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The observation of neutrinoless double beta decay would allow to establish lepton number violation and 
the Majorana nature of neutrinos. The rate of this process in the case of 3-neutrino mixing is controlled 
by the neutrinoless double beta decay effective Majorana mass |〈m〉|. For a neutrino mass spectrum with 
normal ordering, which is favoured over the spectrum with inverted ordering by recent global fits, |〈m〉|
can be significantly suppressed. Taking into account updated data on the neutrino oscillation parameters, 
we investigate the conditions under which |〈m〉| in the case of spectrum with normal ordering exceeds 
10−3 (5 × 10−3) eV: |〈m〉|NO > 10−3 (5 × 10−3) eV. We analyse first the generic case with unconstrained 
leptonic CP violation Majorana phases. We show, in particular, that if the sum of neutrino masses is found 
to satisfy � > 0.10 eV, then |〈m〉|NO > 5 × 10−3 eV for any values of the Majorana phases. We consider 
also cases where the values for these phases are either CP conserving or are in line with predictive 
schemes combining flavour and generalised CP symmetries.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Despite their elusiveness, neutrinos have granted us unique ev-
idence for physics beyond the Standard Theory. Observations of 
flavour oscillations in experiments with solar, atmospheric, reac-
tor, and accelerator neutrinos (see, e.g., [1]) imply both non-trivial 
mixing in the leptonic sector and above-meV masses for at least 
two of the light neutrinos. Neutrino oscillations, however, are blind 
to the absolute scale of neutrino masses and to the nature – Dirac 
or Majorana – of massive neutrinos [2,3].

In order to uncover the possible Majorana nature of these neu-
tral fermions, searches for the lepton-number violating process of 
neutrinoless double beta ((ββ)0ν -)decay are underway (for recent 
reviews, see e.g. [4,5]). This decay corresponds to a transition be-
tween the isobars (A, Z) and (A, Z +2), accompanied by the emis-
sion of two electrons but – unlike usual double beta decay – with-
out the emission of two (anti)neutrinos. A potential observation 
of (ββ)0ν -decay is feasible, in principle, whenever single beta de-
cay is energetically forbidden, as is the case for certain even–even 
nuclei. The searches for (ββ)0ν -decay have a long history (see, 
e.g., [6]). The best lower limits on the half-lives T 0ν

1/2 of this decay 
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have been obtained for the isotopes of germanium-76, tellurium-
130, and xenon-136: T 0ν

1/2(76Ge) > 8.0 × 1025 yr reported by the 
GERDA-II collaboration [7], T 0ν

1/2(
130Te) > 1.5 × 1025 yr obtained 

from the combined results of the Cuoricino, CUORE-0, and CUORE 
experiments [8], and T 0ν

1/2(
136Xe) > 1.07 × 1026 yr reached by the 

KamLAND-Zen collaboration [9], with all limits given at the 90% CL.
In the standard scenario where the exchange of three Majorana 

neutrinos νi (i = 1, 2, 3) with masses mi < 10 MeV provides the 
dominant contribution to the decay rate, the (ββ)0ν -decay rate 
is proportional to the square of the so-called effective Majorana 
mass |〈m〉|. Given the present knowledge of neutrino oscillation 
data, the effective Majorana mass is bounded from below in the 
case of a neutrino mass spectrum with inverted ordering (IO) [10], 
|〈m〉|IO > 1.4 × 10−2 eV. Instead, in the case of a spectrum with 
normal ordering (NO), |〈m〉| can be exceptionally small: depending 
on the values of the lightest neutrino mass and of the CP viola-
tion (CPV) Majorana phases we can have |〈m〉|NO � 10−3 eV (see, 
e.g., [1]). Recent global analyses show a preference of the data for 
NO spectrum over IO spectrum at the 2σ CL [11,12]. In the latest 
analysis performed in [13] this preference is at 3.1σ CL.

New-generation experiments seek to probe and possibly cover 
the IO region of parameter space, working towards the |〈m〉| ∼
10−2 eV frontier. Aside from upgrades to the ones mentioned 
above, such experiments include (see, e.g., [4,5]): CANDLES (48Ca),
Majorana and LEGEND (76Ge), SuperNEMO and DCBA (82Se,
150Nd), ZICOS (96Zr), AMoRE and MOON (100Mo), COBRA
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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(116Cd,130 Te), SNO+ (130Te), and NEXT, PandaX-III and nEXO 
(136Xe). In case these searches produce a negative result, the 
next frontier in the quest for (ββ)0ν -decay will correspond to 
|〈m〉| ∼ 10−3 eV.

