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We construct phenomenologically viable models of lepton masses and mixing based on modular A4
invariance broken to residual symmetries ZT

3 or ZST
3 and ZS

2 respectively in the charged lepton 
and neutrino sectors. In these models the neutrino mixing matrix is of trimaximal mixing form. In 
addition to successfully describing the charged lepton masses, neutrino mass-squared differences and 
the atmospheric and reactor neutrino mixing angles θ23 and θ13, these models predict the values of the 
lightest neutrino mass (i.e., the absolute neutrino mass scale), of the Dirac and Majorana CP violation 
(CPV) phases, as well as the existence of specific correlations between i) the values of the solar neutrino 
mixing angle θ12 and the angle θ13 (which determines θ12), ii) the values of the Dirac CPV phase δ and 
of the angles θ23 and θ13, iii) the sum of the neutrino masses and θ23, iv) the neutrinoless double beta 
decay effective Majorana mass and θ23, and v) between the two Majorana phases.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Understanding the origin of the flavour structure of quarks and leptons remains one of the outstanding problems in particle physics. 
The pattern of two large and one small neutrino (lepton) mixing angles, revealed by the data obtained in neutrino oscillation experiments 
(see, e.g., [1]), provides an important clue in the investigations of the lepton flavour problem, suggesting the existence of flavour symmetry 
in the lepton sector. The results of the recent global analyses of the neutrino oscillation data show also that a neutrino mass spectrum 
with normal ordering (NO) is favoured over the spectrum with inverted ordering (IO), as well as a preference for a value of the Dirac CP 
violation (CPV) phase δ close to 3π/2 (see, e.g., [2]).

The observed 3-neutrino mixing pattern can naturally be explained by extending the Standard Theory (ST) with a flavour symmetry 
associated with a non-Abelian discrete symmetry group. Models based on S3, A4, S4, A5 and other groups of larger orders have been 
proposed and extensively studied (see, e.g., [3–9]). In particular, the A4 flavour model attracted considerable interest because the A4
group is the minimal one including a triplet unitary irreducible representation, which allows for a natural explanation of the existence of 
three families of leptons [10–15]. In all models based on non-Abelian discrete flavour symmetry, the flavour symmetry must be broken 
in order to reproduce the measured values of the neutrino mixing angles. This is achieved by introducing typically a large number of ST 
gauge singlet scalars - the so-called “flavons” - in the Lagrangian of the theory, which have to develop a set of particularly aligned vacuum 
expectation values (VEVs). Arranging for such an alignment requires the construction of rather elaborate scalar potentials.

An attractive approach to the lepton flavour problem, based on the invariance under the modular group, has been proposed in Ref. [16], 
where also models of the finite modular group �3 � A4 have been presented. Although the models constructed in Ref. [16] are not realistic 
and make use of a minimal set of flavon fields, this work inspired further studies of the modular invariance approach to the lepton flavour 
problem. The modular group includes S3, A4, S4, and A5 as its principal congruence subgroups, �2 � S3, �3 � A4, �4 � S4 and �5 � A5
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[17]. However, there is a significant difference between the models based on the modular S3, A4, S4 etc. symmetry and those based on 
the usual non-Abelian discrete S3, A4, S4 etc. flavour symmetry. The constants of a theory based on the finite modular symmetry, such 
as Yukawa couplings and, e.g., the right-handed neutrino mass matrix in type I seesaw scenario, also transform non-trivially under the 
modular symmetry and are written in terms of modular forms which are holomorphic functions of a complex scalar field - the modulus τ . 
At the same time the modular forms transform under the usual non-Abelian discrete flavour symmetries. In the most economical versions 
of the models with modular symmetry, the VEV of the modulus τ is the only source of symmetry breaking without the need of flavon 
fields.

In Ref. [18] a realistic model with modular �2 � S3 symmetry was built with the help of a minimal set of flavon fields. A realistic 
model of the charged lepton and neutrino masses and of neutrino mixing without flavons, in which the modular �4 � S4 symmetry 
was used, was constructed in [19]. Subsequently, lepton flavour models without flavons, based on the modular symmetry �3 � A4 was 
proposed in Refs. [20,21]. A comprehensive investigation of the simplest viable models of lepton masses and mixing, based on the modular 
S4 symmetry, was performed in Ref. [22]. Necessary ingredients for constructing flavour models based, in particular, on the modular 
symmetries �(96) and �(384) have been obtained in [23], while for models based on A5 symmetry they have been derived in [24].

If one of the subgroups of the considered finite modular group is preserved, this residual symmetry fixes τ to a specific value (see, 
e.g., [22]). Phenomenologically viable models based on the modular S4 and A5 symmetries, broken respectively to residual Z3 and Z5
symmetries in the charged lepton sector and to a Z2 symmetry in the neutrino sector, were presented in Refs. [22,24]. So far, apart from 
these two studies, the implications of residual symmetries have been investigated only in the framework of the usual non-Abelian discrete 
symmetry approach to the lepton (and quark) flavour problem. It has been shown that they lead, in particular, to specific experimentally 
testable correlations between the values of some of the neutrino mixing angles and/or between the values of the neutrino mixing angles 
and of the Dirac CP violation phase in the neutrino mixing [25–31].

In the present article we construct phenomenologically viable models of lepton masses and mixing based on residual symmetries 
resulting from the breaking of the A4 modular symmetry. It is found that the weight 4 modular forms are required to obtain charged 
lepton and neutrino mass matrices leading to lepton masses and mixing which are consistent with the experimental data on neutrino 
oscillations. We also find that in these models the PMNS matrix [32–34] is predicted to be of the trimaximal mixing form [35,36].

The paper is organized as follows. In section 2, we give a brief review on the modular symmetry. In section 3, we discuss the residual 
symmetries of A4 and their modular forms. In section 4, we present the lepton mass matrices in the residual symmetry. In section 5, we 
present models and their numerical results. Section 6 is devoted to a summary. Appendix A shows the relevant multiplication rules of the 
A4 group.

