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Abstract

Empirical force fields for biomolecular systems are usually derived from quantum

chemistry calculations and validated against experimental data. We here show how it

is possible to refine the full dihedral-angle potential of the Amber RNA force field by

using solution NMR data as well as stability of known structural motifs. The procedure

can be used to mix multiple systems and heterogenous experimental information, and

crucially depends on a regularization term chosen with a cross-validation procedure.

By fitting corrections to the dihedral angles on the order of less than 1kJ/mol per

angle, it is possible to increase the stability of difficult-to-fold RNA tetraloops by more

than one order of magnitude.
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Molecular simulations using empirical force fields allow the characterization of the struc-

tural dynamics of RNA systems at atomistic detail, thus complementing and aiding the

interpretation of experimental findings.1,2 In combination with enhanced sampling meth-

ods,3 they enable the study of conformational transitions ranging from the formation of base

pairing and stacking to binding of ions and other ligands. However, their predictive capabil-

ity is limited by the accuracy of the employed force fields. There is growing evidence that

recent RNA force fields are not capable to model conformational dynamics in agreement with

solution experiments on flexible oligonucleotides4,5 or to predict the native structure of short

hairpins.6,7 It is thus becoming common practice to take advantage of experimental data

in order to enforce agreement with experiment.8–12 However, the quality of the underlying

force field has still a significant impact on the reliability of the results. Over the last ten

years, a number of attempts have been made to improve the accuracy of the Amber RNA

force field.13–23 Most of these studies used quantum chemistry-based calculations in order to

parametrize dihedral terms.13–17,21,22 A recent large re-parametrization of multiple charges,

Lennard-Jones, and dihedral terms was shown to be capable to correctly fold some RNA

hairpins22 and made the proposed force field compatible with a 4-points water model.24

The main difficulty of simultaneously changing a large number of parameters, however, is

that the potential side effects are difficult to predict, and a validation on a large dataset

might be required. Some of these side effects were already identified in Ref.,23 where a more

conservative approach was taken correcting specific hydrogen bonds.

Dihedral angle parameters in empirical potentials are fitted against quantum-mechanical

(QM) calculations performed on very small model systems, up to dozens of atoms. No-

tably, dihedral reparametrizations were usually motivated by inaccuracies observed when

performing simulations on larger systems and comparing them against experimental data.

For example, the QM-based corrections bsc013 and χOL3
15 were proposed to avoid spurious

transitions in the DNA backbone substates and in the RNA helix geometry, respectively. It is

thus intriguing to evaluate the possibility to directly use failures in reproducing experimental
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data in order to derive the force field terms, rather than choosing the dihedrals to be refined

based on empirical observations and relying on QM calculations for their parametrization.

Procedures have been introduced in the past in order to iteratively refine a force field so

as to match some experimental observation.25–29 A particularly critical issue in the usage

of experimental data to derive force field parameters is the necessity to take into account

the error in the experimental data, the error in the forward models used to back-calculate

experiments from simulations, and, more generally, the need to avoid overfitting on specific

datasets.

We here propose a procedure to derive force-field corrections by incorporating an arbitrary

number of heterogenous experimental data measured for an arbitrary number of systems.

The procedure is based on a likelihood maximization scheme where individual experiments

can be assigned arbitrary weights. A regularization term is introduced to avoid overfitting.

Particular care is dedicated to the choice of this term using a cross-validation procedure

where datasets are iteratively excluded from the fitting procedure. We provide a practical

example by refining all the torsions in the Amber RNA force field so as to improve the

agreement with NMR data and with the observed stability of tetraloops. Multiple systems

and different experimental types are included in order to improve the transferability of the

corrections. Our results show that small corrections to dihedral angle parameters on the

order of less than 1 kJ/mol per torsion can increase the stability of the native structure of a

hairpin loop by orders of magnitude without significant side effects on the tested systems.

The systems considered in our refinement procedure were four RNA tetranucleotides

(AAAA, CCCC, UUUU and GACC) and two RNA tetraloops (ccGAGAgg and ccUUCGgg).

