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We develop a systematic method to calculate the trace distance between two reduced density matrices in
1þ 1 dimensional quantum field theories. The approach exploits the path integral representation of the
reduced density matrices and an ad hoc replica trick. We then extensively apply this method to the
calculation of the distance between reduced density matrices of one interval of length l in eigenstates of
conformal field theories. When the interval is short, using the operator product expansion of twist
operators, we obtain a universal form for the leading order in l of the trace distance. We compute the trace
distances among the reduced density matrices of several low lying states in two-dimensional free massless
boson and fermion theories. We compare our analytic conformal results with numerical calculations in XX
and Ising spin chains finding perfect agreement.
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During recent times, in several disconnected fields of
physics emerged the necessity to characterize the properties
of extended subsystems rather than of the entire system. A
first important example is the nonequilibrium dynamics of
isolated quantumsystems:while thewhole system remains in
a pure state, subsystems are described by statistical ensem-
bles for large times [1–8]. Another subject where the physics
of the subsystem matters is the black hole information loss
paradox [9] and its relation to the distinguishability of states
in gauge field theories through thegauge-gravity duality [10–
15]. Indeed, the large interest in the physics of subsystems
was the main reason of the vast theoretical [16–18] and
experimental [7,19–21] activity aimed to characterize the
entanglement of extended quantum systems. Yet, it is very
important not only to have information about the subsystems,
but also to have a notion of distance between the subsystems’
configurations, more precisely between the reduced density
matrices (RDMs) of a subsystem in two different states.
Several different measures of the distance between

density matrices exist and are widely used in quantum
information [22,23]. For example, given two density
matrices ρ and σ acting on the same Hilbert space, a
family of distances, depending on a continuous parameter
n, is provided by the n distances

Dnðρ; σÞ ¼
1

21=n
kρ − σkn; ð1Þ

where the n norm is kΛkn ¼ ðPiλ
n
i Þ1=n with λi being

the singular values of Λ, i.e., the eigenvalues of
ffiffiffiffiffiffiffiffiffi
Λ†Λ

p
.

When Λ is Hermitian, λi are just the absolute values of
the eigenvalues of Λ. [The normalization 21=n ensures
0 ≤ Dnðρ; σÞ ≤ 1.] In finite dimensional Hilbert spaces, all
norms are equivalent (in the sense that they bound each
other), but this ceases to be the case for infinite dimensional
spaces and we are interested in quantum field theories
(QFTs). Furthermore, even in finite dimensions, the bounds
between norms depend on the dimension and so the
distances are not on equal footing when comparing sub-
systems of different sizes. There are several reasons why
the trace distance D1 is special; e.g., the difference of
expectation values of an operator O in different states is
bounded as jtrðρ − σÞOj ≤ D1ðρ; σÞjjOjj1, and the bound
has no factor depending on the Hilbert space dimension, as
it would be the case for other norms; see, e.g., Ref. [24].
It is however extremely difficult to evaluate analytically

D1: even for Gaussian states there is no way to compute it
from the two-point correlators (see, e.g., Ref. [24]). This is
indeed one of the reasons why for quantum field theories
there has been a huge activity [25–34] in quantifying the
relative entropy SðρkσÞ ¼ trðρ log ρÞ − trðρ log σÞ, which
provides an idea about the distance of ρ and σ, but it is not
even a metric because it is not symmetrical.
In this Letter, we develop a systematic method to

calculate the trace distance between two RDMs in quantum
field theories. This is based on an ad hoc replica trick: we
first calculate the n distance (1) for a general even integer n,
we analytically continue it to real n, and finally we take the
limit n → 1 to get the trace distance. (This trick is
reminiscent of the one for entanglement negativity in
QFT [35].) For even n, we express Dn as a correlation
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function in a replicated worldsheet, that, in 1þ 1 dimen-
sions, can be written in terms of the twist operators of
Refs. [36–38]. We will then exploit this method to provide
very general results for the distance between primary states
in 2D conformal field theories (CFTs) and use the operator
product expansion (OPE) of the twist fields [39–45]
for short intervals. In this Letter, we just introduce our
replica approach and show how it works with a few
examples. Most details are left to a technical forthcoming
publication [46].
General description in QFT.—We consider a generic

