
09 March 2020

.                                       SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

                                                                               SISSA Digital Library

Partial coherence and frustration in self-organizing spherical grids / Stella, F.; Urdapilleta, E.; Luo, Y.; Treves, A.. - In:
HIPPOCAMPUS. - ISSN 1050-9631. - (In corso di stampa), pp. 1-12.

Original

Partial coherence and frustration in self-organizing spherical grids

Wiley

Publisher:

Published
DOI:10.1002/hipo.23144

Terms of use:
openAccess

Publisher copyright

This version is available for education and non-commercial purposes.

(Article begins on next page)

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Availability:
This version is available at: 20.500.11767/99056 since: 2020-03-04T14:16:41Z

This is a pre print version of the following article:



Partial coherence and frustration in self-organizing spherical grids 
 
Federico Stella1 ORCID, Eugenio Urdapilleta2,3 ORCID, Yifan Luo3 ORCID, 
Alessandro Treves3,4 ORCID 

1 Institute of Science and Technology Austria, A–3400 Klosterneuburg, Austria 
2 Centro Atómico Bariloche & Instituto Balseiro, Comisión Nacional de Energía 

Atómica (CNEA) and Universidad Nacional de Cuyo (UNCUYO), Consejo 
Nacional de Investigaciones Científicas y Técnicas (CONICET), R8402AGP San 
Carlos de Bariloche, Río Negro, Argentina 

3 SISSA - Cognitive Neuroscience, 34136 Trieste, Italy 
4 NTNU - Centre for Neural Computation, 7030 Trondheim, Norway 

 
Correspondence: Alessandro Treves, Cognitive Neuroscience, SISSA, via Bonomea 265, 
34136 Trieste, Italy. Email: ale@sissa.it 
 

New version, June 16, 2019 
 
ABSTRACT 
 
Nearby grid cells have been observed to express a remarkable degree of long-range order, 
which is often idealized as extending potentially to infinity. Yet their strict periodic firing 
and ensemble coherence are theoretically possible only in flat environments, much unlike 
the burrows which rodents usually live in. Are the symmetrical, coherent grid maps 
inferred in the lab relevant to chart their way in their natural habitat? 

We consider spheres as simple models of curved environments and, waiting for the 
appropriate experiments to be performed, we use our adaptation model to predict what 
grid maps would emerge in a network with the same type of recurrent connections, which 
on the plane produce coherence among the units. We find that on the sphere such 
connections distort the maps that single grid units would express on their own, and 
aggregate them into clusters. When remapping to a different spherical environment, units 
in each cluster maintain only partial coherence, similar to what is observed in disordered 
materials, such as spin glasses. 

Keywords: grid cells; ensemble coherence; remapping; continuous attractor; curved 
environment.  
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1. INTRODUCTION 
 
What are the defining properties of grid cells? In the 15 years since their discovery in the 
medial entorhinal cortex (mEC) (Fyhn et al., 2004), two organizational principles appear 
to have emerged as the cornerstones of the phenomenon. The first one is, of course, the 
positioning of the fields of each individual cell at the vertices of a regular hexagonal 
tessellation of the environment (Hafting et al., 2005). The second, a strong propensity of 
local ensembles of these cells to maintain their co-activation patterns across conditions 
and environments (Fyhn et al., 2007); in striking contrast to the behavior expressed by 
neighboring place cells, which make the swapping of activation partners (“remapping”) 
one of their defining features (Bostock et al., 1991). These two properties, the former 
expressed at the single-cell level, the latter constraining collective states of activity, have 
come to be regarded as quintessential to grid cells. They are often yoked together when 
discussing the “grid cell code” (Yoon et al., 2013; Burak, 2014; Stemmler et al., 2015), 
thus leaving it unclear whether such code is expressed more in the regularity of field 
arrangements or in the constancy of spatial phase relations, or in a necessary combination 
of both.  
 
It should not be forgotten, however, that grid cells have been first described and mostly 
studied in flat, empty, bounded environments. Their entanglement could be possibly 
related to the Euclidean geometry of this very specific sort of environment, rather than 
being intrinsic to the cells. The question, then, is to what extent would single-cell and 
population properties still co-occur, when such a specific setting is abandoned, to reach 
for more naturalistic settings of complex, curved, partially open environments, such as 
the burrows where rats live in the wild (Calhoun, 1962).  
 
In two previous modelling studies, we argued that the notion of the hexagonal grid may 
need to be generalized in order to predict the behavior of such cells in environments of 
constant positive or negative curvature. With sufficient exposure to these environments, 
our model indicates how single grid cells may adapt by producing regular tessellations 
consistent with the underlying curvature (Stella et al., 2013; Urdapilleta et al., 2015): 
tessellations with 5-fold or lower symmetry for positive curvature; 7-fold or higher 
symmetry for negative curvature. An analysis based on Calhoun’s (1962) study leads to 
the conclusion that the standard 6-fold grid symmetry would arise at the single-cell level 
only when the curvature is near zero; while the actual range of curvature values of the 
natural Norway rat habitat extends further, both at the negative and at the positive ends of 
the spectrum (Fig.1).   
 