The tetranucleotide simulation data were obtained using parallel tempering30 simulations

and were taken from Ref.11 Simulations of tetraloops were performed using the same protocol

as in Ref.,7 involving a combination of metadynamics31–33 applied on the eRMSD from native

structure34 and parallel tempering.30,35 Following Ref.,7 eRMSD was computed using a cutoff

larger than the standard value defined in Ref.34 in order to increase its capability to accelerate

4



folding events. The final bias was used in order to compute weights for metadynamics

simulations.36 All systems were simulated with GROMACS,37 using the ff99bsc0 + χOL3

Amber force field13,15,38 with corrections to van der Waals oxygen radii39 and using the

OPC water model.40 The ff99bsc0 + χOL3 force field was chosen as a starting point since,

despite many further attempts, it still remains overall the most reliable force-field version

for general simulations of diverse RNAs.1,23 In combination with the OPC water model and

modified van der Waals oxygen radii, it was shown to moderate the population of intercalated

structures in RNA tetranucleotides.11,18 We will simply refer to this force field as Amber. The

parameters are available in GROMACS format at https://github.com/srnas/ff. Data

for tetranucleotides involve both NOE and scalar couplings NMR measurements.4,11,41 For

tetraloops we require the native state to be the most populated one. Native conformations

were arbitrarily chosen as those with eRMSD<0.8 from the X-ray reference structure.34,42,43

Whereas we are not aware of direct measurements of the thermodynamic stability of the

two investigated hairpin loops, experimental data for other hairpins of similar length suggest

that the folded structure should have a non-negligible population (see e.g.44).

We consider a system described by a potential energy function V0, to which corresponds

a Boltzmann probability P0(x) ∝ exp (−βV0(x)), where β = 1
kBT

, T is the temperature and

kB is the Boltzmann constant. Our aim is to construct a refined probability distribution

of the form P (x, {λ}) ∝ P0 (x) exp
(
−β
∑N

i fi(x)λi

)
. The correcting potential is thus

expanded on a set of N basis functions, that might be for instance dihedral angles or non-

bonded interaction terms. A factor λi is associated to each of the N basis functions. These

factors must be found in order to simultaneously reproduce M experimental observables.

The correcting potential was thus chosen with the following form:

Vcorr =
∑

t∈{torsions}

Nt∑
i=1

3∑
n=1

(λ1tn cos (nφti) + λ2tn sin (nφti)) , (1)

where torsions = {α, β, γ, δ, ε, ζ, χPur, χPyr} is the set of torsion types subject to the
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correcting potential, Nt is the number of nucleotides involved in the refinement, λ1tn(λ2tn)

is the weight associated to the cosine (sine) with multiplicity n relative to the torsion type

t and φti is the torsion of type t in the nucleotide i.

It is important to notice the difference with respect to maximum-entropy-based meth-

ods,45,46 in which the basis functions are by construction identical to the forward-models used

to backcalculate the experimental observables, and thus the number N of parameters is equal

to the number of enforced experiments. In our approach the number of experimental ob-

servables M is in general different from N , usually being much larger (M � N). In order to

find the optimal weights λi, we define an error function E encoding the overall discrepancy

between observable averages in the refined ensemble and the related experimental values.

The error function is built such that E = 0 if all observables are exactly reproduced. Given

a set of M experimental observables denoted by Oj(j = 1, . . . ,M), it is possible to enforce

both equalities (i.e. 〈Oj〉 = Oexp
j ) or inequalities (i.e.

(
〈Oj〉 < Oexp

j

)
and/or

(
〈Oj〉 > Oexp

j

)
).

The averages are meant to be taken in the refined probability distribution P (x, {λ}). In this

work we will compute such averages by reweighting the unrefined ensemble. The accuracy

of the procedure will then depend on how close the refined ensemble is to the unrefined one.

