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1 Introduction and summary of results

Considerable progress has been achieved during the last ten years in the understanding of

conformal field theories (CFTs) in d ≥ 3 space-time dimensions. This was triggered by the

pioneering work [1] where it was shown how to efficiently apply the conformal bootstrap

program [2, 3] using numerical methods. Invoking first principles only, such as crossing

symmetry, operator product expansion (OPE) and unitarity, rigorous and general bounds

can be put on the space of CFTs in various number of dimensions. See [4] for a review and

a comprehensive list of references on what is now a well-developed field of research.

Previous works have shown that certain theories, such as the 2d and 3d Ising models

and the 3d O(N) vector models [5–8], sit at the boundary between the allowed and forbid-

den regions of the parameter space, in points that appear to have a kink-like discontinuity.

Using as heuristic guiding principle the idea that discontinuities of this kind are hints of

the presence of consistent CFTs, the numerical conformal bootstrap allows to discover new

theories and compute their CFT data by using extremal functional methods [9–15].

Unfortunately, in 4d non-supersymmetric CFTs the boundary between the allowed and

the forbidden regions in the parameter space is rather smooth and no kink-like discontinu-

ities have been found [1, 5, 9, 16–23].1 However these studies were all based on four-point

functions with external scalar operators only. The study of non-scalar correlators has been

hindered for some time by the need of knowing the 4d conformal blocks associated to cor-

relators involving spin.2 Due to recent results [29–40] this is no longer an issue and it is

then natural to address numerically various non-scalar correlators in the hope of finding

hints of new CFTs that were not present in scalar setups.

The aim of this paper is to continue exploring 4d non-supersymmetric CFTs, by con-

sidering a four-fermion correlator. In particular we study the constraints coming from

unitarity and crossing symmetry of the four-point function

〈ψ†α̇1
(x1)ψα2(x2)ψ†α̇3

(x3)ψα4(x4)〉, (1.1)

which consists of two identical (1, 0) Weyl fermions ψα,3 with scaling dimension ∆ψ and

their hermitian conjugates ψ†α̇. We assume the existence of a U(1) “baryon” global sym-

metry in the CFT under which ψ and ψ† carry q = +1 and q = −1 charges respectively.4

1Supersymmetric theories are on a different footing. For instance a kink (already noticed in [9]) has

been conjectured to be associated to a minimal N = 1 supersymmetric CFT [24]. From now on, we leave

implicit that in this paper, unless explicitly stated, we consider non-supersymmetric CFTs only.
2On the other hand, several numerical bootstrap studies with spin correlators in 3d CFTs have already

been made [25–28].
3In our convention a vector transforms in the representation (1, 1), and a Dirac spinor in (1, 0)⊕ (0, 1).

Our Weyl spinor ψα can be a chiral component of a Dirac spinor.
4A unit charge under a Zn group for n > 2 (for example under the discrete remnant of an axial symmetry

broken by the ABJ anomaly) leads to the same analysis, except in the bounds where we consider the U(1)

current. We will also make some comments that apply to the case q = 0.
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There are two different types of operator product expansion (OPE) that one can take

in (1.1). We refer to the OPE ψ†ψ as the neutral channel and to the OPE ψψ (and its

hermitian conjugate) as the charged channel. Both channels contain traceless symmetric

(TS) tensors in the (`, `) and non-traceless symmetric (NTS) tensors in the (` + 2, `) and

(`, ` + 2) spin representations [41, 42]. The correlator (1.1) allows us to access operators

with non-trivial “baryon” charge and, at the same time, NTS operators for the first time.

We determine all the four-fermion conformal blocks by using differential operators [32,

39] that relate them to the known seed conformal blocks [35]. To efficiently construct

their rational approximations needed for SDPB [43] we implement the following strategy.

First, we generate rational approximations of scalar blocks using the Dolan-Osborn closed

form expressions [44, 45], in order to bypass subtleties associated with the double poles in

the traditional Zamolodchikov-like recursion relations [8, 33, 46, 47].5 Second, we apply

the recursion relations of [39] to obtain the rational approximation of the relevant seed

blocks. Finally, we derive the rational approximation for the four-fermion blocks using

their expression in terms of the seed blocks.

We determine the CFT data associated to (1.1) when ψ is a generalized free fermion

using the algebraic expressions for the four-fermion conformal blocks. This generalized free

theory (GFT) provides a consistency check for our setup and a useful reference point in

the numerical analysis that follows.

We construct numerically various bounds: bounds on scaling dimensions of charged

and neutral operators (TS and NTS), bounds on the central charges CT and CJ , associated

to the energy momentum tensor and the U(1) conserved current respectively and bounds

on the OPE coefficients between two Weyl fermions and a scalar (charged and neutral).

Interestingly enough, we find jump-like discontinuities in the upper bounds for all TS

operators in the charged channel (see figures 7 and 10) and all NTS operators with ` > 0

in the neutral channel (see figure 18). The jumps occur when the upper bound under

consideration on the operator with (`, `) spin crosses an integer value

∆jump = 4 +
`+ `

2
. (1.2)

These discontinuities, however, appear to be associated not to new CFTs, but to a general

mechanism which we refer to as the fake primary effect. In a nutshell, the fake primary

effect works in the following way. Given an operator O which contributes to the four-point

function, the associated conformal block generically has a pole in ∆ at the unitarity bound.

