
P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
2
4

General considerations on lepton mass matrices
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We classify the flavour groups and representations providing, in the symmetric limit, an approxi-
mate description of lepton masses and mixings. We assume that the light neutrinos are of Majo-
rana type and that the flavour symmetry directly constrains their mass matrix. The representations
can be characterised by the dimension, type (real, pseudoreal, complex), and equivalence of its
irreducible components, and in terms of such a classification we find only six viable cases. It
turns out that the neutrinos are always either anarchical or have an inverted hierarchical spectrum.
Therefore, if the hint of a normal hierarchical spectrum were confirmed, we would conclude
(under the above assumption) that symmetry breaking effects must play a primary role in the
understanding of neutrino flavour observables.
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1. Introduction and definition of the problem

Symmetries are among the tools that proved most successful in the understanding of the pat-
terns of physical phenomena. It is not unconceivable that they also play a role in the understanding
of the pattern of fermion masses and mixings in the Standard Model (SM) (here meant to include
the necessary ingredients needed to account for neutrino masses).

Indeed, flavour symmetries [1–15] have long represented one of the most popular attempt in
this direction. Over the years, and especially after data on lepton mixing become available, shifting
the attention from quark to lepton masses and mixings, the role of flavour symmetries has quite
changed. Initially, the symmetry was supposed to provide an approximate understanding of the
pattern of masses and mixing in the unbroken limit. On the other hand, lately more and more
often, the symmetry itself does not provide an insight on lepton mixing, as the mixing ends up
being arbitrary in the symmetric limit; it is the pattern of symmetry breaking that really shapes the
flavour pattern. The question we want to address is then: are lepton masses and mixings determined
by a symmetry or by its breaking?

In order to provide a precise formulation of the problem, we consider a generic (continuous
or discrete, simple or not, abelian or non-abelian, or arbitrary combinations of the above) flavour
group G broken to a subgroup H. We write the charged lepton and neutrino mass matrices mE and
mν as

mE = m(0)
E +m(1)

E

mν = m(0)
ν +m(1)

ν

, (1.1)

where m(0)
E , m(0)

ν are invariant under G, while m(1)
E , m(1)

ν are generated by the sources of symmetry
breaking, and vanish in the symmetric limit. The non-vanishing entries in m(0)

E , m(0)
ν are assumed

to be of the same order, according to the principle that flavour hierarchies should be accounted for
by the flavour model itself. The size of the corrections associated to the symmetry breaking effects
is assumed to be smaller.

We aim at classifying all flavour symmetry groups and representations such that m(0)
E , m(0)

ν

provide an approximate description of lepton flavour observables, while m(1)
E , m(1)

ν only provide
the moderate correction necessary for an accurate description. Given the large variety of possible
cases, it is not a priori obvious that a complete analysis can be carried out in an effective way and
would produce results that can be expressed in a concise form. Interestingly, this turns out to be
the case: the problem can be studied in full generality, admits a precise mathematical formulation,
and a complete and compact solution, in the assumptions that i) the light neutrino masses are in
Majorana form and ii) the symmetry arguments can be applied directly to the light neutrino mass
matrix (or to the Weinberg operator from which it originates).

We say that m(0)
E , m(0)

ν provide an approximate description of lepton flavour observables if:

• The charged lepton and neutrino masses obtained from their diagonalisation are in the form
shown in table 1, so that only a small correction is required in order to provide an accurate
description of the lepton spectrum.

• All the entries of the PMNS matrix obtained from m(0)
E , m(0)

ν are non-vanishing, except per-
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non-zero entries
of the same order

hierarchy among
non-zero entries

charged
leptons

(A,0,0)
(A,B,0)
(A,B,C)

neutrinos
NH

(a,0,0)

neutrinos
NH or IH

(a,a,a)
(a,b,b)

(a,b,0)
(a,b,c)

neutrinos
IH

(0,a,a)

Table 1: Charged lepton and neutrino mass patterns in the symmetric limit.

haps the 13 element1. As all of the PMNS entries appear to be of order one, with the excep-
tion of the 13 element, only a small correction is then required in order to provide an accurate
description of the PMNS matrix.

In contrast, the lepton mixing (and a part of the mass spectrum) are fully determined by symmetry
breaking when, for example, all neutrino or all charged lepton masses identically vanish in the
symmetric limit.