In the present article we determine the conditions under which 
the effective Majorana mass in the case of 3-neutrino mixing and 
NO neutrino mass spectrum exceeds the millielectronvolt value. 
We consider both the generic case, where the Majorana and Dirac 
CPV phases are unconstrained, as well as a set of cases in which 
the CPV phases take particular values, motivated by predictive 
schemes combining generalised CP and flavour symmetries. Our 
study is a natural continuation and extension of the study per-
formed in [14].

2. The effective Majorana mass

Taking the dominant contribution to the (ββ)0ν -decay rate, 
�0ν , to be due to the exchange of three Majorana neutrinos νi

(mi < 10 MeV; i = 1, 2, 3), one can write the inverse of the de-
cay half-life, (T 0ν

1/2)
−1 = �0ν / ln 2, as

(
T 0ν

1/2

)−1 = G0ν(Q , Z)
∣∣M0ν(A, Z)

∣∣2 |〈m〉|2 , (1)

where G0ν denotes the phase-space factor, which depends on the 
Q -value of the nuclear transition, and M0ν is the nuclear matrix 
element (NME) of the decay. The former can be computed with 
relatively good accuracy whereas the latter remains the predomi-
nant source of uncertainty in the extraction of |〈m〉| from the data 
(see, e.g., [4,15]).

The effective Majorana mass |〈m〉| is given by (see, e.g., [16]):

|〈m〉| =
∣∣∣∣∣

3∑
i=1

U 2
ei mi

∣∣∣∣∣ , (2)

with U being the Pontecorvo–Maki–Nakagawa–Sakata (PMNS) lep-
tonic mixing matrix. The first row of U is the one relevant for 
(ββ)0ν -decay and reads, in the standard parametrization [1],

Uei = (
c12 c13 , s12 c13 eiα21/2 , s13 e−iδ eiα31/2

)
i . (3)

Here, ci j ≡ cos θi j and si j ≡ sin θi j , where θi j ∈ [0, π/2] are the mix-
ing angles, and δ and the αi j are the Dirac and Majorana CPV 
phases [2], respectively (δ, αi j ∈ [0, 2π ]).

The most stringent upper limit on the effective Majorana mass 
was reported by the KamLAND-Zen collaboration. Using the lower 
limit on the half-life of 136Xe obtained by the collaboration and 
quoted in the Introduction, and taking into account the esti-
mated uncertainties in the NMEs of the relevant process, the limit 
reads [9]:

|〈m〉| < (0.061 − 0.165) eV . (4)

Neutrino oscillation data provides information on mass-squared 
differences, but not on individual neutrino masses. The mass-
squared difference �m2	 responsible for solar νe and very-long 
baseline reactor ν̄e oscillations is much smaller than the mass-
squared difference �m2

A responsible for atmospheric and ac-
celerator νμ and ν̄μ and long baseline reactor ν̄e oscillations, 
�m2	/|�m2

A| ∼ 1/30. At present the sign of �m2
A cannot be de-

termined from the existing data. The two possible signs of �m2
A

correspond to two types of neutrino mass spectrum: �m2
A > 0 – 

spectrum with normal ordering (NO), �m2
A < 0 – spectrum with 

inverted ordering (IO). In a widely used convention we are also 
going to employ, the first corresponds to the lightest neutrino 
Table 1
Ranges for the relevant oscillation parameters in the case 
of an IO neutrino spectrum, at the 3σ CL, taken from 
the global analysis of Ref. [13]. As in Table 2, �m2

A is 
obtained from the quantities defined in Ref. [13] using 
the best-fit value of �m2

21.

