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Abstract

We study models of lepton masses and mixing based on broken modular invariance. We consider invari-
ance under the finite modular group �4 � S4 and focus on the minimal scenario where the expectation value 
of the modulus is the only source of symmetry breaking, such that no flavons need to be introduced. After 
constructing a basis for the lowest weight modular forms, we build two minimal models, one of which suc-
cessfully accommodates charged lepton masses and neutrino oscillation data, while predicting the values of 
the Dirac and Majorana CPV phases.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is a challenge to understand the origin of the flavour structure of quarks and leptons. Data 
obtained in neutrino oscillation experiments (see, e.g., [1]) has revealed a pattern of two large and 
one small mixing angles in the lepton sector, which is being probed with increasing precision. 
Additionally, a preference for both a neutrino mass spectrum with normal ordering (NO) and for 
a Dirac CP violation (CPV) phase close to maximal have been found in recent global fits (see, 
e.g., [2]).
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A popular approach to explaining the observed mixing patterns consists in assuming the pres-
ence of a spontaneously broken discrete flavour symmetry. Typically, however, such breaking 
requires the introduction of a plethora of scalar fields (flavons) with a set of particularly aligned 
vacuum expectation values (VEVs). Arranging for such an alignment usually calls for the con-
struction of rather “baroque” scalar potentials.

An interesting framework for the construction of flavour models has recently been put forward 
in Ref. [3] and further explored in Ref. [4]. In this setup, invariance under finite subgroups of the 
modular group shapes the relevant mass matrices. These models generalise existing approaches 
to the flavour puzzle, which can be seen as the particular cases of setting modular weights to zero. 
In the most economical versions of these models, the VEV of the modulus τ is the only source 
of symmetry breaking, bypassing the need for flavon fields. Leading-order predictions may be 
derived by treating τ as a spurion.

In the present paper we investigate the consequences of the presence of modular invariance 
in the lepton sector. We focus on the action of the finite modular group �4, which is isomorphic 
to the group of permutations of four objects S4. After reviewing the necessary formalism, we 
explicitly construct the generators of modular forms of level N = 4. We then investigate two 
minimal models where neutrino masses arise from the dimension 5 Weinberg operator and where 
no flavons are introduced.

2. The setup

Following Ref. [3], we consider the infinite groups �(N),

�(N) ≡
{
γ =

(
a b

c d

)∣∣∣∣ a, b, c, d ∈ Z ∧ detγ = 1 ∧ γ =
(

1 0
0 1

)
(mod N)

}
, (1)

where N is a positive integer. The group �(1) � SL(2, Z) is the modular group and �(N > 1) are 
normal subgroups of �(1). Taking the quotient of �(1) and �(2) by {1, −1} we obtain the groups 
of linear fractional transformations, �(N) ≡ �(N)/{1, −1} for N = 1, 2, and �(N > 2) ≡ �(N). 
Elements of �(N) act on a complex variable τ as:

τ → γ τ = aτ + b

cτ + d
, with γ =

(
a b

c d

)
∈ �(N) , (2)

and it can be shown that the upper half-plane {τ ∈ C | Im(τ ) > 0} is mapped to itself under this 
action. The complex variable τ is henceforth restricted to have positive imaginary part.

We are interested in studying physical actions which are invariant under transformations of 
the finite modular groups �N . These discrete groups are obtained from the quotient of two of the 
aforementioned infinite groups, namely �N ≡ �(1)/�(N). The group �(1) is generated by two 
elements S and T acting on τ as

S : τ → −1/τ , S =
(

0 1
−1 0

)
, (3)

T : τ → τ + 1 , T =
(

1 1
0 1

)
, (4)

and satisfying

S2 = (ST )3 = 1 . (5)
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The presentation of the groups �N can be obtained from that of �(1) by extending it with the 
condition T N = 1, see Eq. (1). Thus, the generators S and T of �N obey

S2 = (ST )3 = T N = 1 . (6)

We consider modular-invariant N = 1 global supersymmetric (SUSY) actions [5,6],

S =
∫

d4x d2θ d2θ K(χi,χi; τ, τ ) +
∫

d4x d2θ W(χi; τ) + h.c. , (7)

where χi denotes the set of matter chiral superfields of the theory.2 The physical action S is 
required to be invariant under the action of �N . Under an element of this group, one has the 
following transformations of τ and of the fields χi :⎧⎨

⎩ τ → γ τ = aτ + b

cτ + d

χi → (cτ + d)−ki ρi(γ )χi

, with γ =
(

a b

c d

)
∈ �N , (8)

where ρi are unitary representation matrices and the ki are integers. The fields χi are said to 
carry weight −ki . We require that the superpotential W remains invariant under �N and that the 
Kähler potential is changed at most by a Kähler transformation. To satisfy this last condition, we 
work with the Kähler:

K(χi,χi; τ, τ) = −h�2
0 log(−i(τ − τ)) +

∑
i

|χi |2
(−i(τ − τ))ki

, (9)

with h > 0 and �0 a mass parameter. After τ develops a VEV, it gives rise to kinetic terms for 
the matter fields,

L ⊃
∑

i

∂μχi ∂
μχi

(2 Im〈τ 〉)ki
. (10)