In the first column in table 1 we list the cases that can be considered as good leading order
approximations even when all the non-zero entries are of the same order of magnitude. The cases
in the second column, on the contrary, require some degree of hierarchy or degeneracy between the
non-zero entries. Such a distinction is more important for charged leptons than neutrinos: in the
neutrino case only mild hierarchies up to O (5) are required to account for ∆m2

12/|∆m2
23|� 1 (in the

normal hierarchy case). Therefore, we will only care about the distinction between first and second
column in the case of charged leptons. In the case of neutrinos, we distinguish the cases leading
(after taking into account small symmetry breaking corrections) to a normal hierarchy (NH), an
inverted hierarchy (IH), or to any of the two depending on the sizes of the non-zero entries. A
normal hierarchical spectrum is at present favoured by data [16–18], but we still retain the inverted
spectrum as a viable possibility.

2. Analysis

Having specified the mass and mixing patterns that we consider viable in the symmetric limit,
we now want to characterise the flavour groups and representations leading to any of those patterns.
Let us then give first of all a precise formulation of the problem.

The flavour symmetry group G acts on the SM Weyl leptons li and ec
i through unitary repre-

sentations Ul and Uec respectively. Here ec is the SU(2)L singlet with hypercharge Y = 1. With
this notation, all the fermion fields are left-handed. The charged lepton and neutrino mass matrices

1For at least one choice of the mass eigenstates. Such specification is necessary in the cases in which some masses
are degenerate in the symmetric limit.
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arise from the Yukawa and Weinberg operators [19] respectively,

λ
E
i j e

c
i l jh∗,

ci j

2Λ
lil jhh, (2.1)

and are given by
mE = λEv, mν = cv2/Λ, (2.2)

where h is the Higgs field, v = |〈h〉|, and Lorentz-invariant contractions of fermion indices are
understood.

The symmetric part of the mass matrices m(0)
E , m(0)

ν satisfy

m(0)
E =UT

ec(g)m(0)
E Ul (g) m(0)

ν =UT
l (g)m(0)

ν Ul (g) ∀g ∈ G. (2.3)

A possible non-trivial transformation of h under G can be reabsorbed in Ul and Uec .
We want to determine, or characterise, all groups G and representations Ul , Uec such that any

m(0)
E , m(0)

ν satisfying eq. (2.3) provide an approximate description of lepton flavour, as defined
above. We also require of course the existence of at least one example of such m(0)

E , m(0)
ν (with all

masses that are allowed to be different and non-zero indeed different and non-zero).
We now illustrate the results of the analysis. The details and full proofs can be found in [20].

First of all, it turns out that the pattern of lepton masses and mixings only depends on the dimension,
type (real, pseudoreal, complex), and equivalence of the irreducible components of the representa-
tions Ul , Uec . We then classify the groups and representations leading to a viable symmetric limit
in terms of the structure of the decomposition of Ul , Uec into irreducible representations (irreps).
We find only six viable cases, shown in table 2.

Each pattern may correspond to different flavour groups and representations, provided that
the decomposition of the representation on the leptons follows that pattern. The allowed patterns
contain one-dimensional irreps only. Pseudoreal representations do not play a role.

Three out of the six cases in the table are partially trivial. Those are the cases in which Ul ∼
1+ 1+ 1, for which the representation on the lepton doublets is either the identity representation
or an overall sign change. In such a case, the neutrino mass matrix is not constrained at all, and the
neutrino masses and PMNS matrix are expected to be completely generic. In particular, the relative
smallness of |(U)13| is accidental. We are in the presence of “anarchical” neutrinos [21, 22]. The
only constraints that can be obtained are on the charged lepton masses, through the interplay of the
trivial Ul with a non-trivial Uec .

The other three cases provide non-trivial constraints on neutrino masses and mixings. An
important result is that they all correspond to inverted neutrino hierarchy, and specifically to two
degenerate and one vanishing neutrino mass in the symmetric limit. Therefore, if the present hint
favouring a normal hierarchy were confirmed, we would conclude, within our assumptions, that
either the flavour model is not predictive at all in the neutrino sector, or the symmetric limit does
not provide an approximate description of lepton masses and mixings.