The error function E, which depends on the observables averages, will indirectly depend on

λ. Similarly to Ref.,28 we introduce a regularized error function Ẽ defined as:

Ẽ (〈O1〉 (λ) , . . . , 〈OM〉 (λ)) + α|λ|2 (2)

which must be minimized in order to enforce the M ensemble averages. We will denote with

λ? the set of parameters which minimize Eq. 2. Forward models and the applied restraints

for all systems are summarized in Tab. S1. The second term in Eq. 2 is a l2 regularization

term needed to avoid over-fitting. The strength of the regularization can be tuned with the

parameter α, choosing a value in the range 0 ≤ α < ∞. Setting α = 0 will maximally fit

the data at the cost of a very large correcting potential. This will lead to a new ensemble
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which will be potentially very different from the unrefined one, generating poor reweighting

performance, and will have a large chance to be overfit on the utilized datapoints. In the

opposite case (α → ∞) the data will not be fitted. In order to minimize Ẽ(λ) we compute

its gradients

∂Ẽ

∂λj
=

M∑
i=1

∂E

∂〈Oi〉
∂〈Oi〉
∂λj

+ 2αλj =

=
M∑
i=1

∂E

∂〈Oi〉
(〈fj〉〈Oi〉 − 〈fjOi〉) + 2αλj

(3)

where j = 1, . . . , N . The term ∂E
∂〈Oi〉 depends on the specific functional form used to combine

the errors. We then minimize Ẽ using the limited memory version of the Broyden-–Fletcher—

Goldfarb—Shanno algorithm (L-BFGS). The employed code is available at https://github.

com/bussilab/ff-fitting-tools.

Once the optimal λ? are found, the final estimation of the observable averages can be

found by reweigthing the unrefined ensemble:

〈Oi〉 =

∑Nframes

t=1 Oi (t) e
∑N

d=1 fd(t)λd∑Nframes

t=1 e
∑N

d=1 fd(t)λd
(4)

where t denotes the tth frame of the unrefined ensemble. As we anticipated the efficiency

of the reweighting procedure is inversely related to the distance between the refined and

unrefined ensembles. Such distance can be kept relatively small by tuning the regularization

parameter α in Eq. 2. The optimal value of α, to which we will refer as α?, can be found

via cross validation strategies. In this work we use the k-fold cross validation method, where

the data set is split in k blocks. For each trial value of α, k minimizations are performed.

During the ith minimization, with i = 1, . . . , k, the ith block is left out as validation set

while the remaining k − 1 blocks are used as training set. After the optimal λ? are found,

the un-regularized error function E is evaluated on the validation set. At the end of the kth

minimization, a final cross validation error Ecv, for the given α, is computed as the average
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of the validation errors on each of the k blocks. The optimal value of α will then be the one

minimizing the cross validation error Ecv. The rationale behind this procedure is that in this

way we will choose the more conservative value of α which will generalize better than other

values of α to data that were not seen in the training set. In the present context, the optimal

α is thus expected to result in force field corrections that will be better transferable to systems

and experiments not considered in the fitting procedure. The regularization parameter was

estimated using a k-fold cross validation procedure with k = 3. More precisely, we divided

the training set in 3 blocks, each of which containing data from a different type of experiment.

The first block contained all the 3J scalar couplings, the second block contained all the NOE

data, and the third block contained the stability of the tetraloops (see Table S1). The cross-

validation error function evaluated for different values of α shows a minimum at α? ≈ 1500

(Fig. 1). This means that, for the given dataset, 1500 represent the optimal value of α giving

the best balance between overfitting and predictiveness on different data and, presumably,

systems not seen in the training set.
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Figure 1: Cross-validation results. The unregularized error functions is evaluated on the
validation set for parameters obtained using different trial values of α.

Notice that since we are enforcing a large number of data on multiple systems and using

a limited number of parameters mutual compatibility is not a priori guaranteed. We thus

checked the restraints enforced during the training phase. We will call AmberRW the ensemble
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obtained by reweighting the reference Amber simulation using the optimal weights obtained

by re-fitting all the training set (without leaving out any data) using the optimal value of

α? = 1500. In the case of tetranucleotides we computed the value of the enforced 3J scalar

couplings and NOE distances. We then validated the estimated corrections by computing

the RMSE and the percentage of violations for 3J couplings and NOE respectively (Fig. 2).

