0

 ,
Φ1 = (Π1 . . . Π5)T

Φ2 = (Π6 . . . Π10)T
, (4.2.5)

and I = 1, . . . , 10. The NGBs transform as a (5,2) of SO(5)′ × SO(2)′, and as (5,2) =
2×4+2×1 under SO(4) ⊂ SO(5)′. It is then convenient to parametrize the two fiveplets
of NGBs as:

Φ1 = (φ1, η)T , Φ2 = (φ2, κ)T . (4.2.6)

It is sometimes useful to consider the bidoublet notation for φ1,2, which is defined as usual
as:

φα =
1√
2

(
iσkφkα + 1φ4

α

)
, α = 1, 2 , k = 1, 2, 3 . (4.2.7)

We will use the symbol φ for both the fourplet and the bidoublet notations, the correct
one being clear from the context.

From the discussion of appendix A, we see that the Goldstone matrix has aā indices
and transforms as:

Uaā → gab Ubb̄ h
−1
b̄ā
. (4.2.8)

As already stated in ref. [205], a VEV for the second doublet can lead to dramatic viola-
tions of EWPTs, in particular because of contributions to the T̂ parameter. A possible
way out is given by discrete symmetries, which can prevent the appearance of the second
VEV. To this purpose, we introduce the discrete symmetry

C2 = diag(1, 1, 1, 1, 1, 1,−1) , (4.2.9)

acting on the NGBs matrix as as U → C2UC2, and on the NGBs as (Φ1,Φ2)→ (Φ1,−Φ2).
We will come back to this symmetry later, when we will show that it is explicitly broken
by the interactions of the strong sector with SM fermions.

Another discrete symmetry which is useful to our purposes is the parity

P7 = diag(1, 1, 1, 1,−1, 1, 1) , (4.2.10)

which can help in stabilizing the singlets, since (η, κ)→ −(η, κ) under it.
Another symmetry we assume to be respected by the theory is CP ; in order to de-

termine the CP -parities of the NGBs we must study the interactions between the strong
sector and SM fermions (see section 4.2.2). We will show that CP remains unbroken in
this model.

The CCWZ construction does not take account of a contribution which arises at 0th
order in the perturbative expansion: the Wess-Zumino-Witten (WZW) term [221, 222],
which could in principle affect the stability of the pNGBs. In general, the parameter
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Field SO(4)′ C2 P7

φ1 4 + +
φ2 4 − +
η 1 + −
κ 1 − −

Table 4.1: Representations under SO(4)′ and parities under the discrete symmetries for
the NGBs.

controlling the anomalies is given by dabc ≡ 1
2
Tr (Ta {Tb, Tc}), where the T ’s generically

denote the generators. In the model we study, no WZW anomaly emerges at the order we
consider; in addition, it is possible to prove that such a term does not emerge in general,
since the fifth de Rham cohomology group of SO(7)/SO(5) × SO(2) vanishes [223, 224]1.
This implies that the singlets remain stable, and therefore the discrete symmetry P7 is
unbroken to all orders in the perturbative expansion.

We show in table 4.1 the representations of the NGBs under SO(4)′ and the corre-
sponding parities under the discrete symmetries.

This discussion is valid in the case of no misalignment, rθ = 1; in general, the gener-
ators which enter in eq. (4.2.5) are related to the ones in the gauge basis of eqs. (4.2.1a)
to (4.2.1f) by eq. (4.1.5). As already stated, we will show that C2 is explicitly broken,
whereas P7 and CP are not; compatibly with these symmetries, the most general mis-
alignment between the physical and gauge basis is:

rθ =



1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 c2 0 0 0 s2

0 0 0 c1 0 s1 0
0 0 0 0 1 0 0
0 0 0 −s1 0 c1 0
0 0 −s2 0 0 0 c2


, (4.2.11)

where we defined s1,2 (c1,2) ≡ sin θ1,2 (cos θ1,2), with θ1,2 ≡ 〈Π4,8〉/f ; the form of rθ comes
from the fact that the CP -even NGBs are Π4 and Π8, as we will show.

It is then convenient to define:

sin θ1 ≡
√
ξ cos β

sin θ2 ≡
√
ξ sin β

. (4.2.12)

The previous discussion about a vanishing VEV for φ2 would translate into the require-
ment β = 0. As we will discuss, although C2 is effectively broken, bounds from EWPTs
require θ2 � θ1, and then β � 1.

According to the CCWZ prescription, the low-energy effective Lagrangian containing
the kinetic terms for the NGBs plus derivative interactions is (see eq. (A.2.31)):

L(2)
Π ≡

f 2

4
Tr
[
d(θ)
µ d(θ)µ

]
, (4.2.13)

where d
(θ)
µ ≡ iTr[U−1

θ DµUθT̂
I
θ ]T̂ Iθ is the d symbol in the physical basis, and the covariant

derivative is defined, in terms of the (non-canonically normalized) gauge fields Aµ =

1We thank Joe Davighi for pointing out this mathematical aspect.
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gWα
µ T

α
L + g′BµT

3
R, as DµU ≡ ∂µU − iAµU . The masses for the W and Z bosons can be

obtained from eq. (4.2.13) by setting the NGBs to zero, and read:

m2
W =

g2f 2

4
(sin2 θ1 + sin2 θ2) (4.2.14a)

m2
Z =

f 2(g2 + g′2)

4
(sin2 θ1 + sin2 θ2)

[
1− ξ

4
(1− cos 4β)

]
. (4.2.14b)

The SM prediction for mW is then correctly reproduced if we identify the Higgs VEV v
by the equation:

ξ ≡ v2

f 2
, (4.2.15)

which is the usual definition of the ξ parameter in CH models (cf. eq. (4.1.4)); on the
other hand, we see that mZ differs from the SM prediction by the factor

mZ = m
(SM)
Z

[
1− ξ

4
(1− cos 4β)

] 1
2

, (4.2.16)

leading to a tree-level contribution to the ρ parameter defined in eq. (1.1.13) (or, equiva-
lently, to T̂ ). We will come back later to this aspect when discussing restrictions on the
parameter space from EWPTs, but we can notice that this contribution is due to the fact
that the VEV 〈Π8〉 breaks the custodial symmetry down to SO(2).

From eq. (4.2.13), it is also possible to find out the expressions for the Goldstone
bosons Gi which are eaten to give mass to W and Z; in general, they can be identified by
looking for interactions like −g/(2

√
2)v ∂µG+W

−
µ (see, e.g., ref. [225]). While the general

case can be found in appendix 4.A, we report here the expressions for φ1,2 in the case of
no misalignment, β = 0, in which:

φ1 =



G+ +G−√
2

i(G+ −G−)√
2

G0

h


, φ2 =



−i(H+ −H−)√
2

H+ +H−√
2

H0

A0


. (4.2.17)

Here, h is the physical Higgs, while H0 (A0) represents the CP -even (odd) component of
the second doublet.

4.2.2 Partial compositeness

In CH models, the interactions between the strong sector and SM fermions are usually
studied by resorting to the paradigm of partial compositeness [226]: the idea is that SM
quarks are linearly coupled to fermionic operators of the strong sector OL,R; in principle,
the composite operators can be in any representation of the group G, but we consider
here the simplest case in which they are in the fundamental, OL,R ∈ 7 of SO(7) (for other
representations, see, e.g., ref. [210]). In the following, we mainly focus on the top quark,
since the corresponding Yukawa is the largest one, and it represents the main contribution
to the potential.
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The composite operators must be such to contain the SM quarks representations when
decomposed under GEW, i.e. 2 1

6
, 1 2

3
, 1− 1

3
. In CH models, in general, one has to enlarge

the symmetry group in order to reproduce these representations; this is easily obtained
by considering an extra U(1)X , with X properly chosen (typically, X = 2/3). The hy-
percharge is then defined as Y = T 3

R + X. To determine which operators the left- and
right-handed quarks can couple to, we have to consider the decomposition of the 7 2

3
of

SO(7) under the EW group; this is:

7 2
3

= (5,1) 2
3
⊕ (1,2) 2

3
= 2 7

6
⊕ 2 1

6
⊕ 1 2

3
⊕ 1 2

3
⊕ 1 2

3
, (4.2.18)

under SO(5)′ × SO(2)′ and GEW, respectively. According to table 1.1, we then see that
the right-handed quark tR can couple to both the singlet of SO(5)′ and the 1 2

3
coming

from the 5; the left-handed quark qL, instead, can only couple with the 2 1
6

coming from
the 5.

In partial compositeness, two equivalent approaches are possible: on the one hand,
one can assume the quarks to be part of G-incomplete multiplets; on the other hand, one
can consider the case where the couplings are promoted fo fields (called spurions) which
belong to some representation of G. We take the latter approach, being it suitable also
for the generation of the scalar potential. We then introduce the Lagrangian:

Lfint = q̄αL YαLT OL + t̄R YTR OR + h.c. , (4.2.19)

where YL,R denote the spurions, a = 1, . . . , 7 is an SO(7) index and α = 1, 2 is the flavour
index of the quark doublet.

The SM fermions are assumed to be even under both C2 and P7, implying for the
spurions the transformation properties:

YL,R → C2 YL,R , YL,R → P7 YL,R . (4.2.20)

Equation (4.2.19) exhibits two “elementary” symmetries: a U(2)el
L, under which the com-

ponents of qαL and YαL are rotated, and a U(1)el
R, under which tR and YR are charged.

Compatibly with these symmetries, and with P7, the most general VEVs for the spurions
are:

YL =
yL√

2

(
0 0 i 1 0 0 0
i −1 0 0 0 0 0

)T
(4.2.21a)

YR = yR
(
0 0 0 0 0 cos θt i sin θt

)T
, (4.2.21b)

with yL and yR real.
It is evident that C2 is explicitly broken by the VEV of YR unless θt = 0.
In the following, it will be important to distinguish between two concepts of symme-

tries: we define spurionic the symmetries of the strong sector which are respected by
the Lagrangian before the spurions acquire a VEV; on the other hand, we define residual
the symmetries which are respected also once the spurions have acquired a VEV. In the
following, we assume that spurionic symmetries remain unbroken.

Similarly to what is done with the gauge fields, it is convenient to “dress” the spurions
and define:

ȲαL ≡
(
r−1
θ U †θ YL

)α
(4.2.22a)

ȲR ≡ r−1
θ U †θ YR . (4.2.22b)
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This definition is consistent with the standard one, i.e. Ȳ = U †Y : this can be easily
checked by going to the basis of the VEV, where 〈Uθ〉 = 1 and 〈U〉 = rθ.

In general, the dressing procedure has the effect of starting from an object transforming
with an index a of G, and obtaining a new object which transforms with an index ā of H;
it is then understood that whenever a barred quantity appears, barred indices are implicit.
The idea is now simple: we use the dressed spurions to write invariants under H, and
they will also be automatically invariant under the full G; in particular, we can consider
a low-energy effective Lagrangian coming from integrating out the composite operators
(notice that the pNGBs are included in the dressed spurions).

In the aligned limit, rθ = 1, the dressed spurions transform as a (5,1)⊕ (1,2) under
SO(5)× SO(2), with components given by:(

Ȳ5

)i
,
(
Ȳ2

)µ
, (4.2.23)

where i = 1, . . . , 5, while µ = 1, 2 being the index associated to SO(2). The effective
Lagrangian can then be constructed by combining the components above with δij, δµν and
εµν ; the latter possibility, however, violates the C2-spurionic and will not be considered.
In addition, only left-right combinations have to be included because of chirality. Finally,
the two invariants which can be constructed with δ symbols are not independent, due to
the singlet one can obtain by combining two 7. The interaction Lagrangian for the top
quark is then:

Lt = ct
m∗
g2
∗
q̄ αL
(
ȲαL,2

)†
µ

(
ȲR,2

)µ
tR , (4.2.24)

where the factor m∗/g2
∗ comes from dimensional analysis (see appendix B), and ct is

expected to be an O(1) coefficient.
From eq. (4.2.24), we can read both the top mass and the top-NGBs interactions; by

expanding around β = 0, the top Yukawa coupling is easily obtained:

Yt ≈ ct
yLyR
g∗

(
√

1− ξ cos θt + β sin θt) . (4.2.25)

Note that the parenthesis approaches β for θt → π/2, leading to a potential suppression
of the Yukawa coupling; this can be compensated by considering slightly larger values of
either ct or yLyR/g∗.

The same analysis could also be repeated for other quarks; however, since Yq 6=t � Yt,
their role is less relevant, the only exception being possibly represented by the b quark;
in particular, since this choice does not have a major impact in what follows, we take
θb = 0. One potential issue of the model is due to FCNCs: as outlined in section 1.2.1, in
fact, a special feature of the SM is that Yukawa interactions are flavour diagonal because
the Yukawa and mass matrices can be simultaneously diagonalized. This is in general not
the case for a model with more than one Higgs doublet; however, as discussed in detail in
ref. [205], flavour problems can be avoided if the Yukawa matrices are aligned, i.e. if we
take θu = θc = θt and θd = θs = θb. If this is the case, MFV is actually enforced, leading
to the so-called tipe-III composite Higgs model; in this case, if we generically denote by
Y q

1 and Y q
2 the couplings of the quark q with the two doublets, we have Y q

1 ∝ Y q
2 . In the

following, we make this assumptions about the embedding of the quarks.
A crucial point is that eq. (4.2.24) leads to the interaction ihA0t̄γ

5t after the spurions
are set to the corresponding VEVs; such an interaction has two consequences: first, it
implies that A0 (i.e. the fourth component of φ2) is CP -odd, as anticipated; in addition,
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this term explicitly breaks C2 (the residual one, in the language introduced before), leading
in general to a non-vanishing VEV for the second doublet.

It also turns out that the two singlets η and κ have opposite CP -parities: we choose
η to be even, and κ to be odd.

4.2.3 Potential for the pNGBs

The scalar potential is generated by the explicit breaking of the Goldsonte symmetry;
since the composite sector is G-invariant, such a breaking can only come from interactions
between the composite and elementary sectors. Furthermore, given that elementary fields
do not couple with the Goldstone bosons directly, the potential cannot be generated
by loop diagrams with only elementary fields internal lines. As a consequence, an even
number of insertions of elementary couplings (denoted generically as gSM) is needed.

Following the discussion of appendix B, the potential can be schematically written as
(see, e.g., ref. [227]):

V (Π) ∼ m4
∗

g2
∗

(
g2
∗

16π2

)L(
gSM

g∗

)µG ( y

g∗

)µF
V̂

(
Π

f

)
, (4.2.26)

where L is the number of loops at which the potential is generated, µG and µF count the
number of insertions of gauge and fermionic spurions, and V̂ is a dimensionless function
of its argument.

Fermionic contribution

The main source of explicit breaking of the Goldstone symmetry can be found in the
coupling of the composite sector with elementary quarks, and in particular with the top.
As anticipated, the generation potential is best studied with the method of spurions: for
the quark contribution, the Lagrangian is the same one which generates the top Yukawa
coupling, i.e. eq. (4.2.24).

We can then use the dressed spurions in eqs. (4.2.22a) and (4.2.22b) to construct
invariants under SO(5) × SO(2) which in the end will be responsible for the breaking
of the symmetry, leading to the generation of the potential; given the two elementary
symmetries of eq. (4.2.19), all the invariants built from the Yukawa spurions have to be
combinations of the matrices:

∆̄āb̄
L ≡ Ȳ∗α,āL Ȳα,b̄L (4.2.27a)

∆̄āb̄
R ≡ Ȳ∗ āR Ȳ b̄R , (4.2.27b)

At lowest order, i.e. O(y2), in principle two invariants can be formed for each chirality;
however, they are not independent, as it can be seen by considering the trace of ∆̄.
From eqs. (4.2.22a) and (4.2.22b), we have:

Tr ∆̄ = ∆̄āā = Y∗aYa = ∆aa , (4.2.28)

which is independent of the NGBs, and therefore only contributes to the vacuum energy.
As a consequence, at lowest order, we are left with:

I(1)
(1,0) = ∆̄ii

L , I(1)
(0,1) = ∆̄ii

R . (4.2.29)
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We can proceed in a similar way for the order O(y4): the invariants will be combinations
of ∆L,R, δab, δij and δµν . With the VEVs given in eqs. (4.2.21a) and (4.2.21b), the non-
vanishing invariants are:

I(1)
(2,0) ≡ ∆̄ij

L ∆̄ji
L , I(1)

(1,1) ≡ ∆̄ij
L ∆̄ji

R , I(1)
(0,2) ≡ ∆̄ij

R ∆̄ji
R ,

I(2)
(2,0) ≡ ∆̄ii

L ∆̄jj
L , I(2)

(1,1) ≡ ∆̄ii
L ∆̄jj

R , I(2)
(0,2) ≡ ∆̄ij

R ∆̄ij
R ,

I(3)
(0,2) ≡ =

[
∆̄āi
R ∆̄āi

R

]
,

(4.2.30)

where the indices have to be interpreted as already indicated. While the operators in the
first line are generated at one loop, all the other ones are generated at two loops [205],
and are then suppressed by a further factor of g2

∗/(4π)2, which can however be O(1). The
last invariant deserves one final comment: we consider only the imaginary part because
the “full” invariant ∆̄āi

R ∆̄āi
R only contributes to the vacuum energy (for a reason similar to

the previous one about ∆āā): therefore, the real and imaginary parts are not independent.
The general form of the scalar potential in eq. (4.2.26) can be specialized for this case

as:

Vfermion = Nc
m4
∗

16π2

∑
nL,nR,i

1

g
2(nL+nR)
∗

c
(i)
(nL,nR) I

(i)
(nL,nR) , (4.2.31)

where I(i)
(nL,nR) is an invariant formed with nL,R powers of ∆̄L,R, and c

(i)
(nL,nR) are O(1)

coefficients. Since the fermions in the loop generating the potential are coloured, there is
a factor Nc = 3 accounting for the number of colours. Notice that I(i)

(nL,nR) ∝ y2nL
L y2nR

R ,

which is the reason for the denominator in eq. (4.2.31).

