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Abstract

We investigate a sample of 152 dusty sources at 1.5<z<2.5 to understand the connection of enhanced star
formation rate (SFR) and black hole accretion rate. The sources are Herschel-selected, having stellar masses
M*>1010Me and SFR (∼100–1000Me yr−1) elevated (>4×) above the star-forming “main sequence,”
classifying them as starbursts (SBs). Through a multiwavelength fitting approach (including a dusty torus
component), we divided the sample into active SBs (dominated by an active galactic nucleus (AGN) emission,
SBs-AGN, ∼23% of the sample) and purely star-forming SBs (SBs-SFR). We visually inspected their Hubble
Space Telescope/ultraviolet (UV) rest frame maps: SBs-SFR are generally irregular and composite systems; ∼50%
of SBs-AGN are instead dominated by regular compact morphologies. We then found archival Atacama Large
Millimeter/submillimeter Array continuum counterparts for 33 galaxies (12 SBs-AGN and 21 SBs-SFR). For these
sources we computed dust masses, and, with standard assumptions, we also guessed total molecular gas masses.
SBs turn into gas-rich systems ( fgas=Mgas/(Mgas+M*);20%–70%), and the gas fractions of the two SB
classes are very similar ( fgas= 43%± 4% and fgas= 42%± 2%). Our results show that SBs are consistent with a
mixture of: (1) highly star-forming merging systems (dominating the SBs-SFR) and (2) primordial galaxies, rapidly
growing their M* together with their black hole (mainly the more compact SBs-AGN). Feedback effects have not
yet reduced their fgas. Indeed, SBs at z=2, with relatively low bolometric AGN luminosities in the range
1044<Lbol(AGN)<1046 erg s−1 (compared to bright optical and X-ray quasars), are still relatively far from the
epoch when the AGN feedback will quench the SFR in the host and will substantially depress the gas fractions.

Key words: galaxies: active – galaxies: evolution – galaxies: formation – galaxies: high-redshift – galaxies:
starburst – infrared: galaxies

1. Introduction

The existence of a natural correlation between stellar mass
and star formation rate (SFR) for the bulk of star-forming
galaxies (i.e., the so-called main sequence (MS); Daddi et al.
2007; Magdis et al. 2010; Whitaker et al. 2012; Speagle et al.
2014) and the identification of highly star-forming outliers
above it, implies that two main processes of galaxy growth
occur: (1) a secular growth along a (quasi-) steady state, and (2)
stochastic episodes of major galaxy growth, possibly driven by
major mergers that trigger short-lived and intense starbursts
(SB). Similarly, two different ways of black hole (BH) growth
seem to hold. Likely, secular processes dominate the growth of
intermediate-to-low luminosity BHs, e.g., through continuous
gas refueling (Mullaney et al. 2012). Instead, the most

luminous population of active galactic nuclei (AGNs) may
experience a different growth history strictly connected to the
SB activity in off-MS galaxies. Indeed, SBs show the following
indications of enhanced AGN activity: (1) higher average
X-ray luminosities (Rodighiero et al. 2015, and R. Carraro
et al., in preparation) (2) higher AGN fraction (up to 50%–

80%) both in the local universe (Alexander & Hickox 2012),
and at high-z (Bongiorno et al. 2012; Perna et al. 2018),
compared to MS galaxies (∼25%–30%, Brusa et al. 2009) This
implies that the AGN duty cycle is higher above the MS, and
that the black hole accretion rate (BHAR) is more efficient.
Many observational efforts have been devoted to under-

standing what triggers the fast gas consumption rate in these
spectacular sources (Silverman et al. 2015; Cibinel et al. 2018;
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Calabrò et al. 2019). Mergers are often invoked as the more
likely mechanism, although it is still not clear if this is
sufficient to explain the enhanced star formation of SBs
compared to normal galaxies (Silverman et al. 2018). Some
authors suggest that the merger mechanism enhancing SFR in
many SBs could be responsible also for the AGN ignition (e.g.,
Di Matteo et al. 2005; Capelo et al. 2015; Steinborn et al.
2018). This scenario is, however, still quite debated (e.g.,
Mancuso et al. 2016; Wang et al. 2019).