2. Modular A4 group and modular forms of level 3

The modular group � is the group of linear fractional transformations γ acting on the complex variable τ belonging to the upper-half 
complex plane as follows:

γ τ = aτ + b

cτ + d
, where a,b, c,d ∈Z and ad − bc = 1 , Imτ > 0 . (2.1)

The group � is generated by two transformations S and T satisfying

S2 = (ST )3 = I , (2.2)

where I is the identity element. Representing S and T as

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
, (2.3)

one finds

τ
S−→ − 1

τ
, τ

T−→ τ + 1 . (2.4)

The modular group � is isomorphic to the projective special linear group P S L(2, Z) = S L(2, Z)/Z2, where S L(2, Z) is the special 
linear group of 2 × 2 matrices with integer elements and unit determinant, and Z2 = {I, −I} is its centre (I being the identity element). 
The special linear group S L(2, Z) = �(1) ≡ � contains a series of infinite normal subgroups �(N), N = 1, 2, 3, . . . :

�(N) =
{(

a b
c d

)
∈ S L(2,Z) ,

(
a b
c d

)
=
(

1 0
0 1

)
(mod N)

}
, (2.5)

called the principal congruence subgroups. For N = 1 and 2, we define the groups �(N) ≡ �(N)/{I, −I} with �(1) ≡ �). For N > 2, 
�(N) ≡ �(N) since �(N) does not contain the subgroup {I, −I}. For each N , the associated linear fractional transformations of the form in 
eq. (2.1) are in a one-to-one correspondence with the elements of �(N).

The quotient groups �N ≡ �/�(N) are called finite modular groups. For N ≤ 5, these groups are isomorphic to non-Abelian discrete 
groups widely used in flavour model building (see, e.g., [17]): �2 � S3, �3 � A4, �4 � S4 and �5 � A5. We will be interested in the finite 
modular group �3 � A4.

Modular forms of weight k and level N are holomorphic functions f (τ ) transforming under the action of �(N) in the following way:

f (γ τ ) = (cτ + d)k f (τ ) , γ ∈ �(N) . (2.6)
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Here k is even and non-negative, and N is natural. Modular forms of weight k and level N span a linear space of finite dimension. The 
dimension of the linear space of modular forms of weight k and level 3, Mk(�3 � A4), is k + 1. There exists a basis in this space such 
that a multiplet of modular forms f i(τ ) transforms according to a unitary representation ρ of the finite group �N :

f i (γ τ ) = (cτ + d)k ρ (γ )i j f j(τ ) , γ ∈ � . (2.7)

In the case of N = 3 of interest, the three linear independent weight 2 modular forms form a triplet of A4 [16]. These forms have been 
explicitly obtained [16] in terms of the Dedekind eta-function η(τ ):

η(τ ) = q1/24
∞∏

n=1

(1 − qn) , (2.8)

where q = e2π iτ . In what follows we will use the following basis of the A4 generators S and T in the triplet representation:

S = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , (2.9)

where ω = ei 2
3 π . The modular forms (Y (2)

1 , Y (2)
2 , Y (2)

3 ) transforming as a triplet of A4 can be written in terms of η(τ ) and its derivative 
[16]:

Y (2)
1 (τ ) = i

2π

(
η′(τ/3)

η(τ/3)
+ η′((τ + 1)/3)

η((τ + 1)/3)
+ η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ )

η(3τ )

)
,

Y (2)
2 (τ ) = −i

π

(
η′(τ/3)

η(τ/3)
+ ω2 η′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

)
, (2.10)

Y (2)
3 (τ ) = −i

π

(
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2 η′((τ + 2)/3)

η((τ + 2)/3)

)
.

The overall coefficient in eq. (2.10) is one possible choice; it cannot be uniquely determined. The triplet modular forms Y (2)
1,2,3 have the 

following q-expansions:

Y(2)
3 =

⎛
⎜⎝Y (2)

1 (τ )

Y (2)
2 (τ )

Y (2)
3 (τ )

⎞
⎟⎠=

⎛
⎝ 1 + 12q + 36q2 + 12q3 + . . .

−6q1/3(1 + 7q + 8q2 + . . . )

−18q2/3(1 + 2q + 5q2 + . . . )

⎞
⎠ . (2.11)

They satisfy also the constraint [16]:

(Y (2)
2 )2 + 2Y (2)

1 Y (2)
3 = 0 . (2.12)

3. Residual symmetries of A4 and modular forms

Residual symmetries arise whenever the VEV of the modulus τ breaks the modular group � only partially, i.e., the little group (sta-
biliser) of 〈τ 〉 is non-trivial. Residual symmetries have been investigated in the case of modular S4 invariance in [22], and of A5 invariance 
in [24], where viable models of lepton masses and mixing have also been constructed. In the present work we consider models of lepton 
flavour based on the residual symmetries of the modular A4 invariance.

There are only 2 inequivalent finite points with non-trivial little groups of �, namely, 〈τ 〉 = −1/2 + i
√

3/2 ≡ τL and 〈τ 〉 = i ≡ τC

[22]. The first point is the left cusp in the fundamental domain of the modular group, which is invariant under the ST transformation 
τ = −1/(τ + 1). Indeed, ZS T

3 = {I, ST , (ST )2} is one of subgroups of A4 group.2 The right cusp at 〈τ 〉 = 1/2 + i
√

3/2 ≡ τR is related to τL

by the T transformation. The 〈τ 〉 = i point is invariant under the S transformation τ = −1/τ . The subgroup ZS
2 = {I, S} of A4 is preserved 

at 〈τ 〉 = τC . There is also infinite point 〈τ 〉 = i∞ ≡ τT , in which the subgroup ZT
3 = {I, T , T 2} of A4 is preserved.

It is possible to calculate the values of the A4 triplet modular forms of weight 2 at the symmetry points τL , τC and τT . The results 
are reported in Table 1 in which the values of the modular forms at 〈τ 〉 = τR are also given, to be compared with those at the other two 
points.