What about the effect of interactions between grid cells? What was shown in (Stella et 
al., 2013) is only how a population of non-interacting grid-like units can self-organize a 
representation of the spherical surface, where each unit ends up displaying an 
independently “oriented”, often quasi-regular grid. There, grid patterns emerged due to 
the progressive, unsupervised sculpting of the feed-forward connections through Hebbian 
plasticity induced by navigation-related activity. Contrary to continuous attractor models 
(Burak and Fiete, 2009), interactions between mEC units were not needed for the 
emergence of individual grid maps – possibly, only for their coordination at the  
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Figure 1. Natural Norway rat environments span limited stretches with negligible curvature. 
Main graph: the symmetry expected at the single-unit level for different values of constant Gaussian 
curvature, measured by the ratio between grid spacing s and the radius of curvature λ. Blue curve: 
theoretical relation between the angle α=2π/n of the n-fold symmetry and the ratio s/λ, 
cosh(s/λ)=cos(α)/[1-cos(α)] (negative curvature) and cos(s/λ)=cos(α)/[1-cos(α)] (positive curvature). 
Symmetric arrangements for n=4,5 (on a sphere, right), 6 (on the plane, center) and 7,8,9 (on a 
pseudo-sphere, left) are indicated, with possible curved environments to be used in the laboratory at 
the top of the left and right column. Green arrows from the flat 6-fold grid example indicate the range 
where it may be relevant, |s/λ| ≤ 1, before other symmetries prevail. Superimposed on the graph is a 
drawing of a Norway rat den, from Calhoun (1962). He estimated the inner radius of the tunnels, r, to 
be below 5cm, which implies that for the radius of Gaussian curvature λ of a curved tunnel to be of 
order the grid spacing s, even for a small s=40cm, the outer radius R of the den has to be several 
meters. This means that the 6-fold symmetry is relevant only to roughly straight tunnel segments, 
approximately indicated in green, while most of the den (example tunnel in red) does not admit 
symmetric grids. The chambers are too small to reveal spherical arrangements, and their 
representation may be more akin to that of the turning points in the hairpin maze (Derdikman et al, 
2009). 

population level. Indeed, studies of the same model on planar environments have made 
clear how the introduction of lateral connectivity in the mEC population can induce an 
alignment among units, resulting in a common orientation of the fields emerging from the 
feed-forward self-organization process, while also reinforcing their symmetric 
arrangement (Si et al., 2012; Si and Treves, 2013). Urdapilleta et al. (2015) have 
observed that also in environments with constant negative curvature the lateral 
interactions tend to favor a coherent arrangement of the fields across units, but such 
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environments are dominated by their boundaries, which leads to arbitrary modeling 
choices, that in turn prevent reaching firm conclusions. A complete sphere, on the other 
hand, has no boundaries, and thus offers a conveniently simple model of a curved 
environment. Moreover, it has been effective as an experimental set-up, both on the 
outside (Harvey et al., 2009) and on the inside (Kruge et al., 2013; Kruge, 2016), giving 
hope that once complemented with the appropriate sensory surround, it will allow 
developmental studies to investigate the formation of spherical representations in rodents. 
In the meantime, here we use the adaptation model to study the effect of collateral 
interactions among grid-like units self-organizing on a spherical world. We also briefly 
comment on the additional effects expected of gravity, and of boundaries, when 
extending the analysis from our artificial spherical environment to ecologically plausible 
ones – an extension that we leave for future studies. 

 
2. THE MODEL 

 
The basic details of the model are identical to (Stella et al., 2013), and are described in 
Appendix 1, with the critical addition of a set of recurrent collaterals connecting units of 
the EC layer.  
 
Time is discretized in steps of length t = 0.01s. The total length of a simulation is of 100 
million steps (corresponding to nearly 12 days of continuous running, a very long time, to 
ensure that the self-organization process has approached its asymptote). The virtual rat 
moves on the surface of a sphere of radius 52.6cm with a constant speed of v = 40cm/s. 
To obtain smooth random trajectories, resembling those observed in experiments, running 
direction changes gradually after each step, resulting in an extended correlation over 
time. For simplicity, the change in running direction between two consecutive steps of 
the virtual rat is sampled from a Gaussian distribution with zero mean and standard 
deviation h = 0.2 radians. The virtual rat always runs along the great circle determined by 
its running direction. Our model is comprised of two layers. The input array represents 
e.g. the CA1 region of the hippocampus and includes Nhipp=1400 units with their fields 
regularly arranged to evenly tile the spherical surface. The output network is comprised 
of a population of NmEC = 250 would-be grid units, all with the same adaptation 
parameters – hence they represent a single mEC module, in relation to the modules 
discovered by Stensola et al. (2012). 
 
In a limited set of simulation intended to explore the effects of boundaries, and of gravity, 
we used hemispheres instead of full spheres. The effects of a boundary, corresponding to 
the equator, was assessed both with isolated hemispheres, in which case the boundary 
was reflecting the trajectory of the virtual rat, and with hemispheres embedded in a flat 
surround, where the boundary amounted only to a sudden change of intrinsic curvature. 
Without gravity, whether the hemisphere is concave or convex makes no difference. We 
also simulated trajectories on concave and convex hemispheres with gravity, and the 
latter was modelled by an additional force dragging the trajectory towards the equator (in 
the convex hemisphere) or the bottom of the bowl (in the concave one). This force was 
parametrized by the change in speed when moving downward and the strength of the 
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downward pull applied to the vector expressing the current direction of motion (see 
Appendix 1). 
      
Similarly to the planar case, we introduce collateral weights between mEC units to induce 
the coordinated development of their firing maps. The weights are set in the following 
way: each unit is temporarily assigned a preferred position, an “auxiliary field” at 
coordinates (φ,θ) on the sphere, and a “preferred direction” (angle relative to the 
meridian, with 0 pointing towards the North Pole). The coordinates as well as the angle 
are randomly chosen. These auxiliary fields are introduced solely to define the collateral 
weights, and not to position the subsequently developing grid fields, nor do they play any 
role in other parts of the simulations. They are only used, in other words, to induce a 
notion of similarity among output units. The collateral weight between unit i and unit k is 
then calculated as 
 Jik = fθi