Since we assume CP -invariance, we take c
(3)
(0,2) = 0, given that the associated invariant

contains CP -breaking terms.
It turns out that c

(1)
(1,0), c

(1)
(0,1), c

(1)
(2,0), c

(1)
(1,1), c

(1)
(0,2), c

(2)
(1,1) and c

(2)
(0,2) are the most relevant

coefficients for numerical estimates. We fix instead c
(2)
(2,0) to 1.

Gauge contribution

Another source of explicit breaking of the symmetry comes from gauge interactions, en-
coded in the Lagrangian:

Lgauge
int = gW α

µ J
µ,α
L + g′Bµ(Jµ,3R + JµX) , (4.2.32)

where Jµ,αL , Jµ,αR and JµX are the SU(2)L, U(1)R and U(1)X currents, respectively.
Even in this case, it is convenient to resort to the method of spurions to identify the

operators that actually drive this breaking. Let us first focus on the term associated to
Jµ,3R ; we promote the coupling g′ to a field and define:

G ′ ≡
21∑
A=1

G ′A TA = g′ TR3 . (4.2.33)

We can then write a formally invariant contribution to eq. (4.2.32) as:

Lgauge
int ⊃

21∑
A=1

Bµ G ′AJµA = Bµ Tr (G ′Jµ) , (4.2.34)
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where G ′ transforms as G ′ → g G ′g† under an element g ∈ G.
It is then convenient to consider the dressed spurion

Ḡ ′ ≡ r−1
θ U †θG ′ Uθrθ , (4.2.35)

whose components Ḡ ′A = Tr
[
Ḡ ′TA

]
organize in multiplets of SO(5)× SO(2) as:

21 = (10,1)⊕ (5,2)⊕ (1,1) , (4.2.36)

associated to {TL, TR, T5}, {T̂1, T̂2} and T2, respectively.
The first observation is that a generic invariant must contain at least two powers of

G ′, because of the symmetry G ′ → −G ′ , Bµ → −Bµ. In addition, to count and classify
the invariants, we can work at the leading order of Ḡ ′, which actually coincides with G ′.
We can thus organize the components of Ḡ ′ as:(

Ḡ ′10

)I
,
(
Ḡ ′
T̂

)i
µ
, Ḡ ′2 , (4.2.37)

with I = 1, . . . , 10 being an index in the adjoint, while i = 1, . . . , 5 and µ = 1, 2 being the
indices associated to SO(5) and SO(2), respectively. The invariant symbols we can use to
form invariants are δIJ , δij, δµν and εµν : in principle, then, we would have 4 invariants;
however, the one which comes from the combination of δij and εµν vanishes because of
symmetry considerations. In addition, it is easy to check that:

21∑
A=1

Tr2
(
G ′TA

)
=

21∑
A=1

Tr2
(
Ḡ ′TA

)
=

21∑
A=1

Ḡ ′A Ḡ ′A . (4.2.38)

Since the l.h.s. is independent of the Goldstone bosons, the r.h.s. only contributes to the
vacuum energy. By taking this into account, we see that there are only two independent
invariants, which we take to be:(

Ḡ ′10

)I (Ḡ ′10

)
I

, Ḡ ′2 Ḡ ′2 . (4.2.39)

Similarly to what we did for the fermionic contribution, it is convenient to express these
invariants in terms of matrix elements; we then introduce the notation:

Γabcdg′ ≡ (G ′)ab(G ′)cd , (4.2.40)

and define the invariants:

I(1)
g′ ≡ −

(
Ḡ ′10

)I (Ḡ ′10

)
I

= Γ̄ijijg′

I(2)
g′ ≡ −Ḡ ′2 Ḡ ′2 = Γ̄µνµνg′

. (4.2.41)

The analysis proceeds exactly the same way for the other two terms in eq. (4.2.32). For
the coupling g we can introduce the spurion Gα ≡ GαA TA = g TαL and define:

Γabcdg ≡ (Gα)ab(Gα)cd . (4.2.42)

The corresponding invariants are:

I(1)
g ≡ Γ̄ijijg

I(2)
g ≡ Γ̄µνµνg

. (4.2.43)
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Finally, also the term proportional to JµX has to be considered: we denote the correspond-
ing spurion by G ′X = g′. Since a term of order (G ′X)2 is a singlet under G and contributes
to the vacuum energy only, we are left with:

Γ̃abg′ ≡ (G ′)ab G ′X . (4.2.44)

The only invariant we can build out of this object is:

I(3)
g′ ≡ εµν

¯̃Γµνg′ , (4.2.45)

which however violates the C2-spurionic and therefore will not be considered in the fol-
lowing.

The potential given in eq. (4.2.26) can be specialized for the gauge contributions as:

Vgauge =
m4
∗

16π2

2∑
i=1

∑
g̃=g,g′

1

g2
∗
c

(i)
g̃ I(i)

g̃ , (4.2.46)

where c
(i)
g,g′ are O(1) coefficients.

Since the gauge contribution to the potential is subleading with respect to the fermionic
one, we fix all the c

(i)
g,g′ to 1.

If we generically denote by ci the O(1) coefficients, we introduce three different ranges of
variations for them:

• strictly natural coefficients: 0.2 ≤ |ci| ≤ 5;

• loosely natural coefficients: 0.1 ≤ |ci| ≤ 10;

• unnatural coefficients: |ci| < 0.1 or |ci| > 10.

4.3 pNGBs dynamics

In this section, we discuss the dynamics of the pNGBs; in particular, section 4.3.1 is
dedicated to the structure of the vacuum of the theory, while we discuss the spectrum
and the interactions of the pNGBs in sections 4.3.2 and 4.3.3, respectively.

4.3.1 Structure of the vacuum

The pNGBs potential V is given by the sum of the contributions in eqs. (4.2.31) and (4.2.46);
its minimum can be found in terms of the misalignment angles θ1 and θ2 (or, equivalently
from eq. (4.2.12), ξ and β) by solving for two of the free O(1) coefficients. We choose

to solve for c
(1)
(1,0) and c

(1)
(1,1), checking a posteriori that the solution lies within the desired

naturalness range. At leading order in yL,R/g∗ < 1, we have:

ξ = sin2 θ1 + sin2 θ2 ≈
2Nc y

4
L c

(1)
(2,0) + g2

∗

(
Nc y

2
L c

(1)
(1,0) − 3g2c

(1)
g − g′ 2c(1)

g′

)
Nc y4

L c
(1)
(2,0)

. (4.3.1)
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A tuning among the coefficients in the numerator must be imposed in order to reproduce
the desired fine tuning, the amount of which is of order ∆ ∼ ξ−1. As already discussed in
ref. [205], a hierarchy θ2 � θ1, i.e. β � 1, can be naturally obtained; in fact, we have:

tan β =
sin θ2

sin θ1

≈
Nc c

(1)
(1,1)y

2
Ly

2
R sin 2θt

2g2
∗(g
′2c(1)

g′ + 2Nc y2
Rc

(1)
(0,1) cos 2θt)

. (4.3.2)

In the following, we will be mainly interested in two regions of the parameter space:
θt ≈ π/2 and θt ≈ π/4. For θt ≈ π/2, a strong suppression is naturally obtained;
furthermore, for g′ � yR cos 2θt, we have tan β ≈ y2

L/g
2
∗ tan 2θt which is small for yL < g∗.

For θt ≈ π/4, instead, the term proportional to g′2 cannot be neglected, but values of
β ∼ 0.1 are still naturally obtained.

4.3.2 Spectrum of the pNGBs

Since β is always naturally small in the regions of parameter space we consider, we can
perform a power expansion in the masses of the pNGBs obtained from the potential.
Because of the symmetries of the model, a non-diagonal mass matrix between Π4 and Π8

in general arises, and it can be diagonalized via an SO(2) transformation; it turns out
that the diagonalization angle α is α ≈ β.

Once the VEV of the theory is determined, i.e. the conditions on ξ and β have been
imposed, we can find the expression for the Higgs mass; at leading order in ξ and β, and
neglecting contributions from two loops and gauge invariants, we find:

m2
h ≈

Ncf
2ξ

16π2

(
2y4

Lc
(1)
(2,0) + y4

Rc
(1)
(0,2)(3 + 4 cos 2θt + cos 4θt)

)
≈ Ncg

2
∗

8π2
m2
t

(
2
y2
L

y2
R

c
(1)
(2,0) +

y2
R

y2
L

c
(1)
(0,2)(3 + 4 cos 2θt + cos 4θt)

)
, (4.3.3)

where in the second line we substituted the expression for the top-Yukawa (cf. eq. (4.2.25));

we then solve for the coefficient c
(1)
(2,0), by using the experimental value mh ≈ 125 GeV.

A small value of g∗, i.e. light top partners, helps to avoid a further tuning in order to
obtain the correct Higgs mass; for this reason, in the numerical analysis, we fix g∗ = 3

Given that the mass matrix is diagonal, the masses of other pNGBs, H0, A0, H±, η
and κ can be easily determined as functions of the remaining coefficients; to leading order
in ξ, these read:

m2
H0
≈ −Nc

y2
R

8π2

(
c

(1)
(0,1) +

y2
L

8π2
c

(2)
(1,1)

)
m2
∗ cos(2θt) , (4.3.4a)

m2
A0
≈ m2

H0
, (4.3.4b)

m2
H± ≈ m2

H0
− m2

h

2
, (4.3.4c)

m2
η ≈ Nc

y2
R

8π2

(
c

(1)
(0,1) +

y2
L

8π2
c

(2)
(1,1)

)
m2
∗ cos2 θt , (4.3.4d)

m2
κ ≈ Nc

y2
R

8π2

(
c

(1)
(0,1) +

y2
L

8π2
c

(2)
(1,1)

)
m2
∗ sin2 θt . (4.3.4e)
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Figure 4.2: Mass spectrum for ξ = 0.061, β = 0.1 and g∗ = 3. The bands are obtained by
varying c

(1)
(0,1), c

(1)
(0,2), c

(2)
(0,2) and c

(2)
(1,1) in the strictly natural range, |ci| ∈ [0.2, 5].

As we can see, H0, A0 and H± are almost degenerate in mass. We assume in the following

that π/4 < θt < π/2 and c
(1)
(0,1), c

(2)
(1,1) > 0. When θt ≈ π/2, also the first order in ξ has to

be included in the estimate for mη; it turns out that:

m2
η ≈ Nc c

(1)
(0,1)

y2
R

8π2
m2
∗ cos2 θt + ξ

m2
h

2
. (4.3.5)

The spectrum is shown in fig. 4.2 for ξ = 0.061 and β = 0.1, as well as different values
of c

(1)
(0,1), c

(1)
(0,2), c

(2)
(0,2) and c

(5)
(1,1). The two most promising regions are for θt ≈ π/2, where η

is by far the lightest pNGB (other than the SM Higgs), with a mass mη ∼ O(100 GeV),
while all other pNGBs have O(1 TeV) masses and do not participate directly to the
phenomenology; a second potentially interesting region is for θt & π/4, where η and κ
are very close in mass (but η is always lighter), both of O(1 TeV); such a region could be
interesting for two reasons: on the one hand, there could be coannihilations between η
and κ, while on the other hand there could be non-thermal effect due to the decay of κ
after its freeze-out.

4.3.3 Interactions among the pNGBs

In order to study the pNGBs interactions, it is convenient to consider separately those
coming from CCWZ and the ones coming from partial compositeness and the potential.

Interactions from CCWZ

The CCWZ Lagrangian in eq. (4.2.13) contains pNGB interactions with the SM gauge
bosons, as well as derivative interactions among the pNGBs. These can be effectively
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described as:

L(2)
Π ⊃Lkin +

(
m2
WW

+
µ W

µ
− +

m2
Z

2
ZµZ

µ

)(
1 +

2gV
v
h+

bh
v2
h2 +

λ
(V )
η

2v2
η2 +

λ
(V )
κ

2v2
κ2 + . . .

)

− 2

v

(
gH0Wm

2
WW

+
µ W

µ
− +

gH0Zm
2
Z

2
ZµZ

µ

)
H0

− kder

4v2

[ [
Φ2

1(∂µΦ1)2 − (Φ1∂µΦ1)2
]

+
[
Φ2

2(∂µΦ2)2 − (Φ2∂µΦ2)2
]

+

2 [Φ1Φ2(∂µΦ1∂
µΦ2)− (Φ1∂µΦ2)(Φ2∂µΦ1)] +

(
Φ1

↔
∂µ Φ2

)2
]

− mWmZ

2v
gH+VW

−
µ Z

µH+ + h.c.+ . . . (4.3.6)

where Lkin contains the pNGB kinetic terms, kder = 2ξ/3, and Φ1,2 are the two pNGB five-
plets of physical fields introduced in eq. (4.2.6); the expressions for the effective couplings
can be found in appendix 4.C. In writing the equation above, we neglected all the cou-
plings which break the custodial symmetry and which become negligible once the limits
from EWPTs are taken into account; we also omitted interactions with two gauge bosons
and two pNGBs, being less relevant for the phenomenology discussed in the following.

It is worth noticing that interactions with three pNGBs and two derivatives, such as
∂µη ∂

µηh, are absent from the Lagrangian above; this might seem surprising, since such
interactions have been long known to be present in similar scenarios, and their relevance
has been often stressed (see, e.g., refs. [200–202, 210]). These usually arise from O(Π4)
terms, once the Higgs(es) takes a VEV; however, since we employ a parametrization
in which pNGBs do not take a VEV, these terms are not generated. Another way to
easily understand their absence is to set to zero the gauge and Yukawa couplings: in
this case, the global symmetry is exact and all vacua are degenerate, so that the SO(5)
and SO(5)′ subgroups are physically equivalent. In this limit, the two-derivative NGBs
interactions start at O(Π4) in both vacua (and are of the form specified in eq. (4.3.6)).
Now, switching on the gauge and Yukawa couplings selects SO(5)′ as the true vacuum;
however, since derivative interactions do not depend on these couplings, and since in our
descriptions fields do not take a VEV, the derivative interactions are not affected and
therefore cubic ones are not generated.

The connection with the description most commonly employed in the literature (where
NGBs are excitations around the gauge vacuum SO(5), with the Higgs taking a VEV)
can be easily obtained via a non-linear field redefinition (see, e.g., refs. [202, 205]); for
example, in the limit of θ2 = 0 this is given by:

h → h̃+ θ1
η̃2

3f
+O(θ2

1) , (4.3.7)

η → η̃ − θ1
η̃h̃

3f
+O(θ2

1) , (4.3.8)

where h̃ and η̃ are the physical fields in the gauge description.

Such a transformation generates cubic derivative interactions from the kinetic terms,
as well as non-derivative interactions from the pNGBs mass terms; the net effect of this
is to keep physical observables invariant under such transformations.
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Interactions with fermions and from the potential

The relevant interactions between pNGBs and SM quarks are:

Lq ⊃ −
mq

v
q̄q
(
kqh+ kH0qH0 −

gq
2v2

η2 +
gκq
2v2

κ2
)
− gηκq

v2
mqη κ q̄γ

5q . (4.3.9)

As far as the potential is concerned, instead, we have:

V ⊃ −gηh
2
v η2h− gηH0

2
v η2H0 −

gκh
2
v κ2h− gκH0

2
v κ2H0

− ληh
4
η2h2 − ληH0

4
η2H2

0 +
ληA0

4
η2A2

0 +
ληH+

2
η2H+H−

− gA0h

2
v hA2

0 −
gA0H0

2
v H0A

2
0 − gH+hvhH+H− − gH+H0vH0H+H−

+
m2
h

2v2
λv h3 − λH0

6
v H3

0 +
gH0

2
v hH2

0 −
gH0hh

2
v h2H0

− λκh
4
κ2h2 − λκH0

4
κ2H2

0 +
λκA0

4
κ2A2

0 +
λκH+

2
κ2H+H− . (4.3.10)

Finally, we can consider effective interactions between the pNGBs and the gluon, obtained
by integrating out the top at 1 loop; these read:

Lt−loop
g ⊃ ggh

v
hGa

µνG
µν
a +

ggH0

v
H0G

a
µνG

µν
a +

ggη
v2
η2Ga

µνG
µν
a (4.3.11)

Even in this case, the expressions for the effective couplings can be found in appendix 4.C.
We require them to be always less than 4π for perturbative reasons: this usually forces
c

(1)
(0,1) to be smaller than 1.

4.4 Thermal dark matter scenario

From fig. 4.2, we see that a first region of interest is for θt . π/2: in this case, η is much
lighter than all other pNGBs (with the exception of the Higgs) and is the DM candidate;
the abundance is generated through standard freeze-out. As already pointed out, in
addition, β is naturally small, and no further tuning is necessary. Finally, we can see
from eq. (4.2.25) that the top mass is suppressed, requiring either a large ct or yLyR & g∗:
for naturalness reasons, we choose the second option, and take yL = 2, yR = 3 = g∗; other
choices are possible, but we do not expect them to lead to a significant change in the
results.