These terms can be made canonical by rescaling the fields χi , which in practice amounts to a 
redefinition of superpotential parameters. The superpotential reads

W(χi; τ) =
∑
n

∑
{i1, ..., in}

(
Y{i1, ..., in}(τ ) χi1 . . . χin

)
1 , (11)

and should remain unchanged under �N .
Given the field transformations in Eq. (8), the functions Y{i1, ..., in}(τ ) in (11) must transform 

under �N as (we omit the indices i1, . . . , in):⎧⎨
⎩ τ → γ τ = aτ + b

cτ + d

Y (τ) → Y(γ τ) = (cτ + d)2kY ρY (γ )Y (τ)

, with γ =
(

a b

c d

)
∈ �N , (12)

where the unitary matrix ρY (γ ) and the non-negative integer kY , as will shortly be shown, must 
satisfy specific conditions.

Holomorphic functions f (τ) satisfying f (γ τ) = (cτ + d)2kf (τ ) with γ ∈ �(N) and k ∈ N0
are said to be modular forms of weight 2k and level N . For k = 0, the modular forms are constant 

2 As in Ref. [3], we turn off gauge interactions and treat τ as a dimensionless spurion.
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functions, while for k < 0 modular forms do not exist. Modular forms are important objects in the 
present construction since, under �N , modular forms of weight 2kY and level N transform in the 
way we require Y(τ) in Eq. (12) to transform. The requirement of invariance of the superpotential 
then implies that the functions Y(τ) are modular forms of level N . Their weights must cancel 
those of the fields in Eq. (11), 2kY − ki1 − . . . − kin = 0. Additionally, the tensor product ρY ⊗
ρi1 ⊗ . . . ⊗ ρi1 should contain at least one singlet. The subscript 1 in Eq. (11) indicates a sum 
(with independent coefficients) of all possible singlets one can extract from this product.

The effects of invariance under �N for N = 2 and N = 3 have been studied in Refs. [3,4]. 
The group �2 is isomorphic to S3 while �3 � A4. In what follows we consider invariance under 
the group �4 � S4, whose generators satisfy the following presentation rules:

S2 = (ST )3 = T 4 = 1 . (13)

For a generic value of 〈τ 〉, �4 will be fully broken. It is important to remark that the leading-
order results obtained with this approach are susceptible to corrections from a small number of 
sources, namely from SUSY breaking and corrections to the Kähler potential. In generalisations 
of our approach where flavons are introduced, additional corrections are expected from vacuum 
(mis)alignment.

2.1. Generators of modular forms of level N = 4

The functions Y(τ) are modular forms of level N = 4 and weight 2kY . The dimension of the 
space of modular forms of level 4 and weight 2k is 4k + 1. Thus, the space of (level 4) forms 
which carry the lowest nontrivial weight, 2k = 2, has dimension 4k + 1 = 5. It proves useful 
to explicitly find a basis {Y1(τ ), . . . , Y5(τ )} of this lowest weight space, since modular forms of 
higher weights can be constructed from homogeneous polynomials in these five modular forms Yi

(i = 1, . . . , 5).
A starting point in this search is the recognition of certain properties of the Dedekind eta 

function η(z ∈C), defined as:

η(z) ≡ q1/24
∞∏

k=1

(1 − qk) , with q = e2πi z . (14)

The η function satisfies η(z+ 1) = eiπ/12 η(z) and η(−1/z) = √−iz η(z), as well as the identity 
(see, e.g., [7]):

η

(
z + 1

2

)
= eiπ/24 η3(2z)

η(z)η(4z)
. (15)

One sees that the set

{ηi} =
{
η

(
τ + 1

2

)
, η (4τ) , η

(τ

4

)
, η

(
τ + 1

4

)
, η

(
τ + 2

4

)
, η

(
τ + 3

4

)}
(16)

respects a certain notion of closure under the action of �4 generators S and T , since under their 
action one has:
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S :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

(
τ + 1

2

)
→ 1√

2

√−iτ η

(
τ + 2

4

)

η (4τ) → 1

2

√−iτ η
(τ

4

)
η

(τ

4

)
→ 2

√−iτ η (4τ)

η

(
τ + 1

4

)
→ e−iπ/6

√−iτ η

(
τ + 3

4

)

η

(
τ + 2

4

)
→ √

2
√−iτ η

(
τ + 1

2

)

η

(
τ + 3

4

)
→ eiπ/6

√−iτ η

(
τ + 1

4

)

, (17)

and

T :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η

(
τ + 1

2

)
→ eiπ/12 η

(
τ + 1

2

)
η (4τ) → eiπ/3 η (4τ)

η
(τ

4

)
→ η

(
τ + 1

4

)

η

(
τ + 1

4

)
→ η

(
τ + 2

4

)

η

(
τ + 2

4

)
→ η

(
τ + 3

4

)

η

(
τ + 3

4

)
→ eiπ/12 η

(τ

4

)

. (18)