In this Letter, we investigate the properties of SBs in
COSMOS field at 1.5<z<2.5. We study their morpholo-
gies, AGN contribution, and molecular gas contents (for a sub-
sample with an Atacama Large Millimeter/submillimeter
Array (ALMA) continuum observation) to infer potential
observational evidences of feedback induced by AGN.

We adopt a Chabrier (2003) initial mass function assuming a
standard cosmology with H0=70, Ωλ=0.7, Ω0=0.3.

2. Dusty SBs at 1.5<z<2.5: Sample Selection

We adopt the Herschel far-infrared catalog, associated to the
COSMOS2015 sample (Laigle et al. 2016), to select a sample
of highly star-forming dusty galaxies at the peak of the cosmic
SFR density (i.e., 1.5<z<2.5). PACS and SPIRE-Herschel
data are originally from the PEP (Lutz et al. 2011) and HerMES
(Oliver et al. 2012) surveys, with corresponding photometry
extracted with a 24 μm priors point-spread function fitting
procedure. Sources identification, multiwavelength photome-
try, M*, and redshifts are from the COSMOS2015 sample. SBs
are selected to have a SFR well elevated above the MS at
z=2, at least a factor 4, as in Rodighiero et al. (2011).

2.1. Spectral Energy Distribution (SED) Fitting: SFR and AGN
Computation

We fit the multiwavelength SEDs of the Herschel sources to
derive their physical characterization. We used both the
MAGPHYS (da Cunha et al. 2008), and the SED3FIT (Berta
et al. 2013) SED-fitting codes, the latter accounting for an
additional AGN component (dusty torus). MAGPHYS relies on
the energy balance between the dust-absorbed stellar con-
tinuum and the reprocessed dust emission at infrared (IR)
wavelengths. SED3FIT combines the emission from stars, dust
heated by star formation, and a possible AGN-torus component
from the library of Feltre et al. (2012). We fitted each observed
SED by using the best available redshift (either spectroscopic
or photometric) as input. The SFR was derived from the total
IR (rest frame [8–1000] μm) luminosity taken from the best-fit
galaxy SED (subtracted by the AGN luminosity, if present),
assuming a Kennicutt (1998) conversion.

Out of 1790 Herschel detected sources at 1.5<z<2.5, we
identified a sample of 164 SBs (see Figure 1). We limit our
analysis to M*>1010Me (to ensure an unbiased mass
complete selection, see Laigle et al. 2016) reducing the SB
sample to 152 objects.

2.2. AGN Classification

In order to quantify the relative incidence of a possible AGN
component, we fitted each individual observed SED. The fit
obtained with the AGN is preferred if the reduced χ2 value of
the best fit (at �99% confidence level, on the basis of a Fisher
test) is significantly smaller than that obtained from the fit
without the AGN (see Delvecchio et al. 2014). From our

analysis, 35 out of 152 SBs (about 23%) show a significant
AGN component. In the following, we will refer to these two
classes as SBs with evidences of a nuclear activity (SBs-AGN)
and SFR-dominated SBs (SBs-SFR), respectively. We have
verified that out of 152 SBs in our starting sample, only eight
are classified as X-ray AGN (Laigle et al. 2016), six of which
are identified by our AGN classification. This check ensures
that we recover the bulk (i.e., 75%) of the classical X-ray/AGN
selection,18 extending the sample to include also the most
obscured active sources (e.g., Bongiorno et al. 2012; Gruppioni
et al. 2016). Moreover, because at 1.5<z<2.5 the IRAC
bands span the rest frame near-IR where the galaxy stellar
emission peaks, to ensure that the AGN classification is not
contaminated we performed a further test. Thus, to verify if
substantially old stellar populations could bias the AGN
selection, we computed the mass-weighted ages of all SBs in
our sample with and without the dusty torus component. In
spite of a significant scatter (∼0.3 dex), no offset is observed in
the measured average stellar ages of the systems, both for SBs-
SFR and SBs-AGN (probing that the SED3FIT software
correctly recovers, in a statistical sense, the near-IR light
arising from the stellar populations and from the torus). We
have also tested our AGN selection procedure against classical
IRAC/Spitzer color–color diagnostics, as the one proposed by
Donley et al. (2012), finding that ∼80% of the SBs-AGN fall
into the AGN region, while just one of the SBs-SFR are
misclassified as AGN (see Figure 2, left panel). A comparison
with the average fraction of the luminosities coming from the
AGN component at [5–40] μm in the SED modeling, confirms
that sources lying above the dashed line in the left panel of
Figure 2 have four times larger AGN contributions (25% versus

