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We study the dynamical behavior of doped electronic systems subject to a global ramp of the repulsive Hub-
bard interaction. We start with formulating a real-time generalization of the fluctuation-exchange approxima-
tion. Implementing this numerically, we investigate the weak-coupling regime of the Hubbard model both in the
electron-doped and hole-doped regimes. The results show that both local and nonlocal (momentum-dependent)
observables evolve toward a thermal state, although the temperature of the final state depends on the ramp du-
ration and the chemical doping. We further reveal a momentum-dependent relaxation rate of the distribution
function in doped systems, and trace back its physical origin to the anisotropic self-energies in the momentum
space.

PACS numbers: 71.10.Hf, 71.30.+h, 71.27.+a, 74.72.Gh, 74.72.Ek

I. INTRODUCTION

There are increasing fascinations toward optimizing and
controlling the properties of correlated systems in both ex-
perimental and theoretical disciplines. In particular, driv-
ing a system out of equilibrium by applying time-dependent
modulations is a powerful avenue for realizing new quantum
states. When the time-translational symmetry is broken in a
nonequilibrium pathway, the initial thermal state can trans-
form into a different state in a nonthermal fashion, since the
time-dependent drive incorporates the excitations of the cor-
related system. At short times, different non-thermal tran-
sients can emerge depending on the initial correlations and the
preparation protocol. In the long-time limit, it is intriguing to
see whether the system retrieves a thermal state or whether
new correlations are built up which realize a long-lived non-
thermal state. Achieving comprehensive insights requires, as
discussed in the literature, incorporating details of the system
including the interplay of various degrees of freedom1–5 lat-
tice structures,6,7 and doping concentrations8.

In low dimensional systems where strong nonlocal quantum
correlation play a significant role, such as, e.g. layered corre-
lated oxides or heterostructures, the doping level is a key con-
trol parameter, which leads to different regimes where differ-
ent scattering mechanisms dominate.9,10 This should leave fin-
gerprints on the measured observables. In particular, the time-
resolved optical conductivity after an excitation often shows
a single or double exponential decay,11 measuring Fermi-
surface properties, i.e., the momentum-dependent distribution
function, and reveal more detailed information and display
distinct temporal relaxation responses at different points on
the Fermi surface.4,5,12–14 Understanding the details of these
is a formidable challenge due to the interplay between various
degrees of freedom in a small energy range10,15, and dealing
with the complexity of, usually, 2D layered structures of these

multi-band (-orbital) correlated materials. Nevertheless, it
is imperative to understand the relaxation dynamics of doped
systems, where the electron-electron interaction governs the
physics.

From a theoretical perspective, even when we focus on the
on-site (Hubbard) repulsive interaction, investigation of the
problem is quite challenging due to the nonequilibrium nature
of the problem.

Incorporating spatially nonlocal correlations in two di-
mensions is computationally demanding as in nonequilib-
rium dynamical cluster approximation (DCA)16, diagram-
matic approaches17,18, and variational Monte Carlo method19,
while the well-developed one-dimensional20,21 and infinite-
dimensional22 nonequilibrium algorithms cannot directly treat
two-dimensional systems. A large number of investigations
have been devoted to understanding the long-time dynamics
of fermionic systems after a global ramp of interaction pa-
rameter, at half filling.16,17,23–25 In these attempts, the long-
time thermalization occurs for nearly all the weak electron-
electron coupling regimes, which sometimes supersedes in-
termediate pre-thermalization plateaus.17,23,25 Away from the
half-filling, on the other hand, investigations of doped sys-
tems in infinite dimensions reveal that the observed sharp
dynamical transition from an exponential relaxation in the
weak-coupling regime to an oscillating behavior in the strong-
coupling regime is smoothened into a crossover between these
two regimes.25 In two dimensions, targeting half-filled sys-
tems reveal a momentum-dependent relaxation rate of the
single-particle momentum distribution after a sudden quench
of the electron-electron interaction.16,17 Thus the question re-
mains as to (i) how these dynamical behaviors vary in doped
systems, (ii) what would be the effect of finite ramp durations
(as opposed to sudden quenches), and (iii) to what extent the
relaxation dynamics depends on the momenta in the Brillouin
zone.
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In the present work we precisely address this question in
both the electron-doped and hole-doped systems. We em-
ploy an interaction ramp protocol on a two-dimensional sys-
tem with repulsive electron-electron interaction. We formu-
late the real-time generalization of the fluctuation exchange
approximation (FLEX)26–29. It is known that this algorithm
requires vertex corrections in the intermediate and strong-
coupling regimes where the Mott insulator starts to emerge.30

Also, underdoped systems exhibit, at low temperatures, pseu-
dogap physics which requires an extension of the FLEX.31

We thus limit ourselves to the weak-coupling regime and at
temperatures where pseudogap does not emerge. We show
that there exist a rapid local thermalization of the system,
where the ramp duration determines the temperature. More
importantly, using the nonequilibrium FLEX, we can analyze
the momentum-dependent evolution of both single- and two-
particle observables. Namely, our results exhibit a doping-
dependent nodal-antinodal dichotomy in the relaxation rate of
the single-particle momentum distributions.