In principle, also the region around θt = π/4 could be interesting, because coannihi-
lations between η and κ could lead to a thermal relic abundance; we checked, however,
that this is not the case, and the correct relic density cannot be reproduced.

In section 4.4.1, we determine the relic abundance of DM predicted by the model; in
sections 4.4.2 to 4.4.4, we consider the limits from LHC searches, DD and ID, respectively,
while we summarize the results in section 4.4.5.

4.4.1 Relic Density

In the region θt . π/4, the main contribution to the DM relic density come from anni-
hilations of η into SM gauge bosons, Higgs and top quark; other contributions, such as
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ηη → V V ∗, with V = W,Z, can be important at low masses, before the threshold for
on-shell production.

The thermally-averaged cross sections for the main annihilation channels are:

〈σvrel〉ηη→V V =
αV

32πm2
η

m4
V

v4

∣∣∣∣λ(V )
η +

2gηhgV v
2

4m2
η −m2

h + imhΓh
− 2gηH0gH0V v

2

4m2
η −m2

H0

∣∣∣∣2[
2 +

(
2m2

η −m2
V

m2
V

)2
]√

1− m2
V

m2
η

(4.4.1a)

〈σvrel〉ηη→hh =
1

64πm2
η

∣∣∣∣ληh +
3gηhλm

2
h

4m2
η −m2

h + imhΓh
− 4gηH0gH0hh v

2

4m2
η −m2

H0
+ imH0ΓH0

−
2g2

ηhv
2

m2
h − 2m2

η

+
kder(5m

2
η −m2

h)

v2

∣∣∣∣2
√

1− m2
h

m2
η

(4.4.1b)

〈σvrel〉ηη→qq̄ =
3

4π

m2
q

v4

∣∣∣∣gq +
gηhkq v

2

4m2
η −m2

h + imhΓh
− gηH0kH0q v

2

4m2
η −m2

H0

∣∣∣∣2(1− m2
q

m2
η

) 3
2

, (4.4.1c)

with αV = 1 (1/2) for W (Z).
The thermally-averaged cross section for the process ηη → V V ∗ is instead:

〈σvrel〉ηη→V V ∗ =
∑
f

k2
(V )N

(f)
c

1536π3m2
η

m4
V

v4

(
λ(V )
η +

2gηhgV v
2

4m2
η −m2

h

)2

F (εV , ζf ) , (4.4.2)

where we neglected the exchange of H0 in the s-channel, N
(f)
c is the number of colours of

the final state f , and:

F (εV , ζf ) =

∫ 1+
ε2V
4
−ζ2

f

εV

dy

√
y2 − ε2

V

(1− y)2

1

ε2
V

√
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4ζ2
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4− 4y + ε2
V{(

τ 2
(V ) + χ2

(V )

) [
4y2 − 12ε2

V y + 8ε2
V + 3ε4

V

]
+

2ζ2
f

4− 4y + ε2
V

[
τ 2

(V )

(
4y2 − 12ε2

V y + 8ε2
V + 3ε4

V

)
+ 2χ2

(V )

(
2y2 + 12ε2

V y − 14ε2
V − 3ε4

V

) ]}
(4.4.3)

with:

k(V ) =


g

2
√

2√
g2+g′2

2

, τ(V ) =

{
1

cV
, χ(V ) =

{
1 , V = W

cA , V = Z
, (4.4.4)

εV ≡ mV
mη

and ζf ≡ (mf1 + mf2)/(2mη), f1 and f2 being the final states of V ∗ decay.

Obviously, also the coefficients τ(V ) and χ(V ) depend on the final states.
The relic abundance can then be computed using eq. (2.3.19), and the result is shown

in fig. 4.3. The darker (lighter) region is obtained by letting the coefficients vary inside
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Figure 4.3: Relic density as a function of the DM mass mη, for ξ = 0.061 (corresponding
to f = 1 TeV) and β = 0.1; the black line corresponds to the measured value Ωh2 =
0.1198 [46]. The dark (light) blue region is obtained by letting the coefficients in the
potential vary within the strictly (loosely) natural range (see section 4.2.3).

the strictly (loosely) natural range, with the nomenclature introduced in section 4.2.3.

The reason why a plateau appears for mη . mh is because the cross section is domi-
nated by annihilations into SM gauge bosons: since the latter do not depend on the ci’s,
the annihilation cross section is always bounded from below and, since Ωh2 ∼ 1/〈σv〉, this
corresponds to a maximum in the relic density. The situation changes at larger masses,
when new annihilation channels open up, where it is possible that a cancellation in the
main contributions to the effective cross section occurs: this is precisely the case in the
region mη ≈ 400 GeV of fig. 4.3, where η is sufficiently heavy so that the exchange of H0

compensates the exchange of h in s-channel, the two contributions having opposite signs.
The consequence is an enhancement in the relic density, even if one could naively expect
it to decrease for large masses.

The most important effective coupling is gηh, describing the interactions between two
h’s and one η. It contributes to different processes with different signs, so it is non-trivial
to describe its role analytically; the results highly depend on the parameters ξ and β
and, guided by EWPTs, we decide to focus our attention on ξ = 0.061 (corresponding
to f = 1 TeV) and β = 0.1. From fig. 4.3, we see that there are two good mass regimes
which give the correct relic density, Ωh2 = 0.1198 [46], for strictly natural coefficients:
mη ≈ mh/2 and mη ≈ 150 GeV; a third one, at mη ≈ 400 GeV, also reproduces the
correct relic density if the coefficients are allowed to vary inside the loosely natural range.
However, as we will show, this high mass range is already excluded by DD experiments.
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4.4.2 LHC searches

In the region of parameter space where mη ≤ 62.5 GeV, the Higgs can decay into two DM
particles, h→ ηη. Experimental constraints on invisible Higgs decays have been obtained
by ATLAS and CMS [228,229] for various possible assumptions on the Higgs couplings to
SM particles. Since the couplings of the Higgs to quarks and gauge bosons in our model
are different from the SM ones, the widths of the decays into SM particles have to be
appropriately rescaled. The invisible branching ratio is defined as:

BRinv ≡
Γh→ηη

Γh→ηη + Γ
(ξ,β)
SM

, (4.4.5)

where Γ
(ξ,β)
SM is the correction to the SM decay widths due to the composite sector, and

for our model is

Γ
(ξ,β)
SM ' g2

V Γh→WW + g2
V Γh→ZZ + k2

t Γh→gg + k2
b Γh→bb̄ + Γh→ττ . (4.4.6)

Anyway, we do not expect a significant departure from the SM prediction, given the small
values of ξ and β allowed by EWPTs. We take as an experimental bound BRinv < 19%
at 95% CL [228]; at HL, LHC will reach a 95% CL exclusion sensitivity of 1.9%, while
future electron-positron colliders could be able to reach sub-percent precision (see, e.g.,
ref. [230] for a recent review of Higgs boson measurements at future colliders).

In our model, the invisible Higgs decay width is given by:

Γh→ηη =
g2
ηh

32πmh

v2

√
1− 4m2

η

m2
h

, (4.4.7)

which depends on the coefficients ci’s via the effective coupling gηh. The corresponding
prediction for the invisible branching ratio of the Higgs, obtained by letting the ci’s vary
inside the strictly (loosely) natural range are shown as dark (light) yellow regions in fig. 4.4;
the predictions of the model are always below the current bound, while HL-LHC will be
able to test most of this region of the parameter space with this kind of searches. On the
same plot, we show in blue the narrow region where the correct relic density is reproduced.

The production of η’s (either direct, or through the decay of some heavier scalars such
as H0) could lead to missing energy traces; in this case, we should look at specific tags: in
our model, the most relevant ones will be one energetic jet, MJ, or two well-separated jets,
resulting in VBF signature. In both cases, it is important to include the effective coupling
of gluons to the massive scalars, given by eq. (4.3.11), since this gives the main contribution
to the production cross section. We implemented the model in FeynRules [189, 231]
and generated simulated events with MadGraph5 [188]; contributions from diagrams
involving H0 can be relevant, and were therefore included. For masses above 50 GeV,
neither monojet nor VBF put any constraints on the model, being the signal always at
least an order of magnitude below the experimental limits (see, e.g., refs. [96, 232]) for
any value of ξ, β allowed by EWPTs.

Overall, DM searches at LHC do not put important constraints on the parameter
space of our model.
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Figure 4.4: Branching ratio of invisible Higgs decays as a function of the DM mass. The
dark (light) yellow region corresponds to strictly (loosely) natural O(1) coefficients. The
current bound, BRinv < 0.19, is shown as a green solid line, while the HL-LHC prospect is
shown with the dashed line. Finally, the region of the parameter space where the observed
relic density is reproduced is shown in blue.

4.4.3 Direct detection

The DM candidate η can interact with quarks with both a contact interaction (cf. (4.3.9))
and an s-channel exchange of h and H0. According to the general discussion of sec-
tion 2.4.1, we can parametrize the interaction Lagrangian as:

L(eff)
DD =

∑
q

aqmqη
2q̄q . (4.4.8)

The coefficient aq is computed to:

aq =
1

2

[
gq
v2
−
(
kq
gηh
m2
h

− kH0q
gηH0

m2
H0

)]
. (4.4.9)

The choice of aligning the Yukawa matrices in order to avoid FCNCs, discussed in sec-
tion 4.2.2, leads to au = ac = at and ad = as = ab.

By repeating the steps that led to eqs. (2.4.11) and (2.4.14), the spin-independent
nucleon cross section turns out to be:

σSI =
µ2
χN

πm2
χ

(
Z fp + (A− Z)fn

A

)2

, (4.4.10)

with:

fn,p =
∑

q=u,d,s

f
(n,p)
Tq

aqmn,p +
2

27
fTG

∑
q=c,b,t

aqmn,p . (4.4.11)
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We take f
(n)
Tu

= 0.026, f
(n)
Td

= 0.020 (and the opposite for p), f
(n)
Ts

= 0.043 = f
(p)
Ts

[77] and
fTG = 0.911 [233].

Given that the value of aq in eq. (4.4.9) depends on the coefficients ci, a cancellation
in the scattering amplitude can occur, allowing to evade bounds from DD; currently, the
strongest constrain comes from the XENON1T experiment [234].

As can be seen in fig. 4.5, the strongest restrictions on the parameter space of our
model come from DD; for this reason, we also show projections for the future XENONnT
experiment [235]; the majority of the parameter space, for the benchmark values of ξ and
β we consider, will be tested.

4.4.4 Indirect detection

We briefly discuss bounds from ID, although somewhat beyond our main interests. In
particular, we focus on limits from dwarf spheroidal galaxies (dSphs) given by Fermi-LAT,
and reported in ref. [81]; the relevant one for our model is given by DM-annihilation into
bb̄, and shown in fig. 2.7.

In the region mη ≈ mh/2, only the direct process ηη → bb̄ has to be considered;
for larger mη, instead, also the intermediate productions of W, Z, h (and possibly other
NGBs) are important: as a conservative estimate, we assume that these intermediate
states completely decay into bb̄; we checked that the inclusion of the corresponding branch-
ing ratios does not alter the general results.

Similarly to what was done in ref. [210], we decide not to consider anti-protons bounds
from AMS-02, due to the still unclear size of the systematic uncertainties, and limit
ourselves to dSphs.

4.4.5 Discussion

As anticipated, there are three regions in which the correct relic density is reproduced,
at least with loosely natural O(1) coefficients: mη ≈ mh/2, mη ≈ 150 GeV and mη ≈
400 GeV.

We choose as benchmark values ξ = 0.061 (corresponding to f = 1 TeV) and β = 0.1,
and we show the main results in the mη-gηh plane in fig. 4.5 for loosely natural coefficients.
The orange (purple) hatched area is excluded by DD (ID), while in the blue one the correct
relic density is reproduced. The grey region finally corresponds to unnatural coefficients.

Low mass range (mη ≈ mh/2)

In the first region, the correct relic density is reproduced for masses just below and just
above the on-shell Higgs production threshold of 62.5 GeV. The corresponding mass range
is clearly very narrow, being the correct relic abundance obtained thanks to the Higgs
resonance (this feature is the second of the exceptions described in section 2.3.2); since
there is no any dynamical argument for which the DM mass should be in such a narrow
range, this first region may be viewed as a rather ad hoc one.

Bounds from the Higgs invisible BR and ID do not exclude any parts of the region
where the correct relic density is obtained, while DD sets an upper bound on gηh. Anyway,
the relevant cross section for ID is below the current bound by just an O(1) factor, so that
we expect future ID experiments to be able to test this region. In addition, also HL-LHC
will probe a large portion of the parameter space (see fig. 4.4).
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Figure 4.5: Main results for ξ = 0.061, β = 0.1 and loosely natural O(1) coefficients. The
blue region corresponds to the 3σ-relic density contour; the orange and purple hatched
regions are excluded by DD and ID, respectively; the dashed, red lines correspond to
prospects of DD bounds from XENONnT; finally, the grey region corresponds to unnatural
O(1) coefficients.

Intermediate mass range (mη ≈ 150 GeV)

In the second region, mη & 100 GeV, the most stringent bounds on the parameter space
come from DD and from the requirement of natural O(1) coefficient; LHC experiments
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Figure 4.6: The dark (light) blue region represents values of mη and f for which it
is possible to reproduce the correct relic density at 3σ, evade DD constraints, all while
having strictly (loosely) natural coefficients ci. The red region is excluded by our combined
fit of EWPTs and Higgs couplings (see appendix 4.B), while the black horizontal line
corresponds to the benchmark value of f = 1 TeV (ξ = 0.061) we consider. The green,
dashed region corresponds to the projection with DD limits from XENONnT and strictly
natural coefficients.

are instead not relevant, and are not expected to significantly improve in the near future;
also bounds from ID, although consciously overestimated, do not exclude portions of the
parameter space where the correct relic density is reproduced.

Upper and lower bounds on mη are set by DD results (cf. fig. 4.5); if we considered
strictly natural coefficients, then masses below 135 GeV would be excluded.

The feature at mη ≈ 180 GeV is because of a cancellation in the cross section for
ηη → tt̄, due to the different sign between the effective couplings gηh and gηH0 , as can be
seen by looking at eq. (4.4.1c).

Among the three regions in which the correct relic density can be reproduced, this one
seems to be the most promising one: on the one hand, bounds from ID are pretty weak
and those from DD leave a significant portion of the parameter space available; on the
other hand, the relic abundance can be obtained with natural O(1) coefficients, without
the need of extra fine tuning.

On the one hand, by decreasing the value of ξ we enlarge the good mass range; on
the other hand, this comes at the price of a higher level of fine tuning. For this reason,
it is interesting to investigate how the correct DM mass range varies with varying fine
tuning; we show the result in fig. 4.6. We see that this models allows for small values of
f , up to f ≈ 750 GeV for strictly natural coefficients, and even below 600 GeV for loosely
natural ones. The upper bound on ξ comes from a combination of bounds from EWPTs
and Higgs couplings fit: we discuss these constraints in appendix 4.B.

This result should be compared to other similar non-minimal composite DM models
in the literature, for which significantly larger values of f were found to be necessary (see,
e.g., refs. [202,209]).
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What happens by varying β is less trivial: in principle, an increase of β would result
in a larger dependence on the subleading terms and on the ci’s; however, we verified that
this is not the case for the values of β allowed by EWPTs.

Large mass range (mη ≈ 400 GeV)

The third region of interest is for mη ≈ 400 GeV; as already stated, it turns out that
a cancellation between the exchanges of h and H0 in s-channel takes place in the main
contributions to the annihilation cross section. Despite this enhancement, the correct
relic density can only be reproduced with loosely natural O(1) coefficients.

As can be seen from fig. 4.5, the benchmark point we consider is already excluded by
current DD constraints; in order to evade this bounds, we should take ξ . 0.01; since
this would spoil the virtue of the model, i.e. delivering a viable DM candidate with a
relatively low fine tuning, we do not study this region of the mass range any further.

4.5 Non-thermal dark matter scenario

The greater complexity of the SO(7)→ SO(5)× SO(2) breaking pattern with respect to
the minimal case can lead to a richer DM phenomenology; in particular, the larger number
of pNGBs can lead to DM production mechanisms others than standard freeze-out. This
can naturally happen in the region around θt = π/4, where the DM candidate, η, is almost
degenerate in mass with the other singlet, κ (cf. fig. 4.2).

If η and κ are sufficiently close in mass, it is possible that κ also undergoes thermal
freeze-out, and later decays; because of P7, which remains unbroken, the final state must
include one η: in this scenario, then, it is possible to have a non-thermal production of
DM, as opposed to standard thermal freeze-out.

Because of CP , which is also unbroken, the main decay channels are κ → ηA0 and
κ→ ηqq̄; it turns out that only the latter is kinematically allowed, resulting in a further
suppression for the decay width due to phase-space.