As we have noted, the dimension of the linear space Mk(�3 � A4) of modular forms of weight k and level 3 is k + 1. The modular 
forms of weights higher than 2 can be obtained from the modular forms of weight 2. They transform according to certain irreducible 
representations of the A4 group. Indeed, for weight 4 we have 5 independent modular forms, which are constructed by the weight 2
modular forms through the tensor product of 3 ⊗ 3 (see Appendix A). We obtain one triplet 3 and two singlets 1, 1′ , while the third 
singlet 1′′ vanishes:

2 In the recent publication [38] the authors obtain 〈τ 〉 = −1/2 + i
√

3/2 ≡ τL in a SU (5) GUT theory with modular A4 symmetry.
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Table 1
Modular forms of weight 2 and 4 and the magnitude of Y (2)

1 at relevant τ .

weight 2 weight 4

τ 3 3 {1, 1′} Y (2)
1

τL Y (2)
1 (1,ω,− 1

2 ω2) 3(Y (2)
1 )2(1,− 1

2 ω,ω2), {0, 9
4 (Y (2)

1 )2ω} 0.9486...

τR Y (2)
1 (1,ω2,− 1

2 ω) 3(Y (2)
1 )2(1,− 1

2 ω2,ω), {0, 9
4 (Y (2)

1 )2ω2} 0.9486...

τC Y (2)
1 (1,1 − √

3,−2 + √
3) (Y (2)

1 )2(1,1,1), (Y (2)
1 )2{6

√
3 − 9, 9 − 6

√
3} 1.0225...

τT Y (2)
1 (1,0,0) (Y (2)

1 )2(1,0,0), {(Y (2)
1 )2, 0} 1

Table 2
The charge assignment of SU (2), A4, and modular weights 
(kI for fields and k for coupling Y ). The right-handed charged 
leptons are assigned three A4 singlets, respectively.

L (eR ,μR , τR ) Hu Hd Y

SU (2) 2 1 2 2 1
A4 3 (1, 1′′, 1′) 1 1 3, 1, 1′
kI kL (keR ,kμR ,kτR ) 0 0 k

Y(4)
3 ≡

⎛
⎜⎝Y (4)

1

Y (4)
2

Y (4)
3

⎞
⎟⎠= 2

3

⎛
⎜⎝(Y (2)

1 )2 − Y (2)
2 Y (2)

3
(Y (2)

3 )2 − Y (2)
1 Y (2)

2
(Y (2)

2 )2 − Y (2)
1 Y (2)

3

⎞
⎟⎠ , (3.1)

Y(4)
1 = (Y (2)

1 )2 + 2Y (2)
2 Y (2)

3 , Y(4)

1′ = (Y (2)
3 )2 + 2Y (2)

1 Y (2)
2 , Y(4)

1′′ = (Y (2)
2 )2 + 2Y (2)

1 Y (2)
3 ≡ 0 (3.2)

where the vanishing Y(4)

1′′ is due to the condition in Eq. (2.12). Using Eq. (3.2) we can calculate the values of the modular forms of weight 
4, transforming as 3 and {1, 1′}, at the symmetry points τL , τC and τT . We show the results also in Table 1.

4. Lepton mass matrices with residual symmetry

We will consider next modular invariant lepton flavour models with the A4 symmetry, assuming that the massive neutrinos are Ma-
jorana particles and that the neutrino masses originate from the Weinberg dimension 5 operator. There is a certain freedom for the 
assignments of irreducible representations and modular weights to leptons. We suppose that three left-handed (LH) lepton doublets form 
a triplet of the A4 group. The Higgs doublets are supposed to be zero weight singlets of A4. The generic assignments of representations 
and modular weights kI to the MSSM fields3 are presented in Table 2. In order to construct models with minimal number of parameters, 
we introduce no flavons. For the charged leptons, we assign the three right-handed (RH) charged lepton fields for three different singlet 
representations of A4, (1,1′,1′′). Therefore, there are three independent coupling constants in the superpotential of the charged lepton 
sector. These coupling constants can be adjusted to the observed charged lepton masses. Since there are three singlet irreducible repre-
sentations in the A4 group, there are six cases for the assignment of the three RH charged lepton fields. However, this ambiguity does 
not affect the matrix which acts on the LH charged lepton fields and enters into the expression for the PMNS matrix. Thus, effectively we 
have the following unique form for the superpotential:

we = αeR Hd(LY )1 + βμR Hd(LY )1′ + γ τR Hd(LY )1′′ , (4.1)

wν = − 1

�
(Hu Hu LLY )1 , (4.2)

where the sums of the modular weights should vanish. The parameters α, β , γ and � are constant coefficients.

4.1. Charged lepton mass matrix with residual symmetry

By using the decomposition of the A4 tensor products given in Appendix A, the superpotential in Eq. (4.1) leads to a mass matrix of 
charged leptons, which is written in terms of modular forms of A4 triplet with weight k:

ME = vd

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠
⎛
⎜⎝Y (k)

1 Y (k)
3 Y (k)

2

Y (k)
2 Y (k)

1 Y (k)
3

Y (k)
3 Y (k)

2 Y (k)
1

⎞
⎟⎠

RL

, (4.3)

where vd ≡ 〈H0
d〉. Without loss of generality the coefficients α, β , and γ can be made real positive by rephasing the RH charged lepton 

fields.

3 For the modular weights of chiral superfields we follow the sign convention which is opposite to that of the modular forms, i.e. a field φ(I) transforms as φ(I) →
(cτ + d)−kI ρ(I)(γ ) φ(I) under the modular transformation γ .
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We will discuss next the charged lepton mass matrix at the specific points of τ = τL, τR τC , τT in the case of weight k = 2. At τ = τL , 
the matrix M†

E ME , which is relevant for the left-handed mixing, is given as:

M†
E ME = 9

4
v2

d (Y (2)
1 )2

⎛
⎝ α2 + β2 + γ 2/4 −ω2/2α2 + ω2β2 − ω2/2γ 2 ωα2 − ω/2β2 − ω/2γ 2

−ω/2α2 + ωβ2 − ω/2γ 2 α2/4 + β2 + γ 2 −ω2/2α2 − ω2/2β2 + ω2γ 2

ω2α2 − ω2/2β2 − ω2/2γ 2 −ω/2α2 − ω/2β2 + ωγ 2 α2 + β2/4 + γ 2

⎞
⎠ . (4.4)

It is easily noticed that this matrix commutes with ST , which is guaranteed by the residual symmetry ZS T
3 at τ = τL , where

ST = 1

3

⎛
⎝−1 2ω 2ω2

2 −ω 2ω2

2 2ω −ω2

⎞
⎠ . (4.5)

Both matrices M†
E ME and ST are diagonalized by the unitary matrix U E :