�m2
21

10−5 eV2

�m2
23

10−3 eV2

sin2 θ12

10−1

sin2 θ13

10−2

6.92–7.91 2.38–2.58 2.64–3.45 1.95–2.43

being ν1, while the second corresponds to the lightest neu-
trino being ν3. Combined with the fact that in this convention 
�m2	 ≡ �m2

21 > 0 we have:

• m1 < m2 < m3, �m2
31 ≡ �m2

A > 0, for NO; and
• m3 < m1 < m2, −�m2

23 ≡ �m2
A < 0, for IO,

where �m2
i j ≡ m2

i − m2
j . For either ordering, |�m2

A| = max(|m2
i −

m2
j |), i, j = 1, 2, 3. We also define mmin ≡ m1 (m3) in the NO (IO) 

case. A NO or IO mass spectrum is additionally said to be nor-
mal hierarchical (NH) or inverted hierarchical (IH) if respectively 
m1 � m2,3 or m3 � m1,2. In the converse limit of relatively large 
mmin, mmin � 0.1 eV, the spectrum is said to be quasi-degenerate 
(QD) and m1 
 m2 
 m3. In this last case, the distinction between 
NO and IO spectra is blurred and �m2	 and |�m2

A| can usually be 
neglected with respect to m2

min.
In terms of the lightest neutrino mass, CPV phases, neutrino 

mixing angles, and neutrino mass-squared differences, the effective 
Majorana mass reads:

|〈m〉|NO =
∣∣∣∣mmin c2

12 c2
13 +

√
�m2	 + m2

min s2
12 c2

13 eiα21

+
√

�m2
A + m2

min s2
13 eiα′

31

∣∣∣∣ , (5)

|〈m〉|IO =
∣∣∣∣
√

|�m2
A| − �m2	 + m2

min c2
12 c2

13

+
√

|�m2
A| + m2

min s2
12 c2

13 eiα21 + mmin s2
13 eiα′

31

∣∣∣∣ , (6)

where we have defined α′
31 ≡ α31 − 2δ.

It proves useful to recast |〈m〉|NO and |〈m〉|IO given above in the 
form

|〈m〉| =
∣∣∣m̃1 + m̃2 eiα21 + m̃3 eiα′

31

∣∣∣ , (7)

with m̃i > 0 (i = 1, 2, 3). It is then clear that the effective Majorana 
mass is the length of the vector sum of three vectors in the com-
plex plane, whose relative orientations are given by the angles α21
and α′

31.
For the IO case, taking into account the 3σ ranges of �m2

32, 
�m2

21, sin2 θ12, and sin2 θ13 summarised in Table 1, one finds 
that there is a hierarchy between the lengths of the three vec-
tors, m̃3 < 0.1 ̃m2 and m̃2 < 0.6 ̃m1, which holds for all values 
of mmin. In particular, m̃3 = mmin s2

13 can be neglected with re-
spect to the other terms since s2

13 � cos 2θ12.2 The above im-
plies that extremal values of |〈m〉|IO are obtained when the 
three vectors are aligned (α21 = α′

31 = 0, |〈m〉|IO is maximal) 
or when m̃1 is anti-aligned with m̃2,3 (α21 = α′

31 = π , |〈m〉|IO
is minimal). It then follows that there is a lower bound on 
|〈m〉|IO for every value of mmin [10]. This bound reads: |〈m〉|IO �

2 It follows from the current data that cos 2θ12 > 0.30 at 3σ CL.
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Table 2
Ranges for the relevant oscillation parameters in the case of a NO neu-
trino spectrum, at the nσ (n = 1, 2, 3) CLs, taken from the global analysis 
of Ref. [13] (cf. Table 1).

Parameter 1σ range 2σ range 3σ range

�m2
21 / (10−5 eV2) 7.20–7.51 7.05–7.69 6.92–7.91

�m2
31 / (10−3 eV2) 2.46–2.53 2.43–2.56 2.39–2.59

sin2 θ12 /10−1 2.91–3.18 2.78–3.32 2.65–3.46
sin2 θ13 /10−2 2.07–2.23 1.98–2.31 1.90–2.39

√
|�m2

A| + m2
min c2

13 cos 2θ12 >

√
|�m2

A| c2
13 cos 2θ12, |〈m〉|IO > 1.4 ×

10−2 eV, for variations of oscillation parameters in their respec-
tive 3σ ranges. In the limit of negligible mmin (IH spectrum), 
m2

min � |�m2
A|, one has |〈m〉|IO ∈ [1.4, 4.9] × 10−2 eV.