Figure 1. Sample selection in the SFR–M* plane for the COSMOS field at
1.5<z<2.5. Orange stars mark the original Herschel sample. Blue and red
stars show the position of SBs-AGN and SBs-SFR, respectively (see
Section 2.1). Black open circles indicate the SB sources with an ALMA
detection. Black dots are star-forming BzK (Daddi et al. 2007). We report as
dashed cyan lines evolutionary tracks of galaxies (Lapi et al. 2018) starting
with different initial SFR and final total M* (time follows the arrows direction,
see the discussion in Section 6.2). The vertical black dashed line marks the
mass limit of our SBs selection (see the text for details).

18 As a consistency check, for X-ray undetected SBs-AGN, we computed the
expected [2–10]keV X-ray fluxes, derived from the AGN bolometric
luminosities obtained by the SED-fitting procedure described in Section 2.1.
By applying a suited bolometric correction (Yang et al. 2018), and a
K-correction=(1 + z)Γ−2 (with Γ = 1.5, consistently with the stacked
hardness ratios of our sources), we obtain a median F[2-10]keV on the order of
∼1.7×10−15 keV, right below the limit of the Chandra detectability in this
band (∼1.9 × 10−15 keV; Marchesi et al. 2016).
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6%, in terms of the light fraction arising from the torus in the
mid-IR) with respect to the sources below the same line. This
indicates that the procedure adopted in this work to classify
AGN preferentially selects sources dominated by a torus
component at mid-IR wavelengths (as expected). The compar-
ison of our AGN selection criterium with the color–color plot
presented in Figure 2 (left panel) shows that our SBs-AGN
sample is highly reliable19 (contamination �20%), but not
necessarily complete (Donley et al. 2012).

3. UV-rest Frame Hubble Space Telescope (HST)
Morphological Analysis

We performed a visual inspection on the COSMOS/HST-
ACS i-band images of the 140 (out of 152) SBs for which the
data are available (corresponding to the UV-rest frame at
z= 2). Excluding undetected sources (9 out of 33 SBs-AGN,
39 out of 107 SBs-SFR), this analysis reveals that the two SB
classes have statistically different typical morphologies: SBs-
SFR are disturbed systems (56 out of 68, i.e., ∼82%±11% of
the HST detected sample), with evident tidal interaction
between multiple components (possibly ongoing mergers or
clumpy disks); SBs-AGN are (13 out of 24 detection,
∼55%±15%) dominated by regular compact and symmetric
morphologies. We note that for Type 1 sources the HST
imaging would be dominated by the AGN outshining the hosts.
From our SED fitting, we estimate that just a fraction of the
compact SBs-AGN are consistent with a Type 1 classification,
lowering to ∼34% the percentage of compact AGN in the
sample, which is still significantly higher then the corresp-
onding value among the SBs-SFR (∼18%). To overcome the
uncertainties related to our SED fitting approach on the
classification of Type 1 AGN, and the shallowness of the X-ray
Chandra data in COSMOS, we rely on a stacking procedure to
compute separately the average soft (S) and hard (H) X-ray

fluxes for the different AGN morphological classes. We used
the CSTACK tool20 (v3.1, T. Miyaji) and derive the average
hardness ratio, HR=(H−S)/(H+S), of our SBs-AGN
sample (see details on the procedure in Rodighiero et al.
2015). We found that compact, i-band undetected and extended
sources have compatible HR=−0.12±0.11, 0.02±0.31,
−0.04±0.13, respectively. This result suggests that all AGN
in our classification have similar levels of extinction, with
column densities on the order of NH∼1022−1023 (see
Rodighiero et al. 2015). This is inconsistent with a dominant
budget of unobscured AGN light arising at UV wavelengths
among the compact sources (that could potentially influence
rapid morphological transformations in the hosts, e.g., Pierce
et al. 2010). Indeed, these NH values are in the typical range of
obscuration observed for Type 2 AGN at z=2 (Marchesi et al.
2016).
By also including the i-band undetected sources, the fraction