QFT in a state described by the density matrix ρ and we
focus on a spatial subsystem A. The reduced density matrix
ρA ¼ trĀρ is obtained by tracing out the degrees of freedom
of Ā, the complement of A. The bipartite entanglement
between A and Ā may be measured by the celebrated
entanglement entropy SA ¼ −trðρA log ρAÞ which can be
obtained from the replica limit of trρnA [36,38]. In the path
integral Euclidean formalism and for n ∈ N, such traces
correspond to partition functions on an n-sheeted Riemann
surface (see Fig. 1, left), with the sheet j representing ρA;j
(the jth copy of the state ρA of the initial QFT). Moreover,
for one interval embedded in a 1D systems (equivalently
2D QFT), the same quantities can be interpreted as two-
point functions (or, more generally, 2m-point functions if
the subsystem consists of m disjoint intervals) evaluated
in the state ρn ¼ ⨂n−1

j¼0ρA;j of the corresponding n-fold
theory [36,37]

trρnA ¼ hT ðl;lÞT̃ ð0; 0Þiρn : ð2Þ

T and T̃ are called twist and antitwist operators, respec-
tively. This form is particularly useful in the context of
CFT, where T and T̃ are primary operators of the n-fold
theory (dubbed CFTn) with conformal weights hn ¼ h̄n ¼
½cðn2 − 1Þ=24n� [36]. Here c is the central charge of the

single-copy CFT. For an interval of length l in an infinite
system, this leads to the famous result trρnA ¼ cnðl=ϵÞ−4hn ,
where cn is the normalization constant [38] (c1 ¼ 1) of the
twist operators and ϵ the UV cutoff.
Here, we are interested in the trace distance [i.e., Eq. (1)

for n ¼ 1] between two generic RDMs ρA, σA. For an
arbitrary even integer ne, we have ðkρA−σAkneÞne¼
trðρA−σAÞne . Therefore, if we are able to compute
trðρA − σAÞne and analytically continue it as a function
of ne from even integers to generic real values, then the
trace distance is obtained via the following replica trick

D1ðρA; σAÞ ¼
1

2
lim
ne→1

trðρA − σAÞne : ð3Þ

We stress that for odd no instead, trðρA − σAÞno does not
provide the no distance. Hence, the limit no → 1 just gives
the trivial result trðρA − σAÞ ¼ 0 in full analogy to the
negativity replica trick [35].
To proceed, we note that trðρA − σAÞn may be

expanded as

trðρA − σAÞn ¼
X
S

ð−ÞjSjtrðρ0S � � � ρðn−1ÞSÞ; ð4Þ

where the summation S is over all the subsets of
S0 ¼ f0;…; n − 1g, jSj is the cardinality of S, and
ρjS ¼ σA if j ∈ S and ρA otherwise. Crucially, each term
in the sum appearing in the rhs of Eq. (4) is related to a
partition function on an n-sheeted Riemann surface (see
Fig. 1, right) and, again, in a 2D QFT, it can be written as a
two-point function of twist fields (cf., e.g., Ref. [47])

trðρ0S � � � ρðn−1ÞSÞ ¼ hT ðl;lÞT̃ ð0; 0Þi⊗jρjS
: ð5Þ

Such objects are the same appearing in the replica trick for
the relative entropy [28,29] and in some cases have been
explicitly computed [28–32]. Still, performing the sum in
Eq. (4) and obtaining its analytic continuation is not an
easy task.
Trace distance in 2D CFT.—We now consider a 1D

system whose scaling limit is described by a 2D CFT. We
focus on periodic systems of total length L and on a
subsystem being an interval of length l (say A ¼ ½0;l�). In
Euclidean path integral, the CFT is described by the
complex coordinate z ¼ xþ it (and its conjugate z̄), with
x ∈ ½0; L� and t ∈ R; i.e., the worldsheet is an infinite
cylinder. We consider the distance between RDMs of
orthogonal eigenstates; as we shall see although the
distance between the entire states is maximal, subsystems
may be rather close. For a general primary operator X of
conformal weights ðhX ; h̄X Þ, scaling dimension ΔX ¼
hX þ h̄X , and spin sX ¼ hX − h̄X , we can use the state-
operator correspondence to construct the ket jXi and bra
hX j states. The associated density matrix restricted to A is