This paper is organized as follows. We define the model
Hamiltonian and present the proposed numerical algorithm in
Sec. II. In Sec. III we present numerical results and discuss
the underlying physics. Section IV is devoted to a summary
and conclusions of this work.

II. MODEL AND METHOD

A. Model Hamiltonian

The repulsive one-band Hubbard model on the square lat-
tice is defined as

H =−
∑
ij,σ

(
v|i−j|c

†
iσcjσ + h.c.

)
+
∑
i

U(t)

(
ni↑ −

1

2

)(
ni↓ −

1

2

)
− µ

∑
i,σ

niσ, (1)

where c†iσ(cjσ) creates (annihilates) an electron with spin σ
at site i. The band filling is set by the chemical potential µ.
Density of electrons, niσ , with opposite spins experience a
local repulsive interaction U . An electron hops from site i
to a neighboring site j with the hopping amplitude of v|i−j|,
which is taken here up to the third-neighbors. We then have a
band dispersion on the square lattice as

εk =− 2v1

[
cos(kx) + cos(ky)

]
− 4v2 cos(kx) cos(ky)

− 2v3

[
cos(2kx) + cos(2ky)

]
, (2)

where k = (kx, ky) is the two-dimensional momentum,
and hopping parameters are here set to v2 = −0.2v1, and
v3 = 0.16v1, relevant for the the copper-oxygen planes of
high-temperature superconductors32,33, see solid green line in
Fig. 7 (lower panel). We report our results in the energy (time)
unit of v1 (1/v1).

To explore the thermalization of doped quantum systems,
we take the Hubbard model where the Hubbard interaction is

switched on with a ramp (see Fig.1),

U(t) =

{
Uf

[
1− cos( πt2tr

)
]

for t ≤ tr,
Uf for t > tr,

(3)

with tr the ramp duration, and Uf the final Hubbard inter-
action. This protocol can directly be realized in cold-atom
setups34, or can indirectly be realized in solids excited by a
short few-cycle laser pulse35 in terms of the effective electron-
electron interaction. As the FLEX is reliable in the weak-
coupling regime, we set the final Hubbard interaction to Uf ≤
3 for which Uf is much smaller than the band width (= 7.68
for the present choice of the hopping parameters). The initial
temperature β = 1/T = 20 is chosen such that the system is
away from superconducting and antiferromagnetic phases.

B. Numerical method

We perform the numerical investigations of our model in
finite-temeprature paramagnetic model where no long-range
order is present, and use, for nonequilibrium situations, the
Schwinger-Keldysh36,37 generalization of the FLEX26–28. In-
cluded Feynman graphs in this diagrammatic formalism are
determined from a functional derivative of the Luttinger-Ward
functional,38 and thus the approach is a conserving approx-
imation.26,39 It has been well established that in the weak-
coupling regime the results are qualitatively in good agree-
ment with numerically exact quantum Monte-Carlo results.40

One technical detail is that the self-energy diagrams have been
collected here with an assumption that the expectation value
of the pair correlation is negligible and thus the anomalous
contributions can be omitted. This particular choice implies
that our formalism is applicable to studying normal phases as
well as investigating the behavior of the system just at an in-
stability such as superconductivity.

In the FLEX, the electron scattering incorporates the mag-
netic, density, and also singlet-pairing channels. Correspond-
ingly, we consider the spin susceptibility (χs), charge sus-
ceptibility (χc), and, here, in particular, the particle-particle
susceptibility (χpp). The later is important since it en-
ables us to examine superconducting instabilities through pair
fluctuations represented by the particle-particle susceptibil-
ity, which is defined in terms of the pair operator, ∆k(t) =
ck↑(t)c−k↓(t), as

χppk (t, t′) = −i〈TC∆k(t)∆†−k(t′)〉, (4)

where TC is the time-ordering operator on the Keldysh contour
C.