Before proceeding to the analysis of the NO case, let us com-
ment on present constraints on the absolute neutrino mass scale. 
The “conservative” upper limit of Eq. (4), |〈m〉|max

exp = 0.165 eV, 
which is in the range of the QD spectrum, implies, as it is not dif-
ficult to show, the following upper limit on the absolute Majorana 
neutrino mass scale (i.e., on the lightest neutrino mass): mmin 

m1,2,3 < 0.60 eV, with mmin � |〈m〉|max

exp /(cos 2θ12 − s2
13), taking into 

account the 3σ ranges of cos 2θ12 and sin2 θ13. Measurements of 
the end-point electron spectrum in tritium beta decay experiments 
constrain the combination mβ ≡ ∑

i |Uei |2 mi . The most stringent 
upper bounds on mβ , mβ < 2.1 eV and mβ < 2.3 eV, both at the 
95% CL, are given by the Troitzk [17] and Mainz [18] collaborations, 
respectively. The KATRIN experiment [19] is planned to either im-
prove this bound by an order of magnitude, or discover mβ >

0.35 eV. Taking into account the 3σ ranges for the relevant mixing 
angles and mass-squared differences, the Troitzk bound constrains 
the lightest neutrino mass to be mmin < 2.1 eV. Cosmological and 
astrophysical data constrain instead the sum � ≡ ∑

i mi . Depend-
ing on the likelihood function and data set used, the upper limit 
on � reported by the Planck collaboration [20] varies in the inter-
val � < [0.34, 0.72] eV, 95% CL. Including data on baryon acoustic 
oscillations lowers this bound to � < 0.17 eV, 95% CL. Taking into 
account the 3σ ranges for the mass-squared differences, this last 
bound implies mmin < 0.05 (0.04) eV in the NO (IO) case. One 
should note that the Planck collaboration analysis is based on the 
�CDM cosmological model. The quoted bounds may not apply in 
nonstandard cosmological scenarios (see, e.g., [21]).

3. The case of normal ordering

We henceforth restrict our discussion to the effective Majorana 
mass |〈m〉|NO, for which there is no lower bound. In fact, unlike in 
the IO case, here the ordering of the lengths of the m̃i depends on 
the value of mmin and cancellations in |〈m〉|NO are possible: one 
risks “falling” inside the “well of unobservability”.3

We summarise in Table 2 the nσ (n = 1, 2, 3) ranges for the 
oscillation parameters relevant to (ββ)0ν -decay in the NO case, 
obtained in the recent global analysis of Ref. [13]. Considering vari-
ations of oscillation parameters in the corresponding 3σ ranges, 
for mmin ≤ 5 × 10−2 eV there is an upper bound |〈m〉|NO ≤ 5.1 ×
10−2 eV (obtained for α21 = α′

31 = 0). In the limit of negligible 
mmin, m2

min � |�m2
A|, one has |〈m〉|NO ∈ [0.9, 4.2] × 10−3 eV.

From inspection of Eqs. (5) and (7), the vector lengths ex-

plicitly read m̃1 = mmin c2
12 c2

13, m̃2 =
√

�m2	 + m2
min s2

12 c2
13, and 

3 For the consequences of not observing (ββ)0ν -decay with |〈m〉|NO � 10−3 eV, 
see [22].
Fig. 1. Lengths m̃i of the complex vectors entering the expression of |〈m〉|NO as 
a function of the lightest neutrino mass mmin, for NO spectrum. For comparison, 
the sums m̃1 + m̃3 + |〈m〉|0 and m̃2 + m̃3 + |〈m〉|0 are also shown (see text), with 
|〈m〉|0 = 10−3 eV. Bands are obtained by varying the mixing angles and mass-
squared differences in their respective 3σ ranges (see Table 2). See text for details.

Fig. 2. Ranges of mmin for a NO spectrum and for oscillation parameters inside their 
nσ (n = 1, 2, 3) intervals (see Table 2) for which: in green, a) |〈m〉|NO > |〈m〉|0 =
10−3 eV for all values of θi j , �m2

i j , and α(′)
i j from the corresponding allowed or 

defining intervals; in grey, b) there exist values of θi j , �m2
i j from the 1σ , 2σ and 

3σ allowed intervals and values of α(′)
i j such that |〈m〉|NO < |〈m〉|0 = 10−3 eV; and 

in red, c) for all values of θi j and �m2
i j from the corresponding allowed intervals 

there exist values of the phases α21 and α′
31 for which |〈m〉|NO < |〈m〉|0 = 10−3 eV.