of visual compact sources would be ∼11%±3% and
∼39%±7% for SBs-SFR and SBs-AGN, respectively.
Typical examples of the different classes are shown in
Figure 2. We caution that this morphological analysis is
limited by the shallowness of the COSMOS/HST imaging, but
also by the huge dust extinction associated to the SBs, that
allows only a minor contribution of un-absorbed UV light to
escape the obscured star-forming regions (Puglisi et al. 2017).
Despite these important limitations, we interpret our results as a
supporting evidence that SBs-AGN are probably more compact
and dense sources, likely corresponding to a final merger stage
(as many local ULIRGs; Sanders et al. 1988).

3.1. ALMA Continuum Counterparts

We searched for possible ALMA millimetric counterparts of
the SBs in the public archive, adopting a search radius of 2 5.
The final sample includes 33 sources with a clear detection over
3σ, mostly in band 7 at 870 μm (with four undetected sources
that we do not include in this work), with few of them detected
also in band 3 or 2. The measurement sets were calibrated

Figure 2. Left panel: color–color IRAC plot of the 152 SBs selected in COSMOS. Blue stars are classified as SBs-AGN (35 in total), red stars as SBs-SFR (117).
Black lines mark the position of the AGN selection criteria from Donley et al. (2012). The mean value of the sample AGN contribution (in percentage units) between
[5–40] μm over and below this value is reported. Right panel: morphological examples of SFR-dominated starbursts (left) and AGN dominated starbursts (right). HST-
ACS cutouts have a size of 5″×5″.

19 Even if SB templates are a dominant contaminant of mid-IR AGN selection
techniques (Rodighiero et al. 2007), Donley et al. (2012) have demonstrated
that their conservative selection minimizes the inclusion of purely star-forming
LIRGS and ULIRGS, whose templates begin to enter the IRAC selection
region only at z>2.7. 20 http://cstack.ucsd.edu/cstack/
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running the data reduction scripts with the Common Astron-
omy Software Applications (CASA). Fluxes and associated
errors were evaluated with CASA, by fitting the emissions with
a bidimensional Gaussian, and are reported in Table 1. For the
33 ALMA detected sources, we included the sub-mm fluxes in
the observed SED and we performed a second fitting run, as
described in Section 2.1. The updated physical parameters are
reported in Table 1.

4. Results

In this Section, we report the main results of our analysis of
the gas masses computed for the SBs with an ALMA
continuum detection. Out of 33 sources, 12 objects turn into
SBs-AGN, thus representing 36% of our sample. We note that
this limited ALMA detected data set is quite representative of
the whole SB population in this redshift range (in terms of M*,
elevation above the MS and AGN content; see Figure 1).

4.1. Comparison Sample

For comparative analyses, we use the reference sample
compiled by Sargent et al. (2014) and Perna et al. (2018),
including “typical” star-forming galaxies at z�3 with
measurements of their CO luminosity. Local ULIRGs and
high-z SBs with a CO detection are added. Detailed references
for the various samples included are reported in Sargent et al.

(2014) and Perna et al. (2018). We added the recent
compilation of SBs by Silverman et al. (2015) and Silverman
et al. (2018), at z∼1.6.

4.2. Dust and Molecular Gas Masses

Dust masses (Mdust) have been derived following the
procedure described in Magdis et al. (2012, 2017) by fitting
the SED in the IRAC-ALMA observed frame with the Draine
& Li (2007) models. The total gas mass (Mgas, which
incorporates both the molecular and atomic phases) can be
inferred from the dust mass through the metallicity dependent
gas-to-dust ratio (GDR; e.g., Eales et al. 2010; Magdis et al.
2012): Mgas=Mdust/GDR(Z).
For consistency with Mgas estimates of SBs in the literature,

we adopt GDR≈30, that based on Magdis et al. (2012)
corresponds to a CO-to-Mgas αco conversion factor of
0.8Me/(K km s−1 pc2), typically used for strong SBs. For
completeness we also infer Mgas estimates with GDR≈95 that
corresponds to solar gas-phase metallicity that could be
considered as a lower limit (on metallicity, hence the upper
limits on GDR and thus on Mgas) for dust-obscured SBs (e.g.,
Puglisi et al. 2017). These Mgas estimates are consistent (within
0.15 dex) with the average Mgas estimates derived based on the
monochromatic flux densities in the R–J tail of the SED (one or
more of 870, 1300, and 3000 μm in our case) and the recipe
presented in Scoville et al. (2017).