(ωik ) fθk
(ω ik )exp − ki

2

d
2σ f

2

⎛

⎝
⎜

⎞

⎠
⎟ − κ

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

+

  (1) 
 

where []+ denotes the Heaviside step function,  κ=0.05 is an inhibition factor to favor 
sparse weights, f is a tuning function described in the Appendix 1 and ω ik  is the 
direction, with respect to the North Pole, of the line connecting the auxiliary fields of unit 
i and k, along the great circle. σ f = 10cm denotes how broad the connectivity is, and dki  
is defined as 
 dki = Rcos−1(xixexp + yiyexp + zizexp )  (2) 
 
i.e., it is the distance between the coordinates of the auxiliary field (xi , yi , zi ) and the 
expected position of a virtual rat that had started at the auxiliary field of unit k and had 
moved 10 cm along the geodesics joining both fields, corresponding to 250 ms of 
reverberatory delayed activity of movement along this direction. The definition of the 
weights leads to a localized connectivity pattern, such that strong positive interactions are 
only generated between units with similar preferred head direction and activation fields 
appropriately shifted along the same head direction (Kropff and Treves, 2008; Si et al., 
2012). The resulting connectivity is rather sparse, with only about 8% of the possible 
pairs sharing a non-zero weight. As with the feed-forward connectivity, normalization on 
this set of connections is performed by setting a unitary L2  norm on the pre-synaptic 
strengths for each mEC unit. Moreover, the relative strength of the recurrent input with 
respect to the feedforward input was reduced to 0.2 for most of the simulations (see 
Appendix 1). Notice that our model does not include plasticity on the recurrent set of 
connections: their value is defined once, at the beginning of each simulation, and then 
kept unmodified throughout. Note also that with a radius R=52.6cm and the adaptation 
parameters we use, most units tend to have 12 fields in the simulations with recurrent 
connections, but 13 or 14 fields without (see Fig.S1, top). Still, we choose to use the 
same value of R in the two cases for ease of comparison. When separately varying R in 
order to optimize the proportion of units evolving 12 fields in each condition, and taking 
into account all units, the simulation without collaterals yields maps much closer to the 
“soccer ball” ideal (Fig.S1, bottom). 
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Figure 2. Collateral interaction distorts the grid pattern on a sphere. 
A Two representative examples of activity developed by grid units on the sphere. Top: unit from a 
simulation without collateral connectivity. Bottom: unit from a simulation in which units interact 
through collaterals. B Distribution of the position of all the fields from a population after the rate map 
of each unit has been rotated to maximize its overlap with a common “soccer ball” template (the field 
centers of this perfect grid are shown in black). Top: fields of a population of non-interacting units 
(mean distance from perfect center: 3.52o); Bottom: fields of a population of interacting units (mean 
distance from perfect center: 7.96o). C Distribution across the population of the number of fields 
developed by units, with R=52.6cm. Left: no collaterals; Right: with collaterals. Sample sessions. 
Values across sessions: mean fraction with 12 fields, for no interaction 0.13, with interactions 0.68. D 
Correlation of all units with 12 fields with a best-rotated ‘soccer ball’. Aggregate from all sessions. 

3. RESULTS 

Simulations produce units with different number of fields, as shown in Fig.S1. In the 
following, we set the radius to the same value R=52.6cm and consider only units which 
have developed 12 fields. We compare simulations with and without lateral connections. 
For each simulation, the same set of grids are left to self-organize in two distinct, 
independent environments.   
 
Grid Map Distortion 
At the single-map level, the introduction of lateral connections has the immediate result 
of interfering with the development of a regular grid structure. We can quantify this 
phenomenon by computing the spherical correlation (as the best match over any possible 
rotation) of the activity map developed by each unit with the template of a perfect 12-
field “soccer ball” rate map (Stella et al., 2013). One sees a marked effect of recurrent 
interactions as a general increase in the distance from the best-matching template, even 
though the radius of the sphere can be adjusted so that even with the recurrent collaterals 
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most units produce 12 fields (Fig.2C,D, and Fig.S1). The simulations without collaterals 
produce fairly good exemplars of an ideal spherical grid. This is not the case when 
recurrent collaterals are introduced: the interactions among EC units lead to a disruption 
of the regular arrangement of their fields (see the examples in Fig.2A,B; and the 
quantitative measures in Fig.S2). 
 
This illustrates how quickly the spherical case departs from what is observed on a planar 
surface. There, it has been shown (Si et al., 2012; Si and Treves, 2013), the presence of 
lateral connections has the crucial role of inducing a common orientation in the grid 
population and does not hinder, in fact enhances, the quality of the grids developed by the 
system. The same process does not occur here, where a similar attempt to induce 
coordination in grid-evolving units appears at odds with the regularity of the grids.  
 
Grid units tend to cluster 
One can then ask, what are the effects of connections on the whole ensemble of grid 
units, and what does the “common orientation” that they should induce look like, on the 
sphere? We answer these questions by analyzing the spatial (spherical) similarity in the 
structure of the maps developed by different units. To do so, for each unit, we computed 
the activity auto-correlation after 373,248 different rotations. Rotations were randomly 
drawn to evenly span the space of possible Euler rotations ( 2π × π × 2π  , considering 
also the cosine factor). We then sorted the rotations according to their autocorrelation 
score, from highest to lowest. We used the first 5000 best rotations to compute their 
distribution density in the 3-dimensional space of Euler rotations Γ i (φ,θ,ψ)   (where i 
denotes the unit). For each pair of units (i,j) we then computed the overlap between 
Γ i (φ,θ,ψ)  and Γ j (φ,θ,ψ) (as a correlation). This correlation (or effectively, distance) 

matrix was used to identify clusters of units sharing a similar rotation distribution. The 
clustering was performed with the “ward” algorithm and the number of clusters was 
optimized over the range [4-15]. 
  
The outcome of this clustering algorithm shows how the population effectively breaks 
down into sub-groups of segregated units, each developing an internal degree of 
coherence that is higher than that shared by the entire population. In Fig.3, the spatial 
position (on a 2D projection of the sphere) of the field centers of all units with 12 fields 
in the population are shown colored according to their cluster membership. To a large 
extent, each of these clusters expresses a common orientation, meaning that each of the 
12 fields of a unit tends to appear grouped with those of every other unit in the cluster. 
Different clusters appear instead unrelated, roughly to the same extent that individual 
units are in the non-connected simulations (Fig.3B).  
 