FIG. 1. The replica trick to calculate trρnA (left) and for each
term in the sum in the rhs of Eq. (4), trðρA;0ρA;1 � � � ρA;n−1Þ (right).
Top: path integral in terms of Riemann surfaces. Bottom:
equivalent representation in the n-fold theory, Eqs. (2) and (5).
We show the case n ¼ 3 as an example.
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simply ρX ¼ trĀjXihX j. We exploit Eq. (4) to compute
trðρX − ρYÞn for two RDMs associated to two primary
operators X and Y. For such states, each term of the sum in
the rhs corresponds to a 2n-point correlation function of the
fields X and Y on the Riemann surface [48,49], which is
mapped to the complex plane C through the map

fðzÞ ¼
�
z − e2πil=L

z − 1

�
1=n

: ð6Þ

The final result for the entire sum in Eq. (4) can be written
as a sum of such correlation functions and reads

trðρX − ρYÞn ¼ cn

�
L
πϵ

sin
πl
L

�
−4hnX

S

�
ð−ÞjSji2ðjS̄jsXþjSjsYÞ

�
2

n
sin

πl
L

�
2ðjS̄jΔXþjSjΔYÞ

×

��Y
j∈S̄

½fhXj;lf̄h̄Xj;lfhXj f̄h̄Xj Xðfj;l; f̄j;lÞX †ðfj; f̄jÞ�
�

×

�Y
j∈S

½fhYj;lf̄h̄Yj;lfhYj f̄h̄Yj Yðfj;l; f̄j;lÞY†ðfj; f̄jÞ�
��

C

�
: ð7Þ

Here, S̄ ¼ S0=S, fj ¼ eð2πij=nÞ and fj;l ¼ eð2πi=nÞ½jþðl=LÞ�.
Note that in the limit n → 1 the dependence on the
ultraviolet cutoff ϵ washes out. Importantly, this means
that the trace distance is cutoff independent, scale invariant
(i.e., it depends on l and L only through l=L), and
universal. We can also introduce scale-invariant cutoff-
independent quantities for the n distance as

Dnðρ; σÞ ¼
trðρ − σÞn

trρn
; ð8Þ

with replica limit from Eq. (3)

D1ðρ; σÞ ¼
1

2
lim
ne→1

Dneðρ; σÞ: ð9Þ

Small interval expansion.—When the interval is short
l ≪ L, one can use the OPE of twist operators [39–42] to
expand the partition function (2) as a sum of one-point
functions in CFTn. When the state ρ is translational
invariant, in the OPE of twist operators in (2) we only
need to include the CFTn quasiprimary operators that are
direct products of the nonidentity quasiprimary operators
fXg of the original CFT, i.e., operators of the form
X j1

1 � � �X jk
k (see Refs. [43,50] for a discussion). For

example, trρnA is expanded as [43–45]

trρnA ¼ cn

�
l
ϵ

�
−4hn

�
1þ

Xn
k¼1

X
fX1;…;X kg

lΔX1
þ���þΔXn

× bX 1���Xk
hX1iρ � � � hXkiρ

�
: ð10Þ

The coefficients bX1���Xk
have been defined in Ref. [43], and

they are related to the OPE coefficients of the CFTn

operators X j1
1 � � �X jk

k .