Table 1
Main Observational and Physical parameters of the SBs with an ALMA Continuum Detection (Redshifts between Parentheses are Spectroscopic).

ID R.A. Decl. z Llog IR Llog AGN *Mlog Mlog gas AGN F870μm F1.3mm F3.0mm

COSMOS15 (deg) (deg) (Le) (erg s−1) (Me) (Me) (mJy) (mJy) (mJy)

182648 150.64316 1.558194 1.6887 11.115 45.595 10.4616 9.840 yes 0.49±0.10 L L
221280 149.76807 1.617000 2.3220 11.185 43.945 10.4703 10.282 yes 1.11±0.22 L L
244448 150.01202 1.652130 (1.5180) 10.645 L 10.7505 10.472 no 2.01±0.25 L L
280968 149.79010 1.711870 1.7844 11.343 L 10.4035 10.384 no 1.33±0.25 L L
323041 149.81653 1.779770 2.0933 11.244 44.135 10.5122 10.018 yes 1.38±0.46 L L
349784 150.48938 1.821710 1.9693 11.100 L 10.8425 10.628 no 1.59±0.34 L L
386956 150.34194 1.880208 2.2493 11.346 L 10.6594 10.201 no 1.88±0.30 L L
505526 150.42101 2.068100 2.2684 10.666 45.245 11.0934 11.313 yes 11.93±0.71 L L
506667 150.72984 2.071170 2.4433 11.200 L 10.5955 10.590 no 2.23±0.77 L L
524710 149.76853 2.099614 2.1059 11.321 L 10.4187 10.214 no 1.72±0.23 L L
571598 150.61642 2.167971 1.5052 11.167 L 10.8600 10.792 no 5.39±0.23 L L
578926 150.40103 2.180390 (2.3341) 11.567 L 10.9570 10.617 no 2.05±0.55 L L
600601 150.13265 2.211946 1.9875 10.752 45.605 11.1349 11.081 yes 8.27±0.44 2.46±0.10 L
605409 149.76813 2.219876 (1.7766) 11.112 L 10.8708 10.585 no 3.78±1.03 L L
640026 150.03663 2.270976 1.7977 11.313 44.185 10.2632 10.349 yes 1.09±0.27 L L
642313 149.60419 2.275064 2.0069 11.254 L 10.6391 10.677 no 1.77±0.31 L L
651584 149.92196 2.289929 2.3341 11.600 L 10.8786 10.626 no 4.93±0.34 L L
734578 149.52823 2.413200 1.9641 11.765 L 10.5523 10.893 no L 1.88±0.23 L
745498 150.46551 2.429549 1.6332 10.731 L 10.7144 10.355 no 3.47±0.34 L L
747590 150.22447 2.433010 1.6351 10.903 L 10.6513 10.285 no 1.60±0.24 L L
752016 150.33683 2.439920 2.2682 11.585 L 10.7232 10.665 no 4.50±0.31 L L
754372 150.06907 2.444010 2.4355 11.439 45.595 11.0108 10.468 yes 4.86±0.65 L 0.275±0.065
769248 150.25528 2.466839 (2.2640) 10.903 L 10.5134 10.629 no 3.80±0.42 L L
794848 150.09341 2.507339 2.1990 11.365 45.975 10.7362 10.648 yes 3.09±0.25 L L
810228 150.11307 2.528020 2.0167 11.264 L 10.6265 10.687 no L L 0.137±0.060
815012 150.60329 2.536536 (2.2872) 11.119 L 11.1034 10.692 no 6.70±0.35 L L
818426 150.72202 2.541904 2.2664 11.607 45.935 10.6405 10.807 yes 1.01±0.30 L L
842595 149.99796 2.578227 2.4200 11.693 44.205 10.7809 10.732 yes 1.97±0.32 L L
902320 150.03726 2.669600 (1.5990) 10.274 L 10.9826 11.162 no 6.41±0.39 L 0.147±0.057
917423 149.99218 2.693436 2.1284 11.330 L 10.7933 10.581 no 1.77±0.34 L L
917546 150.16165 2.691588 (1.9745) 10.937 44.785 10.4437 10.156 yes 1.39±0.25 L L
951838 150.26832 2.749270 2.0186 11.128 45.535 9.9814 10.076 yes 1.60±0.24 L L
980250 150.01611 2.792355 1.7598 10.533 L 11.1303 10.875 no 5.03±0.25 L L
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4.3. Gas Masses and Gas Fractions in SBs-AGN and SBs-SFR