The transformations under S of the elements η(τ + 1/2) and η((τ + 2)/4) can be derived by 
making use of the relation (15). Up to multiplicative factors, this set is closed under S and T . 
Furthermore, each element is taken into itself (up to a factor) by the (left-)actions of S2, (ST )3

and T 4. The above suggests that the desired k = 1 modular forms can be written as linear com-
binations of the logarithmic derivatives of the elements of the set {ηi}. We define:

Y(a1, . . . , a6|τ) ≡ d

dτ

(
6∑

i=1

ai logηi(τ )

)

= a1
η′(τ + 1/2)

η(τ + 1/2)
+ 4a2

η′(4τ)

η(4τ)
+ 1

4

[
a3

η′(τ/4)

η(τ/4)
(19)

+ a4
η′((τ + 1)/4)

η((τ + 1)/4)
+ a5

η′((τ + 2)/4)

η((τ + 2)/4)
+ a6

η′((τ + 3)/4)

η((τ + 3)/4)

]
.

The use of logarithmic derivatives allows one to eliminate the multiplicative factors in the trans-
formations (17) and (18) by requiring 

∑
i ai = 0. We are thus left with five independent linear 

combinations of the η′
i/ηi , as expected. Under the action of the generators S and T this function 

transforms as:
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S : Y(a1, . . . , a6|τ) → Y(a1, a2, a3, a4, a5, a6|−1/τ) = τ 2 Y(a5, a3, a2, a6, a1, a4|τ) ,

(20)

T : Y(a1, . . . , a6|τ) → Y(a1, a2, a3, a4, a5, a6|τ + 1) = Y(a1, a2, a6, a3, a4, a5|τ) .

(21)

We find a basis for lowest weight modular forms,

Y1(τ ) ≡ Y(1,1,ω,ω2,ω,ω2|τ) ,

Y2(τ ) ≡ Y(1,1,ω2,ω,ω2,ω|τ) ,

Y3(τ ) ≡ Y(1,−1,−1,−1,1,1|τ) ,

Y4(τ ) ≡ Y(1,−1,−ω2,−ω,ω2,ω|τ) ,

Y5(τ ) ≡ Y(1,−1,−ω,−ω2,ω,ω2|τ) ,

(22)

where ω ≡ e2πi/3. These five linearly independent forms Yi(τ ) arrange themselves into two 
irreducible representations of �4 � S4, a doublet 2 and a triplet 3′,

Y2(τ ) ≡
(

Y1(τ )

Y2(τ )

)
, Y3′(τ ) ≡

⎛
⎝Y3(τ )

Y4(τ )

Y5(τ )

⎞
⎠ . (23)

The multiplets Y2 and Y3′ transform under �4 as indicated in Eq. (12). In Appendix A.1 we 
specify our basis choice for the representation matrices ρ(γ ) of S4 and we list the Clebsch–
Gordan coefficients for this basis in Appendix A.2. In Appendix B we give the q-expansions of 
(combinations of) the five functions defined in Eq. (22).

Multiplets transforming in the other representations of S4 can be obtained from tensor prod-
ucts of Y2 and Y3′ . The representations 1 and 3 arise at weight 2k = 4, while the 1′ representation 
first arises at weight 6. Since we can form 15 combinations YiYj , one may expect 15 indepen-
dent (level 4) forms at weight 2k = 4. However, the dimension of the space of these forms is 
4k + 1 = 9. In fact, we find 6 constraints between the several YiYj , which we list in Appendix C. 
These constraints reduce the 15 potentially independent combinations to 9 truly independent 
ones, which are organised in the following representations of S4:

Y
(4)
1 = Y1Y2 ∼ 1 ,

Y
(4)
2 = (Y 2

2 , Y 2
1 )T ∼ 2 ,

Y
(4)
3 = (Y1Y4 − Y2Y5, Y1Y5 − Y2Y3, Y1Y3 − Y2Y4)

T ∼ 3 ,

Y
(4)

3′ = (Y1Y4 + Y2Y5, Y1Y5 + Y2Y3, Y1Y3 + Y2Y4)
T ∼ 3′ .

(24)

3. Phenomenology

To understand how invariance under the subgroup �4 of the modular group may play a role 
in determining lepton masses and mixing, one needs to specify the S4 representations ρi and the 
modular weights −ki of the relevant fields χi , which transform as indicated in Eq. (8). In what 
follows, we search for choices of representations and weights which are in line with a certain 
notion of minimality.
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Table 1
Transformation properties of the relevant MSSM chiral superfields under the 
gauge group and under the �4 discrete modular symmetry. The ρi denote the 
representations of the fields transforming under S4 and the ki correspond to 
(minus) their modular weights.