m̃3 =
√

�m2
A + m2

min s2
13. In Fig. 1, these lengths are plotted as func-

tions of mmin for 3σ variations of oscillation parameters.
The requirement of having the effective Majorana mass above 

a reference value |〈m〉|0 is geometrically equivalent to not being 
able to form a quadrilateral with sides m̃1, m̃2, m̃3, and |〈m〉|0. 
This happens whenever one of the lengths exceeds the sum of 
the other three. If however |〈m〉|0 >

∑
i m̃i , it follows that |〈m〉| ≤∑

i m̃i < |〈m〉|0. Thus, for values of mmin and oscillation parame-
ters for which m̃2 > m̃1 + m̃3 + |〈m〉|0 or m̃1 > m̃2 + m̃3 + |〈m〉|0
(see Fig. 1) one is guaranteed to have |〈m〉|NO > |〈m〉|0 indepen-
dently of the choice of CPV phases α21 and α′

31. There are instead 
values of mmin for which the conditions m̃2 < m̃1 +m̃3 +|〈m〉|0 and 
m̃1 < m̃2 + m̃3 + |〈m〉|0 hold independently of the values of oscilla-
tion parameters within a given range. In such a case, values of α21
and α′

31 such that |〈m〉|NO < |〈m〉|0 are sure to exist.
We summarise in Fig. 2 the ranges of mmin for which these 

different conditions apply (see caption). We vary oscillation param-
eters in their respective nσ (n = 1, 2, 3) intervals and focus on the 
millielectronvolt “threshold”, |〈m〉|0 = 10−3 eV. We find that, for 
3σ variations of the sin2 θi j and �m2 , one is guaranteed to have 
i j
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Fig. 3. The same as in Fig. 2, but for the reference value |〈m〉|0 = 5 × 10−3 eV: in 
green, a) |〈m〉|NO > |〈m〉|0 = 5 × 10−3 eV for all values of θi j , �m2

i j , and α(′)
i j from 

the corresponding allowed or defining intervals; in grey, b) there exist values of 
θi j , �m2

i j from the 1σ , 2σ and 3σ allowed intervals and values of α(′)
i j such that 

|〈m〉|NO < |〈m〉|0 = 5 × 10−3 eV; and in red, c) for all values of θi j and �m2
i j from 

the corresponding allowed intervals there exist values of the phases α21 and α′
31

for which |〈m〉|NO < |〈m〉|0 = 5 × 10−3 eV. In the darker grey ranges d) of mmin, 
one has |〈m〉|NO < |〈m〉|0 = 5 × 10−3 eV independently of the values of oscillation 
parameters and CPV phases.

|〈m〉|NO > 10−3 eV if mmin > 1.10 × 10−2 eV. This corresponds to 
the lower bound � > 0.07 eV on the sum of neutrino masses. For 
2σ variations, having mmin < 2 × 10−4 eV or mmin > 9.9 × 10−3 eV
is enough to ensure |〈m〉|NO > 10−3 eV.

If one takes instead the higher value |〈m〉|0 = 5 × 10−3 eV
and allows the relevant oscillation parameters to vary in their 
respective 3σ ranges, |〈m〉|NO > |〈m〉|0 is guaranteed provided 
mmin > 2.3 × 10−2 eV, which corresponds to the lower bound 
� > 0.10 eV on the sum of neutrino masses. This lower bound 
on � practically coincides with min(�) in the case of IO spec-
trum. Thus, if � is found to satisfy � > 0.10 eV, that would 
imply that |〈m〉| exceeds 5 × 10−3 eV, unless there exist addi-
tional contributions to the (ββ)0ν -decay amplitude which cancel 
at least partially the contribution due to the 3 light neutrinos. If 
instead mmin < 1.4 × 10−2 eV, for all (3σ allowed) values of os-
cillation parameters there is a choice of α21 and α′

31 such that 
|〈m〉|NO < |〈m〉|0 = 5 × 10−3 eV. These results are shown graphi-
cally in Fig. 3.