Similarly, for the RDMs ρA, σA of two translationally
invariant states ρ, σ, following Ref. [45], one gets

trðρA−σAÞn¼cn

�
l
ϵ

�
−4hn X

fX1;…;Xng
½lΔX1

þ���þΔXk

×bX 1���Xn
ðhX1iρ−hX1iσÞ���ðhXniρ−hXniσÞ�:

ð11Þ

Given that the two states ρ, σ are different, quasiprimary
operators ϕ such that

hϕiρ − hϕiσ ≠ 0; ð12Þ

should exist. The OPE in Ref. (11) is dominated by the
quasiprimary operator ϕ satisfying (12) with the smallest
scaling dimension Δϕ. For simplicity, we assume that
there is only a single ϕ with these properties (but this
condition can be relaxed). The operator ϕ is normalized as
hϕð0; 0Þϕðz; z̄ÞiC ¼ z−2hϕ z̄−2h̄ϕ and is a bosonic operator;
i.e., its spin sϕ is an integer. Hence, for general even integer
ne, from Ref. (11) we get

trðρA−σAÞne
trρneA

¼lneΔϕbϕ���ϕðhϕiρ−hϕiσÞne þoðlneΔϕÞ; ð13Þ

with ϕ � � �ϕ denoting the direct product of ne ϕ’s. In
Eqs. (10), (11), and (13), the L dependence is hidden in
hXkiρ ∝ L−Δk , making each addendum a function only
of l=L.
For arbitrary ne, Eq. (11) leads to the expansion of the

ne-distanceDneðρA; σAÞ and Eq. (13) gives its leading order
for a short interval. The replica limit ne → 1 of Eq. (13)
provides a universal expression for the leading order trace
distance in short interval expansion
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D1ðρA; σAÞ ¼
xϕjhϕiρ − hϕiσj

2
lΔϕ þ oðlΔϕÞ; ð14Þ

with (ne ¼ 2p, p ∈ N)

xϕ ¼ lim
p→1=2

i2psϕ

ð2pÞ2pΔϕ

�Y2p−1
j¼0

½eðπij=pÞsϕϕðeπij=p; e−ðπij=pÞÞ�
�

C
:

ð15Þ

This short distance result is remarkable, although it only
applies to the case with no degeneracy at scaling dimension
Δϕ, i.e., that at scaling dimension Δϕ there only exists one
quasiprimary operator ϕ with hϕiρ − hϕiσ ≠ 0. When the
field ϕ is degenerate, D1ðρA; σAÞ still scales like lΔϕ , but
the computation of the prefactor is more complicated, as we
will show in Ref. [46]. The correlation function appearing
in Ref. (15) has been explicitly calculated for several
operators in Refs. [48,49] and analytically continued in
Ref. [51]. Although in these cases the analytic continuation
does not present anomalies, we expect that for other
instances the continuation should be handled carefully as
for the entanglement entropy; see, e.g., Ref. [37].
Finally, we also get an upper bound for xϕ

xϕ ≤ xmaxðΔϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π1=2ΓðΔϕ þ 1Þ
22Δϕþ1ΓðΔϕ þ 3

2
Þ

s
; ð16Þ

which depends solely on the scaling dimension.
Equation (16) follows from the Pinsker’s inequality
Dðρ; σÞ ≤ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðρkσÞ=2p
and known results for the (univer-

sal) leading order of the relative entropy [30,31,45].
2D free massless boson theory.—We consider the 2D

free massless boson theory compactified on circle of unit
radius, corresponding to a 2D CFT with central charge
c ¼ 1. We denote by φ, φ̄ the holomorphic and antiholo-
morphic parts of the scalar, respectively. The primary
operators are the currents J ¼ i∂φ, J̄ ¼ i∂̄ φ̄ with con-
formal weights (1,0), (0,1), as well as the vertex operators
Vα;ᾱ ¼ expðiαφþ iᾱ φ̄Þ with α; ᾱ ¼ 0;�1;… and con-
formal weights ðα2=2; ᾱ2=2Þ. The low energy excited states
are obtained by acting on the vacuum with such operators.
We denote the associated RDMs as ρα;ᾱ, ρJ, ρJ̄, and
ρ0;0 ¼ ρ0. Details about the 2D free massless boson theory
can be found in Refs. [52,53].
We start by considering Eq. (8) for two generic vertex