U E ≡ T S = 1

3

⎛
⎝ −1 2 2

2ω −ω 2ω

2ω2 2ω2 −ω2

⎞
⎠ ,

U †
E ST U E = T = diag (1,ω,ω2), U †

E M†
E ME U E = 9

4
v2

d (Y (2)
1 )2 diag(γ 2,α2, β2),

(4.6)

where U E is independent of parameters α, β, γ .
On the other hand, at τ = τR , we have:

M†
E ME = 9

4
v2

d (Y (2)
1 )2

⎛
⎝ α2 + β2 + γ 2/4 −ω/2α2 + ωβ2 − ω/2γ 2 ω2α2 − ω2/2β2 − ω2/2γ 2

−ω2/2α2 + ω2β2 − ω2/2γ 2 α2/4 + β2 + γ 2 −ω/2α2 − ω/2β2 + ωγ 2

ωα2 − ω/2β2 − ω/2γ 2 −ω2/2α2 − ω2/2β2 + ω2γ 2 α2 + β2/4 + γ 2

⎞
⎠ . (4.7)

The matrix M†
E ME in Eq. (4.7) commutes with

T S = 1

3

⎛
⎝ −1 2 2

2ω −ω 2ω

2ω2 2ω2 −ω2

⎞
⎠ . (4.8)

The fact that M†
E ME and T S commute is a consequence of the residual symmetry ZT S

3 at τ = τR . The matrices M†
E ME and ST are 

diagonalised by the unitary matrix:

U E ≡ ST = 1

3

⎛
⎝−1 2ω 2ω2

2 −ω 2ω2

2 2ω −ω2

⎞
⎠ . (4.9)

At τ = τC , the determinant of ME vanishes. Indeed, this mass matrix leads to a massless charged lepton, and thus cannot be used for 
model building.

Finally, at τ = τT we obtain the real diagonal matrix:

ME = vd Y (2)
1

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠ . (4.10)

In the case of modular forms of weight 4 we can obtain a charged lepton mass matrix in which the modular forms transforming as 
1 and 1′ do not contribute. As seen in Table 1, the weight 4 triplet modular forms coincide with weight 2 ones at τ = τL, τR . Indeed, 
M†

E ME is obtained by replacing parameters (α, β, γ ) of the mass matrices in Eqs. (4.4) and (4.7) with (γ , α, β), respectively. Therefore, 
the mixing matrices in Eqs. (4.6) and (4.9) are the same.

At τ = τC , the charged lepton mass matrix is of rank one, i.e., two massless charged leptons appear since the triplet modular forms 
are proportional to (1, 1, 1). At τ = τT , the charged lepton mass matrix is equal to the diagonal one given in Eq. (4.10) since the triplet 
weight 4 modular forms coincide with the weight 2 modular forms.

4.2. Neutrino mass matrix (Weinberg operator)

The neutrino mass matrix is written in terms of A4 triplet modular forms of weight k by using the superpotential in Eq. (4.2):

Mν = v2
u

�

⎛
⎜⎝ 2Y (k)

1 −Y (k)
3 −Y (k)

2

−Y (k)
3 2Y (k)

2 −Y (k)
1

−Y (k)
2 −Y (k)

1 2Y (k)
3

⎞
⎟⎠

LL

, (4.11)

where vu ≡ 〈H0
u〉.
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In the case of weight 2 modular forms it is easily checked that two lightest neutrino masses are degenerate at τ = τL, τR , while the 
determinant of Mν vanishes at τ = τC . In the latter case one neutrino is massless and two neutrino masses are degenerate. The two 
lightest neutrino masses are degenerate also at τ = τT . It may be helpful to add a comment: these degeneracies of neutrino masses still 
hold even if we use the seesaw mechanism by introducing the three right-handed neutrino fields as A4 triplet. Thus, the realistic neutrino 
mass matrix is not obtained as far as we take weight 2 modular forms at τ = τL, τR , τC , τT .

In the case of weight 4 modular forms, there is one candidate that can be consistent with the observed neutrino masses. At τ = τL, τR , 
the neutrino mass term 3L3LY(4)

3 is similar to the case of weight 2, where two neutrino masses are degenerate. In the case of weight 4, 
the singlet 1′ also contributes to the neutrino mass matrix through the coupling 3L3LY(4)

1′ . However, this additional term cannot resolve 
the degeneracy.

It is easily noticed that two neutrino masses are degenerate also at τ = τT since Y(4)
3 ∼ (1, 0, 0). An additional Y(4)

1 does not change 
this situation.

At τ = τC , the triplet modular form, as seen in Table 1, is Y(4)
3 ∼ (1, 1, 1), which allows to get large mixing angles. Moreover, we 

have 1 and 1′ modular functions. Therefore, we expect nearly tri-bimaximal mixing pattern of PMNS matrix with three different massive 
neutrinos. The LH weak-eigenstate neutrino fields couple to Y(4)

3 . This coupling leads to the following neutrino Majorana mass matrix:

Mν = v2
u

�
(Y (2)

1 )2

⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠ . (4.12)

Moreover, the LH neutrino fields couple also to Y(4)
1 and Y(4)

1′ , which gives the following additional contributions to the neutrino Majorana 
mass matrix Mν :

3(2
√

3 − 3)
v2

u

�
(Y (2)

1 )2

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ , −3(2

√
3 − 3)

v2
u

�
(Y (2)

1 )2

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ , (4.13)

where each of these two terms enters Mν with its own arbitrary constant.
To summarise, the charged lepton mass matrix could be consistent with observed masses at τ = τL, τR , τ = τT for both cases of weight 

2 and 4 modular forms. On the other hand, the neutrino Majorana mass matrix is consistent with observed masses only at τ = τC for 
weight 4 modular forms. There is no common symmetry value of τ , which leads to charged lepton and neutrino masses that are consistent 
with the data.

5. Models with residual symmetry

As seen in the previous section, we could not find models with one modulus τ and with residual symmetry, which are phenomenolog-
ically viable. Therefore, we consider the case of having two moduli in the theory: one τ � , responsible via its VEV for the breaking of the 
modular A4 symmetry in the charged lepton sector, and the another one τ ν , breaking the modular symmetry in the neutrino sector. Our 
approach here is purely phenomenological. Constructing a model with two different moduli in the charged lepton and neutrino sectors is 
out of the scope of our study, it is a subject of ongoing research and work in progress. However, there are hints from the recent study 
[39] that this might be possible.4 A model with two different moduli in the quark and lepton sectors, associated respectively with S3 and 
A4 modular symmetries, has been presented recently in [40].