Hu Hd L Ec
1,2,3

SU(2)L × U(1)Y (2,1/2) (2,−1/2) (2,−1/2) (1,1)

�4

{
ρi ρd ρu ρL ρ1,2,3
ki ku kd kL k1,2,3

In a minimal approach, the superpotential W includes only the Yukawa interactions of the 
Minimal Supersymmetric Standard Model (MSSM) and the SUSY Weinberg operator as the 
origin of (Majorana) neutrino masses:

W = α
(
Ec LHd fE(Y2, Y3′)

)
1 + g

�

(
LHu LHu fW(Y2, Y3′)

)
1 , (25)

where, as mentioned before, different coefficients are implied for different singlet combinations. 
No flavons are present in the above superpotential. Recall also that the functions Y2 = Y2(τ ) and 
Y3′ = Y3′(τ ) have definite transformation properties under �4. After the breaking of modular 
symmetry we obtain:

W → λij Ec
i (Lj Hd) + cij (Li Hu) (Lj Hu) , (26)

which leads to the Lagrangian terms

L ⊃ −1

2

(
Mν

)
ij

νc
iR νjL − (

Me

)
ij

eiL ejR + h.c. , (27)

written in terms of four-spinors, where3 Me ≡ vd λ† and Mν ≡ 2 c v2
u, with 〈Hu〉 = (0, vu)

T and 
〈Hd〉 = (vd, 0)T .

The generic assignments of representations and weights to the MSSM fields present in 
Eq. (25) are defined in Table 1. We will keep the Higgs sector assignments trivial for sim-
plicity. We will also take lepton doublets (singlets) to transform as three (one) dimensional 
representations of S4, as is customary. Minimal models are then built by adhering to the fol-
lowing guidelines:

• No flavons are introduced,
• Neutrino masses arise from the dimension 5 Weinberg operator,
• Higgs multiplets transform trivially ρu,d ∼ 1 under �4, with ku,d = 0,
• Lepton SU(2)L doublets transform as a triplet ρL ∼ 3 or 3′ under �4,
• Lepton SU(2)L singlets transform as singlets ρ1,2,3 ∼ 1 or 1′ under �4, and
• Lowest possible weights are chosen such that a rank 3 charged-lepton mass matrix Me is 

possible without imposing additional “shaping” symmetries.

3 In the decoupling limit of the MSSM (e.g. when the heavier Higgs scalar states have masses exceeding ∼ 1 TeV), the 
lightest Higgs boson couplings to charged leptons (and, for that matter, also to quarks) differ insignificantly from those 
of the Standard Model Higgs.
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Table 2
Transformation properties of chiral superfields under �4, for the minimal 
model with kL = 1 (model I). Both lines of lepton assignments lead to the 
same results.

Hu Hd L Ec
1 Ec

2 Ec
3

ρi 1 1
3 1′ 1 1′
3′ 1 1′ 1

ki 0 0 1 1 3 3

Given the above conditions, we further expand the superpotential as:

W =
∑

i

αi

(
Ec

i LHd Y
ai

2 Y
bi

3′
)

1 + g

�

(
LHu LHu Y c

2 Yd
3′
)

1 , (28)

where the integer, non-negative exponents of the modular forms satisfy 2(ai + bi) = kL + ki +
kd = kL + ki and 2(c + d) = 2kL + 2ku = 2kL. In order to obtain some nontrivial structure in the 
Weinberg operator, we assume that kL > 0. We explore in what follows two minimal choices of 
weights and representations, corresponding to kL = 1 (model I) and kL = 2 (model II).

3.1. Model I (kL = 1)

The choices kL = 1 and ku = 0 along with the fact that ρL ∼ 3 or ρL ∼ 3′ are enough to 
determine the structure of the Weinberg operator and hence of the neutrino mass matrix Mν .

On the charged lepton side, the cancellation-of-weights condition 2(ai + bi) = 1 + ki implies 
that the ki are odd, ki ∈ {−1, 1, 3, . . .}. To avoid having rank(λ) < 3, one must make sure that 
different singlets can be extracted from each term in W . If two lepton singlet superfields share the 
same weight and representation under �4, the rank of the charged-lepton mass matrix is lower 
than its possible maximum. If some ki = −1, then ai = bi = 0 and no singlet can be formed 
for that generation. If instead ki = 1, a singlet can only be formed if ρi ∼ 1′ (1) when ρL ∼ 3
(3′). We summarise in Table 2 the weight and representation assignments of the minimal model 
allowing for rank(λ) = 3.

Based solely on the weight assignments of Table 2, the superpotential would read:

W I = α1
(
Ec

1 LY2
)

1 Hd + α2
(
Ec

1 LY3′
)

1 Hd

+ β1
(
Ec

2 LY 2
2
)

1 Hd + β2
(
Ec

2 LY2 Y3′
)

1 Hd + β3
(
Ec

2 LY 2
3′
)

1 Hd

+ γ1
(
Ec

3 LY 2
2
)

1 Hd + γ2
(
Ec

3 LY2 Y3′
)

1 Hd + γ3
(
Ec

3 LY 2
3′
)

1 Hd

+ g1

�

(
L2 Y2

)
1 H 2

u + g2

�

(
L2 Y3′

)
1 H 2

u .