The spin, charge, and particle-particle susceptibilities obey
algebraic equations which are obtained by summing geomet-
ric series of ladder and bubble diagrams,

χrq(t, t′) = U(t)χ0r
q (t, t′)U(t′)+sr

[
χ0r
q ∗U ∗χrq

]
(t, t′), (5)

where r ∈ {s, c, pp} denotes the channel index, and sr has
ss = spp = −1, sc = 1. The crystal momentum q resides on
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0

Uf

0 tr

U
(t

)

time

Figure 1. Ramp up of the Hubbard interaction given in Eq. (3).

a Nk × Nk momentum grid associated with
∑
q = N2

k . In
nonequilibrium situations, every susceptibility has two time
arguments due to the loss of time-translational invariance.
Time arguments t, t′ are defined on the Schwinger-Keldysh
contour C, and ∗ is the convolution integral on C. χ0r is the
polarization function computed by

χ0c/s
q (t, t′) =

i

N2
k

∑
k

Gk+q(t, t′)Gk(t′, t), (6)

χ0pp
q (t, t′) =

i

N2
k

∑
k

Gk+q(t, t′)G−k(t, t′), (7)

where G is the interacting Green’s function,

Gk(t, t′) = −i〈TC [ck(t)c†k(t′)]〉. (8)

This single-particle propagator satisfies the Dyson equa-
tion,(

i∂t + µ− ΣH − εk
)
Gk(t, t′) = δC(t, t

′),

Gk(t, t′) = Gk(t, t′) +
[
Gk ∗ ΣFLEX

k ∗Gk
]
(t, t′). (9)

The local electron density is given as

n(t) =
2

N2
k

∑
k

Im[G<k ](t, t),

where G< is the lesser component of the Green’s function in
Eq. 8, since here we address nonequilibrium situations. The
Hartree self-energy is then given by

ΣH(t) =
1

2
U(t)n(t). (10)

The FLEX prescribes that the electronic self-energy yields

ΣFLEX
k (t, t′) =− i

N2
k

∑
q

Γphq (t, t′)Gk−q(t, t′)

− i

N2
k

∑
q

Γppq (t, t′)Gq−k(t′, t), (11)

where the particle-hole (ph) and particle-particle (pp) vertex
functions are evaluated by sums of bubble and ladder dia-
grams as

Γphq (t, t′) =
1

2
χcq(t, t′) +

3

2
χsq(t, t′)− U(t)χ0s

q (t, t′)U(t′),

Γppq (t, t′) = χppq (t, t′) + U(t)χ0pp
q (t, t′)U(t′). (12)
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Figure 2. Kinetic energy and interaction energy as a function of
time for various ramp durations tr = 0.0.25, 0.75, 1.5, 3.0 and 10.0
at fillings n =0.7 (a), and 1.4 (b). Arrows indicate the expected
thermal values for each quantity at t = 20.

In the following, we report our results computed on a lattice
with 64 × 64 momentum-space discretization. Due to mem-
ory limitation for saving two-time Green’s functions, we cease
simulating the system after tmax = 20.

C. Observables

Observables which we are interested in analyzing are as fol-
lows.

a. Kinetic energy The kinetic energy of the system is
calculated as

Ekin =
2

N2
k

∑
k

Im
[
εkG

<
k

]
(t, t). (13)

b. Interaction energy The interaction energy is evalu-
ated as

Eint =
2

N2
k

∑
k

Im
[
ΣFLEX
k ∗Gk

]<
(t, t), (14)

where ∗ again denotes the convolution.
c. Total energy The total energy is

Etot = Ekin + Eint. (15)

The effective temperatures of our relaxed systems is deter-
mined from an equilibrium thermal state whose total energy
is the same as the driven system at a particular time.

d. Momentum-dependent distribution function The
momentum-dependent distribution function is given by

nk = −Im
[
Gk
]<

(t, t). (16)

e. Jump of the distribution function The jump of the
momentum-dependent distribution function is evaluated as

∆nkf
= nkf−δ − nkf+δ, (17)
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where the momenta of the non-interacting Fermi surface kf

satisfies εkf
− µ = 0. As our system is initially prepared

in the noninteracting regime (U(t = 0) = 0), this choice of
the Fermi momenta corresponds to the initial Fermi surface.
Because we are exploring momentum-dependent relaxations,
we pay particular attention to this quantity at two different
Fermi momenta, along the Γ(0, 0)−M(π, π), associated with
δ = 2π/Nk(1, 1) and X(π, 0) − M(π, π) directions of the
Brilloun zone, with δ = 2π/Nk(0, 1).

f. Photo-emission spectrum The photo-emission spec-
trum (PES) of the system probed by a Gaussian pulse S(t) =
exp(−t2/2α2) with the time resolution α(= 3 here to smear
the Fourier artifacts for short-time simulations) is given by the
spectral function,41

A<(ω, t) = (18)

− i

2π

∫
dt1dt2S(t1)S(t2)eiω(t1−t2)G<(t+ t1, t+ t2).