The decay width for the process κ→ ηqq̄ is:

Γκ→ηqq̄ =
3

32π3mκ

m2
q

v4
|gηκq|2

∫ m2
κ+m2

η−4m2
q

2mκ

mη

dq0

√
q2

0 −m2
η (m2

κ +m2
η − 2mκq0)

√
1− 4m2

q

m2
κ +m2

η − 2mκq0

, (4.5.1)

where the expression for the effective coupling gηκq is reported in appendix 4.C.
The lifetime of κ has to be compared to the age of the universe when η freezes-out

(which roughly corresponds to the one of the freeze-out of κ, because of the small mass
splitting), which is given by:

tF
1 s
≈ 1.52

√
g∗,EU

(
1 MeV

mη

)2

x2
F , (4.5.2)

with g∗,EU ≈ 100 being the effective number of relativistic species in the early universe
at freeze-out and xF ≈ 25. Given that Γκ→ηqq̄ ∝ m2

q, if ∆mκ,η ≡ mκ − mη > 2mt, the
decay is completely dominated by the tt̄ final state, and it always takes place before κ
freezes-out.
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Figure 4.7: Relic density from non-thermal DM production for ξ = 0.01, β = 0.2, yL =
1 = yR, g∗ = 3 and loosely natural O(1) coefficients. The blue region corresponds to the
3σ-relic density contour; the orange hatched region is excluded by DD; in the grey region
the O(1) coefficients lie outside the range [0.1, 10].

If the decay is sufficiently slow, then, two independent contributions participate to the
determination of the relic density: on the one hand, η undergoes standard freeze-out; on
the other hand, the temporary abundance of κ is completely converted in DM, given that
one η is produced per decay. The total abundance of η, at the end of κ-decays, is given
by (see, e.g., ref. [236]):

ΩDMh
2 = Ωηh

2 +
mη

mκ

Ωκh
2 . (4.5.3)

Given that H0, A0, H± are all lighter than η, they also have to be included as final states
of η- and κ-annihilations; on the contrary, as in standard coannihilations, conversion
processes between η and κ are not relevant for the final relic density determination.

We do not report the formulas of the annihilation cross sections, but these can be
easily determined from the interactions in eqs. (4.3.6) and (4.3.9) to (4.3.11).

When non-thermal effects take place, it turns out that the two contributions to the
relic density are of the same order, i.e. Ωη ≈ Ωκ. Compared to the thermal case, however,
a higher level fine tuning on ξ is needed in order to evade DD constraints.

Similarly to fig. 4.5, we show in fig. 4.7 the results in the mη-gηh plane, for ξ = 0.01,
β = 0.2, yL = 1 = yR, g∗ = 3; in the whole plane, O(1) coefficients are allowed to vary
within the loosely natural range. Even for non-thermal effects, DD sets the strongest
bounds on the model, while ID is completely ineffective. In this plot, the mass splitting
is always in the range 20 GeV . ∆mκ,η . 50 GeV.

As one can see from eq. (4.3.4d), this range of masses for mη roughly corresponds to
θt ≈ π/4, as anticipated. While large mass splittings tend to favour a fast decay for κ,
non-thermal effects are always possible for small mass differences, although a larger and
larger unnaturalness of the coefficients is required, (corresponding to a larger and larger
fine tuning for ∆mκ,η/mη).

Despite the higher fine tuning which is needed, the non-thermal production mechanism

97



for DM represents an intriguing feature; we think this is one of the most peculiar and
interesting aspects of the model. The greater level of complexity with respect to the
minimal case has been traded for a richer spectrum of NGBs which can play an active
role in DM phenomenology.

4.A Identification of the physical fields

In this appendix, we provide the general expressions for the embedding of NGBs, and the
identification of physical particles.

We parametrize the two fourplets as:

φ1 =



−i(h
+ − h−)√

2

h+ + h−√
2

i(h0 − h∗0)√
2

h0 + h∗0√
2


, φ2 =



−ξ
+ + ξ−√

2

−i(ξ
+ − ξ−)√

2

−ξ0 + ξ∗0√
2

−i(ξ0 − ξ∗0)√
2


. (4.A.1)

From eq. (4.2.13) we then obtain the expressions for the eaten Goldstones G± and G0,
which read:

G± = ∓i(h± cos β + ξ± sin β) (4.A.2a)

G0 =
i√

1− ξ

4
(1− cos 4β)

[
h0 − h∗0√

2
cos β

√
1− ξ sin2 β +

ξ0 − ξ∗0√
2

sin β
√

1− ξ cos2 β

]

(4.A.2b)

The orthogonal fields H± and A0 can then be easily found:

H± = ∓i(−h± sin β + ξ± cos β) (4.A.3a)

A0 =
i√

1− ξ

4
(1− cos 4β)

[
−h0 − h∗0√

2
sin β

√
1− ξ cos2 β +

ξ0 − ξ∗0√
2

cos β

√
1− ξ sin2 β

]

(4.A.3b)

These formulas are easily inverted to give:

Π1 =
1√
2

[
(G+ +G−) cos β − (H+ +H−) sin β

]
(4.A.4a)

Π2 =
i√
2

[
(G+ −G−) cos β − (H+ −H−) sin β

]
(4.A.4b)

Π3 =
1√

1− ξ

4
(1− cos 4β)

[
G0 cos β

√
1− ξ sin2 β − A0 sin β

√
1− ξ cos2 β

]
(4.A.4c)

Π6 = Π2|β→β+π/2 , Π7 = − Π1|β→β+π/2 , Π9 = − Π3|β→β+π/2 , (4.A.4d)
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which reduce to eq. (4.2.17) for β = 0.
We define the two remaining degrees of freedom as:

h̃ ≡ h0 + h∗0√
2

, H̃0 ≡ −
ξ0 + ξ∗0√

2
. (4.A.5)

These states cannot be identified with the SM Higgs h and the CP -even component of
the second doublet H0, since in general the latter are related to h̃ and H̃0 by the rotation:(

h
H0

)
=

(
cosα − sinα
sinα cosα

)(
h̃

H̃0

)
. (4.A.6)

As we discuss in text, it turns out that, at leading order, α ≈ β.

4.B Bounds from EWPTs and Higgs couplings fit

In this appendix, we discuss the restrictions on the parameter space coming from Higgs
couplings fit and EWPTs.

In general, given a set {xi} of values for some variable X, we can compute the χ2 as:

χ2 =
∑
i,j

(xi − µi)
(
σ2
)−1

ij
(xj − µj) , (4.B.1)

where µi is the expected value of xi and σ2 is the covariance matrix. In this parametriza-
tion, X should be thought as a vector, possibly encoding different physical variables.

The covariance matrix σ2 can be obtained from the correlation matrix ρ as:

σ2
ij = σi ρij σj (no sum over i, j) , (4.B.2)

where σi ≡
√
σ2
ii is the uncertainty on xi.

Let us suppose that the χ2 in eq. (4.B.1) is minimized for the set {x̄i}; if the xi’s are in
turn functions of other variables {yi}, and we denote by {ȳi} the values of yi corresponding
to the minimum chi squared, we can approximate χ2 for yi ≈ ȳi as:

χ2 ≈ χ2(ȳ) +
∑
i,j

∂2χ2

∂yi∂yj
(yi − ȳi)(yj − ȳj) ≡ χ2(ȳ) +

∑
i,j

(yi − ȳi)
(
σ2
y

)−1

ij
(yj − ȳj) . (4.B.3)

Therefore, the minimum of the χ2 has been shifted from zero to χ2(ȳ), which in general
does not vanish. However, what matters in order to determine if a given set of values {yi}
is excluded or not, is not χ2, but the difference ∆χ2 ≡ χ2 − χ2(ȳ).

From σ2
y, it is possible to compute the uncertainties on yi, and then to obtain the new

correlation matrix by inverting eq. (4.B.2).

4.B.1 Higgs couplings fit

For the fit on Higgs couplings, we refer to [237]; in fig. 22, the correlation matrix in terms
of the modifiers {κgZ , λZg, λtg, λWZ , λγZ , λτZ , λbZ} is reported:

ρ =



1 −0.07 −0.17 −0.50 −0.57 −0.26 −0.26
−0.07 1 0.38 −0.57 −0.33 −0.33 −0.48
−0.17 0.38 1 −0.19 −0.13 −0.19 0.30
−0.50 −0.57 −0.19 1 0.48 0.26 0.41
−0.57 −0.33 −0.13 0.48 1 0.34 0.35
−0.26 −0.33 −0.19 0.26 0.34 1 0.27
−0.26 −0.48 0.30 0.41 0.35 0.27 1


(4.B.4)
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The definitions of the modifiers, together with the corresponding best-fits and uncertain-
ties, is reported in table 10 of the same paper; in general, a modifier is defined as the
ratio between some process and the corresponding one predicted by SM, i.e. κi ≡ σi/σ

SM
i

or κi ≡ Γi/Γ
SM
i .

For simplicity, we consider the mean uncertainty for each modifier, so that:

κgZ ≡
κg gZ
κh

= 1.06± 0.07

λZg ≡
gZ
κg

= 1.06± 0.14

λtg ≡
kt
κg

= 1.09± 0.14

λWZ ≡
gW
gZ

= 0.99± 0.09

λγZ ≡
κγ
gZ

= 0.95± 0.08

λτZ ≡
κτ
gZ

= 0.95± 0.13

λbZ ≡
kb
gZ

= 0.91± 0.17

, (4.B.5)

where for {gW , gZ , kb, kt} we used a different notation with respect to ref. [237], since these
are effective couplings which can be directly computed for our model (see appendix 4.C).
From table 7 of ref. [237], we read the expressions of {κg, κγ, κh} in terms of these effective
couplings:

κ2
g = 1.04k2

t + 0.002k2
b − 0.04ktkb (4.B.6a)

κ2
γ = 1.59g2

W + 0.07k2
t − 0.67gWkt (4.B.6b)

κ2
h = (0.22g2

W + 0.03g2
Z + 0.58k2

b + 0.08κ2
g + 0.0023κ2

γ + 0.06κ2
τ + 0.03κ2

c

+ 0.0015κ2
(Zγ) + 0.0004κ2

s + 0.00022κ2
µ)/(1−BRBSM) , (4.B.6c)

where BRBSM included BSM effects to the Higgs branching ratio. We take for simplicity
κτ = κµ = κs = kb, κc = kt, κ(Zγ) = 1 and BRBSM = 0.

By using these relations, and following the discussion around eq. (4.B.3), we can de-
termine mean values, uncertainties and correlation matrix for the set of effective couplings
{gW , gZ , kb, kt}; the result is:

gW
gZ
kb
kt

 =


1.041± 0.076
1.066± 0.096
1.038± 0.087
1.025± 0.153

 , ρk−g =


1 0.66 0.31 0.83

0.66 1 0.02 0.65
0.31 0.02 1 0.57
0.83 0.65 0.57 1

 (4.B.7)

We can now substitute the expressions of the effective couplings reported in appendix 4.C
and obtain the bounds on (ξ, β, θt, θb) coming from the fit of the Higgs couplings. The
result is shown in fig. 4.8 for θb = 0 and the maximum and minimum values of θt we
considered in the analysis: for each of them, the region of the parameter space on the
right of the corresponding line is excluded at 95% CL.
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Figure 4.8: Bounds on the parameter space coming from the fit of Higgs couplings for
θb = 0. The region on the right of each line is excluded at 95% CL.

4.B.2 EWPTs

EWPTs put strong bounds on CH models, since oblique parameters usually receive contri-
butions for three main reasons: corrections to gauge bosons propagators due to the NGBs
which run in the loop, the appearance of vector resonances and the presence of fermionic
states (see, e.g., [27]); we call these three contributions to the oblique parameters IR,
UV and fermionic, respectively. An additional one comes from the fact that the custo-
dial symmetry is broken, as discussed in section 4.2.1. We denote this last contribution
2HDM.

In order to determine the corrections to the oblique parameters Ŝ and T̂ due to these
effects, we make some simplifying assumptions: we use naive dimensional analysis (NDA)
to estimate the UV contribution, we neglect the fermionic one from the top partners
because it is generated at 1-loop, and we consider the leading order due to the IR and
2HDM effects. The 2HDM is easily read from eq. (4.2.16) by taking into account that
T̂ = ρ− 1. The various corrections are:

∆ŜIR ≈
g2

192π2
ξ log

(
v2

m2
h

g2
∗
ξ

)
∆T̂IR ≈ −

3g′2

64π2
ξ log

(
v2

m2
h

g2
∗
ξ

)
(4.B.8a)

∆ŜUV ≈
m2
W ξ

g2
∗v

2
∆T̂UV ≈ 0 (4.B.8b)

∆Ŝfermion ≈ 0 ∆T̂fermion ≈ 0 (4.B.8c)

∆Ŝ2HDM ≈ 0 ∆T̂2HDM ≈
ξ

4
[1− cos 4β] (4.B.8d)

Notice that the IR and UV contributions are the same as in the MCHM, at least at leading
order.
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Figure 4.9: Top: contributions to the oblique parameters Ŝ and T̂ for our model. Bottom:
95% CL bounds on ξ and β for g∗ = 3.

Due to the smallness of β, the last contribution contributes positively to the T̂ pa-
rameter, and this is a fundamental result for our model, as we can see form in the top
panel of fig. 4.9: the continuous and dashed contour represent the 68% and 95% CL from
EWPTs; we show in blue the different contributions to Ŝ and T̂ . In the bottom panel,
instead, we show the 95% CL in the (ξ,β) plane; in this case, the result is not affected by
θt and θb, but only depends on g∗, which we take equal to 3. The exclusion is computed
in a similar way to what we did for the fit on the Higgs couplings, with mean value and
uncertainty on S and T reported in eq. (1.3.10),

S = 0.04± 0.08 , T = 0.08± 0.07 , (4.B.9)

and taking into account that Ŝ ≈ S/119 and T̂ ≈ T/129 [29]
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Figure 4.10: Combined results from Higgs fit and EWPTs bounds in the (ξ, β) plane for
θb = 0,g∗ = 3 and two different values of θt. The region which is not enclosed in the solid
(dashed) contour is excluded at 95% (68%) CL.

4.B.3 Combined results

We can combine the two types of bounds discussed above and obtain the overall restriction
on the parameter space (mainly ξ and β): to this purpose, we consider the ratio between
the two likelihoods:

λ ≡ L0

L1

, (4.B.10)

where L0 and L1 are related to the null and alternative hypothesis, respectively. By taking
into account that χ2 ∼ −2 log λ (Wilks’ theorem), we can simply sum the χ2’s from the
Higgs fit and EWPTs; the result is shown in fig. 4.10 for the two reference values of θt
we considered in the analysis, θb = 0 and g∗ = 3. In order to be conservative, we take
ξ . 0.08 as the benchmark bound from combined Higgs and EWPTs limits, as shown
in fig. 4.6.

4.C Expressions of the effective couplings

In this appendix, we provide the expressions of the effective couplings which appear
in eqs. (4.3.6) and (4.3.9) to (4.3.11); to this purpose, it is convenient to introduce the
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following set of rescaled coefficients:

c̃(1)
y ≡ Nc c

(1)
(1,0) y

2
L c̃(2)

y ≡ Nc c
(1)
(0,1) y

2
R c̃(3)

y ≡ Nc c
(1)
(2,0) y

4
L/g

2
∗

c̃(4)
y ≡ Nc c

(1)
(1,1) y

2
Ly

2
R/g

2
∗ c̃(5)

y ≡ Nc c
(1)
(0,2) y

4
R/g

2
∗ c̃(6)

y ≡ Nc c
(2)
(2,0) y

4
L/(4π)2

c̃(7)
y ≡ Nc c

(2)
(1,1) y

2
Ly

2
R/(4π)2 c̃(8)

y ≡ Nc c
(2)
(0,2) y

4
R/(4π)2 c̃(9)

y ≡ Nc c
(3)
(0,2) y

4
R/(4π)2

c̃(1)
g ≡ c

(1)
g′ g

′2 c̃(2)
g ≡ c

(2)
g′ g

′2

c̃(3)
g ≡ c(1)

g g2 c̃(4)
g ≡ c

(2)
g′ g

2

In the following, we provide the list of all the effective couplings used in the computations.
The couplings have been listed separately depending on the particles involved in the
interaction.

4.C.1 Interactions between NGBs and gauge bosons

As far as the couplings between the NGBs and the W and Z bosons, reported in eq. (4.3.6),
are concerned, we have:

gV ≈
√

1− ξ , bh ≈ 1− 2ξ , (4.C.1a)

λ(V )
η ≈ 2ξ , λ(V )

κ ≈ −ξβ2 , (4.C.1b)

gH0W ≈ −
βξ

2
, gH0Z ≈

3βξ

2
, gH+V ≈ ξβ (4.C.1c)

The 1-loop couplings with the gluons (cf. eq. (4.3.11)), instead, we have:

ggh = −i αS
8π

τh [1 + (1− τh)f(τh)] , τh =
4m2

t

m2
h

, (4.C.1d)

ggH0 = −i kH0t
αS
8π
τH0 [1 + (1− τH0)f(τH0)] , τH0 =

4m2
t

m2
H0

, (4.C.1e)

ggη = −i gt
αS
8π

τη[1 + (1− τη)f(τη)] , τη =
m2
t

m2
η

. (4.C.1f)

where f(τX) is the usual function appearing for gluon effective couplings (see for instance
eq. (1.198) of [238]).

Notice that since this vertex is generated by a quark-loop the resulting coupling for
H0 and η will be suppressed by a factor ξ with respect to the one to the SM Higgs and so
it is not expected to play a relevant role, although it has been included in our simulations.
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4.C.2 Interactions between NGBs and fermions

Interactions with SM quarks, given by eq. (4.3.9), have effective couplings:

kq ≈ 1− 7

6
ξ − ξ

3

cos(3β + αqθq)

cos(β − αqθq)
, (4.C.2a)

gq ≈ −2ξ
cos β cos θq

cos(β − αqθq)
, (4.C.2b)

kH0q ≈
2ξ sin(4β) + (−6 + ξ) sin(2β − 2αqθq) + 4ξ sin(2β + 2αqθq)

12 cos2(β − αqθq)
, (4.C.2c)

gκq ≈ −2αqξ
sin β sin θq

cos(β − αqθq)
, (4.C.2d)

gηκq ≈ −iαqξ tan(β − αqθq) . (4.C.2e)

with αq = 1 (−1) for quarks with charge 2/3 (−1/3).