(29)

Making use of the Clebsch–Gordan coefficients given in Appendix A.2 and of the �4 � S4 rep-
resentation choices in Table 2 we find that only some terms in Eq. (29) contain non-zero singlets. 
We are left with

W I = α
(
Ec

1 LY3′
)

1 Hd + β
(
Ec

2 LY2 Y3′
)

1 Hd + γ
(
Ec

3 LY2 Y3′
)

1 Hd + g1

�

(
L2 Y2

)
1 H 2

u ,

(30)



300 J.T. Penedo, S.T. Petcov / Nuclear Physics B 939 (2019) 292–307
where α ≡ α2, β ≡ β2 + β3 and γ ≡ γ2. It is interesting to note that the constraints listed in 
Appendix C imply that the singlets of the β2 and β3 terms coincide. This superpotential gives 
rise to the mass matrices:

M I
ν = 2g1v

2
u

�

⎛
⎝ 0 Y1 Y2

Y1 Y2 0
Y2 0 Y1

⎞
⎠ , (31)

and

M I
e = vd

⎛
⎝ α Y3 α Y5 α Y4

β (Y1Y4 − Y2Y5) β (Y1Y3 − Y2Y4) β (Y1Y5 − Y2Y3)

γ (Y1Y4 + Y2Y5) γ (Y1Y3 + Y2Y4) γ (Y1Y5 + Y2Y3)

⎞
⎠

†

. (32)

Specifying values for the parameters α, β , γ , and τ determines both mass matrices up to global 
factors,4 and hence determines mass ratios as well as lepton mixing.

After performing a numerical search, it seems this minimal model does not allow to reproduce 
known data. As a benchmark, we find the point α = 0.1, β = 1, γ = 2 × 10−4, and τ = 0.1 +
0.985i, which accommodates a neutrino mass spectrum with inverted ordering, but does not 
provide an acceptable value for sin2 θ12. For this point, we have

me

mμ

� 0.0045 , sin2 θ12 � 0.497 , δ � 1.47π ,

mμ

mτ

� 0.0522 , sin2 θ13 � 0.021 , α21 � 1.00π ,

r � 0.0308 , sin2 θ23 � 0.496 , α31 � 0.53π .

(33)

The obtained predictions are to be compared with neutrino oscillation data and information on 
charged-lepton mass ratios, which we collect in Table 3.

3.2. Model II (kL = 2)

As before, the choices kL = 2 and ku = 0 along with the fact that ρL ∼ 3 or ρL ∼ 3′ are 
enough to determine the structure of Mν .

On the charged lepton side, the cancellation-of-weights condition 2(ai + bi) = 2 + ki implies 
that the ki are even, ki ∈ {−2, 0, 2, . . .}. If some ki = −2, then again ai = bi = 0 and no singlet 
can be formed for that generation. If instead ki = 0, a singlet can only be formed if ρi ∼ 1′ (1) 
when ρL ∼ 3 (3′). We summarise in Table 4 the weight and representation assignments of the 
minimal model allowing for rank(λ) = 3.

With the weight assignments of Table 4, the charged-lepton Yukawa part of the superpotential 
matches that of the case kL = 1, leading to the same charged-lepton mass matrix as the one given 
in Eq. (32), i.e. M II

e = M I
e .

The Weinberg operator part of the superpotential reads instead:

W II ⊃ g1

�

(
L2 Y 2

2
)

1 H 2
u + g2

�

(
L2 Y2 Y3′

)
1 H 2

u + g3

�

(
L2 Y 2

3′
)

1 H 2
u . (34)

4 The parameters α, β and γ can be made real through the rephasing of the singlet fields Ec
i

. One of them may be 
taken outside of the matrix MI

e as a global factor. It is assumed that the correct charged-lepton mass scale is reproduced 
by an appropriate choice of this global factor, after vd has been specified.
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Table 3
Best-fit values and 1σ ranges for neutrino oscillation parameters, obtained 
from the global analysis of Ref. [2], and for charged-lepton mass ratios, given 
at the scale 2 × 1016 GeV with the tanβ averaging described in [3], obtained 
from Ref. [8]. The parameters entering the definition of r are δm2 ≡ m2

2 − m2
1

and �m2 ≡ m2
3 − (m2

1 + m2
2)/2. The best-fit value and 1σ range of δ did not 

drive the numerical searches here reported.

Parameter Best-fit value and 1σ range

me/mμ 0.0048 ± 0.0002
mμ/mτ 0.0565 ± 0.0045

NO IO
δm2/(10−5 eV) 7.34+0.17

−0.14

|�m2|/(10−3 eV) 2.455+0.035
−0.032 2.441+0.033

−0.035

r ≡ δm2/|�m2| 0.0299 ± 0.0008 0.0301 ± 0.0008

sin2 θ12 0.304+0.014
−0.013 0.303+0.014

−0.013

sin2 θ13 0.0214+0.0009
−0.0007 0.0218+0.0008

−0.0007

sin2 θ23 0.551+0.019
−0.070 0.557+0.017

−0.024

δ/π 1.32+0.23
−0.18 1.52+0.14

−0.15

Table 4
Transformation properties of chiral superfields under �4, for the minimal 
model with kL = 2 (model II). Both lines of lepton assignments lead to the 
same results.