To present a time-dependent momentum-resolved PES
Ak(ω, t), we substitute the lesser Green’s function with the
retarded Green’s function (Gret

k ). Calculating the density of
state Aloc(ω, t) is then very straightforward as we employ the
local retarded Green’s function

Gret
loc(t, t′) =

1

N2
k

∑
k

Gret
k (t, t′), (19)

instead of the G<k in Eq. 18. The obtained spectrum A is
broader than the physical spectral function as it is convoluted
with the Gaussian function. One should note that, although
evaluating the spectral function is straightforward, obtaining
a high-resolution spectrum out of our short-time simulations
is accompanied by Fourier artifacts. We thus smear these ar-
tifacts by convoluting the real-time Green’s function with a
fairly broad Gaussian filter.

The renormalized dispersion relation (ε̃k) at time t is ob-
tained from the position of the quasiparticle peak (ωqp) in
Ak(ωqp, t) − U(t)n(t)/2 where the factor U(t)n(t)/2 is the
Hartree term, see Eq. 9.

g. Interacting and noninteracting Fermi surface The
bare noninteracting Fermi momenta at U(t = 0) = 0 are
obtained by solving εk − µ = 0. In the presence of electron-
electron interaction (U(t) > 0) momenta on the Fermi surface
satisfy ε̃k − µ = 0.

h. Spin, charge, and particle-particle correlation func-
tions The equal-time spin (s), charge (c), and particle-
particle (pp) correlation functions are given by

χr
k
(t) = |Im

[
χr

k

<(t, t)
]
|, (20)

where χr
k

< denotes the lesser component of the Keldysh sus-
ceptibility with the channel index r ∈ {s, c, pp}.

III. RESULTS AND DISCUSSIONS

A. Local observables

Let us first look at the kinetic and potential energies of the
hole-doped (n = 0.7) and electron-doped (n = 1.4) systems

 0

 0.3

 0.6

 0.9

 1.2

-10 -5  0  5  10

π
 A

lo
c
(t

, 
ω

)

ω

tr=1.5

 0

 0.3

 0.6

 0.9

 1.2

π
 A

lo
c
(t

, 
ω

) tr=3.0

 0

 0.3

 0.6

 0.9

 1.2

π
 A

lo
c
(t

, 
ω

)

(a) n=0.7

tr=10

-10 -5 0 5 10
ω

tr=1.5

 4

 6

 8

 10

 12

tr=3.0

 4

 6

 8

 10

 12

time

(b) n=1.4

tr=10

 4

 6

 8

 10

 12

Figure 3. The PES for ramp durations tr = 1.5, 3.0, and 10.0 for
Uf = 3, β = 20. Vertically aligned panels are at the same fillings,
namely n = 0.7 (a), and 1.4 (b). The color coding refers to time.
Vertical dashed lines indicate the position of quasiparticle peaks at
ω = 0.75 for n = 0.7 and ω = 0.65 for n = 1.4 after the final stage
of ramping (t > tr).

under various ramp durations, tr = 0.025, 0.75, 1.5, 3.0 and
10.0, in Fig. 2. Note here that the nonzero next-neighbor
hopping in Eq. 1 breaks the particle-hole symmetry, so that,
instead of dopings n and 2 − n, we decided to study sys-
tems with the chemical potential µh = −µe (which corre-
sponds to n = 0.7 and n = 1.4) for the hole- and electron-
doped cases. For n = 0.7 and n = 1.4 the systems are
in the over-doped regimes where the pseudogap phase does
not emerge and we are sufficiently far from the Mott insula-
tor. Switching on of the Hubbard interaction has a vast ef-
fect on the interaction energy naturally for t < tr as seen
in lower panels of Fig. 2 a) and b). The temporal response
of the kinetic energy for t < tr, similar to the interaction
energy, shows a dramatic transient response, see upper pan-
els of Figs. 2 (a,b). We can see that the overall change in
the kinetic energy strongly depends on whether we sit on the
hole-doped or electron-doped side. This is not unexpected
for two reasons: (i) our system has the particle-hole asym-
metry with different densities of states at the Fermi energy
in hole-doped and electron-doped regimes, and (ii) an obvi-
ous effect in an electron-doped system of smaller numbers of
empty sites aside from the thermally generated doublons and
holons, which forces the electrons to hop to doubly-occupied
sites. In the hole-doped case, hopping to empty sites is al-
lowed, and thus we observe a stronger change in the kinetic
energy, see upper panel of Fig. 2(a). Besides, the final values
of both kinetic and interaction energy agree with the thermal
values that are obtained by imposing equal total energy crite-
rion, which indicates local thermalization of these systems.