Crucially, the membership to one cluster is a feature that is carried over to new 
environments almost entirely unaltered (we describe the remapping procedure in the next 
paragraph). In Fig.3C we show a similar plot of the field centers, this time for only two of 
the clusters, to highlight their correspondence in two different environments. The 
grouping is conserved, as is the mutual avoidance of the fields in the two clusters. 
Thus we observe how on the sphere, the interaction between units results into a break- 
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Figure 3. Interacting grid units tend to cluster.  
A Spatial distribution of the fields of a population of grid units over the surface of a sphere. Each field 
center of each unit is assigned a color according to which cluster the unit belongs to. Sample session. 
Average number of clusters across sessions: 7.6.  B Measure of clustering quality: distribution of 
pairwise unit correlations between the 3D density of their 5000 best rotations in the space of Euler 
angles (the measure used to define clusters). Sample session. C Example of the arrangement of the 
fields from the units of two clusters (green and yellow, as in A). The positions of their fields are 
shown in two different spherical environments. Clusters were defined solely in the first environment. 

down of the population, with different sub-sets acquiring a coordinated arrangement, 
while at the same time it forces each unit to distort its firing pattern away from that of an 
ideal grid. These features are consistently reproduced across environments. 
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Remapping 
In order to gain a better understanding of the mechanisms underlying grid formation and 
of the spatial code they can generate, we need to address the properties of remapping. To 
that end, maps were developed independently in two environments: the set of place cell 
inputs and the associated feed-forward connectivity was randomly initialized in each of 
the two environments. Only the strength of the recurrent collaterals (when present), and 
thus of the grid cell interactions, was maintained after remapping. For each unit, we 
compare the maps developed in the two environments, maps A and B. Taking map A, we 
again apply a large random set of rotations spanning the entire Euler rotations range, and 
for each rotated version of map A we compute the resulting overlap (correlation) with 
map B. We first consider only the rotation associated with the highest similarity score – 
the “best” rotation – and its associated rotated version of the map, A’.  
 
Results are shown in Fig.4A: in red one can see the distribution of correlation values 
between B and A’, and for comparison the results for the best rotation of a perfect grid (in 
light brown). The two distributions lie in the same range of high correlation, although the 
perfect grid can usually be rotated to achieve a higher correlation with the map in B, 
suggesting that the distortion observed in A is independent of that in B. We can compare 
both distributions with that obtained by correlating for each unit the best rotated map A’ 
with the map of each other unit in the same cluster, in B (magenta). In this case 
correlation values are somewhat lower but, consistent with the partially coherent behavior 
expressed by units in the same clusters, they are still significantly higher than those 
obtained using either the maps in B of units in other clusters (yellow) or of all the other 
units (not shown).  
 
Next, we observe that, if the two maps were perfect soccer balls, there would be 12*5=60 
equivalent ways to rotate one into the other. Because of the distortions from the most 
symmetric configuration, the degeneracy is only approximate, but still massive: there are 
many different rotations, spanning a diverse set of Euler angle triplets, that lead to almost 
the same correlation values as the best rotation, for each unit. In fact, if we take for each 
unit its NBest rotations of the map in A, we see that their average correlation with the 
corresponding map in B is a smooth function of NBest, which averaged over the 
population shows a significant decrease only when NBest reaches into the thousands 
(among an arbitrarily set range of 373,248 randomly chosen triplets (φ,θ,ψ) of Euler 
angles; Fig.4B).  
 
Remarkably, the clusters of units defined on sphere A maintain a partial coherence once 
remapped onto sphere B, as already suggested by the example in Fig.3C. If we randomly 
choose 5 sample units per cluster, and consider their NBest=500 individually most 
correlated rotations, we find that they cluster into distinct ‘islands’ in Euler space, with 
each cluster contributing 60 regularly arranged islands, as shown in Fig 4C. Inside each 
island, however, chaos prevails. Some single units contribute many more of their best 
rotations to particular islands, and the shape of each island appears randomly distorted. 
 
After failing to observe any further geometrical structure within the islands, we resorted 
to a quantitative measure of the extent to which the best rotations are concentrated across 
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Figure 4. Remapping preserves the clusters. 
A Distribution of overlaps after the best rotation (out of 373,248 randomly drawn rotations). All 
sessions. Mean overlap: with the map in B of the same unit, 0.615; with those of other units in the 
cluster, 0.455; with those of units not in the same cluster, -0.050; with those of all units, 0.006 (not 
shown). Mean overlap of the best rotated perfect grid with the maps in B, 0.659. B Correlation-NBest 
dependence. Average value of the correlation between the map in B and the map of the same unit in A 
rotated NBest times (bars denote SDs). C Example of the spatial density distribution of best rotations 
for cells belonging to different clusters. Each color represents the distribution of the NBest=500 angles 
for 5 random units for each cluster. Sample session. D NBest scaling and partial coherence. Different 
scaling CC=1/NBest

β of the Clustering Coefficient (computed over distributions like the one in C) for 
different types of remapping. Logarithmic scales. For clarity, the quantity on the y-axis is CC·NBest

1/2. 
Grey: random remapping of non-interacting units, β=0. Blue: coherent remapping, β=1. Purple: CC 
computed using interacting grid units from the same cluster. Brown: CC computed using all units in 
an interacting population. Dashed black: β=0.5; dashed red: CC computed using NBest up to 100 
(average over simulations: β=0.53 all units, β=0.52 units in same cluster); dashed green: CC computed 
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using 100 < NBest <= 700 (average over simulations: β=0.74 all units, β=0.71 units in same cluster); 
Black: computed using numerical estimation of the analytical formulation (see Appendix 2).  
 
units. We define a clustering coefficient, CC (Cerasti and Treves, 2013), that measures, 
starting from the 373,248 randomly chosen Euler triplets and taking the NBest distinct 
rotations for each of N units, the probability that two such triplets coincide (see Appendix 
1 for the definition). For a perfectly coherent rotation the NBest rotations would be the 
very same triplets across units, hence CC=1/NBest. For a totally incoherent remapping, 
triplets would coincide at chance level, hence CC=1/373,248. Fig.4D shows that, whether 
we take only units within the same cluster or in the entire population, the clustering 
coefficient has intermediate values, scaling approximately as 1/√NBest, for NBest small – 
corresponding to a horizontal line in Fig.4D. For larger NBest, a steeper decrease prevails, 
presumably because the population remains less than fully coherent also when allowing 
for looser remapping correspondence. In Appendix 2 we show that an intermediate 
scaling can be expected from a simple analytical model. A direct numerical evaluation of 
the mean field formulation for the clustering coefficient (see Equation A2.4 in the 
Appendix 2) yields a behavior in very good agreement with the one observed in 
simulations (Fig 4D, black continuous line). Here the deflection from the 1/√NBest scaling 
appears to happen for larger values of NBest (lying outside the right margin of the plot), 
presumably as an effect of the mean field approximation. The model does not seem to 
predict, however, an exact square root scaling, and it remains unclear to us whether the 
exponent β≈1/2 that we find to characterize CC≈1/NBest

β (for NBest small) is fundamental 
or a mere coincidence. 
 