Hu Hd L Ec
1 Ec

2 Ec
3

ρi 1 1
3 1′ 1 1′
3′ 1 1′ 1

ki 0 0 2 0 2 2

The first term in Eq. (34) contributes with two different non-zero singlets, since L2 ∼ 1 ⊕ 2 ⊕
3 ⊕ 3′ with vanishing antisymmetric 3′, Y 2

2 ∼ 1 ⊕ 1′ ⊕ 2 with vanishing antisymmetric 1′, and 
singlets may be obtained from both the 1 ⊗ 1 and the 2 ⊗ 2 combinations. The second term 
contributes with a third singlet, as Y2Y3′ ∼ 3 ⊕ 3′ and thus a singlet is obtained from the 3 ⊗ 3
combination. The third term contains all the three singlets: 1 ⊗ 1, 2 ⊗ 2, and 3 ⊗ 3. Due to the 
constraints in Appendix C, there are only three independent singlets which enter the Weinberg 
operator part of W II. Explicitly, using the Clebsch–Gordan coefficients of Appendix A.2:

W II ⊃ 1

�

[
g Y1Y2(L

2
1 + 2L2L3)

+ g′ (Y 2
1 (L2

2 + 2L1L3) + Y 2
2 (L2

3 + 2L1L2)
)

+ g′′ ((Y1Y4 − Y2Y5)(L
2
1 − L2L3) + (Y1Y5 − Y2Y3)(L

2
2 − L1L3)

+ (Y1Y3 − Y2Y4)(L
2
3 − L1L2)

)]
H 2

u ,

(35)
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which gives rise to the mass matrix:

M II
ν = 2g′v2

u

�

[⎛
⎝(g/g′)Y1Y2 Y 2

2 Y 2
1

Y 2
2 Y 2

1 (g/g′)Y1Y2

Y 2
1 (g/g′)Y1Y2 Y 2

2

⎞
⎠

+ 1

2

g′′

g′

⎛
⎝ 2(Y1Y4 − Y2Y5) −(Y1Y3 − Y2Y4) −(Y1Y5 − Y2Y3)

−(Y1Y3 − Y2Y4) 2(Y1Y5 − Y2Y3) −(Y1Y4 − Y2Y5)

−(Y1Y5 − Y2Y3) −(Y1Y4 − Y2Y5) 2(Y1Y3 − Y2Y4)

⎞
⎠

]
.

(36)

Specifying values for the parameters α, β , γ , g/g′, g′′/g′ and τ determines both mass matri-
ces up to global factors,5 and hence determines mass ratios as well as lepton mixing.

Through numerical search, we find that this minimal model is successful in accommodating 
the data. We find a first benchmark, α = 0.1, β = 1, γ = 2.3 × 10−4, g/g′ = −0.99 − 0.52i, 
g′′/g′ = 0.15 −0.06i, and τ = 0.04 +1.11i, which admits a neutrino mass spectrum with normal 
ordering, with

me

mμ

� 0.0048 , sin2 θ12 � 0.288 , δ � 0.88π ,

mμ

mτ

� 0.0593 , sin2 θ13 � 0.021 , α21 � 1.46π ,

r � 0.0299 , sin2 θ23 � 0.553 , α31 � 1.09π .

(37)

These results are in good agreement with the values of Table 3, except in what regards the exper-
imental hint of δ ∼ 3π/2.

We find a second benchmark, α = 0.11, β = 1, γ = 2.3 × 10−4, g/g′ = −6.2 − 1.5i, g′′/g′ =
−0.03 + 0.03i, and τ = −0.09 + 0.96i, also admitting a neutrino mass spectrum with normal 
ordering, for which the values of δ and of other measured parameters are less than 2σ away from 
the best-fit values of Table 3:

me

mμ

� 0.0048 , sin2 θ12 � 0.292 , δ � 1.64π ,

mμ

mτ

� 0.0560 , sin2 θ13 � 0.021 , α21 � 0.10π ,

r � 0.0298 , sin2 θ23 � 0.493 , α31 � 1.10π .

(38)

For this second benchmark, in order to fit the individual mass-squared differences δm2 and �m2, 
we set the global factor 2g′v2

u/� � 0.0037 eV. In this case, the neutrino masses read m1 �
0.042 eV, m2 � 0.043 eV, and m3 � 0.066 eV. A distinctive feature of this framework is the 
prediction of the Dirac and Majorana CPV phases. One is then in a position to extract a prediction 
for the effective Majorana mass |〈m〉| which controls the rate of neutrinoless double beta decay. 
Using the values in (38) we find |〈m〉| � 0.042 eV. This value can be probed by new-generation 
experiments which are working towards the |〈m〉| ∼ 10−2 eV frontier. We note that, for this 
model, a good fit of the neutrino mass and mixing data is possible also in the case of IO spectrum, 
which is however strongly disfavoured by the data with respect to the NO spectrum [2].

In this setup, the correlations between pairs of mixing angles, phases and mass ratios are non-
trivial, as is suggested, in particular, by comparing the predictions for sin2 θ23 and δ in Eqs. (37)

5 As before, α, β and γ can be made real and one of them may be taken outside of MII
e = MI

e as a global factor.
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and (38). The existence and the success of the above benchmark warrants further exploration of 
the present framework.

4. Summary and conclusions

In the present article we have explored the consequences of the presence of modular invariance 
in the lepton sector via the action of the finite modular group �4 � S4 which is a subgroup of 
SL(2, Z).