Let us briefly remark on the dependence of |〈m〉|NO on the 
CPV phases.4 For the present discussion, 3σ variations of oscil-
lation parameters are considered. For all values of α′

31 and ε > 0
there exist values of α21 and mmin such that |〈m〉|NO < ε , i.e. such 
that |〈m〉|NO is arbitrarily small. This is a consequence of the fact 
that, for any fixed oscillation parameters and α′

31, there is always 
a point m∗

min at which |m̃1(m∗
min) +m̃3(m∗

min) eiα′
31 | = m̃2(m∗

min). In-
stead, there are values of α21 and ε > 0 for which, independently 
of α′

31 and mmin, one has |〈m〉|NO > ε , i.e. for which |〈m〉|NO cannot 
be arbitrarily small. This conclusion may be anticipated from the 
graphical results of Ref. [28], where the structure of the |〈m〉|NO
“well” has been studied as a function of mmin and α21. In fact, we 
find that for α21 � 0.81π or α21 � 1.19π , |〈m〉|NO cannot be zero 
at tree-level since |m̃1 + m̃2 eiα21 | > m̃3, strictly.

In Fig. 4 we highlight the region of the (mmin, α21) plane in 
which |〈m〉|NO is guaranteed to satisfy |〈m〉|NO > 5 ×10−3 eV, inde-
pendently of α′

31 and of variations of oscillation parameters inside 
their 3σ ranges.

4. CP and generalised CP

Given the strong dependence of |〈m〉| on α21 and α′
31, some 

principle which determines these phases are welcome. The re-

4 The Majorana phases α21 and α′
31 here defined are related to parameterisation-

independent charged-lepton rephasing invariant products U∗
ei Ue j [23–27] through 

α21 = 2 arg U∗
e1Ue2 and α′

31 = 2 arg U∗
e1Ue3.
Fig. 4. Regions in the (mmin, α21) plane where different conditions on |〈m〉|NO

apply. In the green (dark grey) region, |〈m〉|NO satisfies |〈m〉|NO > 5 × 10−3 eV
(|〈m〉|NO < 5 × 10−3 eV) for all values of θi j , �m2

i j , and α′
13 from the correspond-

ing 3σ or defining intervals. In the red and grey regions, conditions analogous to 
those described in the caption of Fig. 2 apply and are indicated. This figure is to be 
contrasted with Fig. 3, where the dependence on α21 is not explicit.

quirement of CP invariance constrains the values of the CPV phases 
α21, α31, and δ to integer multiples of π [29–31], meaning the 
relevant CP-conserving values are α21, α′

31 = 0, π . Non-trivial pre-
dictions for the leptonic CPV phases may instead arise from the 
breaking of a discrete symmetry combined with a generalised CP 
(gCP) symmetry. We focus on schemes with large enough resid-
ual symmetry such that the PMNS matrix depends at most on one 
real parameter θ [32] and realisations thereof where the predic-
tions for the CPV phases are unambiguous, i.e. independent of θ . 
For symmetry groups with less than 100 elements, aside from 
the aforementioned CP-conserving values, the non-trivial values 
α21, α′

31 = π/2, 3π/2 are possible predictions [33–39].
In what follows, we analyse the behaviour of |〈m〉|NO and 

|〈m〉|IO for each of 16 different (α21, α′
31) pairs, with the rele-

vant phases taking gCP-compatible values: α21, α′
31 ∈ {0, π/2, π,

3π/2}.5 As can be seen from Eq. (7), some pairs are redun-
dant as they lead to the same values of |〈m〉|. We are left 
with 10 inequivalent pairs of phases: (α21, α′

31) = (π/2, 0) ∼
(3π/2, 0), (π/2, π) ∼ (3π/2, π), (0, π/2) ∼ (0, 3π/2), (π, π/2) ∼
(π, 3π/2), (π/2, π/2) ∼ (3π/2, 3π/2), and (π/2, 3π/2) ∼
(3π/2, π/2).

The 2σ -allowed values of the effective Majorana mass |〈m〉|
are presented in Fig. 5 as a function of mmin, for both order-
ings. Regions corresponding to different pairs (α21, α′

31) with CP-
conserving phases, α21, α′

31 = 0, π , are singled out. The predic-
tions for the remaining pairs of fixed phases, containing at least 
one phase which is gCP-compatible but not CP-conserving, are 
shown in Fig. 6 for IO and in Figs. 7 and 8 for NO (for one CP-
conserving phase and for no CP-conserving phases, respectively). 
Allowed values of |〈m〉| are found by constructing an approximate 
χ2 function from the sum of the one-dimensional projections in 
Ref. [13], and varying mixing angles and mass-squared differences 