3J couplings computed in the reweighted ensemble better reproduce experimental data for

all the considered tetranucleotides, although in some cases the improvement is limited. All

the resulting RMSEs are compatible with the expected error for the forward model used to

compute scalar couplings. The percentage of violated NOE is decreased by the corrections for

all systems except GACC tetranucleotide. The improvement is particularly visible for CCCC.

The decrease in violated NOEs is paralleled by an increase in the population of A-form

structures (Fig. S1). We notice that a similar increase has been observed in Ref.11 as well.

However, in this case the population shift is a consequence of small corrections on all dihedral

angles, whereas in Ref.11 the structures were explicitly weighted based on their agreement

with NMR data.

In order to assess the importance of introducing a regularization term, it is instructive to

consider the results of a reweighting performed setting α = 0 (i.e., without any regularization

term). Results obtained fitting all the datapoints are reported in Fig. S2 (to be compared

with Fig. 2). Here it can be appreciated that the agreement with experiments is improved

for all the 3J scalar couplings. However, this is obtained at the price of overfitting the

data. Indeed, the fraction of NOE violations instead is even higher than that obtained with

α = 1500. Overfitting can also be systematically assessed by considering the cross-validation

datasets (Fig. S3). On the contrary, when using α = 1500, agreement with experiment for

individual datapoints is largely independent of which datapoints are discarded in the training

phase (Fig. S4).
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Figure 2: 3J scalar coupling RMSE and NOE violations for RNA tetranucleotides. For both
RMSE and percentage of violations, the lower the better.

As regards the two tetraloops, we computed the folded fraction and the free energy as

function of the eRMSD from native structure, both with the unrefined Amber force field and

with the reweighted ensemble AmberRW. Results are reported in Fig. 3. The fraction of

folded structures is significantly increased for both systems, indicating that the introduced

correction reduces the relative weight of some of the unfolded structures observed in the

Amber ensemble. The effect of the regularization term can be appreciated in Fig. S5, where

populations obtained without regularization are reported. Strikingly, when the tetraloop

stabilities are not included in the training set, their value becomes much lower than that

obtained with the intial Amber force field. On the other hand when choosing α = 1500 the

stabilities of the tetraloops are moderately increased with respect to the intial Amber force

field even when the tetraloop stabilities are not included in the training set.

All the results shown so far were obtained performing a reweighting of a given simulated

ensemble. The statistical accuracy of the reweighting procedure depends however on the

distance between the unrefined ensemble and the reweighted one. In case the two ensembles

are too different, reweighting might be inefficient since there may be very few frames in the

original ensemble with a significant weight. A rough estimate of the reweighting accuracy

is given by the Kish’s effective sample size neff =

(∑Nframes
i=1 wi

)2

∑Nframes
i=1 w2

i

, that satisfies 1 ≤ neff ≤

Nframes and indicates how many frames, among all the available ones, are effectively used in

the reweighting procedure. The value of the Kish’s effective sample size can be controlled by
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Figure 3: RNA ccGAGAgg (left) and ccUUCGgg(right) tetraloops. Fraction of folded structures
(top) and free energy surface (bottom) with different force-field parametrizations. Unrefined
Amber force-field (Amber) in purple, reweighted Amber force-field (AmberRW) before resam-
pling in green, refined Amber force-field (AmberRWRES) after resampling in light blue, D. E.
Shaw22 (DESRES) force field in orange. eRMSD was computed here using the same distance
cutoff used for enhanced sampling simulations. The threshold used to define the folded state
is shaded. Whereas for GAGA it correctly identifies the native structure, for UUCG it is too
strict and discards a fraction of the folded states. Numerical values for the populations, as
well as alternative results obtained analyzing the simulations with eRMSD using the standard
distance cutoff and a different threshold, are reported in Supporting Information (Table S2).
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adjusting the regularization parameter α. Although it is difficult to set a general criterion for