Table 2 is divided in two parts. In the first part, the hierarchy of the charged lepton masses
is naturally accommodated by the vanishing of the two lighter masses in the symmetric limit, in
agreement with the principle that hierarchies should be explained by the flavour model. In the
second part, hierarchies not accounted for by the flavour theory have to be invoked among the non-
zero entries in order to account for the structure of charged lepton masses. The second case in the
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irreps masses ν hierarchy HE PE V D Pν Hν U zeros

1 1 1
1 r + 1

(A00)
(abc)

NH or IH V V none

1 1 1
1 r + 1,1

(A00)
(0aa)

IH HE
12 V23 D12 HE

12V23D−1
12 none(13)

1 1 1
1 1 r 6= 1

(AB0)
(abc)

NH or IH V V none

1 1 1
1 1 r 6= 1

(AB0)
(0aa)

IH V23 D12 V23D−1
12 13

1 1 1
1 1 1

(ABC)

(abc)
NH or IH V V none

1 1 1
1 1 1

(ABC)

(0aa)
IH PE V23 D12 PEV23D−1

12 13,23,33

Table 2: Irrep decompositions of Ul , Uec giving rise, in the symmetric limit, to an approximate description
of lepton flavour observables. The first column shows the decomposition of Ul and Uec , one above the
other. Only real and complex (no pseudoreal) irreps appear. Boldface fonts denote complex representations,
regular fonts denote real representations. Primes are used to distinguish inequivalent representations, and in
the case of complex representations 1′ is supposed to be different from both 1 and 1. “r” denotes a generic,
possibly reducible representation, different from or not including the specified irreps, as indicated. The
second column shows the corresponding pattern of charged lepton and neutrino masses in the symmetric
limit, one above the other, and the third the neutrino hierarchy type, normal (NH) or inverted (IH). The
decomposition of the PMNS matrix according to eq. (2.4) then shown. A matrix with no further specification
is generic (e.g. P denotes a generic permutation, V a generic unitary matrix). Di j denotes a π/4 rotation in
the generic form in eq. (2.5) acting in the sector i j. The presence and position of a zero in the PMNS matrix
in the symmetric limit is specified in the last column.

first part of the table is special, as the size of the 13 element of the PMNS matrix is determined by
the rotation HE

12, which is not physical in the symmetric limit, and will be fixed by the symmetry
breaking effects generating the muon mass. Depending on the structure of those effects, the size of
(U)13 can end up being large, small, or zero. Finally, note that since the parameters entering all the
mixing matrices in table 2 except D are generic, a specific value of a mixing angle can be obtained
only when the matrix D is involved. As the table shows, D can only play a role in the 12 mixing,
in agreement with earlier specific results [23].

The form of the PMNS matrix associated to each of the cases in table 2 can be obtained without
the need of diagonalising, or even knowing, the explicit form of the lepton mass matrices, as it only
depends on the structure of the irreps decomposition of Ul and Uec . The PMNS matrix can in fact
be written in the form

U = HEPEV D−1P−1
ν H−1

ν . (2.4)

The contributions to U on the right hand side have different origins and different physical meanings.
Each of them can be obtained as follows.

• V is a generic unitary transformation commuting with Ul , with O (1) entries. Its origin is
associated to the presence of equivalent copies of the same irrep type in the decomposition

4
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of Ul . If all the irrep components are inequivalent, V is trivial.

• D is associated to the possible presence of a Dirac sub-structure in the neutrino mass matrix,
and it originates from the presence of complex conjugated irreps within the decomposition
of Ul . In the three neutrino case, there are only two possibilities. Either Ul does not contain
pairs of complex conjugated irreps, in which case D is trivial, Di j = δi j. Or there is one pair
of one-dimensional complex conjugated representations, in the positions i and j in the list of
irreps, in which case D is a maximal 2×2 rotation,

D2 =
1√
2

(
1 1
−i i

)
, (2.5)

embedded in the i j block. The corresponding mass eigenvalues are degenerate.

• The permutation matrices PE and Pν are associated to the possible need of reordering the list
of eigenvalues. Indeed, the list of eigenvalues obtained with the above rules is not necessarily
in the standard ordering, required for a proper definition of the PMNS matrix.