4.C.3 Interactions among pNGBs

Finally, the effective couplings between the pNGBs, responsible for the interactions in eq. (4.3.10),
are expanded in ξ and β; the first orders are:

gηh ≈−
g2
∗

8π2
cos2 θt

[
2c̃(5)
y − c̃(7)

y + 2c̃(8)
y + 2 cos(2θt)(c̃

(5)
y + c̃(8)

y )
]

+
g2
∗β

4π2
cot θt cos(2θt)(c̃

(2)
y + 2c̃(7)

y )

− g2
∗β

2

8π2
cot2 θt

[
c̃(5)
y − 2c̃(8)

y − 2 cos(2θt)(c̃
(2)
y + c̃(5)

y + 2c̃(7)
y − c̃(8)

y )

+ c̃(5)
y cos(4θt)

]
(4.C.3a)

ληh ≈
g2
∗

24π2
cos2 θt

[
2c̃(2)
y − 6c̃(5)

y + 7c̃(7)
y − 6c̃(8)

y − 6 cos(2θt)(c̃
(5)
y + c̃(8)

y )
]

+
g2
∗β

4π2
cot θt cos(2θt)(c̃

(2)
y + 2c̃(7)

y )

− g2
∗β

2

24π2
cot2 θt

[
c̃(2)
y + 3c̃(5)

y + 2c̃(7)
y − 6c̃(8)

y

− cos(2θt)(7c̃
(2)
y + 6c̃(5)

y + 14c̃(7)
y − 6c̃(8)

y ) + 3c̃(5)
y cos(4θt)

]
(4.C.3b)
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λ ≈ 1− β2

− g2
∗β

2

16π2

v2

m2
h

[
c̃(1)
g + c̃(2)

g + c̃(3)
g + c̃(4)

g − 16c̃(2)
y + c̃(5)

y − 32c̃(7)
y + 2c̃(8)

y

− cos(2θt)(14c̃(2)
y − 2c̃(5)

y + 29c̃(7)
y − 2c̃(8)

y )

+8 csc2 θt(c̃
(2)
y + 2c̃(7)

y ) + c̃(5)
y cos(4θt)

]
(4.C.3c)

gH0 ≈
m2
h

v2

(
1− β2

)
− g2

∗
8π2

[
c̃(1)
g + c̃(2)

g + c̃(3)
g + c̃(4)

g + c̃(5)
y + 2c̃(8)

y + cos(2θt)(2c̃
(5)
y − c̃(7)

y + 2c̃(8)
y )

+ c̃(5)
y cos(4θt)

]
+
g2
∗β

4π2
csc θt[cos θt + cos(3θt)](c̃

(2)
y + 2c̃(7)

y )

+
g2
∗β

2

16π2

[
15(c̃(1)

g + c̃(2)
g + c̃(3)

g + c̃(4)
g + c̃(5)

y + 2c̃(8)
y )

+ cos(2θt)(14c̃(2)
y + 6c̃(5)

y + 25c̃(
y6c̃

(8)
y ) + 15c̃(5)

y cos(4θt)

]
(4.C.3d)

gH0hh ≈
g2
∗β

8π2

[
3
[
c̃(1)
g + c̃(2)

g + c̃(3)
g + c̃(4)

g + c̃(5)
y + 2c̃(8)

y

]
+ cos(2θt)(4c̃

(2)
y + 6c̃(5)

y + 5c̃(7)
y + 6c̃(8)

y )

+ 3c̃(5)
y cos(4θt)

]
− g2

∗β
2

2π2
cot(2θt)[cos θt + cos(3θt)](c̃

(2)
y + 2c̃(7)

y ) (4.C.3e)

ληH0 ≈−
g2
∗

8π2
cos2 θt

[
2c̃(5)
y − c̃(7)

y − 2c̃(8)
y − 2 cos(2θt)(c̃

(5)
y − c̃(8)

y )
]

+
g2
∗β

2

24π2

[
c̃(2)
y − 3c̃(5)

y + 2c̃(7)
y − 6c̃(8)

y − cos(2θt)
(
7c̃(2)
y + 6c̃(5)

y + 14c̃(7)
y + 6c̃(8)

y

)
− 3c̃(5)

y cos(4θt)

]
(4.C.3f)

λH0 ≈−
3g2
∗β

8π2

[
c̃(1)
g + c̃(2)

g + c̃(3)
g + c̃(4)

g + c̃(5)
y + 2c̃(8)

y − cos(2θt)(2c̃
(5)
y − c̃(7)

y + 2c̃(8)
y )

+ c̃(5)
y cos(4θt)

]
+

3g2
∗β

2

2π2
tan θt cos(2θt)(c̃

(2)
y + 2c̃(7)

y ) (4.C.3g)

106



gηH0 ≈
g2
∗β

8π2

[
c̃(5)
y + 2c̃(8)

y + 2 cos(2θt)(c̃
(2)
y + c̃(5)

y + 2c̃(7)
y + c̃(8)

y ) + c̃(5)
y cos(4θt)

]
− g2

∗β
2

4π2
tan θt cos(2θt)(c̃

(2)
y + 2c̃(7)

y ) (4.C.3h)

gA0h ≈
g2
∗

8π2

[
−8π2

g2
∗

m2
h

v2
+ c̃(5)

y + c̃(8)
y + cos(2θt)(2c̃

(5)
y − c̃(7)

y + 2c̃(8)
y ) + cos(4θt)(c̃

(5)
y + c̃(8)

y )

]
− g2

∗β

4π2
csc θt sec θt(c̃

(2)
y + 2c̃(7)

y ) cos2(2θt)

− g2
∗β

2

16π2

[
− 16π2

g2
∗

m2
h

v2
+ 7c̃(1)

g + 7c̃(2)
g + 7c̃(3)

g + 7c̃(4)
g + 16c̃(2)

y + 7c̃(5)
y + 32c̃(7)

y + 14c̃(8)
y

+ cos(2θt)(14c̃(2)
y + 6c̃(5)

y + 25c̃(7)
y + 6c̃(8)

y )

− 16 csc2(2θt)(c̃
(2)
y + 2c̃(7)

y ) + 7c̃(5)
y cos(4θt)

]
(4.C.3i)

gA0H0 ≈−
g2
∗β

8π2

[
c̃(1)
g + c̃(2)

g + c̃(3)
g + c̃(4)

g + c̃(5)
y + 2c̃(8)

y − cos(2θt)(2c̃
(5)
y − c̃(7)

y + 2c̃(8)
y )

+ c̃(5)
y cos(4θt)

]
+
g2
∗β

2

2π2
tan θt cos(2θt)(c̃

(2)
y + 2c̃(7)

y ) (4.C.3j)

gκh ≈
g2
∗

8π2
sin2 θt

[
c̃(7)
y − 4(c̃(5)

y − c̃(8)
y ) cos2 θt

]
− g2

∗β
2

8π2

[
c̃(5)
y + 2c̃(8)

y − 2 cos(2θt)(c̃
(2)
y + c̃(5)

y + 2c̃(7)
y + c̃(8)

y ) + c̃(5)
y cos(4θt)

]
(4.C.3k)

gκH0 ≈−
g2
∗β

2π2
sin2 θt(c̃

(8)
y − c̃(5)

y cos(2θt)) +
g2
∗β

2

4π2
tan θt cos(2θt)(c̃

(2)
y + 2c̃(7)

y ) (4.C.3l)

λκh ≈
g2
∗

8π2
sin2 θt(c̃

(7)
y − 4 cos2 θt(c̃

(5)
y − c̃(8)

y ))

+
g2
∗β

2

24π2

[
c̃(2)
y − 3c̃(5)

y + 2c̃(7)
y − 6c̃(8)

y + cos(2θt)(5c̃
(2)
y + 6c̃(5)

y + 10c̃(7)
y + 6c̃(8)

y )

− 3c̃(5)
y cos(4θt)

]
(4.C.3m)

λκH0 ≈−
g2
∗

24π2

[
2
(
2c̃(7)
y + c̃(2)

y

)
cos2 θt − sin2 θt

(
4c̃(2)
y + 11c̃(7)

y

)
+ 12 sin4 θt

(
c̃(5)
y + c̃(8)

y

) ]
+

g2
∗β

24π2
[3− 5 cos(2θt)] csc θt sec θt cos(2θt)(c̃

(2)
y + 2c̃(7)

y )

− g2
∗β

2

24π2

[
13c̃(2)

y − 3c̃(5)
y + 26c̃(7)

y − 6c̃(8)
y − cos(2θt)(13c̃(2)

y − 3c̃(5)
y + 26c̃(7)

y − 6c̃(8)
y )

+ 2(csc2 θt − 4 sec2 θt)(c̃
(2)
y + 2c̃(7)

y )

]
(4.C.3n)
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ληA0 ≈
g2
∗

8π2
cos2 θt

[
2c̃(5)
y − c̃(7)

y − 2c̃(8)
y − 2 cos(2θt)(c̃

(5)
y − c̃(8)

y )
]

− β2g2
∗

24π2

[
c̃(2)
y − 3c̃(5)

y + 2c̃(7)
y − 6c̃(8)

y − cos(2θt)(7c̃
(2)
y + 6c̃(5)

y + 14c̃(7)
y + 6c̃(8)

y )

−3c̃(5)
y cos(4θt)

]
(4.C.3o)

ληH+ ≈
g2
∗

8π2
cos2 θt

[
2c̃(5)
y − c̃(7)

y − 2c̃(8)
y − 2 cos(2θt)(c̃

(5)
y − c̃(8)

y )
]

− β2g2
∗

24π2

[
c̃(2)
y − 3c̃(5)

y + 2c̃(7)
y − 6c̃(8)

y − cos(2θt)(7c̃
(2)
y + 6c̃(5)

y + 14c̃(7)
y + 6c̃(8)

y )

−3c̃(5)
y cos(4θt)

]
(4.C.3p)

gH+h ≈−
g2
∗

16π2

[
c̃(5)
y + 2c̃(6)

y − 2c̃(7)
y − c̃(8)

y − cos(4θt)(c̃
(5)
y − c̃(8)

y )− 2c̃(3)
g − 2c̃(4)

g

]
− β2g2

∗
4π2

[
c̃(5)
y + 2c̃(8)

y + c̃(5)
y cos(4θt) + c̃(1)

g + c̃(2)
g + c̃(3)

g + c̃(4)
g

]
(4.C.3q)

gH+H0 ≈−
βg2
∗

8π2
cos2 θt

[
c̃(5)
y + 2c̃(8)

y − cos(2θt)(2c̃
(5)
y − c̃(7)

y + 2c̃(8)
y ) + c̃(5)

y cos(4θt)

+ c̃(1)
g + c̃(2)

g + c̃(3)
g + c̃(4)

g

]
+
β2g2

∗
2π2

(c̃(2)
y + 2c̃(7)

y ) cos(2θt) tan θt (4.C.3r)

λκA0 ≈
g2
∗

24π2

[
2(c̃(2)

y + 2c̃(7)
y ) cos2 θt − sin2 θt[4c̃

(2)
y + 11c̃(7)

y − 12 sin2 θt(c̃
(5)
y + c̃(8)

y )]
]

+
βg2
∗

24π2
(c̃(2)
y + 2c̃(7)

y ) cos(2θt)[5 cos(2θt)− 3] csc θt sec θt

+
β2g2

∗
24π2

[
13c̃(2)

y − 3c̃(5)
y + 26c̃(7)

y − 6c̃(8)
y − cos(2θt)(13c̃(2)

y − 6c̃(5)
y + 26c̃(7)

y − 6c̃(8)
y )

− 3c̃(5)
y cos(4θt) + 2(c̃(2)

y + 2c̃(7)
y )(csc2 θt − 4 sec2 θt)

]
(4.C.3s)

λκH+ ≈
g2
∗

24π2

[
2(c̃(2)

y + 2c̃(7)
y ) cos2 θt − sin2 θt[4c̃

(2)
y + 11c̃(7)

y − 12 sin2 θt(c̃
(5)
y + c̃(8)

y )]
]

+
βg2
∗

24π2
(c̃(2)
y + 2c̃(7)

y ) cos(2θt)[5 cos(2θt)− 3] csc θt sec θt

+
β2g2

∗
24π2

[
13c̃(2)

y − 3c̃(5)
y + 26c̃(7)

y − 6c̃(8)
y − cos(2θt)(13c̃(2)

y − 6c̃(5)
y + 26c̃(7)

y − 6c̃(8)
y )

− 3c̃(5)
y cos(4θt) + 2(c̃(2)

y + 2c̃(7)
y )(csc2 θt − 4 sec2 θt)

]
(4.C.3t)

kder =
2ξ

3
(4.C.3u)
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Chapter 5

Summary and conclusions

The existence of dark matter is a clear signal that the Standard Model cannot be the
definitive theory to describe particle physics. While many experimental evidences show
unequivocally that DM exists, it not clear what its real nature is; an appealing possibility
is that it is in the form of WIMPs, characterized by an annihilation cross section of the
order of the weak scale and mass in the GeV-TeV range. In order to test this possibility,
many experiments have been built, and also LHC provides a unique opportunity in this
perspective.

In this work, we first focused on this aspect, i.e. we investigated the potential of LHC
in exploring the parameter space of DM models. Our interest pointed towards signatures
others than the standard monojet and, in particular, we considered the possibility in
which LLPs are produced; such a scenario has been receiving an increasing attention,
especially because the expected background in the SM can be extremely small.

In chapter 3, we first studied the pDDM model, characterized by two Majorana
fermions χ1,2 almost degenerate in mass; this simple extension of the SM predicts the
existence of DVs, whose potential lies in the fact that the expected SM background is
very low. We studied the sensitivity of MJ and DVs to the parameter space and projected
the current limits to high luminosity, showing that searches for displaced vertices are es-
sential in order to properly constrain the model. We then considered the chromo-electric
DM model, where a coloured particle can lead to bound states similarly to what happens
in SUSY; we then applied experimental bounds from R-hadrons searches, comparing them
with those from MJ, and projected the current limits to high luminosity, showing that
also in this case a complementarity between the searches exists; in particular, while MJ
ones can exclude all values of dχ up to a maximum DM mass, R-hadrons searches can
explore regions of the parameter space with smaller couplings but larger masses.

Overall, we showed that, if present, LLPs signatures can represent a smoking gun
for new physics. Given that these kind of searches are particularly challenging from an
experimental point of view, and that dedicated methods are also required in order to
correctly reconstruct the background, it is essential to pursue in this direction to fully
exploit the potential of LHC.

In chapter 4, we studied a non-minimal CH model characterized by two doublets and
two singlet, the lightest of which is the DM candidate. We showed that it is possible to
evade current experimental constraints (mainly direct detection) with the minimum fine
tuning allowed by EWPTs, whereas a higher compositeness scale is usually required by
other CH models which aim to address for DM. In addition, we also studied the possibility
of reproducing the relic abundance of dark matter via non-thermal effects; although a
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higher fine tuning is required in this framework, this possibility is only possible thanks to
the greater complexity of the model, and we think it represents one of its most interesting
features.

While the existence of dark matter is incontrovertible in the light of observations, we
are far from knowing its real nature; the WIMP paradigm is just one possibility, but we
are not guaranteed at all it is the correct one. For this reason, it is essential to keep on
studying this fascinating problem if we aim to properly understand nature.
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Appendix A

CCWZ formalism

A.1 Geometrical interpretation

Before considering the full CCWZ construction, it is useful to first have a geometrical
interpretation of the results we are going to obtain.

Let us suppose we have a theory of scalar fields φ = (ϕ1, ϕ2, . . . ); the set φ can be
thought as a set of coordinates on some manifold M . Let φ0 be the field configuration
which minimizes the scalar potential, and G a symmetry group which acts on the fields
as φ→ Tg(φ), where g ∈ G; let g be the algebra of G.

We assume that φ0 is not invariant under the full group G, but only under a subgroup
H = {h ∈ G : Th(φ0) = φ0}: this means that the symmetry is spontaneously broken. We
denote by {T a} the set of generators of H, which span a subalgebra h of g. In general,
then, φ0 is left invariant only by the transformations Th, with h ∈ H; let us denote by N
the submanifold of M generated by Tg(φ0), for each g ∈ G. As we will see, the Goldstone
bosons can be viewed as coordinates on N .

We choose a set {T̂ i} which do not leave φ0 invariant, i.e. T{T̂ i}(φ0) 6= φ0; these
generators belong to the coset G/H and are a basis of a vector space b ⊂ g. Given
that the sets {T a} and {T̂ i} are linearly independent, the algebra g decomposes in the
direct sum g = h⊕ b (the sum is at the level of vector spaces and not of algebras, since
in general b is not a subalgebra). In addition, b is defined only modulo the action of
unbroken generators.

The only assumption behind the CCWZ construction is that b is invariant under H,
meaning that for each T̂ i ∈ b and h ∈ H, then hT̂ ih−1 ∈ b (this is called ‘invarinace’ of
b because H acts on T̂ i as if they were in the adjoint representation): this requirement is
equivalent to say that [T a, T̂ i] ∈ b, which is always satisfied for compact H [27].