the acceptable values of neff , the α? chosen here guarantees at least 30% of effective samples,

similar to previous iterative approaches.25,26 A detailed analysis of reweighting performance,

together with a critical comparison between reweighting and restraining methods, can be

found in Ref.47

Squared fluctuations of the correcting potential scale proportionally to the number of

nucleotides, and tetranucleotides are small enough for reweighting to be efficient. Indeed, in

a recent work it was possible to directly reproduce experimental data by using a maximum-

entropy-based reweighting11,45,46 based on the same simulations. We therefore performed a

resampling for the tetraloops only, that represent the most challenging case, by repeating sim-

ulations starting from the same initial conditions, with identical enhanced sampling schemes,

but including the corrections corresponding to the optimized parameters (Table S3) directly

in the potential energy function used to generate the trajectories. Results are reported in

Fig. 3 and Fig. 4. In the top panels in Fig. 3 results obtained by reweighting (AmberRW) and

after resampling (AmberRWRES) are compared. We notice that, although AmberRWRES increases

the stability of both tetraloops, the improvement is not as large as the one obtained by

reweighting only. This is a consequence of both the inaccuracy of the reweighting due to

poor sampling of the reference ensemble and a small unavoidable overfitting on the specific

conformations present in the original Amber ensembles. In any case, thanks to the regular-

ization term, the correction is limited, the Kish’s effective sample size is relatively large, and

the trends observed in the reweighting calculations are the same of those observed in the

resampling calculation. At an early stage we tried the same procedure without including any

regularization term and, whereas the reweighting procedure was reporting a high stability

for the tetraloops, the stabilities obtained at the resampling stage were significantly lower

than those obtained during reweighting, and also lower than those obtained with the optimal

regularization parameter, indicating that the derived parameters were highly overfitted on

the conformations sampled in the specific run. The obtained weights were also validated
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Figure 4: First and fifth column show, respectively, ccUUCGgg and ccGAGAgg tetraloops
X-ray structures. Both three-dimensional and secondary structures are shown. Secondary
structure were obtained with the BARNABA software.48 For all the other columns, we show
dynamic secondary structure representations obtained with different force fields as indicated
in the column name. The color scheme shows the fraction of frames for which the interaction
is formed. Structures were randomly sampled from the simulations with probabilities chosen
in order to remove the effect of the metadynamics bias. In the first row, we report ensembles
where the eRMSD of the whole system is within 0.8 from native. This ensemble was selected
with the same criterion used to identify the native conformations in the force-field fitting
procedure. In the second row instead we report ensembles where only the stem has eRMSD

from native less than 0.8. In this second case the loop portion is then free to assume any
conformation allowed by the employed force field.

using a WHAM procedure (see SI).

Figure 4 reports the dynamic secondary structure48 for selected ensembles for both

tetraloops as obtained using all the employed force fields, together with their native struc-

tures. When the ensemble is selected to only contain conformations where both the stem and

the loop are formed, the dynamic secondary structure is highly homogeneous and, by con-

struction, consistent with native. Conversely, the ensembles where only the stem is selected

to be formed report on the capability of the employed force fields to reproduce the native

loop structure assuming the stem to be formed. For the GAGA tetraloop, the secondary struc-

ture is consistent with the native structure both using the Amber and the AmberRESRW force
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fields. This indicates that already in the original force field the loop would have the correct

structure if the stem is folded. Our correction does not perturb significantly the result. For

the UUCG tetraloop, both the original Amber and the AmberRESRW force fields are not capable

to reproduce the contacts present in the crystal structure of the loop, indicating that further

corrections would be required to this aim. It is also possible that the reported conformations

might be present in the experimental ensemble although with a low population.49 For this

system we also report results obtained using the DESRES force field,22,24 simulated using an

identical protocol. We notice that the native structure of this tetraloop is more stable using

AmberRESRW compared to the DESRES force-field (Fig. 3). When conformations where the

stem is formed are selected, the loop displays a partly correct native structure where the

trans-sugar/Watson-Crick pair (U3-G6) is detected, although with a low population. On

the other hand the parallel stacking U3-C5, that is reported both in crystal42 and solution50

structures, is not observed. A comparison between the results of the DESRES force field with

the force field corrections derived here is however difficult since the DESRES force field mod-

ified most of the nonbonded interactions, whereas our correction only impact the torsional

angles.