To further corroborate local thermalization of the system,
we present the time-evolution of the PES spectrum of systems
under various ramp durations, tr = 0.75, 1.5, and 10.0, in the
hole-doped (n = 0.7) and electron-doped (n = 1.4) regimes
in Fig. 3. For short ramps, results confirm rapid relaxation
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Figure 4. For hole-doped (n = 0.7) (a) and electron-doped (n =
1.4) (b) regimes, the upper panels plot the ratio A<(t, ω)/A(t, ω)
at t = 13.5 for ramp durations tr = 0.025 (yellow solid lines) and
1.5 (cyan solid lines). Dashed lines are fits with the Fermi distri-
bution with the indicated effective inverse temperature, βeff . Lower
panels plot the βeff against time for tr = 0.025 (red), 0.25 (green),
0.75 (blue), and 1.5 (purple), again for the hole-doped (left panel)
and electron-doped (right) cases.

of spectrum in all doping regimes, as time-dependent spec-
trum, plotted with different colors, are hardly distinguishable
for t > 6. For a long ramp (tr = 10), the evolution of PES
is considerable during the preparation period (tr) and the evo-
lution quickly terminates shortly after tr. It is also notable
that at long times when the probe envelope, centered around
t > tr, overlaps with the initial ramp protocol, the presented
evolution of PES is not intrinsic relaxation. At time where lo-
cal observables became stationary, i.e., t = 13.5, the spectral
density also becomes time-independent, where the position of
the quasiparticle peak, independent of the ramp duration, ex-
hibits doping-dependent values as ω = 0.75 for n = 0.7 and
ω = 0.65 for n = 1.4, see dashed lines in Fig. 3.

We can further assess the thermal nature of the spectrum by
looking at the ratio A<(t, ω)/A(t, ω) in the upper panels of
Figs. 4(a,b), since the fluctuation-dissipation theorem dictates
that this ratio should be, in a thermal state, equal to the Fermi-
Dirac distribution function as

A<(t, ω)

A(t, ω)
=

1

1 + exp
[
βeff(t)

(
ω − µeff

)] . (21)

By fitting the spectrum with Eq. (21), we evaluate the in-
verse of the time-dependent effective temperature [βeff(t)].
Consistent with the adiabatic theorem, doped systems with
longer ramp durations are effectively colder, see lower pan-
els of Fig. 4(a,d). Comparing the effective temperatures of
the systems with the same preparation protocol shows that
hole-doped systems become hotter than electron-doped sys-
tems. We may note that the presented effective temperatures
in Fig. 4 (c,d), derived from a Gaussian-broadened spectrum,
are slightly over-estimated, but the trend should be robust.
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Figure 5. For a filling n = 0.7 the momentum-dependent distribu-
tion function at initial (t = 0; top panel) and final (t = 20; bottom)
times are plotted for Uf = 3 and β = 30 and tr = 0.25.
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Figure 6. For a filling n = 1.4 the momentum-dependent distribu-
tion function at initial (t = 0; top panel) and final (t = 20; bottom)
times for Uf = 3 and β = 30 and tr = 0.25.

B. Momentum-dependent observables

Let us now move on to the momentum-dependent dis-
tribution functions in hole-doped (n = 0.7) and electron-
doped (n = 1.4) systems at initial and final times with
tr = 0.25 in Figs. 5, and 6, respectively. A very sharp jump
of nk at the Fermi wavenumber at initial times, associated
with the Fermi-Dirac distribution at β = 20, is significantly
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smeared at t = 20 in both systems. This is consistent with a
general intuition that occupation of excited states will elevate
the effective temperature after pumping.

We now turn to the upper panels of Fig. 7, which plots
momentum-resolved PES of both hole-doped (n = 0.7) (a)
and electron-doped (n = 1.4) (b) regimes. We can see that
the width of the momentum-dependent spectrums close to the
Fermi momenta (red and green lines) is wider for the hole-
doped case, which indicates more heating in the hole-doped
system than in the electron-doped system. We furthermore
observe a doping dependent evolution in nk, where the redis-
tribution of occupation in the hole-doped system is so drastic
that the occupied region deforms from an open Fermi sea into
a closed one, which may be called a “nonequilibrium Lifshitz
transition”, see Fig. 5. In Fig. 7 (c) we present the renormal-
ized dispersion relations for the hole-doped (n = 0.7) and
electron-doped (n = 1.4) systems, extracted from the spec-
tra plotted in upper panels of Fig. 7. The band renormaliza-
tions are not dramatic as we expect from the weak-coupling
physics. The deformation of the Fermi surface in the electron-
doped regime (dashed blue arrows at t = 0 and solid blue ar-
rows at t = 13.5) is less considerable than in the hole-doped
regime (dashed red arrows at t = 0 and solid red arrows at
t = 13.5). Consistent with the presented results for nk, see
Fig. 5, the nonequilibrium Lifshitz transition is also evident in
these results.

To further elaborate the behavior of nk and its doping de-
pendence, Fig. 8 plots the jump, ∆nk, of the momentum-
dependent occupation around the bare noninteracting Fermi
energy at two Fermi momenta along ΓM andXM directions,
respectively, in electron-doped, and hole-doped regimes. Note
that these Fermi momenta refer to the initial noninteracting
Fermi surface for U(t = 0) = 0.