• Finally, the role of He, Hν is to take into account possible ambiguities in the definition of
the PMNS matrix in the symmetric limit. In the real world, all leptons are non-degenerate
and the PMNS matrix only has unphysical phase ambiguities, which do not need to be taken
into account. When considering the symmetric limit, on the other hand, larger ambiguities
can arise due to degenerate, possibly vanishing, masses. In practice, HE is a generic uni-
tary transformation mixing the massless charged leptons; and Hν contains a generic unitary
transformation mixing the massless neutrinos and a generic orthogonal transformation mix-
ing degenerate massive neutrinos (it turns out, however, that the latter can be ignored if the
degeneracy is due to a Dirac structure, in which case it can be reabsorbed into a phase re-
definition of V ). The He, Hν contributions to the PMNS matrix have a different physical
nature than the previous ones. They are unphysical, and undetermined, in the symmetric
limit. However, they become physical (up to diagonal phases) after symmetry breaking ef-
fects split the degenerate mass eigenstates. Depending on the specific form of the symmetry
breaking effects, He and Hν can end up being large, small, or zero (unlike the previous
contributions, which are determined by the non-zero entries and are large in the absence of
accidental correlations [24]), with possible consequences on the size of U13 [25–36].

Further details and examples can be found in [20].

3. Summary

In summary, we provided a complete answer to the following question: what are the flavour
groups, of any type, and representations providing, in the symmetric limit, an approximate descrip-
tion of lepton (fermion) masses and mixings? Despite the generality of the problem, the complete
answer is simple and has an important corollary: either the flavour symmetry does not constrain
at all the neutrino mass matrix (anarchy), or the neutrinos have an inverted hierarchical spectrum.
Therefore, if the present hint of a normal hierarchical spectrum were confirmed, we would con-
clude that, under the above assumption, flavour models leading to an approximate description of
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lepton masses and mixings in the symmetric limit are not able to account for any of the neutrino
flavour observables, and symmetry breaking effects must play a primary role in their understand-
ing. Such a conclusion is further strengthened in the case in which the representation of the flavour
group commutes with the standard representation of a SU(5) grand unified gauge group. In the
latter case, not even the options leading to an inverted hierarchical spectrum are available, and the
only option is anarchy. In the case of SO(10), there are no solutions.

The main caveat to the previous conclusion is the assumption that the light neutrinos are of
Majorana type, and that the symmetry arguments can be applied directly to their mass matrix. The
origin of Majorana neutrino masses most likely resides at high scales, where additional relevant
degrees of freedom (singlet neutrinos for example) might live. In such a case, the flavour symmetry
acts on the high-scale degrees of freedom as well. The low-energy analysis turns out to be often
equivalent to the high-scale analysis, but not always. Such a caveat will be studied in future work.

References

[1] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation,
Nucl. Phys. B147 (1979) 277–298.

[2] J. Bijnens and C. Wetterich, Fermion Masses From Symmetry, Nucl. Phys. B283 (1987) 237–267.

[3] M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B398 (1993) 319–342,
[hep-ph/9212278].

[4] M. Dine, R. G. Leigh and A. Kagan, Flavor symmetries and the problem of squark degeneracy, Phys.
Rev. D48 (1993) 4269–4274, [hep-ph/9304299].

[5] L. E. Ibanez and G. G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett.
B332 (1994) 100–110, [hep-ph/9403338].

[6] A. Pomarol and D. Tommasini, Horizontal symmetries for the supersymmetric flavor problem, Nucl.
Phys. B466 (1996) 3–24, [hep-ph/9507462].

[7] R. Barbieri, G. R. Dvali and L. J. Hall, Predictions from a U(2) flavor symmetry in supersymmetric
theories, Phys. Lett. B377 (1996) 76–82, [hep-ph/9512388].

[8] C. D. Carone, L. J. Hall and H. Murayama, (S3)
3 flavor symmetry and p→ K0e+, Phys. Rev. D53

(1996) 6282–6291, [hep-ph/9512399].

[9] E. Dudas, C. Grojean, S. Pokorski and C. A. Savoy, Abelian flavor symmetries in supersymmetric
models, Nucl. Phys. B481 (1996) 85–108, [hep-ph/9606383].

[10] R. Barbieri, L. J. Hall, S. Raby and A. Romanino, Unified theories with U(2) flavor symmetry, Nucl.
Phys. B493 (1997) 3–26, [hep-ph/9610449].

[11] R. Barbieri, L. J. Hall and A. Romanino, Consequences of a U(2) flavor symmetry, Phys. Lett. B401
(1997) 47–53, [hep-ph/9702315].

[12] C. D. Carone and L. J. Hall, Neutrino physics from a U(2) flavor symmetry, Phys. Rev. D56 (1997)
4198–4206, [hep-ph/9702430].

[13] N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa
hierarchies, Phys. Rev. D58 (1998) 035003, [hep-ph/9802334].