In conclusion, we introduce a method based on an existing procedure25 to develop force-

field corrections using experimental data. An important extension presented here is the

introduction of a regularization procedure based on cross-validation that controls overfit-

ting. The method is used to combine data of different types on multiple systems, which is

crucial in order to achieve transferable parameters. Since the optimization of the parameters

is done with a reweighting procedure, its application in a single iteration as shown here is

limited to small corrections, such as dihedral terms or other solute-solute non-bonded terms.

Fitting parameters that lead to larger changes in the ensemble might require the procedure to

be applied in an iterative manner25 by resampling new conformations at every change of the

correction parameters. The method is very flexible in that arbitrary error functions can be

optimized. In this specific case, we used NMR data and assumed populations of native struc-
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tures. Other possible choices for nucleic acid systems could be helical parameters or other

structural quantities for which ranges of acceptable values can be identified a priori. For the

investigated systems, we have shown that very small corrections to dihedral angles can affect

significantly the population of the native structure in RNA tetraloops. By only correcting

dihedrals we were not able to obtain a force field capable to fold the investigated loops to

the native structure with a significant population. However, the resulting populations were

improved with respect to the original ones and, for the UUCG tetraloop, higher than those

obtained with a recently proposed reparametrization.22 As a word caution, before suggesting

the derived corrections to be used on new systems they should be validated on a larger set of

RNA motifs including more non-canonical interactions. The developed parameters are avail-

able for testing (see Table S3 and https://github.com/bussilab/ff-fitting-tools).

Better results might be obtained if starting from a more accurate force field. Since torsional

potentials are usually fitted as the last step in force field derivation, we suggest that a final

refinement could be performed with the procedure introduced here on top of any a priori

available parametrization, including in the minimized error function all the desired structural

features.

Supporting Information Available

Detailed description of the experimental data used to define the error function (Table S1).

Supplementary results for tetraloops showing the population of native structures using vari-

ous metrics (Table S2). Population of A-form structures in tetranucleotide simulations (Fig.

S1). Effect of regularization term on tetranucleotide (Fig. S2, S3, and S4) and tetraloop

(Fig. S5) simulations. Coefficients of the corrections (Table S3). Validation of corrections

using WHAM (Fig. S6). This information is available free of charge via the Internet at

http://pubs.acs.org
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(26) Li, D.-W.; Brüschweiler, R. Iterative optimization of molecular mechanics force fields

from NMR data of full-length proteins. J. Chem. Theory Comput. 2011, 7, 1773–1782.

(27) Wang, L.-P.; Chen, J.; Van Voorhis, T. Systematic parametrization of polarizable force

fields from quantum chemistry data. J. Chem. Theory Comput. 2012, 9, 452–460.

(28) Wang, L.-P.; Martinez, T. J.; Pande, V. S. Building force fields: an automatic, system-

atic, and reproducible approach. J. Phys. Chem. Lett. 2014, 5, 1885–1891.

(29) Chen, J.; Chen, J.; Pinamonti, G.; Clementi, C. Learning effective molecular models

from experimental observables. J. Chem. Theory Comput. 2018, 14, 3849–3858.

(30) Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein fold-

ing. Chem. Phys. Lett. 1999, 314, 141–151.

(31) Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci. U.S.A.

2002, 99, 12562–12566.

(32) Barducci, A.; Bussi, G.; Parrinello, M. Well-Tempered Metadynamics: A Smoothly

Converging and Tunable Free-Energy Method. Phys. Rev. Lett. 2008, 100, 020603.