Let us consider a particular φ ∈ N sufficiently close to φ0; φ is said to correspond to a
set of Goldsonte coordinatesGi, i = 1, . . . , dimG−dimH if φ = TU(φ0), with U = eiG

iT̂ i . If
this is the case, the Goldstone coordinates are nothing but the transformation parameters
that send from φ0 to φ, as shown in fig. A.1. In this sense, the Goldstone bosons also
represent coordinates on the submanifold N , at least in a vicinity of φ0. In addition, since
G is only spontaneously broken (meaning that the potential is invariant under the action
of G), φ has the same energy as φ0, so that the Goldstone coordinates Gi parametrize a
degenerate vacuum.

The next step is to understand how U transforms under a transformation g ∈ G. Given
a point φ = TU(φ0) ∈ N , we consider the transformation Tg(φ): the CCWZ construction
ensures, as we will see, that there exists a U ′ = U ′(g,Gi) such that Tg(φ) = TU ′(φ0); in
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Figure A.1: Geometrical visualization of the CCWZ formalism.

particular, it always exists an h = h(g,Gi) ∈ H such that U ′ = gUh−1(g,Gi).

A.2 General construction

We now formalize the general idea outlined above. As already stated, we consider a sym-
metry group G which is spontaneously broken to a subgroup H, and divide its generators
{TA} (normalized in such a way that Tr(TATB) = δAB) in two sets {T a, T̂ i} such that:

∃ F : T aF = 0 , T̂ iF 6= 0 , (A.2.1)

where F is a reference vacuum (which in general does not coincide with the physical
vacuum).

Starting from F , we see that good candidates to be (modulo a normalization factor)
Goldstone bosons are encoded in:

F θ ≡ eiθA(x)TAF . (A.2.2)

The θA(x)’s being good candidates to represent Goldstone bosons is because for constant
θA the one above is a symmetry transformation, leading to a configuration with the same
energy as the vacuum; for spacetime-dependent θA(x), then, only derivative terms can
arise: it this was not the case, i.e. if θA(x) had a potential, the latter would not vanish
in the limit θA(x)→ const., leading to an energy different from the one of F . Not having
a potential, and in particular not having a mass, the θA(x)’s are then good candidates to
be Goldstone bosons.

However, some of the θA(x)’s are redundant and non physical; in general, in fact, an
element group g ∈ G can be decomposed as [27]:

g = eiαAT
A

= eiαiT̂
i

eiαaT
a

, (A.2.3)

and the last term does not have effect when acting on F . We then assume the Goldstone
bosons Πi(x) to be encoded in:

φ(x) = U [Π]F , U [Π] ≡ ei
√

2
f

Πi(x)T̂ i ≡ ei
√

2
f

Π(x) . (A.2.4)

In the following, we use the symbol Π(x) for both the Goldstone matrix, Πi(x)T̂ i, and the
length of the Goldstone vector,

√
Π2
i (x), the correct one being clear from the context.

As already anticipated, we want to understand how U [Π] transforms under a generic
group element g ∈ G, i.e. to determine a transformation

Πi(x)→ Π′i(x) (A.2.5)
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which is a symmetry transformation of φ(x). A naive answer would be U → gU , but
this is not valid because in general gU ∈ G, and so φ would not be made out of broken
generators only anymore. However, we know from eq. (A.2.3) that gU can be expressed
as the product of an element of G/H and one of H; we can then write:

g U [Π] = U [Π′]h(Π, g) , (A.2.6)

where h(Π, g) ∈ H depends on the particular g and on the Goldstone fields (and then also
on spacetime coordinates x). We then found that under a G transformation the Goldstone
matrix transforms to:

U [Π′] = g U [Π]h−1(Π, g) . (A.2.7)

From eq. (A.2.4), we also see that under this transformation:

φ→ gφ . (A.2.8)

Being the symmetry only spontaneously broken, the transformation above has to be re-
spected also by the effective Lagrangian for the Goldstone bosons, and for this reason
only peculiar terms are allowed.

Since all this treatment is independent of the representation of the generators, the
Goldstone matrix U [Π] can be defined for any representation of the generators TA. Fur-
thermore, the important symmetry to classify allowed operators is given by G: from this
point of view, the symmetry is not really broken, in the sense it affects the allowed opera-
tors in the effective Lagrangian. Finally, given that Π′i has some complicated dependence
on Πi, it is said to transform non-linearly.

In general, the commutation relations for the generators {TA} can be classified as:

[T a, T b] = ifabcT c (A.2.9a)

[T a, T̂ i] = ifaijT̂ j (A.2.9b)

[T̂ i, T̂ j] = if ijkT̂ k + if ijaT a , (A.2.9c)

where the absence of fabi in the first equation is due to the fact that h is a subalgebra,
while the absence of faib in the second one comes from the hypothesis that H is a compact
subgroup, as already stated. In addition, for symmetric cosets, also f ijk = 0; this is
realized if there exists an automorphism T̂ → −T̂ , which can be associated with a Z2

symmetry on the Goldstone bosons.
It is then useful to define:

fabc ≡ i (T aad)bc (A.2.10a)

faij ≡ i (T a
Π

)ij , (A.2.10b)

where in the first line we defined the generators of the adjoint representation AH of h,
while in the second one we have a set of matrices {T a

Π
} which forms another representation

RΠ of h; in general, the latter can be identified from:

AG = AH ⊕RΠ . (A.2.11)

It is now interesting to see how the Goldstone bosons transform under symmetry trans-
formations:
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i) transformation under H.
In this case g = h ∈ H, and we have:

hU [Π] = h

(
1 + i

√
2

f
ΠiT̂

i + . . .

)
h−1 h

=

[
1 + i

√
2

f
Πi

(
T̂ i − iαa(T aΠ )ijT̂

j + . . .
)

+ . . .

]
h

=

[
1 + i

√
2

f
ΠiT̂

j
(
eiαaT

a
Π

)
ji

+ . . .

]
h =

= ei
√

2
f
T̂ i(eiαaT

a
Π Π)

i h = U
[
eiαaT

a
Π Π
]
h , (A.2.12)

which is precisely in the form of eq. (A.2.7).
From eq. (A.2.4), we see that the Goldsonte bosons transform as:

Πi →
(
eiαaT

a
Π

)
ij

Πj , (A.2.13)

which implies that RΠ is nothing but the representation the Goldstone bosons trans-
form with under the action of H. In addition, H acts linearly on the Goldstone
bosons.
From eq. (A.2.13), it is also possible to determine how the Goldstone matrix changes
under infinitesimal transformations; by taking into account eq. (A.2.10), in fact, we
get:

Π→ Π + iαafajiΠj T̂
i = Π + αa[Ta,Π] ; (A.2.14)

ii) transformation under G/H.
In this case g ≡ gG/H ∈ G/H, and there is no an easy way to study the transfor-
mation properties of the Goldstone bosons but considering infinitesimal transforma-
tions; however, it is not necessary to resort to eq. (A.2.7), but it suffices to consider
gG/H U [Π], since it is automatically an element of the coset G/H. This is:

U [Π′] = gG/H U [Π] = 1 + iαiT̂
i + i

√
2

f
Πi T̂

i + . . . , (A.2.15)

which implies that:

Πi → Πi +
f√
2
αi +O

(
α

Π2

f
+ . . .

)
, (A.2.16)

which is the famous shift symmetry of the Goldstone bosons, which only allows for
derivative terms involving them, preventing a potential.
A simple case which can be treated exactly is when we consider the VEV 〈Πi〉 of the
Goldstones, and take gG/H = U−1; in this case, we obtain:

〈Πi〉 → 0 , (A.2.17)

which implies that the VEV of the Goldstone bosons is not physical.
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A.2.1 d and e symbols

The two fundamental objects to construct the Goldstone Lagrangian are the dµ and eµ
symbols, defined from the Goldstone matrix U [Π]. Since we saw that, schematically,
[T̂ , T̂ ] ∼ T̂ + T , we can write:

i U−1[Π]∂µU [Π] ≡ d iµ T̂
i + eaµ T

a ≡ dµ + eµ , (A.2.18)

where d iµ ∈ RΠ and eaµ ∈ AH.

Taking into account that h ∈ H is spacetime-dependent because it depends on the
Goldsonte fields Π’s, we have that under a group transformation:

i U−1[Π]∂µU [Π]→ i hU−1[Π]∂µU [Π]h−1 + i h∂µh
−1 . (A.2.19)

Given that the last term is an element of H, we identify the transformation properties of
dµ and eµ as:

dµ → h dµh
−1 (A.2.20a)

eµ → h(eµ + i∂µ)h−1 . (A.2.20b)

The first equation, once written in components, reads:

d iµ →
(
eiαaT

a
Π

)
ij
djµ , (A.2.21)

showing that d iµ transforms like the Goldstone fields Π’s; this is natural, since it can be
easily shown from eq. (A.2.18) that:

d iµ = −
√

2

f
∂µΠi +O

(
∂Π

f

Π2

f 2

)
. (A.2.22)

However, differently from Πi, d iµ transforms with RΠ under the full group G, and not only
an H-transformation. For this reason, it is more convenient to write down the effective
Lagrangian starting from dµ rather than from the Goldstone fields. On the other hand,
from eq. (A.2.20b) it also follows that eµ transforms like a (non-canonically normalized)
gauge field, and as such it can be adopted to construct covariant derivatives and field
strengths.

The general idea is to use dµ and eµ to write down the effective Lagrangian for the
Goldstone fields; as we have just shown, if we write a Lagrangian which is invariant under
H, it is automatically invariant under the full group G as well. The simplest operator we
can consider is the one which only contains two derivatives, and it can be constructed
from two d symbols (since RΠ is real for compact H), leading to a kinetic term in the
Lagrangian of the form:

L(2)
Π
≡ f 2

4
Tr[dµd

µ] =
1

2
∂µΠi∂µΠi +

∑
n

O
[
(∂Π)2

(
Π

f

)n]
, (A.2.23)

which provides the kinetic term for the Goldstones plus an infinite series of derivative
interactions.
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A.2.2 Local invariance

The present formalism can be extended to include spacetime-dependent group transfor-
mations. To this purpose, we introduce a set of gauge fields:

Aµ ≡ AAµ T
A : Aµ

g∈G−→ g(Aµ + i∂µ)g−1 ≡ A(g)
µ , (A.2.24)

with g = g(x) ∈ G being a local transformation.
In this definition, Aµ is non-canonically normalized; in fact, when restricted to the

Standard Model, it reads:

A(SM)
µ = gWα

µ T
α
L + g′BµYW . (A.2.25)

The gauging procedure then consists, as usual, in modifying the Lagrangian by adding
a coupling between the gauge field and an appropriate current to keep into account the
spacetime-dependent nature of the group elements g, i.e.:

L → L+ JAµ A
µ
A . (A.2.26)

It can be convenient to consider the case in which the full group G is gauged, and only at
the end decouple the unwanted gauge fields by setting to zero the corresponding coupling
constants; the advantage of this procedure lies in the fact that it allows for local invariance
under the full G, with the gauge fields transforming as in eq. (A.2.24).

It also convenient to introduce a new object Āµ, called dressed gauge field, defined as:

Āµ ≡ A(U−1)
µ = U−1[Π] (Aµ + i∂µ)U [Π] . (A.2.27)

The object Āµ is extremely useful because of its transformation property: in fact, under
an element g(x) ∈ G:

Āµ →
(
A(g)
µ

)(hU−1g−1)
= A(hU−1)

µ =
(
A(U−1)
µ

)(h)
= Ā(h)

µ = h(Āµ + i∂µ)h−1 . (A.2.28)

Therefore, the dressing procedure allows one, starting from an object transforming with
the full group G, to obtain a quantity which transforms under the subgroup H. The same
logic is used, e.g., in composite Higgs models to write the effective Lagrangian responsible
for the interactions between the (pseudo-)Nambu-Goldstone bosons and the SM fermions.

In analogy with eq. (A.2.18), we can define the d and e symbols for the case of local
invariance as:

Āµ = U−1[Π] (Aµ + i∂µ)U [Π] ≡ dµ[A] + eµ[A] . (A.2.29)

This definition is consistent because it reduces to eq. (A.2.18) in the ungauged limit
Aµ = 0.

Analogously to the previous analysis, the transformation properties of these symbols
are:

dµ[A]→ h dµ[A]h−1 (A.2.30a)

eµ[A]→ h(eµ[A] + i∂µ)h−1 . (A.2.30b)

In addition, the two-derivatives Lagrangian simply generalizes to:

L(2)
Π
≡ f 2

4
Tr (dµ[A]dµ[A]) , (A.2.31)

which also provides the interactions between the Goldstone bosons and the gauge fields.
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Appendix B

Effective field theories

In its simplest formulation, an EFT can be thought as characterized by two dimensionful
quantities: a(n inverse) length scale m∗, identifiable with the scale at which the short-
distance interactions take place, and a coupling 0 ≤ g∗ . 4π. We sometimes call m∗ a
mass, with a slight abuse of notation, for a reason that will be clear in the following.1

At distances much larger than m−1
∗ , we can describe the theory with an effective

Lagrangian, where the heavy fields have been integrated out. We assume that the general
form of the effective Lagrangian is:

Leff =
m4
∗

g2
∗
L̂
(
∂

m∗
,
g∗φ

m∗
,
g∗ψ

m
3/2
∗

)
, (B.1.1)

where L̂ is a dimensionless function of its argument.
The equation above goes under the name of “SILH power-counting”, named after

the model where it was first introduced [239]. The particular form of eq. (B.1.1) is an
assumption, but it is well motivated by many phenomenological models: for example,
in the maximally strongly coupled case, g∗ ∼ 4π, eq. (B.1.1) correctly reproduces the
predictions from naive dimensional analysis [240,241]. In addition, as we will see below,
its applicability goes beyond the case of a strongly interacting sector.

It is then easy to derive the dimensions of m∗ and g∗ in terms of length (L) and energy
(E) by restoring the physical units ~ 6= 1: in particular, one easily finds from eq. (B.1.1)

that [m∗] = L−1 and [g∗] = [~]−1/2 = E−1/2L−1/2 (we are still working with c = 1). It is
then evident that eq. (B.1.1) automatically provides canonically normalized fields without
explicit factors of ~ in the Lagrangian.

This simple power-counting rule has two important consequences: first of all, it shows
that the “real” couplings in the SM are the Yukawa’s, y, and the square of the gauge cou-
plings, αSM ∝ g2

SM . In addition, eq. (B.1.1) allows us to estimate the effective Lagrangian
also in the case where some heavy fields are integrated out at loop level; given that a
factor of ~/(16π2) will appear for every loop, and that m∗ and g∗ are the only dimension-
ful parameters of the strong sector, the most general form of the effective Lagrangian is
(restoring natural units) [27,239]:

Leff =
m4
∗

g2
∗

[
L̂(0)

(
∂

m∗
,
g∗φ

m∗
,
g∗ψ

m
3/2
∗

)
+

g2
∗

16π2
L̂(1)

(
∂

m∗
,
g∗φ

m∗
,
g∗ψ

m
3/2
∗

)
+ . . .

]
, (B.1.2)

where the dots stand for higher loops.

1Actually, m∗ is a mass in units of ~, i.e. [m∗] = M/[~], if we work with c = 1.
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Another parametrization, sometimes used in the literature (see, e.g., [83]), is equiv-
alent to eq. (B.1.1) and somehow more transparent. If we imagine to have an effective
Lagrangian Leff , we can imagine to decompose it in two contributions according to renor-
malizability, similarly to what we did in section 1.2:

Leff = Lren +
∑
d>4,i

c
(d)
i O(d)

i , (B.1.3)

where O(d)
i is a gauge-invariant operator of energy dimension (in natural units) d. The

coefficients c
(d)
i will be functions of m∗ and g∗, the only dimensionful parameters of the

underlying UV theory; in particular, if O(d)
i is made of ni fields φi of spin si and ki

derivatives, then [O(d)
i ] = [~]ni/2L−d (remember that [φi] = [~]ni/2L−(si+1)), with d ≡

ni(si + 1) + ki. By restoring the physical units, we then obtain:[
c

(d)
i

]
= [~]L−4

[
O(d)
i

]−1

= [~]1−ni/2 Ld−4 ⇒ c
(d)
i ∼

gni−2
∗
md−4
∗

. (B.1.4)

This power counting could also have been obtained directly from eq. (B.1.2) by expanding
it in the arguments of L̂. Even in this case, a suppression of g2

∗/(16π2) appears in the

estimate of c
(d)
i if the operator is generated at 1-loop.

As a final remark, we want to stress that from the SILH power counting we can also
appreciate the difference between the concepts of scales and masses [242]. If we consider
an effective operator of the form:

cO ∼ 1

Λd−4
∂kφn , (B.1.5)

where n and k were defined above, from eq. (B.1.4) we immediately obtain:

Λ ∼ m∗

g
n−2
d−4
∗

. (B.1.6)

Λ is what we refer to as a scale, and we see that it is the product of a mass by some power
of the corresponding coupling. In the prototypical example of the weak theory, we can

make the identification Λ ∼ GF
− 1

2 ∼ mW/g; we then see that while the scale identifies
where perturbative unitarity breaks down in the absence of new degrees of freedom, the
mass is associated to the energy at which new states can be produced.
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M. Kubiak et al., The OGLE view of microlensing towards the Magellanic Clouds
– IV. OGLE-III SMC data and final conclusions on MACHOs*, Monthly Notices
of the Royal Astronomical Society 416 (2011) 2949–2961.