We report in Figure 3 (left panel) the gas masses of the SBs
as a function of their M*, divided into SBs-AGN and SBs-SFR
(blue and red filled stars, respectively). The SB population is
dominated by gas-rich galaxies, with gas fractions (defined as
fgas=Mgas/(Mgas+M*)) spanning the range 20%–70%. This
is similar to the typical fgas (∼50%) of the normal star-forming
sources at similar z (open circles). Local star-forming galaxies
(both MS and ULIRGs/SBs) are instead much gas poorer, with
fgas∼10%, as expected on the basis of the observed gas
fraction evolution with cosmic time (e.g., Magdis et al. 2012;
Tacconi et al. 2018, and references therein).

When looking at the separate gas fractions of SBs-AGN and
SBs-SFR, we do not observe a significant difference, providing
average values of fgas=43%±4% and fgas=42%±2% for
the two classes, respectively.

To shed more light on our analysis in the most efficient star-
forming sources, we study (right panel of Figure 3) the
distribution of Mgas as a function of SFR, in order to compare
the star formation efficiency (i.e., SFE=SFR/Mgas) of SBs-
AGN and SBs-SFR. Our sample turns to be “SFR-selected” by
construction, with SFR �150Me yr−1 due to the requirement
of being Herschel selected (see Figure 1). We then observe that
SBs lie on a contiguous sequence of increasing SFE that fills
the gap between the two paradigmatic sequences of normal
galaxies and ULIRG/SBs (dotted lines, as from Sargent et al.
2014), usually interpreted as the main loci of two extremely
different SF modes. Our results support recent works suggest-
ing the existence of a continuous increase in SFE with
elevation from the MS, as opposed to a bimodal distribution
(Silverman et al. 2018).

5. Discussion

5.1. Comparison with the Merger Triggered SB-Quasar (QSO)
Evolutionary Sequence

As mentioned in Section 1, we can compare our results with
the expectations of the AGN-galaxy co-evolutionary scenario,
that predicts a luminous IR phase of buried SMBH growth, co-
existing with a SB (likely arising from a merger; Donley et al.
2018; Koss et al. 2018) before feedback phenomena deplete the
cold molecular gas reservoir of the galaxy and an optically
luminous QSO shines out (Hopkins et al. 2008). On one side,
we have qualitatively observed that SBs including an AGN
have on average more compact and nucleated UV-rest frame
morphologies with respect to “inactive” SBs, suggesting that
they are kept in a different dynamical evolutionary phase. This
could correspond to the key transition when the late mergers
trigger a high SFR, before the fully developed AGN phase.
Simulations and observations, indeed, suggests a temporal
delay between the peak of the SFR and the peak of the BHAR
(Rodighiero et al. 2015; Bergvall et al. 2016; Lapi et al. 2016).
On the other side, we did not find a significant reduction of gas
fractions in the SBs-AGN hosts compared to “inactive” SBs-
SFR. We argue that, if major mergers are the main triggering
mechanism of obscured BHAR in SBs, feedback phenomena
(producing large outflows from the central BH) are not efficient
in removing significant amount of molecular gas in the host
galaxies.