(33) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. PLUMED 2:

New feathers for an old bird. Comput. Phys. Commun. 2014, 185, 604–613.

(34) Bottaro, S.; Di Palma, F.; Bussi, G. The role of nucleobase interactions in RNA struc-

ture and dynamics. Nucleic Acids Res. 2014, 42, 13306–13314.

19



(35) Bussi, G.; Gervasio, F. L.; Laio, A.; Parrinello, M. Free-energy landscape for β hairpin

folding from combined parallel tempering and metadynamics. J. Am. Chem. Soc. 2006,

128, 13435–13441.

(36) Branduardi, D.; Bussi, G.; Parrinello, M. Metadynamics with adaptive Gaussians. J.

Chem. Theory Comput. 2012, 8, 2247–2254.

(37) Pronk, S.; Pall, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.; Apostolov, R.; Shirts, M. R.;

Smith, J. C.; Kasson, P. M.; van der Spoel, D. et al. GROMACS 4.5: a high-throughput

and highly parallel open source molecular simulation toolkit. Bioinformatics 2013, 29,

845–854.

(38) Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.;

Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation

Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J.

Am. Chem. Soc. 1995, 117, 5179–5197.

(39) Steinbrecher, T.; Latzer, J.; Case, D. A. Revised AMBER Parameters for Bioorganic

Phosphates. J. Chem. Theory Comput. 2012, 8, 4405–4412.

(40) Izadi, S.; Anandakrishnan, R.; Onufriev, A. V. Building Water Models: A Different

Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871.

(41) Tubbs, J. D.; Condon, D. E.; Kennedy, S. D.; Hauser, M.; Bevilacqua, P. C.;

Turner, D. H. The Nuclear Magnetic Resonance of CCCC RNA Reveals a Right-Handed

Helix, and Revised Parameters for AMBER Force Field Torsions Improve Structural

Predictions from Molecular Dynamics. Biochemistry 2013, 52, 996–1010.

(42) Ennifar, E.; Nikulin, A.; Tishchenko, S.; Serganov, A.; Nevskaya, N.; Garber, M.;

Ehresmann, B.; Ehresmann, C.; Nikonov, S.; Dumas, P. The crystal structure of UUCG

tetraloop1. J. Mol. Biol. 2000, 304, 35–42.

20



(43) Trausch, J. J.; Xu, Z.; Edwards, A. L.; Reyes, F. E.; Ross, P. E.; Knight, R.; Batey, R. T.

Structural basis for diversity in the SAM clan of riboswitches. Proc. Natl. Acad. Sci.

USA 2014, 111, 6624–6629.

(44) Proctor, D. J.; Ma, H.; Kierzek, E.; Kierzek, R.; Gruebele, M.; Bevilacqua, P. C. Folding

thermodynamics and kinetics of YNMG RNA hairpins: specific incorporation of 8-

bromoguanosine leads to stabilization by enhancement of the folding rate. Biochemistry

2004, 43, 14004–14014.

(45) Pitera, J. W.; Chodera, J. D. On the Use of Experimental Observations to Bias Simu-

lated Ensembles. J. Chem. Theory Comput. 2012, 8, 3445–3451.

(46) Cesari, A.; Reißer, S.; Bussi, G. Using the Maximum Entropy Principle to Combine

Simulations and Solution Experiments. Computation 2018, 6, 15.

(47) Rangan, R.; Bonomi, M.; Heller, G. T.; Cesari, A.; Bussi, G.; Vendruscolo, M. Deter-

mination of Structural Ensembles of Proteins: Restraining vs Reweighting. J. Chem.

Theory Comput. 2018, 14, 6632–6641.

(48) Bottaro, S.; Bussi, G.; Pinamonti, G.; Reisser, S.; Boomsma, W.; Lindorff-Larsen, K.

Barnaba: Software for Analysis of Nucleic Acids Structures and Trajectories. RNA

2019, 25, 219–231.

(49) Nichols, P. J.; Henen, M. A.; Born, A.; Strotz, D.; Güntert, P.; Vögeli, B. High-
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