121

http://dx.doi.org/10.22323/1.180.0163
http://arxiv.org/abs/1307.7879
http://arxiv.org/abs/1710.07663
http://dx.doi.org/10.1142/9789813238053_0013
http://dx.doi.org/10.1016/0370-2693(84)91178-X
http://dx.doi.org/10.1016/0370-2693(84)91178-X
http://dx.doi.org/10.1016/0370-2693(84)91177-8
http://dx.doi.org/10.1016/0370-2693(84)90341-1
http://dx.doi.org/10.1016/0370-2693(84)90341-1
http://dx.doi.org/10.1016/0550-3213(85)90221-4
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0550-3213(74)90355-1
http://dx.doi.org/10.1016/0370-1573(77)90066-7
http://dx.doi.org/10.1086/142670
http://dx.doi.org/10.1007/s10714-008-0707-4
http://dx.doi.org/10.1007/s10714-008-0707-4
http://dx.doi.org/10.1086/150317
http://dx.doi.org/10.1086/508162
http://dx.doi.org/10.1086/508162
http://arxiv.org/abs/astro-ph/0608407
http://arxiv.org/abs/1807.06209


[48] M. Lisanti, Lectures on Dark Matter Physics, in Proceedings, Theoretical Advanced
Study Institute in Elementary Particle Physics: New Frontiers in Fields and
Strings (TASI 2015): Boulder, CO, USA, June 1-26, 2015, pp. 399–446, 2017.
1603.03797. DOI.

[49] E. W. Kolb and M. S. Turner, The Early Universe, Front. Phys. 69 (1990) 1–547.

[50] A. A. Klypin, A. V. Kravtsov, O. Valenzuela and F. Prada, Where are the missing
Galactic satellites?, Astrophys. J. 522 (1999) 82–92, [astro-ph/9901240].

[51] M. Boylan-Kolchin, J. S. Bullock and M. Kaplinghat, Too big to fail? The puzzling
darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415
(2011) L40, [1103.0007].

[52] B. Audren, J. Lesgourgues, G. Mangano, P. D. Serpico and T. Tram, Strongest
model-independent bound on the lifetime of Dark Matter, JCAP 1412 (2014) 028,
[1407.2418].

[53] L. Roszkowski, E. M. Sessolo and S. Trojanowski, WIMP dark matter candidates
and searches—current status and future prospects, Rept. Prog. Phys. 81 (2018)
066201, [1707.06277].

[54] K. Griest and M. Kamionkowski, Unitarity Limits on the Mass and Radius of
Dark Matter Particles, Phys. Rev. Lett. 64 (1990) 615.

[55] N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, The Hierarchy problem and new
dimensions at a millimeter, Phys. Lett. B429 (1998) 263–272, [hep-ph/9803315].

[56] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, New dimensions
at a millimeter to a Fermi and superstrings at a TeV, Phys. Lett. B436 (1998)
257–263, [hep-ph/9804398].

[57] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra
dimension, Phys. Rev. Lett. 83 (1999) 3370–3373, [hep-ph/9905221].

[58] H.-C. Cheng, J. L. Feng and K. T. Matchev, Kaluza-Klein dark matter, Phys. Rev.
Lett. 89 (2002) 211301, [hep-ph/0207125].

[59] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons,
Phys. Rev. Lett. 38 (1977) 1440–1443.

[60] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons,
Phys. Rev. Lett. 40 (1978) 279–282.

[61] V. B. Klaer and G. D. Moore, The dark-matter axion mass, JCAP 1711 (2017)
049, [1708.07521].

[62] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc.
C7902131 (1979) 95–99.

[63] M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories,
Conf. Proc. C790927 (1979) 315–321, [1306.4669].

122

http://arxiv.org/abs/1603.03797
http://dx.doi.org/10.1142/9789813149441_0007
http://dx.doi.org/10.1086/307643
http://arxiv.org/abs/astro-ph/9901240
http://dx.doi.org/10.1111/j.1745-3933.2011.01074.x
http://dx.doi.org/10.1111/j.1745-3933.2011.01074.x
http://arxiv.org/abs/1103.0007
http://dx.doi.org/10.1088/1475-7516/2014/12/028
http://arxiv.org/abs/1407.2418
http://dx.doi.org/10.1088/1361-6633/aab913
http://dx.doi.org/10.1088/1361-6633/aab913
http://arxiv.org/abs/1707.06277
http://dx.doi.org/10.1103/PhysRevLett.64.615
http://dx.doi.org/10.1016/S0370-2693(98)00466-3
http://arxiv.org/abs/hep-ph/9803315
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://dx.doi.org/10.1016/S0370-2693(98)00860-0
http://arxiv.org/abs/hep-ph/9804398
http://dx.doi.org/10.1103/PhysRevLett.83.3370
http://arxiv.org/abs/hep-ph/9905221
http://dx.doi.org/10.1103/PhysRevLett.89.211301
http://dx.doi.org/10.1103/PhysRevLett.89.211301
http://arxiv.org/abs/hep-ph/0207125
http://dx.doi.org/10.1103/PhysRevLett.38.1440
http://dx.doi.org/10.1103/PhysRevLett.40.279
http://dx.doi.org/10.1088/1475-7516/2017/11/049
http://dx.doi.org/10.1088/1475-7516/2017/11/049
http://arxiv.org/abs/1708.07521
http://arxiv.org/abs/1306.4669


[64] A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens and O. Ruchayskiy, Sterile
Neutrino Dark Matter, Prog. Part. Nucl. Phys. 104 (2019) 1–45, [1807.07938].

[65] S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy.
Astron. Soc. 152 (1971) 75.

[66] M. Khlopov, B. A. Malomed and I. B. Zeldovich, Gravitational instability of scalar
fields and formation of primordial black holes, Mon. Not. Roy. Astron. Soc. 215
(1985) 575–589.

[67] N. Bartolo, V. De Luca, G. Franciolini, M. Peloso, D. Racco and A. Riotto,
Testing primordial black holes as dark matter with LISA, Phys. Rev. D99 (2019)
103521, [1810.12224].

[68] L. Hui, J. P. Ostriker, S. Tremaine and E. Witten, Ultralight scalars as
cosmological dark matter, Phys. Rev. D95 (2017) 043541, [1610.08297].

[69] S. Dodelson, Modern Cosmology. Academic Press, Amsterdam, 2003.

[70] K. Griest and D. Seckel, Three exceptions in the calculation of relic abundances,
Phys. Rev. D43 (1991) 3191–3203.

[71] R. T. D’Agnolo, D. Pappadopulo and J. T. Ruderman, Fourth Exception in the
Calculation of Relic Abundances, Phys. Rev. Lett. 119 (2017) 061102,
[1705.08450].

[72] M. W. Goodman and E. Witten, Detectability of Certain Dark Matter Candidates,
Phys. Rev. D31 (1985) 3059.

[73] XENON collaboration, E. Aprile et al., Dark Matter Search Results from a One
Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 (2018) 111302,
[1805.12562].

[74] PandaX-II collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day
Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 (2017) 181302,
[1708.06917].

[75] LUX collaboration, D. S. Akerib et al., Results from a search for dark matter in
the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303, [1608.07648].

[76] M. Cirelli, E. Del Nobile and P. Panci, Tools for model-independent bounds in
direct dark matter searches, JCAP 1310 (2013) 019, [1307.5955].

[77] A. Berlin, D. Hooper and S. D. McDermott, Simplified Dark Matter Models for the
Galactic Center Gamma-Ray Excess, Phys. Rev. D89 (2014) 115022, [1404.0022].

[78] M. Schumann, Direct Detection of WIMP Dark Matter: Concepts and Status,
1903.03026.

[79] R. Bernabei et al., First Model Independent Results from DAMA/LIBRA–Phase2,
Universe 4 (2018) 116, [1805.10486].

123

http://dx.doi.org/10.1016/j.ppnp.2018.07.004
http://arxiv.org/abs/1807.07938
http://dx.doi.org/10.1103/PhysRevD.99.103521
http://dx.doi.org/10.1103/PhysRevD.99.103521
http://arxiv.org/abs/1810.12224
http://dx.doi.org/10.1103/PhysRevD.95.043541
http://arxiv.org/abs/1610.08297
http://dx.doi.org/10.1103/PhysRevD.43.3191
http://dx.doi.org/10.1103/PhysRevLett.119.061102
http://arxiv.org/abs/1705.08450
http://dx.doi.org/10.1103/PhysRevD.31.3059
http://dx.doi.org/10.1103/PhysRevLett.121.111302
http://arxiv.org/abs/1805.12562
http://dx.doi.org/10.1103/PhysRevLett.119.181302
http://arxiv.org/abs/1708.06917
http://dx.doi.org/10.1103/PhysRevLett.118.021303
http://arxiv.org/abs/1608.07648
http://dx.doi.org/10.1088/1475-7516/2013/10/019
http://arxiv.org/abs/1307.5955
http://dx.doi.org/10.1103/PhysRevD.89.115022
http://arxiv.org/abs/1404.0022
http://arxiv.org/abs/1903.03026
http://dx.doi.org/10.3390/universe4110116, 10.15407/jnpae2018.04.307
http://arxiv.org/abs/1805.10486


[80] T. R. Slatyer, Indirect Detection of Dark Matter, in Proceedings, Theoretical
Advanced Study Institute in Elementary Particle Physics : Anticipating the Next
Discoveries in Particle Physics (TASI 2016): Boulder, CO, USA, June 6-July 1,
2016, pp. 297–353, 2018. 1710.05137. DOI.

[81] Fermi-LAT collaboration, M. Ackermann et al., Searching for Dark Matter
Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi
Large Area Telescope Data, Phys. Rev. Lett. 115 (2015) 231301, [1503.02641].

[82] T. Han, Collider phenomenology: Basic knowledge and techniques, pp. 407–454,
2005. hep-ph/0508097. DOI.

[83] R. Contino, A. Falkowski, F. Goertz, C. Grojean and F. Riva, On the Validity of
the Effective Field Theory Approach to SM Precision Tests, JHEP 07 (2016) 144,
[1604.06444].

[84] G. Busoni, A. De Simone, E. Morgante and A. Riotto, On the Validity of the
Effective Field Theory for Dark Matter Searches at the LHC, Phys. Lett. B728
(2014) 412–421, [1307.2253].

[85] E. Morgante, On the validity of the effective field theory for dark matter searches
at the LHC, Nuovo Cim. C38 (2015) 32, [1409.6668].

[86] G. Busoni, Limitation of EFT for DM interactions at the LHC, PoS DIS2014
(2014) 134, [1411.3600].

[87] G. Busoni, A. De Simone, T. Jacques, E. Morgante and A. Riotto, On the Validity
of the Effective Field Theory for Dark Matter Searches at the LHC Part III:
Analysis for the t-channel, JCAP 1409 (2014) 022, [1405.3101].

[88] G. Busoni, A. De Simone, J. Gramling, E. Morgante and A. Riotto, On the
Validity of the Effective Field Theory for Dark Matter Searches at the LHC, Part
II: Complete Analysis for the s-channel, JCAP 1406 (2014) 060, [1402.1275].

[89] N. F. Bell, Y. Cai, J. B. Dent, R. K. Leane and T. J. Weiler, Dark matter at the
LHC: Effective field theories and gauge invariance, Phys. Rev. D92 (2015) 053008,
[1503.07874].

[90] A. De Simone and T. Jacques, Simplified models vs. effective field theory
approaches in dark matter searches, Eur. Phys. J. C76 (2016) 367, [1603.08002].

[91] S. Bruggisser, F. Riva and A. Urbano, The Last Gasp of Dark Matter Effective
Theory, JHEP 11 (2016) 069, [1607.02475].

[92] F. Kahlhoefer, Review of LHC Dark Matter Searches, Int. J. Mod. Phys. A32
(2017) 1730006, [1702.02430].

[93] J. Abdallah et al., Simplified Models for Dark Matter Searches at the LHC, Phys.
Dark Univ. 9-10 (2015) 8–23, [1506.03116].

[94] ATLAS collaboration, M. Aaboud et al., Search for new phenomena in final
states with an energetic jet and large missing transverse momentum in pp
collisions at

√
s = 13 TeV using the ATLAS detector, Phys. Rev. D94 (2016)

032005, [1604.07773].

124

http://arxiv.org/abs/1710.05137
http://dx.doi.org/10.1142/9789813233348_0005
http://dx.doi.org/10.1103/PhysRevLett.115.231301
http://arxiv.org/abs/1503.02641
http://arxiv.org/abs/hep-ph/0508097
http://dx.doi.org/10.1142/9789812773579_0008
http://dx.doi.org/10.1007/JHEP07(2016)144
http://arxiv.org/abs/1604.06444
http://dx.doi.org/10.1016/j.physletb.2013.11.069
http://dx.doi.org/10.1016/j.physletb.2013.11.069
http://arxiv.org/abs/1307.2253
http://dx.doi.org/10.1393/ncc/i2015-15032-3
http://arxiv.org/abs/1409.6668
http://arxiv.org/abs/1411.3600
http://dx.doi.org/10.1088/1475-7516/2014/09/022
http://arxiv.org/abs/1405.3101
http://dx.doi.org/10.1088/1475-7516/2014/06/060
http://arxiv.org/abs/1402.1275
http://dx.doi.org/10.1103/PhysRevD.92.053008
http://arxiv.org/abs/1503.07874
http://dx.doi.org/10.1140/epjc/s10052-016-4208-4
http://arxiv.org/abs/1603.08002
http://dx.doi.org/10.1007/JHEP11(2016)069
http://arxiv.org/abs/1607.02475
http://dx.doi.org/10.1142/S0217751X1730006X
http://dx.doi.org/10.1142/S0217751X1730006X
http://arxiv.org/abs/1702.02430
http://dx.doi.org/10.1016/j.dark.2015.08.001
http://dx.doi.org/10.1016/j.dark.2015.08.001
http://arxiv.org/abs/1506.03116
http://dx.doi.org/10.1103/PhysRevD.94.032005
http://dx.doi.org/10.1103/PhysRevD.94.032005
http://arxiv.org/abs/1604.07773


[95] CMS collaboration, D. Vannerom, Search for dark matter with jets and missing
transverse energy at 13 TeV, PoS LHCP2016 (2016) 218.

[96] ATLAS collaboration, M. Aaboud et al., Search for dark matter and other new
phenomena in events with an energetic jet and large missing transverse
momentum using the ATLAS detector, 1711.03301.

[97] CMS collaboration, A. M. Sirunyan et al., Search for new phenomena in final
states with two opposite-charge, same-flavor leptons, jets, and missing transverse
momentum in pp collisions at

√
s = 13 TeV, 1709.08908.

[98] J. Alimena et al., Searching for Long-Lived Particles beyond the Standard Model at
the Large Hadron Collider, 1903.04497.

[99] J. D. Wells, Implications of supersymmetry breaking with a little hierarchy between
gauginos and scalars, in 11th International Conference on Supersymmetry and the
Unification of Fundamental Interactions (SUSY 2003) Tucson, Arizona, June
5-10, 2003, 2003. hep-ph/0306127.

[100] N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low
energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005)
073, [hep-th/0405159].

[101] A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02
(2013) 126, [1210.0555].

[102] N. Arkani-Hamed, A. Gupta, D. E. Kaplan, N. Weiner and T. Zorawski, Simply
Unnatural Supersymmetry, 1212.6971.

[103] Y. Cui and B. Shuve, Probing Baryogenesis with Displaced Vertices at the LHC,
JHEP 02 (2015) 049, [1409.6729].

[104] C. Csaki, E. Kuflik, S. Lombardo, O. Slone and T. Volansky, Phenomenology of a
Long-Lived LSP with R-Parity Violation, JHEP 08 (2015) 016, [1505.00784].

[105] J. Barnard, P. Cox, T. Gherghetta and A. Spray, Long-Lived, Colour-Triplet
Scalars from Unnaturalness, JHEP 03 (2016) 003, [1510.06405].

[106] D. E. Kaplan, M. A. Luty and K. M. Zurek, Asymmetric Dark Matter, Phys. Rev.
D79 (2009) 115016, [0901.4117].

[107] M. Baumgart, C. Cheung, J. T. Ruderman, L.-T. Wang and I. Yavin, Non-Abelian
Dark Sectors and Their Collider Signatures, JHEP 04 (2009) 014, [0901.0283].

[108] K. R. Dienes, S. Su and B. Thomas, Distinguishing Dynamical Dark Matter at the
LHC, Phys. Rev. D86 (2012) 054008, [1204.4183].

[109] I.-W. Kim and K. M. Zurek, Flavor and Collider Signatures of Asymmetric Dark
Matter, Phys. Rev. D89 (2014) 035008, [1310.2617].

[110] R. T. Co, F. D’Eramo, L. J. Hall and D. Pappadopulo, Freeze-In Dark Matter with
Displaced Signatures at Colliders, JCAP 1512 (2015) 024, [1506.07532].