5.2. SBs as Primordial Galaxies

An alternative interpretation for the properties of the off-MS
galaxies is provided by an in situ co-evolution scenario (Lapi
et al. 2018), envisaging high-z galaxy evolution to be mainly
ruled by the interplay between in situ processes like gas infall,
compaction, star formation, accretion onto the hosted central
SMBHs, and related feedback processes (with wet galaxy

Figure 3. Left panel:Mgas vs.M* for the SBs with an ALMA detection (blue stars: SBs-AGN; red stars: SBs-SFR).Mgas are evaluated adopting a solar metallicity and
an αCO of 0.8, corresponding to a DGR of 30, and represent our reference values; light points and relative connectors still refer to solar metallicity, but with
αCO=1.0. Formal errors are smaller then the difference computed with the two methods. Loci of constant gas fraction (i.e., Mgas/(Mgas+M*)), are shown with
dotted lines. Open black squares (circles) represent MS galaxies at z<1 (>1) as compiled by Sargent et al. (2014) and Perna et al. (2018). Green symbols show local
ULIRGs (filled squares) and high-z starbursts (filled circles). Right panel: Mgas vs. SFR. Empirical model curves (dashed lines) for MS and ULIRGs/SB are described
in Sargent et al. (2014).
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mergers having a minor role at z�1). In this framework z∼2
sources with SFR�a few 102Me constitute the progenitor of
local massive spheroids with stellar mass M*�1011Me.
During their star-forming phase, lasting some 108 yr, these
galaxies feature a nearly constant SFR and a linearly increasing
stellar mass. In the SFR–M* diagram they follow an almost
horizontal track (see the cyan tracks in Figure 1) while moving
toward the galaxy MS locus; there they will have acquired most
of their mass before being quenched by energy/momentum
feedback from the SMBH.

Being in the early stages of their evolution, the SBs can host
only a rather small SMBH, originating a bolometric AGN
luminosity LAGN that is weaker than that LSFR associated to the
SFR in the host. However, the BH mass is expected to grow
exponentially generating a noticeable statistical variance in
LAGN at given SFR. As a consequence, in the SFR versus LAGN
plane, SBs are expected to populate a strip parallel to the LAGN
axis, and located to the left of the locus where LSFR=LAGN
(see Figure 4 and Bianchini et al. 2018). The hosted AGNs are
expected to be obscured and have a luminosity that is still not
powerful enough to originate substantial feedback effects on
the interstellar medium (ISM) of the host galaxy; thus, the SFR
and the gas mass of the host are still not much affected. The
compact morphologies of SBs-AGN (possibly linked to a
forming bulge) could indicate that these sources are observed
when the host stellar mass and the BH mass are reaching their
maximum, just before the feedback gets into action and the
BHAR and SFR gets quenched (Lapi et al. 2014); further size
evolution of the stellar component may be induced by the
feedback itself and by late-time mass addition from dry
mergers (see Lapi et al. 2018).

6. Summary

In conclusion, the results presented in this work are
consistent with the idea that the SB population could be filled
by a mixture of (1) a class of highly star-forming merging
sources (preferentially among the SBs-SFR) and (2) primordial
galaxies, quickly accreting their M* together with their BH
(mainly the SBs-AGN). If the level of AGN luminosity
(proportional to BHAR) is also correlated with the power of
feedback, then IR-selected SBs are mainly low-luminosity
AGN, and feedback effects have not yet started to eventually
reduce the gas fraction of the objects (as observed for local
Seyfert in a similar AGN luminosity range; Rosario et al.
2018). As time passes, the galaxies will get older, the
luminosity of the AGN will overwhelm that of the SFR in
the host (moving toward the bottom-right region of Figure 4),
removing gas and dust from the ISM and quenching the SFR
and the accretion itself. The systems will then shine as a bright
optical quasar (blue symbols in Figure 4), before turning into
passive sources.

To better constrain the dominant nature of SB (mergers
versus in situ formation and evolution), much larger samples
are required to provide a statistical description of the gas
content in this population and to understand the impact of the
co-evolving obscured central activity. An important discrimi-
nating factor will be provided by future spatially resolved
kinematic studies of the stellar or gas components (James Webb
Space Telescope, ALMA), currently available for just few
sources (e.g., Silverman et al. 2018).
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