After tr, a transient correlation built-up timescale ∼ 1/v1

is observed, see vertical lines in Fig. 8.17,42 This short-time
response is followed by an exponential relaxation dynamics
in all the cases. The initial preparation protocol and the dop-
ing concentrations govern these momentum-dependent evo-
lutions: For the longer ramp durations, the system finds the
opportunity to adjust the injected energy and occupies less ex-
cited states. Namely, the system effectively experiences less
heating and consequently the correlation-based relaxation, in
contrast to thermal relaxation for small tr, rules the dynamics
for long ramps. This over-heating picture is indeed consis-
tent with extensively discussed half-filled results for infinite
dimensional23,25,42,43 and two-dimensional16,17 systems.

A salient feature is that the relaxation dynamics is dis-
tinct, in agreement with Fig. 8 between the Fermi momenta
along the XM and along the ΓM directions, as previously
found with nonequilibrium DCA.16 To quantify this behavior
of ∆nk at finite dopings, we fit our results to an exponen-
tial function of the form f(t) ∝ c0 + c1 exp(−t/τ), where
c0 and c1 are constants, and τ is the relaxation time. In
Fig. 9 we can see that τ depends on the doping, the Fermi
momentum, the Hubbard interaction, and the ramp duration.
For long preparation protocols where heating is mitigated,
the non-thermal state has a longer lifetime. Furthermore, a
stronger electron-electron interaction enhances the scattering
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Figure 7. Top panels: The PES Ak(t, ω) at t = 13.5 in the hole-
doped (n = 0.7) (a) and electron-doped (n = 1.4) (b) regimes.
The vertical axis is the momentum, with small offsets for the spec-
tra for clarity. Red (green) line represents the PES at initial Fermi
momenta along XM (ΓM ). Middle panels: The retarded Green’s
functions Gret

k (t, t − s) at t = 13.5 for hole-doped (n = 0.7;
left panel) and electron-doped (n = 1.4; right) cases. Color lines
correspond to the spectra with the same colors in upper panels, re-
spectively. (c) The dispersion relation for the noninteracting inital
band given in Eq. (2) (solid green line), the renormalized band for
the hole-doped (n = 0.7) (red open squares) and for the electron-
doped (n = 1.4) (blue open circles) systems. Dashed (solid) arrows
attached to each dispersion relation indicate the Fermi momenta at
t = 0 (t = 13.5). Horizontal dashed lines represent the chemi-
cal potentials for the hole-doped (n = 0.7) (red) and the electron-
doped (n = 1.4) (blue) systems.

rate and thus expedite the relaxation, see Fig. 10(a). Also,
consistent with the reported undoped DCA results,16 the relax-
ation time is smaller at the hot-spot, see Fig. 9(a). The result
also shows that the scattering rate (inverse relaxation time)
decreases with the increased density of electrons from hole-
doped to electron-doped regimes. These two features hint
distinct structures of the momentum-dependent self-energy in
these systems.

We have found that the width of the quasiparticle peaks
around the Fermi surface is generically smaller in the electron-
doped systems than in the hole-doped ones. The proportion-
ality of this width, in the thermal states in the Fermi liquid
theory, to the imaginary part of the retarded self-energy im-
plies smaller incoherent contributions to the scattering rate of
the electron-doped systems. This observation then suggests
that thermal relaxations are more dominant in the hole-doped
systems where the effective local temperature is larger.
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Figure 8. The jump, ∆nk, of the momentum-dependent distri-
bution function for ramp durations tr = 10 (a), 1.5 (b), 0.25 (c),
and 0.025 (d) at initial Fermi momenta along ΓM (solid line) or
XM (dashed line) for the hole-doped (n = 0.7) (blue) and electron-
doped (n = 1.4) (red) systems. A vertical red line indicates the
transient built-up duration, tr + 1/J1, for each panel.

To reinforce this conclusion, let us directly look at
Σret
k (t, ωqp) both in the hole-doped (n = 0.7) and electron-

doped (n = 1.4) regimes, where ωqp denotes the quasipar-
ticle energy, which is determined from an almost Lorentzian
spectrum, presented in upper panels of Fig. 7. In Fig. 9, lower
panels, we plot |ImΣret

k (t, ωqp)| at t = 13.5 when the local re-
laxation for tr = 0.25 is almost attained, with ωqp = 0.55 for
the hole-doped case (n = 0.7) or ωqp = 2.35 for the electron-
doped one (n = 1.4). The depicted ωqp for |ImΣret(t, ωqp)| in
Fig. 9 is associated with the quasiparticle energy for tr = 0.25
and at Fermi momenta along the ΓM direction in the Brillouin
zone, see the green spectra in Fig. 7. We have also checked
that for tr = 10, the ωqp is slightly less than for tr = 0.25.