125

http://arxiv.org/abs/1711.03301
http://arxiv.org/abs/1709.08908
http://arxiv.org/abs/1903.04497
http://arxiv.org/abs/hep-ph/0306127
http://dx.doi.org/10.1088/1126-6708/2005/06/073
http://dx.doi.org/10.1088/1126-6708/2005/06/073
http://arxiv.org/abs/hep-th/0405159
http://dx.doi.org/10.1007/JHEP02(2013)126
http://dx.doi.org/10.1007/JHEP02(2013)126
http://arxiv.org/abs/1210.0555
http://arxiv.org/abs/1212.6971
http://dx.doi.org/10.1007/JHEP02(2015)049
http://arxiv.org/abs/1409.6729
http://dx.doi.org/10.1007/JHEP08(2015)016
http://arxiv.org/abs/1505.00784
http://dx.doi.org/10.1007/JHEP03(2016)003
http://arxiv.org/abs/1510.06405
http://dx.doi.org/10.1103/PhysRevD.79.115016
http://dx.doi.org/10.1103/PhysRevD.79.115016
http://arxiv.org/abs/0901.4117
http://dx.doi.org/10.1088/1126-6708/2009/04/014
http://arxiv.org/abs/0901.0283
http://dx.doi.org/10.1103/PhysRevD.86.054008
http://arxiv.org/abs/1204.4183
http://dx.doi.org/10.1103/PhysRevD.89.035008
http://arxiv.org/abs/1310.2617
http://dx.doi.org/10.1088/1475-7516/2015/12/024
http://arxiv.org/abs/1506.07532


[111] Y. Hochberg, E. Kuflik and H. Murayama, SIMP Spectroscopy, JHEP 05 (2016)
090, [1512.07917].

[112] A. De Simone, V. Sanz and H. P. Sato, Pseudo-Dirac Dark Matter Leaves a Trace,
Phys. Rev. Lett. 105 (2010) 121802, [1004.1567].

[113] S. Abel and M. Goodsell, Easy Dirac Gauginos, JHEP 06 (2011) 064, [1102.0014].

[114] G. F. Giudice, T. Han, K. Wang and L.-T. Wang, Nearly Degenerate Gauginos
and Dark Matter at the LHC, Phys. Rev. D81 (2010) 115011, [1004.4902].

[115] P. J. Fox, A. E. Nelson and N. Weiner, Dirac gaugino masses and supersoft
supersymmetry breaking, JHEP 08 (2002) 035, [hep-ph/0206096].

[116] D. Tucker-Smith and N. Weiner, Inelastic dark matter, Phys. Rev. D64 (2001)
043502, [hep-ph/0101138].

[117] A. E. Nelson, N. Rius, V. Sanz and M. Unsal, The Minimal supersymmetric model
without a mu term, JHEP 08 (2002) 039, [hep-ph/0206102].

[118] M. J. Strassler and K. M. Zurek, Echoes of a hidden valley at hadron colliders,
Phys. Lett. B651 (2007) 374–379, [hep-ph/0604261].

[119] M. J. Strassler and K. M. Zurek, Discovering the Higgs through highly-displaced
vertices, Phys. Lett. B661 (2008) 263–267, [hep-ph/0605193].

[120] C. Cheung, J. T. Ruderman, L.-T. Wang and I. Yavin, Lepton Jets in
(Supersymmetric) Electroweak Processes, JHEP 04 (2010) 116, [0909.0290].

[121] P. Meade, S. Nussinov, M. Papucci and T. Volansky, Searches for Long Lived
Neutral Particles, JHEP 06 (2010) 029, [0910.4160].

[122] J. L. Feng, M. Kamionkowski and S. K. Lee, Light Gravitinos at Colliders and
Implications for Cosmology, Phys. Rev. D82 (2010) 015012, [1004.4213].

[123] A. Falkowski, J. T. Ruderman, T. Volansky and J. Zupan, Hidden Higgs Decaying
to Lepton Jets, JHEP 05 (2010) 077, [1002.2952].

[124] P. Meade, M. Reece and D. Shih, Long-Lived Neutralino NLSPs, JHEP 10 (2010)
067, [1006.4575].

[125] P. Meade, M. Papucci and T. Volansky, Odd Tracks at Hadron Colliders, Phys.
Rev. Lett. 109 (2012) 031801, [1103.3016].

[126] ATLAS collaboration, G. Aad et al., Search for displaced muonic lepton jets from
light Higgs boson decay in proton-proton collisions at

√
s = 7 TeV with the ATLAS

detector, Phys. Lett. B721 (2013) 32–50, [1210.0435].

[127] ATLAS collaboration, G. Aad et al., Search for long-lived stopped R-hadrons
decaying out-of-time with pp collisions using the ATLAS detector, Phys. Rev. D88
(2013) 112003, [1310.6584].

[128] J. C. Helo, M. Hirsch and S. Kovalenko, Heavy neutrino searches at the LHC with
displaced vertices, Phys. Rev. D89 (2014) 073005, [1312.2900].

126

http://dx.doi.org/10.1007/JHEP05(2016)090
http://dx.doi.org/10.1007/JHEP05(2016)090
http://arxiv.org/abs/1512.07917
http://dx.doi.org/10.1103/PhysRevLett.105.121802
http://arxiv.org/abs/1004.1567
http://dx.doi.org/10.1007/JHEP06(2011)064
http://arxiv.org/abs/1102.0014
http://dx.doi.org/10.1103/PhysRevD.81.115011
http://arxiv.org/abs/1004.4902
http://dx.doi.org/10.1088/1126-6708/2002/08/035
http://arxiv.org/abs/hep-ph/0206096
http://dx.doi.org/10.1103/PhysRevD.64.043502
http://dx.doi.org/10.1103/PhysRevD.64.043502
http://arxiv.org/abs/hep-ph/0101138
http://dx.doi.org/10.1088/1126-6708/2002/08/039
http://arxiv.org/abs/hep-ph/0206102
http://dx.doi.org/10.1016/j.physletb.2007.06.055
http://arxiv.org/abs/hep-ph/0604261
http://dx.doi.org/10.1016/j.physletb.2008.02.008
http://arxiv.org/abs/hep-ph/0605193
http://dx.doi.org/10.1007/JHEP04(2010)116
http://arxiv.org/abs/0909.0290
http://dx.doi.org/10.1007/JHEP06(2010)029
http://arxiv.org/abs/0910.4160
http://dx.doi.org/10.1103/PhysRevD.82.015012
http://arxiv.org/abs/1004.4213
http://dx.doi.org/10.1007/JHEP05(2010)077
http://arxiv.org/abs/1002.2952
http://dx.doi.org/10.1007/JHEP10(2010)067
http://dx.doi.org/10.1007/JHEP10(2010)067
http://arxiv.org/abs/1006.4575
http://dx.doi.org/10.1103/PhysRevLett.109.031801
http://dx.doi.org/10.1103/PhysRevLett.109.031801
http://arxiv.org/abs/1103.3016
http://dx.doi.org/10.1016/j.physletb.2013.02.058
http://arxiv.org/abs/1210.0435
http://dx.doi.org/10.1103/PhysRevD.88.112003
http://dx.doi.org/10.1103/PhysRevD.88.112003
http://arxiv.org/abs/1310.6584
http://dx.doi.org/10.1103/PhysRevD.89.073005, 10.1103/PhysRevD.93.099902
http://arxiv.org/abs/1312.2900


[129] P. Jaiswal, K. Kopp and T. Okui, Higgs Production Amidst the LHC Detector,
Phys. Rev. D87 (2013) 115017, [1303.1181].

[130] ATLAS collaboration, G. Aad et al., Search for long-lived neutral particles
decaying into lepton jets in proton-proton collisions at

√
s = 8 TeV with the

ATLAS detector, JHEP 11 (2014) 088, [1409.0746].

[131] M. R. Buckley, V. Halyo and P. Lujan, Don’t Miss the Displaced Higgs at the LHC
Again, 1405.2082.

[132] CMS collaboration, V. Khachatryan et al., Search for Long-Lived Neutral
Particles Decaying to Quark-Antiquark Pairs in Proton-Proton Collisions at

√
s =

8 TeV, Phys. Rev. D91 (2015) 012007, [1411.6530].

[133] ATLAS collaboration, G. Aad et al., Search for massive, long-lived particles using
multitrack displaced vertices or displaced lepton pairs in pp collisions at

√
s = 8

TeV with the ATLAS detector, Phys. Rev. D92 (2015) 072004, [1504.05162].

[134] J. D. Clarke, Constraining portals with displaced Higgs decay searches at the LHC,
JHEP 10 (2015) 061, [1505.00063].

[135] C. Csaki, E. Kuflik, S. Lombardo and O. Slone, Searching for displaced Higgs
boson decays, Phys. Rev. D92 (2015) 073008, [1508.01522].

[136] D. Curtin and C. B. Verhaaren, Discovering Uncolored Naturalness in Exotic
Higgs Decays, JHEP 12 (2015) 072, [1506.06141].

[137] CMS collaboration, V. Khachatryan et al., Search for Decays of Stopped
Long-Lived Particles Produced in Proton–Proton Collisions at

√
s = 8 TeV, Eur.

Phys. J. C75 (2015) 151, [1501.05603].

[138] Z. Liu and B. Tweedie, The Fate of Long-Lived Superparticles with Hadronic
Decays after LHC Run 1, JHEP 06 (2015) 042, [1503.05923].

[139] P. Schwaller, D. Stolarski and A. Weiler, Emerging Jets, JHEP 05 (2015) 059,
[1502.05409].

[140] ATLAS collaboration, M. Aaboud et al., Search for metastable heavy charged
particles with large ionization energy loss in pp collisions at

√
s = 13 TeV using

the ATLAS experiment, Phys. Rev. D93 (2016) 112015, [1604.04520].

[141] ATLAS collaboration, M. Aaboud et al., Search for heavy long-lived charged
R-hadrons with the ATLAS detector in 3.2 fb−1 of proton–proton collision data at√
s = 13 TeV, Phys. Lett. B760 (2016) 647–665, [1606.05129].

[142] B. C. Allanach, M. Badziak, G. Cottin, N. Desai, C. Hugonie and R. Ziegler,
Prompt Signals and Displaced Vertices in Sparticle Searches for Next-to-Minimal
Gauge Mediated Supersymmetric Models, Eur. Phys. J. C76 (2016) 482,
[1606.03099].

[143] A. Coccaro, D. Curtin, H. J. Lubatti, H. Russell and J. Shelton, Data-driven
Model-independent Searches for Long-lived Particles at the LHC, Phys. Rev. D94
(2016) 113003, [1605.02742].

127

http://dx.doi.org/10.1103/PhysRevD.87.115017
http://arxiv.org/abs/1303.1181
http://dx.doi.org/10.1007/JHEP11(2014)088
http://arxiv.org/abs/1409.0746
http://arxiv.org/abs/1405.2082
http://dx.doi.org/10.1103/PhysRevD.91.012007
http://arxiv.org/abs/1411.6530
http://dx.doi.org/10.1103/PhysRevD.92.072004
http://arxiv.org/abs/1504.05162
http://dx.doi.org/10.1007/JHEP10(2015)061
http://arxiv.org/abs/1505.00063
http://dx.doi.org/10.1103/PhysRevD.92.073008
http://arxiv.org/abs/1508.01522
http://dx.doi.org/10.1007/JHEP12(2015)072
http://arxiv.org/abs/1506.06141
http://dx.doi.org/10.1140/epjc/s10052-015-3367-z
http://dx.doi.org/10.1140/epjc/s10052-015-3367-z
http://arxiv.org/abs/1501.05603
http://dx.doi.org/10.1007/JHEP06(2015)042
http://arxiv.org/abs/1503.05923
http://dx.doi.org/10.1007/JHEP05(2015)059
http://arxiv.org/abs/1502.05409
http://dx.doi.org/10.1103/PhysRevD.93.112015
http://arxiv.org/abs/1604.04520
http://dx.doi.org/10.1016/j.physletb.2016.07.042
http://arxiv.org/abs/1606.05129
http://dx.doi.org/10.1140/epjc/s10052-016-4330-3
http://arxiv.org/abs/1606.03099
http://dx.doi.org/10.1103/PhysRevD.94.113003
http://dx.doi.org/10.1103/PhysRevD.94.113003
http://arxiv.org/abs/1605.02742


[144] CMS collaboration, V. Khachatryan et al., Search for long-lived charged particles
in proton-proton collisions at

√
s = 13 TeV, Phys. Rev. D94 (2016) 112004,

[1609.08382].

[145] R. Mahbubani, P. Schwaller and J. Zurita, Closing the window for compressed
Dark Sectors with disappearing charged tracks, 1703.05327.

[146] O. Buchmueller, A. De Roeck, M. McCullough, K. Hahn, K. Sung, P. Schwaller
et al., Simplified Models for Displaced Dark Matter Signatures, 1704.06515.

[147] S. Antusch, E. Cazzato and O. Fischer, Sterile neutrino searches via displaced
vertices at LHCb, 1706.05990.

[148] F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, Implications of
unitarity and gauge invariance for simplified dark matter models, JHEP 02 (2016)
016, [1510.02110].

[149] M. Duerr, F. Kahlhoefer, K. Schmidt-Hoberg, T. Schwetz and S. Vogl, How to
save the WIMP: global analysis of a dark matter model with two s-channel
mediators, JHEP 09 (2016) 042, [1606.07609].

[150] J. Fan, M. Reece and L.-T. Wang, Non-relativistic effective theory of dark matter
direct detection, JCAP 1011 (2010) 042, [1008.1591].

[151] A. L. Fitzpatrick, W. Haxton, E. Katz, N. Lubbers and Y. Xu, The Effective Field
Theory of Dark Matter Direct Detection, JCAP 1302 (2013) 004, [1203.3542].

[152] J. B. Dent, L. M. Krauss, J. L. Newstead and S. Sabharwal, General analysis of
direct dark matter detection: From microphysics to observational signatures, Phys.
Rev. D92 (2015) 063515, [1505.03117].

[153] PandaX-II collaboration, A. Tan et al., Dark Matter Results from First 98.7
Days of Data from the PandaX-II Experiment, Phys. Rev. Lett. 117 (2016)
121303, [1607.07400].

[154] XENON100 collaboration, E. Aprile et al., XENON100 Dark Matter Results from
a Combination of 477 Live Days, Phys. Rev. D94 (2016) 122001, [1609.06154].

[155] S. El Hedri, A. Kaminska, M. de Vries and J. Zurita, Simplified Phenomenology
for Colored Dark Sectors, JHEP 04 (2017) 118, [1703.00452].

[156] G. Busoni et al., Recommendations on presenting LHC searches for missing
transverse energy signals using simplified s-channel models of dark matter,
1603.04156.

[157] LUX collaboration, D. S. Akerib et al., Limits on spin-dependent WIMP-nucleon
cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118
(2017) 251302, [1705.03380].

[158] ATLAS collaboration, T. A. collaboration, Search for New Phenomena in Dijet
Events with the ATLAS Detector at

√
s=13 TeV with 2015 and 2016 data, .

[159] Planck collaboration, P. A. R. Ade et al., Planck 2015 results. XIII.
Cosmological parameters, 1502.01589.

128

http://dx.doi.org/10.1103/PhysRevD.94.112004
http://arxiv.org/abs/1609.08382
http://arxiv.org/abs/1703.05327
http://arxiv.org/abs/1704.06515
http://arxiv.org/abs/1706.05990
http://dx.doi.org/10.1007/JHEP02(2016)016
http://dx.doi.org/10.1007/JHEP02(2016)016
http://arxiv.org/abs/1510.02110
http://dx.doi.org/10.1007/JHEP09(2016)042
http://arxiv.org/abs/1606.07609
http://dx.doi.org/10.1088/1475-7516/2010/11/042
http://arxiv.org/abs/1008.1591
http://dx.doi.org/10.1088/1475-7516/2013/02/004
http://arxiv.org/abs/1203.3542
http://dx.doi.org/10.1103/PhysRevD.92.063515
http://dx.doi.org/10.1103/PhysRevD.92.063515
http://arxiv.org/abs/1505.03117
http://dx.doi.org/10.1103/PhysRevLett.117.121303
http://dx.doi.org/10.1103/PhysRevLett.117.121303
http://arxiv.org/abs/1607.07400
http://dx.doi.org/10.1103/PhysRevD.94.122001
http://arxiv.org/abs/1609.06154
http://dx.doi.org/10.1007/JHEP04(2017)118
http://arxiv.org/abs/1703.00452
http://arxiv.org/abs/1603.04156
http://dx.doi.org/10.1103/PhysRevLett.118.251302
http://dx.doi.org/10.1103/PhysRevLett.118.251302
http://arxiv.org/abs/1705.03380
http://arxiv.org/abs/1502.01589


[160] H. An, X. Ji and L.-T. Wang, Light Dark Matter and Z ′ Dark Force at Colliders,
JHEP 07 (2012) 182, [1202.2894].

[161] T. Jacques and K. Nordström, Mapping monojet constraints onto Simplified Dark
Matter Models, JHEP 06 (2015) 142, [1502.05721].

[162] D. Barducci, A. Belyaev, A. K. M. Bharucha, W. Porod and V. Sanz, Uncovering
Natural Supersymmetry via the interplay between the LHC and Direct Dark Matter
Detection, JHEP 07 (2015) 066, [1504.02472].

[163] ATLAS collaboration, G. Aad et al., Search for long-lived, weakly interacting
particles that decay to displaced hadronic jets in proton-proton collisions at

√
s = 8

TeV with the ATLAS detector, Phys. Rev. D92 (2015) 012010, [1504.03634].

[164] DELPHES 3 collaboration, J. de Favereau, C. Delaere, P. Demin, A. Giammanco,
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