operators when it can be written as

Dn½Δα�≡Dnðρα;ᾱ; ρα0;ᾱ0 Þ

¼
Xn
k¼0

ð−Þk
X

0≤j1<���<jk≤n−1
dnðfj1;…; jkgÞΔα; ð17Þ

where Δα≡ ðα − α0Þ2 þ ðᾱ − ᾱ0Þ2 and

dnðSÞ ¼
�

sin πl
L

n sin πl
nL

�jSj Yj1<j2

j1;j2∈S

sin2 πðj1−j2Þ
n

sin πðj1−j2þl=LÞ
n sin πðj1−j2−l=LÞ

n

;

ð18Þ
as a function of a given subset S.
For n ¼ ne being a fixed even integer, Eq. (17) can be

easily computed and one also can derive a compact
expression for it (see Ref. [46]). Its analytic continuation
from even integers to arbitrary real values, instead, is not
simple. Remarkably, for Δα ¼ 1, we were able to find the
full analytic continuation

logDn½1� ¼n logð2πÞ−2

Z
∞

0

dt
t

	
1

et−1

×

�ðetl=ð2LÞ−1Þð1þete−½tl=ð2LÞ�Þ
2sinhð tl

2nLÞ
−n

�
−
ne−t

2



;

ð19Þ

which in the replica limit simply becomes

lim
ne→1

Dne ½1� ¼ 2l=L: ð20Þ

The analytic continuation (19) also provides all the n
distances for n odd, which are not given by Eq. (17).
In the small interval limit, we can get further results for

arbitrary Δα. In fact, Eq. (14) applies, e.g., for α ¼ α0 or
ᾱ ¼ ᾱ0. In such cases, the (unique) quasiprimary field
satisfying (12) is J̄ or J (respectively), with expectation
value in the vertex operator state jVα;ᾱi given by hJ̄iα;ᾱ ¼
−2πiᾱ=L and hJiα;ᾱ ¼ 2πiα=L. From Eq. (14), then, we get

D1ðρα;ᾱ; ρα0;ᾱÞ ¼
jα − α0jl

L
þ o

�
l
L

�
;

D1ðρα;ᾱ; ρα;ᾱ0 Þ ¼
jᾱ − ᾱ0jl

L
þ o

�
l
L

�
: ð21Þ

Here, we used xJ ¼ xJ̄ ¼ 1=π [46], as follows from Eq. (15)
together with the calculation of the correlation function of
Refs. [48,49] and its analytical continuation in Ref. [51].
They satisfy the bound (16) with xmaxð1Þ ¼ 1=

ffiffiffi
6

p
.

Another case where Eq. (12) applies is the trace distance
between vertex operators with ᾱ ¼ 0 or α ¼ 0 and the
current states jJi, jJ̄i. For such states, we have hJiJ ¼
hJiJ̄ ¼ hJ̄iJ ¼ hJ̄iJ̄ ¼ 0. The final result in the short
interval limit reads

D1ðρJ; ρα;0Þ ¼ D1ðρJ̄ ; ρ0;αÞ ¼
jαjl
L

þ o

�
l
L

�
;

D1ðρJ; ρ0;ᾱÞ ¼ D1ðρJ̄ ; ρᾱ;0Þ ¼
jᾱjl
L

þ o

�
l
L

�
: ð22Þ

The results for some other states will be given in Ref. [46].
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All the above results for the compact boson CFT can be
checked against numerics in the XX spin chain. We
consider a block A with l contiguous spins in a periodic
chain with L sites. The correspondence between the low-
lying states of the spin chain and the CFT ones is reported,
e.g., in Refs. [48,49]. As we mentioned, even for these
Gaussian states it is not possible to get trace distances in
terms of the correlation functions, as instead one can do for
the entanglement entropy [54–56]. However, one can
exploit the Gaussian nature of ρA and σA [55] to access
the 2l × 2l RDM numerically for arbitrary large L [54–56],
but l relatively small, say up to 7 (see Ref. [46] for details).
Only for even n, we can use the techniques of Refs. [57,58]
to obtain the n distances also for very large l. Our
numerical results for many states are in Figs. 2 and 3.
The former shows the trace distance that asymptotically
perfectly matches the CFT predictions [i.e., the short-
interval expansion for arbitrary states and Eq. (20) for
the vertex states withΔα ¼ 1]. Figure 3 reports the two and
three distance for some states that perfectly matches
available CFT results for arbitrary l=L.
2D free massless fermion theory.—We now consider a