The anisotropic self-energies for the quasiparticle with the
energy ωqp in hole-doped regime exposes more interacting
regions around (π, 0) in the Brillouin zone. In the electron-
doped case, we can see the interacting regions shifted to the
position of the Fermi surface, see squares (circles) indicat-
ing the Fermi points along ΓM (XM ) in Fig. 9. Moreover,
in colder systems for larger tr, the overall value of the self-
energy is smaller, which implies that the quasiparticle has a
longer lifetime, in agreement with a slower decay rate of ∆nk
for longer ramps, see Fig. 8. This behavior is also evident
in the temporal evolution of the two-time retarded Green’s
function, see middle panels of Fig. 7, where the associated
electron-doped Green’s function exhibits a long-lived oscilla-
tion with a slower decay rate. Let us examine whether the de-
cay rate of quasiparticles characterizing the Green’s function
describe the inverse relaxation time, τ−1, introduced above.
The Fermi liquid theory predicts that for a thermal state the
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Figure 9. (a) The decay rate, 1/τ , of ∆nk at Fermi wave-number
at t = 0 along ΓM (squares) and XM (circles) directions in the
Brilloun zone, as a function of filling at various ramp durations
tr =3.0, 1.5, 0.25, and 0.025 (color-coded). (b) Color plots of self-
energies |ImΣret

k (t, ωqp)| at t = 13.5, ωqp = 0.55 for the hole-
doped (n = 0.7) system (left panels), and at ωqp = 2.35 for the
electron-doped (n = 1.4) system (right). The results are for Uf = 3,
β = 20, and tr = 0.25 (middle panles) and tr = 10.0 (lower pan-
els). Squares (circles) indicate the Fermi momenta at t = 0 along
ΓM (XM ) direction in the Brillouin zone. Note different color
codes between different panels.

coherent retarded Green’s function should have the form18

Gret
k (t) ∝ −Im

[
e−iωqpte−γkt

]
, (22)

where γk denotes the relaxation rate. We have checked that
this asymptotic form matches fairly well with the retarded
Green’s functions, plotted in middle panels of Fig. 7, for
s > tr + 1/J1. In Fig. 10 (d) we display γkf

(up-pointing tri-
angles) and τ−1

kf
(c) at Fermi momenta (kf ) along ΓM (open

symbols) and XM (solid) directions of the Brillouin zone.
We can see that γk and τ−1

k exhibit similar tendencies
against the filling. The slight difference between γk and τ−1

k
may be attributed to the remaining non-thermal behavior of
the Green’s function at t = 13.5 as well as to an error in fit-
ting the short-time data.

In the weak-coupling limit, the Fermi liquid theory also dic-
tates that for a thermalized system the imaginary part of the
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Figure 10. (a) The dependence of the relaxation rate on
the Hubbard interaction at fillings n = 0.7 (blue symbols) and
n = 1.4 (red) along ΓM (squares) and XM (circles) for tr =
0.025. Lines are a guide for the eye. The imaginary part of self-
energy Im|Σk|(t, ω) (b), the relaxation rate of ∆nk (c), and the
relaxation rate of the Green’s function (d), at t = 13.5 and ω =
ωqp(k) as a function of filling for Fermi momenta along ΓM (solid
symbols) and XM (open) for tr = 0.25. Dashed lines are for guid-
ing eyes.

retarded self-energy at the quasiparticle energy ωqp is the in-
verse quasiparticle lifetime,44–46

τ−1
qp (k) = −2ImΣret

k (t, ωqp(k)), (23)

where the momentum-dependent quasiparticle energy ωqp(k)
at time t indicates the position of the peak in Ak(t, ω), see
Fig. 7. To assess whether this relation can also describe the re-
laxation rate of ∆nk, we compare in Fig. 10 (b) the two quan-
tities, at Fermi momenta along ΓM andXM directions, asso-
ciated with two slightly different ωqp, in hole-doped (n = 0.7)
and electron-doped (n = 1.4) regimes for tr = 0.25. Both
ImΣ (b) and 1/τ (c) decrease as the density of electrons are
increased. As the self-energy is obtained from the broadened
real-time results, a quantitative comparison between the self-
energy and the relaxation dynamics is not feasible. Neverthe-
less, we do notice that ImΣ and 1/τ deviate more from each
other in the hole-doped system. This suggests that the Lan-
dau quasiparticle picture may not fully describe the relaxation
dynamics in the hole-doped system as the relaxation rate at
Fermi surface exceeds the associated ωqp; hence the quasipar-
ticle is not well-defined.47,48