6

https://doi.org/10.1016/0550-3213(79)90316-X
https://doi.org/10.1016/0550-3213(87)90271-9
https://doi.org/10.1016/0550-3213(93)90112-3
https://arxiv.org/abs/hep-ph/9212278
https://doi.org/10.1103/PhysRevD.48.4269
https://doi.org/10.1103/PhysRevD.48.4269
https://arxiv.org/abs/hep-ph/9304299
https://doi.org/10.1016/0370-2693(94)90865-6
https://doi.org/10.1016/0370-2693(94)90865-6
https://arxiv.org/abs/hep-ph/9403338
https://doi.org/10.1016/0550-3213(96)00074-0
https://doi.org/10.1016/0550-3213(96)00074-0
https://arxiv.org/abs/hep-ph/9507462
https://doi.org/10.1016/0370-2693(96)00318-8
https://arxiv.org/abs/hep-ph/9512388
https://doi.org/10.1103/PhysRevD.53.6282
https://doi.org/10.1103/PhysRevD.53.6282
https://arxiv.org/abs/hep-ph/9512399
https://doi.org/10.1016/S0550-3213(96)90123-6
https://arxiv.org/abs/hep-ph/9606383
https://doi.org/10.1016/S0550-3213(97)00134-X
https://doi.org/10.1016/S0550-3213(97)00134-X
https://arxiv.org/abs/hep-ph/9610449
https://doi.org/10.1016/S0370-2693(97)00372-9
https://doi.org/10.1016/S0370-2693(97)00372-9
https://arxiv.org/abs/hep-ph/9702315
https://doi.org/10.1103/PhysRevD.56.4198
https://doi.org/10.1103/PhysRevD.56.4198
https://arxiv.org/abs/hep-ph/9702430
https://doi.org/10.1103/PhysRevD.58.035003
https://arxiv.org/abs/hep-ph/9802334


P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
2
4

General considerations on lepton mass matrices Andrea Romanino

[14] J. K. Elwood, N. Irges and P. Ramond, Family symmetry and neutrino mixing, Phys. Rev. Lett. 81
(1998) 5064–5067, [hep-ph/9807228].

[15] L. Ferretti, S. F. King and A. Romanino, Flavour from accidental symmetries, JHEP 11 (2006) 078,
[hep-ph/0609047].

[16] F. Simpson, R. Jimenez, C. Pena-Garay and L. Verde, Strong Bayesian Evidence for the Normal
Neutrino Hierarchy, JCAP 1706 (2017) 029, [1703.03425].

[17] F. Capozzi, E. Di Valentino, E. Lisi, A. Marrone, A. Melchiorri and A. Palazzo, Global constraints on
absolute neutrino masses and their ordering, Phys. Rev. D95 (2017) 096014, [1703.04471].

[18] P. F. de Salas, D. V. Forero, C. A. Ternes, M. Tortola and J. W. F. Valle, Status of neutrino oscillations
2017, 1708.01186.

[19] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566–1570.

[20] Y. Reyimuaji and A. Romanino, Can an unbroken flavour symmetry provide an approximate
description of lepton masses and mixing?, JHEP 03 (2018) 067, [1801.10530].

[21] L. J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000)
2572–2575, [hep-ph/9911341].

[22] N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D63 (2001) 053010,
[hep-ph/0009174].

[23] G. Altarelli and F. Feruglio, Tri-bimaximal neutrino mixing from discrete symmetry in extra
dimensions, Nucl. Phys. B720 (2005) 64–88, [hep-ph/0504165].

[24] V. Domcke and A. Romanino, Stable lepton mass matrices, JHEP 06 (2016) 031, [1604.08879].

[25] P. H. Frampton, S. T. Petcov and W. Rodejohann, On deviations from bimaximal neutrino mixing,
Nucl. Phys. B687 (2004) 31–54, [hep-ph/0401206].

[26] A. Romanino, Charged lepton contributions to the solar neutrino mixing and θ13, Phys. Rev. D70
(2004) 013003, [hep-ph/0402258].

[27] S. F. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification,
JHEP 08 (2005) 105, [hep-ph/0506297].

[28] S. Antusch and S. F. King, Charged lepton corrections to neutrino mixing angles and CP phases
revisited, Phys. Lett. B631 (2005) 42–47, [hep-ph/0508044].

[29] K. A. Hochmuth, S. T. Petcov and W. Rodejohann, UPMNS =U†
l Uν , Phys. Lett. B654 (2007) 177–188,

[0706.2975].