2D massless free fermion theory, which is a 2D CFT with
central charge c ¼ 1=2, and it is the continuous limit of the
critical Ising spin chain. The calculations in the 2D
massless free fermion theory and Ising spin chain are
parallel to those in the 2D massless free boson theory and
XX spin chain. In the CFT, besides the ground state j0i, we
consider the excited states generated by the primary
operators σ, μ with conformal weights ð1=16; 1=16Þ, ψ
and ψ̄ with conformal weights ð1=2; 0Þ and ð0; 1=2Þ,
respectively, and ε with conformal weights ð1=2; 1=2Þ.
Making use of the results from Refs. [48,49,51] we

have that xε in Eq. (15) can be analytically calculated xε ¼
1=π [46]. Using Eq. (14), and the expectation values

hεi0 ¼ hεiψ ¼ hεiψ̄ ¼ hεiε ¼ 0; hεiσ ¼ −hεiμ ¼ π=L, we
get in the short interval limit D1ðρ0;ρσÞ¼D1ðρ0;ρμÞ¼
l=ð2LÞþoðl=LÞ, D1ðρσ;ρψÞ¼D1ðρσ;ρψ̄Þ¼D1ðρμ;ρψÞ¼
D1ðρμ;ρψ̄ Þ¼l=ð2LÞþoðl=LÞ, D1ðρσ; ρεÞ ¼ D1ðρμ; ρεÞ ¼
l=ð2LÞ þ oðl=LÞ, and D1ðρσ; ρμÞ ¼ l=Lþ oðl=LÞ. We
checked them numerically in the critical Ising spin chain,
finding perfect agreement as we will report in [46].
Conclusions.—In this Letter, we developed a replica

approach to access the trace distance in 2D QFT. We
exploited our method to provide very general results for the
distance between primary states in 2D CFT in particular for
short intervals, yielding an explicit form based on the OPE
of the twist operators. We also gave explicit results for the
free massless compact boson and fermion. We tested
analytical CFT results against the numerical trace distances
in spin chains finding perfect matches. We only reported
here a subset of significant CFT results that we obtained.
We will report the calculation details and more examples in
Ref. [46], where we will also discuss the consequences of
our findings for the relative entropies and fidelities.
Our approach paves the way to systematic studies of

trace distances in 2D QFT with several fundamental
applications. First of all one can consider different geom-
etries in CFT: open systems, disjoint intervals, finite
temperature, inhomogeneous systems, etc. Then, one can
study in a CFT after a quantum quench, how the distance
between the time-dependent state and the asymptotically
thermal state [59] shrinks, as well as the difference between
distinct statistical ensembles. Massive QFT may be
approached adapting the techniques of Ref. [37] for the
entanglement entropy.

We thank Bin Chen, Song Cheng, and Erik Tonni for
helpful discussions. All authors acknowledge support from

FIG. 2. Trace distance between low-lying states as function of
l=L: numerical results for the XX spin chain (symbols) compared
with the CFT prediction (lines). The data are in log-log scale to
show the power-law behavior at small l=L. Only for Δα ¼ 1
(bottommost curve) we show the analytic continuation for
arbitrary l=L, cf. Eq. (20), whereas in the other cases we
compare with the leading order at small l=L.

FIG. 3. The n distance for low-lying states: comparison of CFT
predictions (lines) with the numerical XX spin-chain results
(symbols). Top: D2ðρ; σÞ [CFT from Eq. (17)]. Bottom:
D3ðρ; σÞ for ðα − α0Þ2 þ ðᾱ − ᾱ0Þ2 ¼ 1 as in Eq. (19).
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