Fields carrying a non-trivial modular weight transform with a scale factor in addition to the 
usual unitary rotation. To build an invariant theory under such transformations, special functions 
with the appropriate scaling properties need to be present in order to provide compensating fac-
tors. These functions are modular forms. For a fixed scaling (modular) weight, they make up a 
finite-dimensional space. In section 2.1, we have detailed the construction of a basis {Y1, . . . , Y5}
for the lowest weight modular forms of level 4 (corresponding to �4 � S4), necessary to the 
generation of higher weight forms. We have additionally shown how the weight 2 and 4 forms 
organise themselves into different multiplets of S4, and that they satisfy non-trivial constraints 
which guarantee the correct dimensionality of higher-weight spaces (see Appendix C).

We have then studied supersymmetric models of lepton masses and mixing based on the 
breaking of the �4 � S4 modular invariance. Focusing on minimality as a guiding principle, 
we considered models where neutrino Majorana masses have their origin in the Weinberg op-
erator and where no flavons are introduced. The expectation value of the modulus τ is the only 
source of symmetry breaking.

We study two minimal models, differing in the weight −kL of the lepton doublet under modu-
lar transformations. While the first model (model I, kL = 1) does not seem to be able to reproduce 
the data, the second model (model II, kL = 2) successfully accommodates charged-lepton masses 
and neutrino oscillation data. Deviations of individual parameters from best-fit values are found 
to be below the 2σ level for the benchmark of Eq. (38).

Since in the present scheme the mass matrices are fully determined by the VEV 〈τ 〉 and 
by superpotential parameters – see Eqs. (31), (32) and (36) – the values of the Dirac and Ma-
jorana CPV phases can be predicted. For the benchmark of Eq. (38), which corresponds to 
a neutrino mass spectrum with normal ordering, a prediction for the effective Majorana mass 
|〈m〉| � 0.042 eV is possible. This value can be probed by new-generation experiments working 
towards the |〈m〉| ∼ 10−2 eV frontier.

The predictions here derived are expected to hold at leading order. There is a limited number 
of sources for deviations, namely SUSY breaking and Kähler corrections. The predictive power 
of the present approach and the existence of a successful benchmark (i.e. a “proof of existence”) 
make this model building avenue worthy of future study.

Acknowledgements

We would like to thank M. Tanimoto for useful discussions. This work was supported in 
part by the INFN program on Theoretical Astroparticle Physics (TASP), by the European Union 
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants 
674896 and 690575 (J.T.P. and S.T.P.), and by the World Premier International Research Center 
Initiative (WPI Initiative), MEXT, Japan (S.T.P.).



304 J.T. Penedo, S.T. Petcov / Nuclear Physics B 939 (2019) 292–307
Appendix A. S4 group theory

A.1. Presentation and basis

S4 is the symmetric group of permutations of four objects. It contains 4! = 24 elements and 
admits five irreducible representations 1, 1′, 2, 3 and 3′ (see, e.g., [9]). While a presentation in 
terms of three generators is common, it proves convenient to consider here a presentation given 
in terms of two generators S and T (cf. Eq. (13)),

S2 = (ST )3 = T 4 = 1 . (A.1)

We will use the group theoretical results of Ref. [10]. The two S4 generators therein, which we 
denote here with primes, satisfy S′ 4 = T ′ 3 = (S′T ′ 2)2 = 1. We define S ≡ S′T ′ 2, T ≡ S′, which 
imply the inverse relations S′ = T and T ′ = ST . Then, S and T furnish the presentation (A.1) of 
S4, useful to the discussion of modular invariance. Making use of this identification and of the 
results in Appendix A of Ref. [10], we find an explicit basis for the irreducible representations 
of S4, which we employ in our discussion:

1 : ρ(S) = 1, ρ(T ) = 1 , (A.2)

1′ : ρ(S) = −1, ρ(T ) = −1 , (A.3)

2 : ρ(S) =
(

0 ω

ω2 0

)
, ρ(T ) =

(
0 1
1 0

)
, (A.4)

3 : ρ(S) = 1

3

⎛
⎝ −1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

⎞
⎠ , ρ(T ) = 1

3

⎛
⎝ −1 2ω 2ω2

2ω 2ω2 −1
2ω2 −1 2ω

⎞
⎠ , (A.5)

3′ : ρ(S) = −1

3

⎛
⎝ −1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2

⎞
⎠ , ρ(T ) = −1

3

⎛
⎝ −1 2ω 2ω2

2ω 2ω2 −1
2ω2 −1 2ω

⎞
⎠ , (A.6)

where as usual ω = e2πi/3.

A.2. Clebsch–Gordan coefficients

After establishing a dictionary between presentations (see previous subsection), we can di-
rectly use the Clebsch–Gordan coefficients from Ref. [10], since no change of basis on the 
representation matrices has been performed. We reproduce the coefficients here for complete-
ness. Entries of each multiplet entering the tensor product are denoted by αi and βi .