[30] P. S. Bhupal Dev, R. N. Mohapatra and M. Severson, Neutrino Mixings in SO(10) with Type II Seesaw
and θ13, Phys. Rev. D84 (2011) 053005, [1107.2378].

[31] S. Dev, S. Gupta and R. Raman Gautam, Parametrizing the Lepton Mixing Matrix in terms of Charged
Lepton Corrections, Phys. Lett. B704 (2011) 527–533, [1107.1125].

[32] D. Marzocca, S. T. Petcov, A. Romanino and M. Spinrath, Sizeable θ13 from the Charged Lepton
Sector in SU(5), (Tri-)Bimaximal Neutrino Mixing and Dirac CP Violation, JHEP 11 (2011) 009,
[1108.0614].

[33] G. Altarelli, F. Feruglio and L. Merlo, Tri-Bimaximal Neutrino Mixing and Discrete Flavour
Symmetries, Fortsch. Phys. 61 (2013) 507–534, [1205.5133].

7

https://doi.org/10.1103/PhysRevLett.81.5064
https://doi.org/10.1103/PhysRevLett.81.5064
https://arxiv.org/abs/hep-ph/9807228
https://doi.org/10.1088/1126-6708/2006/11/078
https://arxiv.org/abs/hep-ph/0609047
https://doi.org/10.1088/1475-7516/2017/06/029
https://arxiv.org/abs/1703.03425
https://doi.org/10.1103/PhysRevD.95.096014
https://arxiv.org/abs/1703.04471
https://arxiv.org/abs/1708.01186
https://doi.org/10.1103/PhysRevLett.43.1566
https://doi.org/10.1007/JHEP03(2018)067
https://arxiv.org/abs/1801.10530
https://doi.org/10.1103/PhysRevLett.84.2572
https://doi.org/10.1103/PhysRevLett.84.2572
https://arxiv.org/abs/hep-ph/9911341
https://doi.org/10.1103/PhysRevD.63.053010
https://arxiv.org/abs/hep-ph/0009174
https://doi.org/10.1016/j.nuclphysb.2005.05.005
https://arxiv.org/abs/hep-ph/0504165
https://doi.org/10.1007/JHEP06(2016)031
https://arxiv.org/abs/1604.08879
https://doi.org/10.1016/j.nuclphysb.2004.03.014
https://arxiv.org/abs/hep-ph/0401206
https://doi.org/10.1103/PhysRevD.70.013003
https://doi.org/10.1103/PhysRevD.70.013003
https://arxiv.org/abs/hep-ph/0402258
https://doi.org/10.1088/1126-6708/2005/08/105
https://arxiv.org/abs/hep-ph/0506297
https://doi.org/10.1016/j.physletb.2005.09.075
https://arxiv.org/abs/hep-ph/0508044
https://doi.org/10.1016/j.physletb.2007.08.072
https://arxiv.org/abs/0706.2975
https://doi.org/10.1103/PhysRevD.84.053005
https://arxiv.org/abs/1107.2378
https://doi.org/10.1016/j.physletb.2011.09.074
https://arxiv.org/abs/1107.1125
https://doi.org/10.1007/JHEP11(2011)009
https://arxiv.org/abs/1108.0614
https://doi.org/10.1002/prop.201200117
https://arxiv.org/abs/1205.5133


P
o
S
(
C
O
R
F
U
2
0
1
7
)
0
2
4

General considerations on lepton mass matrices Andrea Romanino

[34] D. Marzocca, S. T. Petcov, A. Romanino and M. C. Sevilla, Nonzero |Ue3| from Charged Lepton
Corrections and the Atmospheric Neutrino Mixing Angle, JHEP 05 (2013) 073, [1302.0423].

[35] S. Gollu, K. N. Deepthi and R. Mohanta, Charged lepton correction to tribimaximal lepton mixing and
its implications to neutrino phenomenology, Mod. Phys. Lett. A28 (2013) 1350131, [1303.3393].

[36] D. Marzocca and A. Romanino, Stable fermion mass matrices and the charged lepton contribution to
neutrino mixing, JHEP 11 (2014) 159, [1409.3760].

8

https://doi.org/10.1007/JHEP05(2013)073
https://arxiv.org/abs/1302.0423
https://doi.org/10.1142/S0217732313501319
https://arxiv.org/abs/1303.3393
https://doi.org/10.1007/JHEP11(2014)159
https://arxiv.org/abs/1409.3760