Finally to corroborate the thermalization of the doped sys-
tems, we present the spin (χs), charge (χc), and particle-
particle (χpp) correlation functions in Fig. 11. We find that
these two-particle quantities exhibit significant momentum-
dependent evolutions which saturates toward a thermal value,
see black points in Fig. 11. Our results in the hole-doped
regime also exhibit different relaxation timescales, in particu-
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Figure 11. Equal-time spin (upper panels), charge (middle),
particle-particle (lower) susceptibilities along high-symmetry lines
in the Brillouin zone in hole-doped (n = 0.7) (a) and electron-
doped (n = 1.4) (b) regimes for Uf = 3, β = 30 and tr = 1.5.
Black dots represent the associated thermal value.

lar, between spins and charges, c.f. upper and middle panels in
Fig. 11 (a). The effective inverse temperature of the hot elec-
tronic state upon thermalization for tr = 1.5 is βeff = 3.53
in the hole-doped system (n = 0.7), and βeff = 5.13 in the
electron-doped system (n = 1.4).

IV. CONCLUSION

We have studied the nonequilibrium dynamics of doped
correlated systems under a global ramp of the repulsive Hub-
bard interaction. From the thermalization of both electron-
doped and hole-doped systems in the weak-coupling regime,
we have shown that the effective temperature of carriers driven
out of equilibrium is smaller for longer ramps and larger fill-
ings. We have discussed that for long ramps the energy den-
sity pumped to the system is smaller, hence the system does
not occupy highly excited states. For the doping-dependency
of the effective temperature, we have explained that in the
electron-doped regime the energy cost for hopping of elec-
trons to different sites is greater, which consequently reduces
the probability of forming mobile carriers. More importantly,
we have identified momentum-dependent relaxations of the
distribution function that occurs in a doping-dependent man-
ner.

We have then revealed that, for the hole-doped system,
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the relaxation rate is distinct between the hot- and cold-spots
on the Fermi surface, while the momentum-dependence be-
comes less pronounced in the electron-doped systems. We
have moved on to examine how this would fit with the quasi-
particle picture in the Fermi-liquid theory. The present re-
sults show that, for the hole-doped system, where thermal re-
laxation governs the dynamics, quasiparticle is not neccessar-
ily well-defined, whereas in the electron-doped system, which
experiences colder environment, is reasonably well described
by the Fermi-liquid picture. We have finally presented the
temporal evolution of equal-time two-body spin, charge and
particle-particle correlation functions. We have shown that for
small ramps the system is thermalized, which we have corrob-
orated by comparing the final two-body observables with their
thermal counterparts.

Further exploration of the relaxation dynamics of doped
systems will require studying the system at lower initial tem-
peratures to allow the ordered phases to appear in thermal-
ization. It is also interesting to investigate this problem in a
spin-polarized cases where the spin imbalance will enhance
growth of magnetic correlations. Studying multi-band sys-

tems with anisotropic coupling parameters is another intrigu-
ing problem, which will shed more light on the formation of
spatially modulated orders, which we leave for further studies.
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http://dx.doi.org/ 10.1080/00018732.2016.1194044
http://dx.doi.org/10.1126/sciadv.1700718
http://dx.doi.org/10.1126/sciadv.1700718
http://dx.doi.org/10.1103/PhysRevB.82.064516
http://dx.doi.org/10.1103/PhysRevB.92.115109
http://dx.doi.org/10.1143/JPSJ.70.1659
http://dx.doi.org/10.1143/JPSJ.70.1659


10

K. Rossnagel, M. Eckstein, P. Werner, and U. Bovensiepen, Phys.
Rev. Lett. 120, 166401 (2018).

36 L. V. Keldysh, Sov. Phys. JETP 20, 1018 (1965).
37 A. Kamenev, Field Theory of Non-Equilibrium Systems (Cam-

bridge University Press, 2011).
38 G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
39 K. Aryanpour, M. H. Hettler, and M. Jarrell, Phys. Rev. B 67,

085101 (2003).
40 T. Dahm, L. Tewordt, and S. Wermbter, Phys. Rev. B 49, 748

(1994).
41 J. K. Freericks, H. R. Krishnamurthy, and T. Pruschke, Phys. Rev.

Lett. 102, 136401 (2009).

42 M. Moeckel and S. Kehrein, New Journal of Physics 12, 055016
(2010).

43 M. Eckstein and M. Kollar, New Journal of Physics 12, 055012
(2010).

44 C. Hodges, H. Smith, and J. W. Wilkins, Phys. Rev. B 4, 302
(1971).

45 P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
46 M. Sentef, A. F. Kemper, B. Moritz, J. K. Freericks, Z.-X. Shen,

and T. P. Devereaux, Phys. Rev. X 3, 041033 (2013).
47 C. Berthod, J. Mravlje, X. Deng, R. Žitko, D. van der Marel, and
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