5 Given our scope and the available literature, we find that if α′
31 = π/2, 3π/2, 

then necessarily α21 = π/2, 3π/2 is predicted. We nevertheless take all 16 pairs of 
phases into consideration.
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Fig. 5. The effective Majorana mass |〈m〉| as a function of mmin, for both orderings, allowing for variations of mixing angles and mass-squared differences at the 2σ CL (see 
text). The phases α21 and α′

31 = α31 − 2δ are varied in the interval [0, 2π ]. Blue and green bands correspond to (the indicated, with k = 0, 1) CP-conserving values of the 
phases (α21, α′

31), for IO and NO neutrino mass spectra, respectively, while in red regions at least one of the phases takes a CP-violating value. Blue hatching is used to 
locate CP-conserving bands in the case of IO spectrum whenever IO and NO spectra regions overlap. The KamLAND-Zen bound of Eq. (4) is indicated. See also [1,14].
Fig. 6. The effective Majorana mass |〈m〉| as a function of mmin, for IO spectrum, 
allowing for variations of mixing angles and mass-squared differences at the 2σ CL 
(see text). Yellow bands correspond to (the indicated, k = 0, 1, 2, 3) gCP-compatible 
but not CP-conserving values of the phases (α21, α′

31). Blue bands correspond to 
CP-conserving phases (see Fig. 5) and hatching indicates overlap with such regions, 
while red regions are not gCP-compatible (for the models under consideration, see 
text). The KamLAND-Zen bound of Eq. (4) is also indicated.

while keeping χ2(θi j, �m2
i j) � 9.72 (2σ CL, for joint estimation of 

4 parameters).
From Figs. 5–8, one sees that for each value of mmin there exist 

values of the effective Majorana mass which are incompatible with 
CP conservation. Some of these points may nonetheless be com-
patible with gCP-based predictive models. For IO, one sees there 
is substantial overlap between the bands with (α21, α′

31) = (0, 0)

and (0, π), between those of (π, 0) and (π, π), and between the 
four bands (π/2, k π/2), with k = 0, 1, 2, 3. In the case of NO, 
it is interesting to note that, for a fixed, gCP-compatible but not 
Table 3
Lower bounds on |〈m〉|NO given at the 3σ (2σ ) CL, where applicable, for different 
fixed values of the phases α21 and α′

31. A tilde denotes equivalence between cases. 
All bounds are given in meV.

α21 α′
31

0 π/2 π 3π/2

0 3.1 (3.3) 2.4 (2.4) 1.0 (1.1) ∼ (0, π/2)

π/2 2.4 (2.4) 3.1 (3.3) 2.1 (2.2) ∼ (3π/2, π/2)

π no bounda 0.91 (0.95)b no boundc ∼ (π, π/2)

3π/2 ∼ (π/2, 0) 1.0 (1.1) ∼ (π/2, π) ∼ (π/2, π/2)

a |〈m〉|NO > 1 meV if mmin > 5.8 (mmin /∈ [0.1, 5.3]) meV.
b Only bounded case where |〈m〉|NO is not strictly at or above the meV value, for 

mmin ∈ [2.9, 5.9]([3.2, 5.3]) meV. |〈m〉|NO > 1 meV if e.g. sin2 θ13 > 2.04 × 10−2.
c |〈m〉|NO > 1 meV if mmin /∈ [3.1, 11.5]([3.4, 10.6]) meV.

CP-conserving pair (α21, α′
31), |〈m〉|NO is bounded from below at 

the 2σ CL, with the lower bound at or above the meV value, 
|〈m〉|NO � 10−3 eV. We collect in Table 3 information on the lower 
bound on |〈m〉|NO for each pair of phases.

5. Conclusions

The observation of (ββ)0ν -decay would allow to establish lep-
ton number violation and the Majorana nature of neutrinos. In the 
standard scenario of three light neutrino exchange dominance, the 
rate of this process is controlled by the effective Majorana mass 
|〈m〉|. In the case of neutrino mass spectrum with inverted or-
dering (IO) the effective Majorana mass is bounded from below, 
|〈m〉|IO > 1.4 × 10−2 eV, where this lower bound is obtained using 
the current 3σ allowed ranges of the relevant neutrino oscilla-
tion parameters – the solar and reactor neutrino mixing angles θ12
and θ13, and the two neutrino mass-squared differences �m2

21 and 
�m2

23. In the NO case, the effective Majorana mass |〈m〉|NO, under 
certain conditions, can be exceedingly small, |〈m〉|NO � 10−2 eV, 
suppressing the (ββ)0ν -decay rate.