1 ⊗ r = r ∼ α βi

1′ ⊗ 1′ = 1 ∼ α β

1′ ⊗ 2 = 2 ∼
(

α β1
−α β2

)

1′ ⊗ 3 = 3′ ∼
⎛
⎝α β1

α β2
α β3

⎞
⎠

1′ ⊗ 3′ = 3 ∼
⎛
⎝α β1

α β2
α β3

⎞
⎠

(A.7)
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2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 ∼ α1β2 + α2β1

1′ ∼ α1β2 − α2β1

2 ∼
(

α2 β2
α1 β1

)

2 ⊗ 3 = 3 ⊕ 3′

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 ∼
⎛
⎝α1 β2 + α2 β3

α1 β3 + α2 β1
α1 β1 + α2 β2

⎞
⎠

3′ ∼
⎛
⎝α1 β2 − α2 β3

α1 β3 − α2 β1
α1 β1 − α2 β2

⎞
⎠

2 ⊗ 3′ = 3 ⊕ 3′

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

3 ∼
⎛
⎝α1 β2 − α2 β3

α1 β3 − α2 β1
α1 β1 − α2 β2

⎞
⎠

3′ ∼
⎛
⎝α1 β2 + α2 β3

α1 β3 + α2 β1
α1 β1 + α2 β2

⎞
⎠

(A.8)

3 ⊗ 3 = 3′ ⊗ 3′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 ∼ α1β1 + α2β3 + α3β2

2 ∼
(

α2β2 + α1β3 + α3β1
α3β3 + α1β2 + α2β1

)

3 ∼
⎛
⎝2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1
2α2β2 − α1β3 − α3β1

⎞
⎠

3′ ∼
⎛
⎝α2β3 − α3β2

α1β2 − α2β1
α3β1 − α1β3

⎞
⎠

(A.9)

3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1′ ∼ α1β1 + α2β3 + α3β2

2 ∼
(

α2β2 + α1β3 + α3β1
−α3β3 − α1β2 − α2β1

)

3 ∼
⎛
⎝α2β3 − α3β2

α1β2 − α2β1
α3β1 − α1β3

⎞
⎠

3′ ∼
⎛
⎝2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1
2α2β2 − α1β3 − α3β1

⎞
⎠

(A.10)

Appendix B. q-expansions of lowest weight N = 4 modular forms

The five linearly independent modular forms in Eq. (22) admit the expansions:

− 8i

3π
Y1(τ ) = 1 − 24y − 72y2 + 288y3 + 216y4 + . . . , (B.1)

− 8i
Y2(τ ) = 1 + 24y − 72y2 − 288y3 + 216y4 + . . . , (B.2)
3π
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4i

π
Y3(τ ) = 1 − 8z + 64z3 + 32z4 + 192z5 − 512z7 + 384z8 + . . . , (B.3)

2i

π
[Y4(τ ) + Y5(τ )] = 1 + 4z − 32z3 + 32z4 − 96z5 + 256z7 + 384z8 + . . . , (B.4)

i

π
[Y4(τ ) − Y5(τ )] = 2

√
3 z

(
1 + 8z2 − 24z4 − 64z6 + . . .

)
, (B.5)

where y ≡ i
√

q/3, z ≡ eiπ/4(q/4)1/4, and as usual q = e2πi τ .

Appendix C. Forms of higher weight and constraints

Through tensor products of Y2 and Y3′ , one can find the multiplets:

Y
(4)
1 = Y1Y2 ∼ 1 ,

Y
(4)
1

′ = Y 2
3 + 2Y4Y5 ∼ 1 ,

Y
(4)
2 = (Y 2

2 , Y 2
1 )T ∼ 2 ,

Y
(4)
2

′ = (Y 2
4 + 2Y3Y5, Y 2

5 + 2Y3Y4)
T ∼ 2 ,

Y
(4)
3 = (Y1Y4 − Y2Y5, Y1Y5 − Y2Y3, Y1Y3 − Y2Y4)

T ∼ 3 ,

Y
(4)
3

′ = (Y 2
3 − Y4Y5, Y 2

5 − Y3Y4, Y 2
4 − Y3Y5)

T ∼ 3 ,

Y
(4)

3′ = (Y1Y4 + Y2Y5, Y1Y5 + Y2Y3, Y1Y3 + Y2Y4)
T ∼ 3′ .

(C.1)

Not all of these multiplets are expected to be independent. Indeed, from the q-expansions of the 
Yi(τ ) given in Appendix B we find 6 constraints between the 15 different Yi(τ )Yj (τ ) products:

1

3

(
Y 2

3 + 2Y4Y5
)= Y1Y2 , − 1√

3

(
Y 2

3 − Y4Y5
) = Y1Y4 − Y2Y5 ,

1

3

(
Y 2

4 + 2Y3Y5
)= Y 2

2 , − 1√
3

(
Y 2

5 − Y3Y4
) = Y1Y5 − Y2Y3 ,

1

3

(
Y 2

5 + 2Y3Y4
)= Y 2

1 , − 1√
3

(
Y 2

4 − Y3Y5
) = Y1Y3 − Y2Y4 .

(C.2)

These constraints imply that Y (4)
1 and Y (4)

1
′
, Y (4)

2 and Y (4)
2

′
, and Y (4)

3 and Y (4)
3

′
in Eq. (C.1) denote 

the same multiplets, and only one of each pair is kept in our discussion, cf. Eq. (24).
In Ref. [3] it is argued that the presence of a covariant constraint similar to the ones given in 

Eq. (C.2) signals the non-linear realisation of the discrete symmetry.
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