We present next our setup. For the charged lepton mass matrix, we take weight 2 modular forms at τ � = τT (Case I) or at τ � = τL

(Case II).5 At the same time we use weight 4 modular forms at τ ν = τC for constructing the neutrino Majorana mass term. In order for 
the modular weight in the superpotential to vanish, we assign the following weights to the LH lepton and RH charged lepton fields:

kL = 2 , keR = kμR = kτR = 0, (5.1)

where the notations are self-explanatory. We note that kL = 2 is common in both τ � and τ ν modular spaces.
Then, the charged lepton mass matrix is obtained by using as input the expressions for the weight 2 modular forms given in Table 1. 

At τT , it is a diagonal matrix:

ME = vd

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠ : Case I . (5.2)

At τ = τL , the charged lepton mass matrix has the form:

ME = vd

⎛
⎝α 0 0

0 β 0
0 0 γ

⎞
⎠
⎛
⎝ 1 ω2 − 1

2ω

− 1
2ω 1 ω2

ω2 − 1
2ω 1

⎞
⎠

RL

: Case II. (5.3)

The matrix M†
E ME , which is relevant for the calculation of the left-handed mixing, is given in Eq. (4.4).

4 The authors of [39] write in the Conclusions: “As we find different flavor symmetries at different points in moduli space (in particular in six compact dimensions), fields 
that live at different locations in moduli space feel a different amount of flavor symmetry. (...) This could lead to a different flavor- and CP -structure for the various sectors 
of the standard model like up- or down-quarks, charged leptons or neutrinos.”

5 The same numerical results are obtained at τR for weight 2 modular forms. Weight 4 modular forms lead also to the same results at τL and τR .
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The neutrino mass matrix represents a sum of the contributions of modular forms of 3, 1 and 1′ , with the terms involving the two 
singlet modular forms entering the sum with arbitrary complex coefficients A and B:

Mν = v2
u

�
(Y (2)

1 )2

⎧⎨
⎩
⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠+

⎡
⎣A

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠− B

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠
⎤
⎦
⎫⎬
⎭ , (5.4)

where the constants of the two terms in Eq. (4.13) are absorbed in the parameters A and B .
The two models with charged lepton mass matrix ME specified in Eqs. (5.2) and (5.3) and neutrino mass matrix Mν given in Eq. (5.4), 

as we will show, lead to the same phenomenology.
As an alternative to the models with two moduli τ � and τ ν , we present next a model with one modulus τ ν and one flavon, breaking 

the modular symmetry to ZS
2 and ZT

3 in the neutrino and charged lepton sectors respectively and leading to the charged lepton and 
neutrino mass matrices given in Eqs. (5.2) and (5.4). We introduce an A4 triplet flavon φ with modular weight kφ = −3. In contrast to 
Eq. (5.1), the modular weights of the LH lepton doublet and RH charged lepton fields are chosen as follows:

kL = 2 , keR = kμR = kτR = 1. (5.5)

As a consequence, the modular functions Y (i) do not couple to the charged lepton sector, but couple to the neutrino sector because 
Y (i) have positive even modular weights. On the other hand, the flavon φ couples only to the charged lepton sector because of its odd 
weight.6 The corresponding terms of the superpotential are the same as given in Eq. (4.1) with the modular form Y replaced by the flavon 
φ. Moreover, we can easily obtain the requisite VEV φ = v E (1, 0, 0)T preserving ZT

3 , v E being a constant parameter, from the potential 
analysis as seen in Refs. [12,13]. Finally, we get the charged lepton and neutrino mass matrices given in Eqs. (5.2) and (5.4). This flavon 
model with one modulus τ ν leads to the same phenomenology as the models considered earlier with two different moduli τ � and τ ν .

5.1. The neutrino mixing

In case I, only the neutrino mass matrix contributes to the PMNS matrix since the charged lepton mass matrix is diagonal. The neutrino 
mass matrix in this case leads to the so called TM2 mixing form of PMNS matrix UPMNS [35,36] where the second column of UPMNS is 
trimaximal:

U I
PMNS =

⎛
⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎠
⎛
⎝ cos θ 0 eiφ sin θ

0 1 0
−e−iφ sin θ 0 cos θ

⎞
⎠ P . (5.6)

Here θ and φ are arbitrary mixing angle and phase, respectively, and P is a diagonal phase matrix containing contributions to the 
Majorana phases of UPMNS. Employing the standard parametrisation of UPMNS (see, e.g., [1]), it is possible to show that the trimaximal 
mixing pattern leads to the following relation between the reactor angle θ13 and θ , between the atmospheric neutrino mixing angle θ23

and θ13 and θ , and sum rules for the solar neutrino mixing angle θ12 and for the Dirac phase δ [35,36] (see also [9,29]):

sin2 θ13 = 2

3
sin2 θ , (5.7)

sin2 θ12 = 1

3 cos2 θ13
, (5.8)

sin2 θ23 = 1

2
+ s13

2

√
2 − 3s2

13

1 − s2
13

cosφ , (5.9)

cos δ = cos 2θ23 cos 2θ13

sin 2θ23 sin θ13 (2 − 3 sin2 θ13)
1
2

. (5.10)

Using the 3σ allowed range of sin2 θ13 from [2] and Eq. (5.7) we get the following constraints on sin θ :

0.17 � | sin θ | � 0.19 . (5.11)

To leading order in s13 we obtain from Eq. (5.9):

1

2
− s13√

2
∼< sin2 θ23 ∼< 1

2
+ s13√

2
, or 0.391 (0.390) ∼< sin2 θ23 ∼< 0.609 (0.611) , (5.12)

where the numerical values correspond to the maximal allowed value of sin2 θ13 at 3σ C.L. for NO (IO) neutrino mass spectrum [2]. The 
interval of possible values of sin2 θ23 in eq. (5.12) is somewhat wider than the 3σ ranges of experimentally allowed values of sin2 θ23 for 
NO and IO spectra given in [2]. Using the 3σ allowed ranges of sin2 θ23 and sin2 θ13 for NO (IO) spectra from [2] and Eq. (5.9) we also get:

−0.640 (−0.508) � cosφ ≤ 1 . (5.13)

6 A similar construction in the charged lepton sector was presented in Ref. [16].
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The phase φ is related to the Dirac phase δ [9]:

sin 2θ23 sin δ = sinφ . (5.14)

The Majorana phase α31/2 of the standard parametrisation of UPMNS [1] receives contributions from the phase φ via [9]

α31

2
= ξ31

2
+ α2 + α3 , (5.15)

where the phase ξ31 will be specified later,

α2 = arg
(− c√

2
− s√

6
eiφ) , α3 = arg

( c√
2

− s√
6

eiφ) , (5.16)

sinα2 = − s√
6

sin φ

s23 c13
= − tan θ13 cos θ23 sin δ , (5.17)

sinα3 = − s√
6

sin φ

c23 c13
= − tan θ13 sin θ23 sin δ . (5.18)

We also have [9]:

sin(φ − α2 − α3) = − sin δ . (5.19)

For further discussion of phenomenology of the neutrino trimaximal mixing (5.6), see, e.g., [9,14,30,37].
In case II, the contribution of the rotation of the charged lepton sector is added to the trimaximal mixing, which is derived from the 

neutrino mass matrix in Eq. (5.4). The mixing matrix in the charged lepton sector is the matrix U E in Eq. (4.6). The PMNS matrix is given 
by:

U II
PMNS = 1

3

⎛
⎝ −1 2 2

2ω −ω 2ω

2ω2 2ω2 −ω2

⎞
⎠

†
⎛
⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎠
⎛
⎝ cos θ 0 eiφ sin θ

0 1 0
−e−iφ sin θ 0 cos θ

⎞
⎠ P . (5.20)

It is straightforward to check that after a substitution θ → θ − π/2, φ → −φ, the PMNS matrix (5.20) can be rewritten as

U II
PMNS =

⎛
⎝−1 0 0

0 eiπ/3 0
0 0 e−iπ/3

⎞
⎠U I

PMNS

⎛
⎝ei(φ−π/2) 0 0

0 1 0
0 0 e−i(φ+π/2)

⎞
⎠ . (5.21)

The leftmost phase matrix does not contribute to the mixing, since its effect can be absorbed into the charged lepton field phases. The 
rightmost phase matrix contributes only to the Majorana phases, therefore the numerical predictions in this case are the same as in Case 
I, apart possibly from the corresponding shift of the Majorana phases. However, as can be shown analytically, and we have confirmed 
numerically, also the predictions for the Majorana phases in Case II coincide with the predictions in case I.

5.2. The neutrino masses and Majorana phases

It follows from (5.4) that the neutrino mass matrix Mν is a linear combination of three basis matrices:

M1 =
⎛
⎝ 2 −1 −1

−1 2 −1
−1 −1 2

⎞
⎠ , M2 =

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠ , M3 =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠ . (5.22)

To diagonalize Mν , it is convenient to rewrite it in a different basis:

M ′
1 = 1√

3
(M2 + 2M3) = 1√

3

⎛
⎝1 0 2

0 2 1
2 1 0

⎞
⎠ ,

M ′
2 = M2 + 1

3
M1 = 1

3

⎛
⎝ 5 −1 −1

−1 2 2
−1 2 2

⎞
⎠ ,

M ′
3 = M2 − 1

3
M1 = 1

3

⎛
⎝1 1 1

1 −2 4
1 4 −2

⎞
⎠ ,

Mν = c
(
M ′

1 + aM ′
2 + bM ′

3

)
,

(5.23)

where a and b are arbitrary complex coefficients and c is the overall scale factor which can be rendered real positive. Mν is diagonalized 
by a unitary matrix U ◦

ν of the following form:
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U ◦
ν = V TBM U13(θ,φ) , (5.24)

so that Mν = (U ◦
ν)∗ Mdiag

ν (U ◦
ν)†, with Mdiag

ν = diag
(
m1e−i2φ1 ,m2e−i2φ2 ,m3e−i2φ3

)
, where mie−i2φi are complex eigenvalues and mi ≥ 0 are 

the neutrino masses.7 Extracting the phases φi from Mdiag
ν , we find:

Mdiag
ν = e−i2φ1 P∗ diag (m1,m2,m3) P∗ , P = diag

(
1, ei(φ2−φ1), ei(φ3−φ1)

)
, (5.25)

where the phases (φ2 − φ1) and (φ3 − φ1) contribute to the Majorana phases α21/2 and α31/2 of the standard parametrisation of the 
PMNS matrix [1]. Thus, the PMNS matrix has the form:

UPMNS = U ◦
ν P = e−i2φ1 V TBM U13(θ,φ) P , (5.26)

where the common phase factor e−i2φ1 is unphysical. The phase ξ31/2 in Eq. (5.15) can be identified now with (φ3 −φ1): ξ31/2 = φ3 −φ1. 
Thus, the Majorana phases α21/2 and α31/2 are given by:

α21

2
= φ2 − φ1 ,

α31

2
= φ3 − φ1 + α2 + α3 . (5.27)

The complex rotation parameters θ and φ are fixed by a choice of a and b, which we will now show explicitly. We find by direct 
calculation that

U ◦ T
ν M ′

1 U ◦
ν =

⎛
⎝−e−iφ sin 2θ 0 cos 2θ

0
√

3 0
cos 2θ 0 eiφ sin 2θ

⎞
⎠ ,

U ◦ T
ν M ′

2 U ◦
ν =

⎛
⎝ 2 cos2 θ 0 eiφ sin 2θ

0 1 0
eiφ sin 2θ 0 2e2iφ sin2 θ

⎞
⎠ ,

U ◦ T
ν M ′

3 U ◦
ν =

⎛
⎝−2e−2iφ sin2 θ 0 e−iφ sin 2θ

0 1 0
e−iφ sin 2θ 0 −2 cos2 θ

⎞
⎠ .