The residue of this pole is the contribution of a particular descendant of O, together with

the conformal multiplet generated from it. Strictly at the unitarity bound this descendant

becomes a primary, and the residue is thus again a conformal block [8, 33, 46]. As the nor-

malization of conformal blocks is ambiguous, we can say that at the unitarity bound the

conformal block of O is simply equal to that of the descendant. Since the descendant gener-

5Closer to the completion of this work we have implemented a Zamolodchikov-like recursion algorithm

for scalar conformal blocks in d = 4, taking care of the double poles. This algorithm was used only in the

lower bound on CT in section 6, and will be described elsewhere.
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ically transforms in a different spin representation than O, the descendant conformal block

effectively fakes the presence of a primary operator with some new spin and dimension.6

This connection between different parts of the spectrum forces us to reinterpret our

numerical bounds. As we argue in section 5 and verify numerically in section 6, the jumps

in our bounds occur precisely due to the unexpected presence of fake primaries. We also

classify in section 5 the cases when fake primaries occur more generally. Most notably,

they never appear in single scalar correlator bounds, since in this case it happens that the

descendant contribution discussed above vanishes.

Although it does not appear to have been previously understood, the fake primary

effect has already manifested itself in several other works. For instance, jumps similar to

ours were observed in the 3d fermion setup [25, 26] (see figures 1 and 3 respectively) and

in the 3d mixed scalar correlator setups [48] (see figures 2 and 6) and [47] (see figure 1).

We discuss some of these setups in section 5.3. In section 5.3.1 we show that the latter

case [47] is rather non-trivial since the jump-like feature is driven by the fake primary effect

and the presence of a physical CFT at the same time (see figure 6).

It is likely that this phenomenon will affect future bootstrap studies, and it will be

important to carefully take it into account and understand how to remove it. We discuss

one possible way of doing so, by adding appropriate gaps above unitarity bounds (see

figure 9).

The conformal bootstrap approach is insensitive to the UV realizations of the CFT

describing the IR theory, and is only characterised by the CFT data associated to the

primary operators and their OPE coefficients. Yet it might be useful to list some possible

ways to interpret the external fermion operator ψα entering our correlator in terms of

the UV degrees of freedom. The main evidence we have for the existence of non-trivial

non-supersymmetric 4d CFTs arises from UV Lagrangian descriptions based on gauge

theories coupled to matter that flow in the IR to a weakly coupled Caswell-Banks-Zaks

(CBZ) fixed point [49, 50].7 In the notable case of an SU(2n + 1) gauge theory with

elementary fermions χaα in the fundamental representation, ψα can be identified with the

gauge-invariant baryon operator

ψα ∝ χaαχ
b1
β1
χc1σ1
· · ·χbnβnχ

cn
σnεab1c1...bncnε

β1σ1 · · · εβnσn , ∆UV
ψ =

3

2
+ 3n . (1.3)

If we have elementary fermions χaα with a in the adjoint representation, one can also consider

ψα ∝ tr(χβFαβ), ∆UV
ψ =

7

2
, (1.4)

6In most cases the dimension of the fake primary is ∆O + 1 and its spin is jO − 1, where ∆O is at the

unitarity bound. In our 4d case this implies that the spin and the dimension of the fake primaries are

connected by (1.2).
7Lattice simulations provide also numerical evidence for CBZ fixed points not accessible in perturbation

theory. See e.g. [51] for a review, in particular table I and table II for a summary of results for SU(3) gauge

theories with 12 fundamental fermions and SU(2) theories with 2 (Dirac) adjoint fermions.
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where F aαβ is the self-dual component of the gauge field strength. If elementary scalars in

the appropriate representation φa are present in the UV theory,8 another option is provided

by meson-like fermions of the form9

ψα ∝ φ†aχaα, ∆UV
ψ =

5

2
. (1.5)

We expect the CFTs originating from UV gauge theories to appear on various bounds

as some features for the values of ∆ψ in the vicinity of (1.3), (1.4) and (1.5). Aside from

the unphysical jumps driven by the fake primary effect, unfortunately we have not observed

any such features. There are two main reasons for that. First, similarly to previous studies,

the numerical bounds become weak rather quickly as ∆ψ increases from its free field value

3/2. Thus, theories of the type (1.3) or (1.4) are always deep in the allowed region and

cannot generate any kink-like features. However, theories of the type (1.5) might still be

reachable with stronger (theory specific) assumptions. Second, all the numerical bounds

contain the fermion GFT line in the allowed region, however interesting theories might be

sitting below it and thus again cannot manifest themselves as features on the boundary.

It turns out to be very difficult to find assumptions which robustly rule out the GFT, but

not CBZ fixed points.