An extensive set of simulations with varying overall interaction strength among the units 
(through a prefactor) indicates that the absolute value of the clustering coefficient 
depends mildly on the prefactor, but its scaling exponent β≈1/2 for NBest small is the same 
(not shown), and the clustering coefficient is constant at 1/373,248 only when the 
prefactor is strictly zero.   
 
Towards ecological plausibility 
The full spherical environment may be approached with an appropriate experimental set-
up (Mayank Mehta, personal communication; by using spherical virtual reality, see also 
Aghajan et al., 2015), but is far from those in which rodents have evolved in the wild. 
The sphere does not include several features of e.g. the systems of burrows rodents dig as 
their homes. To begin considering the relevance of such features to grid maps, we start 
here with two: the presence of boundaries and the pull of gravity. By altering exploration 
and navigation behavior, both these features are expected to have at least an indirect 
influence on spatial codes, also in curved environments.  
 
The effect of a boundary can be appreciated already by simply slicing a sphere in two 
halves, and running simulations of non-interacting units in one hemisphere (Fig.S4A,B). 
If the cut were to be randomly oriented with respect to a perfect soccer-ball grid, one 
would expect definite proportions of the two hemisphere patterns in Fig.S4A. In 
particular, the bottom arrangement with 3 fields around the pole should occur with 
q=28.6% of the units, as can be calculated from the exact formula 
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here φ=1.618.. is the golden ratio. In simulations, however, it occurs with about half that 
frequency, q=14±5% (Fig.S4B), as the fields of individual units tend to form away from 
the border. This also distorts the “pentagonal gridness” of each map on the hemisphere. 
Further, the presence of a hemispheric bump or cavity in an otherwise flat environment 
distort the hexagonal gridness of the fields near the boundary with the hemisphere. We 
have quantified this effect by running simulations on a flat ring which may contain either 
a circular hole or a hemisphere, and measuring the standard grid score on the flat part of 
would-be grid units, this time interacting through recurrent collaterals. The presence of 
the (curved) hemisphere halved the average score, with respect to simulations run around 
a hole, from 0.39±0.16 to 0.19±0.07 (Fig.S4C,D).  
 
Further grid distortions appear if gravity is present. In the adaptation model, they are due 
to the unequal exploration of different latitudes on the hemisphere, which obviously 
deviates in opposite directions from an even sampling, depending on whether the 
hemisphere is set as a hill or as a valley. In Fig.S5 we show examples of simulations run 
on a hill, in which trajectories were determined by adding to the standard algorithm, 
generating a random movement vector at each time step, a downward bias in speed (40% 
faster) and in turn selection, to model the downward gravity pull (see Appendix 1 for 
details). As can be seen, grid fields tend to cluster around the equator (Fig.S5A,B). 
Interestingly, the resulting decrease in correlation with the perfect soccer ball field 
distribution is similar for non-interacting grids (Fig.S5C) and for interacting ones 
(Fig.S5D), which as discussed above already deviate more from the perfect arrangement 
also in the absence of gravity.   
    
   

4. DISCUSSION 
 
The simulation of our adaptation model, allowing for collateral interactions among the 
units, indicates a radically different nature of the grid code on the sphere. The same 
interactions which on a plane suppress fluctuations and lead to a collapse into a smooth 
continuous attractor recruiting all units with the same or similar grid spacing (Si et al., 
2012; Urdapilleta et al., 2017), on a sphere lead to a hierarchy of effects on single-unit 
maps that 

a) are distorted from the available symmetric ‘soccer ball’ field arrangement 
b) are forced into clusters of units with approximately overlapping fields 
c) remap to a different sphere with only partial coherence, even within clusters. 

We argue that such effects are due to the unresolved conflict between regular tessellation 
at the single unit level (due to adaptation dynamics) and global coherence at the 
population level (induced by recurrent connections). Unlike the planar case, where these 
two aspects can coexist in the same grid code, spherical geometry only allows for a 
compromise solution, where both regular tessellation and population coherence are only 
partially attained. We regard these as predictions that could be validated or falsified by 
experiments which are doable in rodents, even though they may require ad hoc 
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arrangements to allow for the slow emergence, possibly only during a two-week 
developmental period, in rats (Langston et al., 2010), of a stable set of 2D maps.  
 
Alternative models of grid map formation may lead to different predictions, but we would 
not know how, and are not currently aware of attempts by others, to extend existing 
models e.g. the oscillator interference model (Burgess et al., 2007) or the continuous 
attractor model (Burak and Fiete, 2009), to work on a sphere. Crucially, the continuous 
attractor model is based on the compatibility, contingent to Euclidean (in 2D, planar) 
spaces, of a single-unit hexagonal pattern, potentially extended to tile environments of 
any size, with congruent phase-offsets in different units. While this model can account 
for several grid cell properties and for their rapid manifestation, as observed in laboratory 
experiments, it appears that its theoretical premises make it inapplicable to environments 
of non-zero curvature. The regular phase off-set that allows to project the activity from 
the ‘cell layer’ envisaged by the model onto real space is just not possible with spherical 
geometry, leading to a loss of coherence in the activity of different units. It is also unclear 
to us how the oscillator interference model could be applied to curved environments.  
 