(5.28)

Thus, the neutrino mass matrix Mν is diagonalized when the corresponding linear combination of the off-diagonal entries vanishes, which 
leads to

cos 2θ + aeiφ sin 2θ + be−iφ sin 2θ = 0 ⇔ aeiφ + be−iφ = − cot 2θ. (5.29)

The above condition is equivalent to:

eiφ = ± a∗ − b

|a∗ − b| , cot 2θ = ∓|a|2 − |b|2
|a∗ − b| . (5.30)

It proves convenient to introduce the complex parameter

z = aeiφ − be−iφ = ±|a|2 + |b|2 − 2ab

|a∗ − b| . (5.31)

Using (θ, φ, z) is a reparametrisation of (a, b) determined by (5.30) and (5.31). The inverse parameter transformation is given by

a = e−iφ

2
(z − cot 2θ) ,

b = eiφ

2
(−z − cot 2θ) .

(5.32)

The neutrino mass matrix eigenvalues are the corresponding linear combinations of the diagonal entries in (5.28):

m1e−i(2φ1−φ) = c

(
z − 1

sin 2θ

)
,

m2e−i2φ2 = c
(√

3 − iz sinφ − cot 2θ cosφ
)

,

m3e−i(2φ3+φ) = c

(
z + 1

sin 2θ

)
.

(5.33)

7 In general, the standard labelling of the neutrino masses [1] corresponds to some permutation of the neutrino mass matrix eigenvalues, which affects the order of the 
PMNS matrix columns. However, the only non-trivial permutation of the TM2 matrix columns consistent with the experimental data is (321), which is equivalent to a shift 
θ → θ − π/2 up to an unphysical overall column sign. Hence, we can assume that the order of neutrino mass matrix eigenvalues coincides with the standard labelling 
without loss of generality.
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Fig. 1. Correlations between sin2 θ23 and the sum of neutrino masses ∑mi , between sin2 θ23 and the effective Majorana mass |〈m〉|, and between the Majorana phases α31

and α21 in the case of NO neutrino mass spectrum. See text for further details.

Fitting the mass-squared differences to experimentally observed values, we find the following constraint on z in terms of θ , φ and 
r ≡ �m2

21/�m2
31:

|z − z0|2 = R2, sign (Re z) = ± sign (sin 2θ) , (5.34)

where the plus (minus) sign corresponds to NO (IO) spectrum of neutrino masses, and

z0(θ,φ, r) = 1 − 2r

cos2 φ sin 2θ
+ tanφ

( √
3

cosφ
− cot 2θ

)
i,

R2(θ,φ, r) =
[(√

3 − cot 2θ cosφ
)2 + (1 − 2r)2 − cos2 φ

sin2 2θ

]/
cos4 φ.

(5.35)

Since θ and r are tightly constrained by the experimental data, the set of phenomenologically viable models is effectively described by two 
angles φ and ψ , with the latter being the angle parameter on the circle (5.34), i.e. z = z0 + R eiψ . Scanning through φ and ψ numerically, 
we find that to each set of the experimentally allowed values of the mixing angles and the mass-squared differences corresponds a range 
of models (parameterised by ψ ) with different values of the neutrino masses and the Majorana phases.

We report the numerical results in the case of NO spectrum in Fig. 1. The allowed range of the sum of neutrino masses depends on 
the value of sin2 θ23. The lower bound slightly decreases from 0.097 eV to 0.074 eV as sin2 θ23 runs through its 3σ confidence interval of 
[0.46, 0.58].8 On the other hand, the upper bound is highly dependent on the value of sin2 θ23, and tends to infinity as sin2 θ23 approaches 
0.5, which corresponds to δ = φ = 3π/2. This means that at this point the sum of neutrino masses is allowed to take any value greater 
than its lower bound of 0.093 eV. The dependence of the effective Majorana mass |〈m〉| on sin2 θ23 is qualitatively similar to that of 
the sum of neutrino masses. The maximal value of |〈m〉| ∼= 0.059 eV is practically independent of sin2 θ23 for 0.46 ≤ sin2 θ23 ≤ 0.55. The 
lower bound of |〈m〉| varies from 0.0015 eV to 0.0059 eV for sin2 θ23 in its 3σ range. However, for values of sin2 θ23 from its 3σ range, 
0.46 ≤ sin2 θ23 ≤ 0.58, |〈m〉| can have values in the interval [0.0059, 0.059] eV (see Fig. 1). Most (if not all) of these values may be probed 
in the future neutrinoless double beta decay experiments.

There is also a strong correlation between the Majorana phases. The set of best-fit models corresponds to φ = 1.664π and leads to the 
following values of observables:

r = 0.0299, δm2 = 7.34 · 10−5 eV2, �m2 = 2.455 · 10−3 eV2,

sin2 θ12 = 0.3406, sin2 θ13 = 0.02125, sin2 θ23 = 0.5511,

m1 = 0.0143 − 0.0612 eV, m2 = 0.0166 − 0.0618 eV, m3 = 0.0519 − 0.079 eV,∑
i mi = 0.0828 − 0.2019 eV, |〈m〉| = 0.0029 − 0.0589 eV, δ/π = 1.339,

(5.36)

consistent with the experimental data at 2.59σ C.L.
Similar analysis can be performed in the case of IO neutrino mass spectrum. However, in that case the minimal value of the sum of 

the three neutrino masses is 0.63 eV, and we do not analyse this case further.

6. Summary

We have investigated models of lepton masses and mixing based on modular A4 flavour symmetry broken to residual symmetries in 
the charged lepton and neutrino sectors. The standard case of three lepton families was considered. In a theory based on finite modular 
flavour symmetry not only the matter fields, but also the constants such as the Yukawa couplings transform non-trivially under the 
modular symmetry. These constants are written in terms of modular forms which are holomorphic functions of a complex scalar field 
– the modulus τ . The modular forms have specific transformation properties under the modular symmetry transformations, which are 
characterised by a positive even number k called “weight”, and depend on the order of the finite modular group via their “level” N . In the 

8 We define the number of standard deviations from the χ2 minimum as Nσ =√
�χ2, where �χ2 is a sum of one-dimensional projections �χ2

j , j = 1, 2, 3, 4 from [2]

for the accurately known dimensionless observables sin2 θ12, sin2 θ13, sin2 θ23 and r.