Currently taking data and next-generation (ββ)0ν -decay experi-
ments seek to probe and possibly cover the IO region of parameter 
space, working towards the |〈m〉| ∼ 10−2 eV frontier. In case these 
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Fig. 7. The effective Majorana mass |〈m〉| as a function of mmin, for NO spectrum, allowing for variations of mixing angles and mass-squared differences at the 2σ CL 
(see text). Yellow bands correspond to (the indicated) pairs (α21, α′

31) of phases, with one CP-conserving, the other being gCP-compatible but not CP-conserving. Green 
bands correspond to CP-conserving phases (see Fig. 5) and hatching indicates overlap with such regions, while red regions are not gCP-compatible (for the models under 
consideration, see text).

Fig. 8. The same as in Fig. 7, with yellow bands corresponding to pairs (α21, α′
31) with both phases being gCP-compatible but not CP-conserving.
searches produce a negative result, the next frontier in the quest 
for (ββ)0ν -decay will correspond to |〈m〉| ∼ 10−3 eV.

Taking into account updated global-fit data on the 3-neutrino 
mixing angles and the neutrino mass-squared differences, we have 
determined the conditions under which the effective Majorana 
mass in the NO case |〈m〉|NO exceeds the 10−3 eV (5 × 10−3 eV) 
value. The effective Majorana mass |〈m〉|NO of interest, as is well 
known, depends on the solar and reactor neutrino mixing an-
gles θ12 and θ13, on the two neutrino mass-squared differences 
�m2

21 and �m2
31, on the lightest neutrino mass mmin as well 

as on the CPV Majorana phase α21 and on the Majorana–Dirac 
phase difference α′ = α31 − 2δ. For variations of θ12, θ13, �m2
31 21
and �m2
31 in their nσ (n = 1, 2, 3) intervals, we have determined 

the ranges of the lightest neutrino mass mmin such that (see 
Figs. 2–4):

a) |〈m〉|NO > 10−3 (5 × 10−3) eV independently of the values of 
α21 and α′

31; |〈m〉|NO > 5 × 10−3 eV is fulfilled when mmin >

2.3 × 10−2 eV (for 3σ variations),

b) for some values of the θi j and �m2
i j there are choices of 

the CPV phases α21 and α′
31 such that |〈m〉|NO < 10−3 (5 ×

10−3) eV,
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c) for all values of the θi j and �m2
i j there are choices of the CPV 

phases α21 and α′
31 such that |〈m〉|NO < 10−3 (5 × 10−3) eV, 

and
d) |〈m〉|NO < 5 × 10−3 eV independently of the values of α21

and α′
31.

We have shown, in particular, that if the sum of the three neu-
trino masses is found to satisfy the lower bound � > 0.10 eV, that 
would imply in the case of NO neutrino mass spectrum |〈m〉|NO >

5 × 10−3 eV for any values of the CPV phases α21 and α′
31, unless 

there exist additional contributions to the (ββ)0ν -decay amplitude 
which cancel at least partially the contribution due to the 3 light 
neutrinos.

We have additionally studied the predictions for |〈m〉|IO and 
|〈m〉|NO in cases where the leptonic CPV phases are fixed to par-
ticular values, α21, α31 − 2δ ∈ {0, π/2, π, 3π/2}, which are either 
CP conserving (see Fig. 5) or may arise in predictive schemes com-
bining generalised CP and flavour symmetries (see Figs. 6–8, lower 
bounds on the effective mass |〈m〉|NO for such choices of phases 
are given in Table 3). We find that |〈m〉|NO � 10−3 eV for all gCP-
compatible but not CP-conserving pairs of the relevant phases.

The searches for lepton number non-conservation performed 
by the neutrinoless double beta decay experiments are part of 
the searches for new physics beyond that predicted by the Stan-
dard Theory. They are of fundamental importance – as impor-
tant as the searches for baryon number non-conservation in 
the form of, e.g., proton decay. Therefore if current and next-
generation (ββ)0ν -decay experiments seeking to probe the IO re-
gion of parameter space produce a negative result, the quest for 
(ββ)0ν -decay should continue towards the |〈m〉| ∼ 5 × 10−3 eV
and possibly the |〈m〉| ∼ 10−3 eV frontier.
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