A sphere is of course an even more artificial rearing environment than a flat box, but we 
believe that it may help capture a fundamental trait of grid cell coding, by pointing at 
those properties of grid cells often assumed to be universal but in fact stemming from the 
use of flat, bounded environments. The qualitative characteristics a)-b)-c) may be general 
to any curved environment, and they can be contrasted with the character of grid cell 
activity in rodents reared in standard laboratory conditions. In this sense, a sphere may be 
closer than a plane to the ecological condition of a Norway rat system of burrows 
(Calhoun, 1962). Grid cell representations may be presumed to have evolved to be 
relevant to rodents living in the wild. 
 
In humans, the same fMRI hexagonal signature that has been hypothesized to reflect grid 
cell activity in a virtual reality navigation task (Doeller et al., 2010) has later been 
reported when subjects ‘move’ in a 2D space of drawings (Constantinescu et al., 2016), 
raising the issue of whether hexagonal symmetry may characterize even abstract 
conceptual spaces, when described by assigning two dimensions (Bellmund at al., 2018). 
Our model suggests that this may occur only around locations that are either flat a priori, 
or where curvature has been ironed out, perhaps by extensive training. 
 
From a complex systems point of view, it is remarkable how curvature opens up a 
scenario different from that of a strictly regular, periodic 2D tessellation. In a separate 
study, we have already argued how the extension of such 2D tessellation to a 3D crystal, 
a scenario potentially relevant to bats and other animals navigating through 3D volumes, 
is in fact implausible, because of time scales involved (Stella and Treves, 2015). Here, we 
make the case that also navigation on 2D manifolds embedded in 3D Euclidean space 
(such as tree-branches or multi-store buildings) might be associated with a ‘broken’ grid 
cell representation, retaining only part of the planar symmetry.   
 
In the new scenario, a network of grid units ‘behaves’ more like a disordered system than 
like a crystal. The approximate inverse square root scaling of the clustering coefficient of 
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the rotations, under remapping, reminds us of the partial coherence of a physical system 
with impurities, where some interactions are perforce ‘frustrated’ (Mezard et al., 1987). 
When interactions are short-range, local coherence may survive, avoiding the impurities, 
somewhat like grid maps away from objects placed in a flat environment (Hoydal et al., 
2018; Boccara et al. 2019). A prevailing non-zero curvature is more akin, however, to a 
system with impurities and long-range interactions, where disorder affects even the 
shortest organizational scale. Such systems, not unlike human society, can offer only 
partial coherence.    
 
Partial coherence, together with the realization that a network of grid cells may be 
endowed with a significant storage capacity (Spalla et al., 2019), in a sense brings back 
grid cells to the fold of memory systems, next to the place cells, with their multiple charts 
(Samsonovich and McNaughton, 1997; Battaglia and Treves, 1998). For years, it has 
been thought that grid cells may afford long-distance path integration (Fuhs and 
Touretzky, 2006; McNaughton et al., 2006). Partial coherence, however, limits accurate 
path integration to short distances. Together with the emerging observation that mEC 
outputs to the cortex, mainly from layer Va, include virtually no grid-cell signal (Alexei 
Egorov and David Rowland, personal communication), this weakens the theory that mEC 
operates as a sort of spatial computer, and suggests instead that grid maps are one input 
that helps set up the spatial component of hippocampal memory representations. 
Alternative sets of coactivity relations stored on the same synaptic connections, as well as 
curvature, act on the currently active grid representation as ‘quenched’ disorder, and 
coexisting with such spin-glass-like disorder appears to be the ultimate challenge for 
memory systems in the brain (Treves, 2009). 
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Appendix 1: Model 
 
Additional aspects of the model, besides those reported in the main text: 

The input to mEC unit i at time t is given by  

 hi (t) =∑ j Wij (t)rj (t)  (A1.1) 

The weight Wij connects input unit j to mEC unit i. We assume that at the time the mEC 
units develop their maps, spatially modulated or place cell-like activity is already present, 
either in parahippocampal cortex or in the hippocampus. The network model works in the 
same way with any kind of spatially modulated input, but the place-cell assumption 
reduces the averaging necessary for learning. Each input unit activity in space is 
modelled as a Gaussian place field centered at preferred position    

   (A1.2) 

where x(t) is the position at time t of the simulated rodent, σp =0.05m is the width of the 
field and ||a-b|| is the great-circle distance on the sphere. 

Single Unit Dynamics  

The firing rate Ψ i (t) of mEC unit i is determined by a non-linear transfer function  

 Ψi (t) = (π / 2)arctan[g(t)(αi (t) − μ(t))]Θ(αi (t) − μ(t)),  (A1.3) 

which is normalized to have maximal firing rate equal to 1 (in arbitrary units), while Θ(�)  
is the Heaviside function. The variable μ(t)  is a threshold while α i (t) represents the 
adaptation-mediated input to unit i. It is related to hi (t)  as follows: 

 
α i (t) = αi (t −1) + b1[hi (t −1) − βi (t −1) − αi (t −1)]

βi (t) = βi (t −1) + b2[hi (t −1) − βi (t −1)],
  (A1.4) 

where βi  has slower dynamics than αi , with b2=b1/3,  b1= 0.1 (in a continuous 
formulation, the b coefficients become rates, in units of (Δt)-1). These adaptive dynamics 
make it more difficult for a neuron to fire for prolonged periods of time, and correspond 
to the kernel K considered in the analytical treatment (Kropff and Treves, 2008). The gain 
g(t) and threshold μ(t) are iteratively adjusted at every time step to fix the mean activity  

a =∑i Ψ i (t) / NmEC  and the sparsity s = (∑i Ψi (t))
2 / (NmEC ∑i Ψ i (t)

2 )  within a 10% 
relative error bound from pre-specified values, a0=0.1 and s0=0.3 respectively. If k is 
indexing the iteration process:  

 
μ t (k +1) = μt (k) + b3[a(t ) − a0 ]

gt (k +1) = gt (k) + b4[s(t) − s0 ],
  (A1.5) 
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b3=0.01 and b4=0.1 are also rates, but in terms of intermediate iteration steps. ak and sk 
are the values of mean activity and sparsity determined by μt (k)and gt (k) in the 
intermediate iteration steps. The iteration stops once the gain and threshold have been 
brought within the 10% error range, and the activity of mEC units are determined by the 
final values of the gain and threshold. 