P.P. Novichkov et al. / Physics Letters B 793 (2019) 247–258 257
case of modular A4 symmetry we have N = 3 and for the lowest weight modular forms k = 2. The modular forms transform under the 
usual non-Abelian discrete flavor symmetries as well. Modular forms of weight k and level N span a linear space of finite dimension. There 
exists a basis in this space such that the modular forms form multiplets transforming according to unitary irreducible representations of 
the finite modular group. In the case of modular A4 symmetry, the dimension of the linear space of modular forms of weight k = 2 is 3, 
and one can employ modular forms transforming as the triplet irreducible representation of A4. Modular forms of higher weights can be 
obtained as direct products of the modular forms of weight k = 2.

In lepton flavour models with finite modular symmetry, the modular symmetry must be broken in order to distinguish between the 
electron, muon and tauon, generate three different neutrino masses and reproduce the measured values of the three neutrino mixing 
angles. In the most economical versions of the flavour models the only source of breaking of the modular symmetry is the VEV of the 
modulus τ , 〈τ 〉 �= 0, and there is no need to introduce flavon fields. In the present article we consider both a model without flavons, in 
which the A4 symmetry is broken only by 〈τ 〉, and a model with one triplet flavon field, in which the A4 symmetry is broken by 〈τ 〉 in 
the neutrino sector and by the VEV of the flavon in the charged lepton sector.

The modular group A4 has two generators S and T satisfying the presentation rules: S2 = (ST )3 = T 3 = I , where I is the unit operator. 
Residual symmetries arise whenever the VEV of the modulus τ breaks the considered finite modular group �N , �3 � A4, only partially, 
i.e., the little group (stabiliser) of 〈τ 〉 is non-trivial. There are only 2 inequivalent finite points with non-trivial little groups, namely, 
〈τ 〉 = −1/2 + i

√
3/2 ≡ τL and 〈τ 〉 = i ≡ τC [22]. The first one is the left cusp in the fundamental domain of the modular group, and 

corresponds to a residual symmetry associated with the subgroup ZS T
3 = {I, ST , (ST )2} of the A4 group. The 〈τ 〉 = i point is invariant 

under the S transformation (τ = −1/τ ) of the ZS
2 = {I, S} subgroup of A4. There is also infinite point 〈τ 〉 = i∞ ≡ τT , in which the 

subgroup ZT
3 = {I, T , T 2} of A4 is preserved.

We have constructed phenomenologically viable models of lepton masses and mixing based on modular A4 invariance broken to 
residual symmetries ZT

3 or ZS T
3 and ZS

2 respectively in the charged lepton and neutrino sectors. The neutrino Majorana mass term is 
assumed to be generated by the dimension 5 Weinberg operator. We found that there is no common symmetry value of τ , which leads to 
charged lepton and neutrino masses that are consistent with the data. For the construction of the charged lepton mass matrix, we used 
weight 2 modular forms at τ � = τT (Case I) or at τ � = τL (Case II). At the same time we used weight 4 modular forms at τ ν = τC for 
constructing the neutrino Majorana mass term. Since at present we are not aware of a mechanism that can lead to different values of 
〈τ 〉 in the neutrino and the charged lepton sectors, our analysis only suggests that having trimaximal neutrino mixing in models with 
modular A4 symmetry without flavons might be possible. We also show that, alternatively, trimaximal neutrino mixing can be obtained 
by assuming that 〈τ 〉 breaks the A4 symmetry to ZS

2 in the neutrino sector, while a VEV of a triplet flavon field breaks the A4 symmetry 
to ZT

3 in the charged lepton sector. This alternative construction requires only one value of 〈τ 〉, but leads to the same form of the mass 
matrices, hence the same phenomenology.

The so constructed models involve three real parameters fixed by the values of the three charged lepton masses. The three neutrino 
masses, three neutrino mixing angles and three CPV phases are functions of altogether 2 real constants and two phases. In these models 
the neutrino mixing matrix is of trimaximal mixing form. In Case I it is given by the tri-bimaximal mixing matrix multiplied on the right 
by a unitary rotation in the 1-3 plane, which depends on one angle and one phase. In addition to successfully describing the charged 
lepton masses, neutrino mass-squared differences and the atmospheric and reactor neutrino mixing angles θ23 and θ13, these models 
predict the values of the lightest neutrino mass (i.e., the absolute neutrino mass scale), of the Dirac and Majorana CP violation (CPV) 
phases and correspondingly of the effective neutrinoless double beta decay Majorana mass, as well as the existence of specific correlations 
between i) the values of the solar neutrino mixing angle θ12 and the angle θ13, ii) the values of the Dirac CPV phase δ and of the angle 
θ23, iii) the sum of the neutrino masses and θ23, iv) the neutrinoless double beta decay effective Majorana mass and θ23, and v) between 
the two Majorana phases (Fig. 1). These predictions will be tested with future more precise neutrino oscillation data, with results from 
direct neutrino mass and neutrinoless double beta decay experiments, as well as with improved cosmological measurements.
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Appendix A. Multiplication rule of A4 group

We take

S = 1

3

⎛
⎝−1 2 2

2 −1 2
2 2 −1

⎞
⎠ , T =

⎛
⎝1 0 0

0 ω 0
0 0 ω2

⎞
⎠ , (A.1)

where ω = ei 2
3 π for a triplet. In this base, the multiplication rule of the A4 triplet is⎛

⎝a1
a2
a3

⎞
⎠

3

⊗
⎛
⎝b1

b2
b3

⎞
⎠

3

= (a1b1 + a2b3 + a3b2)1 ⊕ (a3b3 + a1b2 + a2b1)1′

⊕ (a2b2 + a1b3 + a3b1)1′′
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⊕ 1

3

⎛
⎝2a1b1 − a2b3 − a3b2

2a3b3 − a1b2 − a2b1
2a2b2 − a1b3 − a3b1

⎞
⎠

3

⊕ 1

2

⎛
⎝a2b3 − a3b2

a1b2 − a2b1
a3b1 − a1b3

⎞
⎠

3

,

1 ⊗ 1 = 1 , 1′ ⊗ 1′ = 1′′ , 1′′ ⊗ 1′′ = 1′ , 1′ ⊗ 1′′ = 1 . (A.2)

More details are shown in the review [4,5].
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