Synaptic Plasticity. The learning process modifies the strength of the feed-forward 
connections according to a Hebbian rule  

 ′Wij (t) = Wij (t) + ε[Ψ i (t)rj (t)− < Ψ i (t −1) >< rj (t −1) >]  (A1.6) 

 with a rate ε=0.002. <Ψi(t)> and <rj(t)> are estimated mean firing rates of mEC unit i 
and place unit j that are adjusted at each time step of the simulation 

 
< Ψ i (t) >=< Ψi (t −1) > +η[Ψi (t)− < Ψi (t −1) >]

< rj (t) >=< rj (t −1) > +η[rj (t)− < rj (t −1) >]
  (A1.7) 

With η=0.05 a time averaging factor. After each learning step, the W’ij(t) weights are 
normalized into unitary norm  

 ∑ j Wij (t )( )2
= 1.  (A1.8) 

HD Input. Head Direction on the sphere is defined as the angle between a vector and the 
vector pointing towards the north pole. With the addition of HD modulation and 
collateral connections, the overall input to unit i for the interacting case is:  

 hi (t) = fθi (ω(t)) ∑ j Wij (t)rj (t −1) + ρ∑k JikΨk (t − τ)⎡
⎣

⎤
⎦

  (A1.9) 

with ρ=0.2 a factor setting the relative strength of feed-forward Wij(t) and collateral 
weights Jik, and τ =25 steps a delay in signal transmission, as discussed by (Si et al. 
2012). The multiplicative factor fθi(ω(t)) is a tuning function which is maximal when the 
current direction of the animal movement ω(t) is along the preferred direction θi assigned 
to unit i 

 fθ(ω) = c + (1− c)exp[ν(cos(θ − ω) −1)]  (A1.10) 

where c=0.2 and ν=0.8 are parameters determining the minimum value and the width of 
the cell tuning curve. Preferred head directions are randomly assigned to mEC units and 
they uniformly span the 2π angle. 

Clustering Coefficient (CC). Given q cells and taking the first Nbest Euler rotations from 
each, the clustering coefficient was defined as: 

 CC = 1

(qNbest )
2 − qNbest

⎡

⎣
⎢

⎤

⎦
⎥∑ij∑mn exp −d(Θi ,m ,Θ j ,n ) / ξ⎡⎣ ⎤⎦   (A1.11) 
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with i≠j  and where d(Θi,m ,Θ j ,n ) is the distance between two three-dimensional rotations; 
and ξ  is set to 5 degrees so that only nearly coinciding rotations contribute to the sum. 

Grid field definition and properties. Individual fields for each developing unit were 
identified as continuous portions of the spherical surface where the unit firing rate was 
above two times the average firing rate computed over the entire environment. Field size 
was defined as the number of bins passing the threshold in each continuous region, field 
height as the maximum firing rate within the continuous region, and the field ellipticity as 
the ratio between the radii of a circle circumscribed to the field and a circle inscribed in 
the field.  

Effects of gravity on the animal trajectory. To simulate the change in movement 
statistics due to the presence of gravity, we modulated the generation of random 
trajectories in two ways. 

(1) We assumed that downward movement is executed at greater speed than upward 
movement. Therefore the animal speed was modulated depending on its running 
direction as vg = v(1− ς cos(θz )) where θz  is the angle between the direction of 
motion and the vertical axis (0 when pointing upward), and ς  is a parameter 
regulating the strength of the gravitational effect. 

(2) We also applied a constant, downward pull to the direction of motion by applying 
a bias in the step-wise choice of a new running direction. Down-ward turns were 
favored by implementing a Metropolis Markov Chain that only accepted up-ward 
turns with a certain probability. Namely, a turn was rejected when u < α  where u 
is a uniform random number on [0,1] and α = exp[ς(θz

t+1 − θz
t )]. θz is the angle 

with respect to the z-axis (0 when pointing completely up-ward), ς  is a parameter 
regulating the strength of the bias, taken here to numerically coincide with that of 
point 1).  

 
 
Appendix 2: Statistical Analysis 
 
Let us consider N units that have developed grid representations on a sphere A, and now 
develop also grid representations on another sphere B. For every triplet of Euler angles 
(φ,θ,ψ)one can define the overlap (or spatial Pearson correlation) Ci  between the 
representation of unit i in A and that in B rotated by (φ,θ,ψ). Assume that -1 < Ci < 1. 
Then define Cmean(φ,θ,ψ)as the mean Ci (φ,θ,ψ)across all units, or the units in a cluster.  
Of course, -1 < Cmean(φ,θ,ψ)< 1 as well (in practice its range is much more restricted, if 

different units do not coincide in their ‘best rotations’). Now position all Euler triplets 
along the x-axis given by their Cmean  value, and define f(x) as their density (density of 
angles) along the axis. That is, if one considers a total of Nangles , there are Nangles f(x)dx of 

them between x and x+dx. In Fig.S3A we show the Cmean  distribution for an entire 

population (dashed line) and separately for each of 8 grid unit clusters (colored lines). 
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Assume now that among all Nangles angles, we pick for each unit Nbest of them, those that 

have the highest Ci value. How will all the Nbest × Nunits  angles be distributed, on average, 
in terms of f(x), the Cmean –ordered histogram? On average, they will concentrate more at 
higher Cmean  values, at the very least because each unit gives a 1/N contribution to Cmean ; 

but possibly more concentrated than that. How much they concentrate is critical in order 
to determine the clustering coefficient CC, which measures simply how many of the Nbest

angles (what fraction) coincide among pairs of distinct units. We assume then that, at 
least within a cluster, 

1) one can write: 

 Ci = Cmean + ηi   (A2.1) 

where ηi  is a form of ‘noise’, i.e. the combined effect of all other factors independent 
and unrelated to Cmean . Note that this decomposition is a strong assumption.  

2) this ‘noise’ is normally distributed, with a width σ( Nbest , cluster) that is the same 

across units in a cluster. 

If we denote with b(x; Nbest ) the average fraction of Nbest angles, among the Nangles f(x) 

present at a given Cmean –value x, such that, within a cluster,  

 Nbest =Nangles f(x)b(x;NBest )dx∫   (A2.2) 

and with xb ( Nbest ,cluster) the value of x such that this average fraction is ½, with these 

assumptions one has that b(x) can be expressed as the complementary error function 

 b(x)≈(1/2)erfc((xb-x)/σ 2)  (A2.3) 

which Fig.S3B shows is not a bad approximation, if one allows xb and hence b(x) to 
depend on both the cluster and Nbest . 

We make now the additional, critical (mean-field) assumption that  

3) the clustering coefficient, CC, at least within each cluster, is only determined by 
the average density b(x; Nbest ). Therefore, considering a generic pair of units, 

 CC = Nangles /(Nbest )
2⎡⎣ ⎤⎦ f(x)b2 (x;Nbest )dx∫   (A2.4) 
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One may observe that CC is given by the extent of the overlap between the two 
distributions f(x) and b(x) (dropping for ease of notation its argument Nbest ). Eq.(A2.2) 
and Fig.S3 show that for small Nbest the overlap is limited to the opposing tails of the two 

distributions. We can evaluate the goodness of the assumptions made so far by comparing 
the values of the clustering coefficient obtained from the last equation to those obtained 
from the full analysis of simulation results. Equation A2.4 can be numerically evaluated 
by making use of the f(x) computed from simulations (Fig S3 A) and of the parameters 
for b(x) obtained from Gaussian fits (Fig S3 B-D). The resulting mean field 
approximation curve shows a remarkable similarity with simulation results (Fig 4 D). If 
we proceed and make the final assumption that  

4) f(x) has a quasi-Gaussian upper tail  

 f(x)≈kexp -(x-x0 )2 /2ξ2⎡⎣ ⎤⎦    (A2.5) 

with k a suitable factor and ξ  the effective width of the tail, we can obtain an analytical 

estimate of the CC. The result is 

 ln(CC(Nbest )) ≈ − ln(Nbest ) − (x0-xb )2 σ2 / 2(σ2 + ξ2 )(σ2 + 2ξ2 )⎡⎣ ⎤⎦   (A2.6) 

(keeping only the leading exponent). Both xb and σ may depend on Nbest , but Fig.S3 

indicates that within each cluster the dependence of σ is weak, while xb shifts leftward as
Nbest increases: from Eq.(A2.2) one can derive 

 ln(Nbest ) ≈ ln(Nangles ) − (x0 -xb )2 / 2(σ2 + ξ2 )⎡⎣ ⎤⎦   (A2.7) 

This yields a scaling of ln(CC(Nbest )) ≈ −β ln(Nbest )with 0 < β < 1, and the particular 

value β=1/2 is obtained for σ2 ≈ 2ξ2  . We have no explanation for why this last relation 
appears to hold, approximately, for Nbest small, as shown in Fig.4D.  
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Supplementary Figures 
 

Figure S1. Interactions slightly reduce grid spacing, and distort the grids. 

Top. Dependence of the mean number of fields across units in each simulation on the radius R of the 

sphere, with (red) and without (grey) recurrent collaterals. Bottom. Distribution of the values of the 

spherical correlation of the map developed by each unit with the appropriately oriented perfect “soccer 

ball” pentagonal grid, in simulations with R=50cm (without collaterals) and R=52.6cm (with collaterals). 

Note that in the other “control” simulations without collaterals cited in the text, R was set to 52.6cm, and 

only the subset of units with 12 fields (a minority) was used in the analyses. 
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Figure S2. Interactions distort grid field shape. 

Distribution of field size (A), field maximum height (B) and field ellipticity (C) across a population of grid cells. 

Red bars: population with recurrent collaterals; grey bars: population without recurrent collaterals.  
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Figure S3. Despite the clustering, remapping appears to be a random process. 

A Density of Cmean values across the set of Euler rotations. Colored curves are computed within units 

belonging to the same cluster; the dashed line is the Cmean density computed over all units. B Four examples 

(4 different clusters) of the cumulative Cmean distribution computed for different values of NBest [=100, 200, 

500, 1000, 2000, 5000, 10000, 20000, 50000]. Colored lines: simulation data; dashed lines: Gaussian fits. C 

and D Mean and standard deviation, respectively, obtained from the Gaussian fits for different clusters and 

different NBest values. Black dashed line: mean across clusters.  
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Figure S4. Boundaries repel grid fields and distort the grid also in curved environments. 

A Two possible arrangements of nearly regular grids on the hemisphere: the polar (top) and 

triangular (bottom). B Cutting in two halves a perfect soccer ball along an arbitrary equator, the 

triangular arrangement would occur with frequency 28.6%, whereas in simulations it occurs with 

frequency 14±5%. C Likewise, the average gridness score (computed on the flat surround alone) is 

reduced by the presence of a hemisphere in the center, relative to a hole. D Examples of grid maps 

emerging in the two cases, with their autocorrelations relative only to the flat surround. 
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Figure S5. Gravity further distorts grids, over and beyond the effects of curvature. 

A Examples of grid maps emerging with ‘40% gravity’ (see text) without (top) and with (bottom) 

recurrent connections, as in the other panels of this figure. B Density of fields as a function of 

elevation (left; the apparent positive density below zero is due to smoothing) and position of each 

field from 100 units also along the azimuth (right). Red indicates the presence of gravity. C Gravity 

lowers the correlation with the perfect soccer ball, without interactions among units, from an 

average value of 0.84 to 0.53 (it would have been 0.93 on the full sphere). D With recurrent 

interactions, simulations show a similarly decreased correlation, to an average value of 0.43, from a 

lower baseline of 0.70 (higher than the value 0.66 of the full sphere), indicating approximately 

independent effects of the interactions and of gravity. 
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