The structure of the paper is as follows. We start in section 2 by setting up in detail

the stage for our numerical study. Section 3 is devoted to the computation and rational

approximation of the four-fermion conformal blocks. In section 4 we study the generalized

free fermion theory, determining completely its CFT data. In section 5 we discuss the fake

primary effect in detail and show its impact on numerical bootstrap studies. We finally

present our numerical results in section 6. We conclude in section 7 and discuss some

further technical details in appendices. Various results of the paper are also summarized

in attached Mathematica notebooks.

2 Setup

In this section we define and discuss in detail all the ingredients that are necessary to

perform our numerical study. We use the index-free conventions of [38], in which we write

ψ(x, s) ≡ sαψα(x), ψ(x, s) = (ψ(x, s))† , (2.1)

where sα and sα̇ are auxiliary constant polarization spinors. We work in the Lorentzian

signature, but take the points xi space-like separated, so that fermions anticommute with

8In presence of scalars UV asymptotic freedom becomes non-trivial because of quartic and Yukawa

couplings. One has also to check that in the IR the theory does not undergo spontaneous symmetry

breaking. See e.g. [52] for a perturbative study of a class of gauge theories with fermion and scalar matter

where consistent flows to a weakly coupled CFT have been found.
9In principle, one could also consider UV Lagrangians with fermion singlets χα coupled to Yukawa

couplings with other charged scalars and fermions, in which case we can simply identify the fermion singlet

χα with the CFT fermion ψα with ∆UV
ψ = 3/2. As far as we know no perturbative gauge theory model with

fermion singlets featuring a stable CBZ fixed-point has been constructed in 4d. We thus do not discuss

further this possibility.
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each other. We consider the simplest setup containing a single Weyl fermion, thus the

effect of non-abelian global symmetries cannot be addressed. We assume however the

existence of a U(1) global symmetry in the CFT under which ψ and ψ† carry q = +1

and q = −1 charges respectively. Charge conservation implies that the only non-vanishing

four-fermion correlator is given by (1.1). Alternatively, we could have considered the case

of neutral ψ (q = 0) (or CFTs with no global U(1) symmetry) which would require to study

a set of four-fermion correlators involving all possible combinations of ψ’s and ψ†’s. The

constraints imposed by (1.1) would still be valid but might not be optimal. Space parity

or time reversal symmetry are not assumed.10

Using a combined argument p ≡ (x, s, s), the fermion four-point function (1.1) can

compactly be written as

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉. (2.2)

Associativity of the OPE requires that the following s-t and u-t crossing equations

should hold:

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = 〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉, (2.3)

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = 〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉, (2.4)

where the lines connecting two operators denote their OPE.

Before continuing the discussion, let us introduce our notation. We will denote opera-

tors appearing in the OPE expansions of (2.3) and (2.4) as

O(`,`)
∆,Q, (2.5)

Here Q = 0,±2 is the U(1) charge. In the rest of the paper we will write for simplicity

Q = 0, ± instead.11 In what follows we will also need the hermitian conjugate operators,

which we denote as

O(`,`)
∆,Q(p) ≡

(
O(`,`)

∆,−Q(p)
)†

. (2.6)

Note that in the left-hand side of the above expression the labels refer to the complex

conjugate operator. Given the definitions (2.6), we observe that in the traceless symmetric

(` = `) case with vanishing charge (Q = 0) the local operators can be chosen to be hermitian

and operators with ` 6= ` can be grouped in hermitian-conjugate pairs, i.e.

O(`,`)
∆,0 = O(`,`)

∆,0 , O(`,`+2)
∆,0 = O(`,`+2)

∆,0 . (2.7)

With the above notation, the neutral channel OPE reads

ψ(p1)ψ(p2) =
∑
O

∑
a

λa〈ψψO〉C
a
〈ψψO〉(p1,p2, ∂x1 , ∂s, ∂s)O

(`,`)
∆,0 (x1, s, s), (2.8)

10We discuss implications of parity symmetry and q = 0 case in appendix C.
11In principle there can be degeneracies in the spectrum, in which case this notation does not fully specify

the primary operators. In such cases an additional label must be added, but for simplicity we will ignore it

and discuss degeneracies only when they are important.
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where we sum over the primary operators O with Q = 0. The operator O is the hermitian

conjugate of O. The scaling dimensions of O and O are denoted by ∆ and their Lorentz

representations by (`, `) and (`, `), respectively. As mentioned in the introduction, the

allowed Lorentz representations for the exchanged operators O are12

(`, `) ∈ {(`, `), (`+ 2, `), (`, `+ 2)} . (2.9)

It is convenient in the following to introduce a parameter p defined as

p ≡ |`− `| , (2.10)

which for TS and NTS operators reads as p = 0 and p = 2 respectively. The two types

of NTS operators appearing in (2.8) are related by hermitian conjugation (2.7) or, equiva-

lently, by the CPT-symmetry. The λ’s in (2.8) denote the OPE coefficients, while the C’s

are functions completely fixed by the conformal symmetry that encode the contribution

of all the descendant operators associated to O. The OPE of non-scalar fields involves

in general several OPE coefficients and functions C, which are taken into account by the

index a. We use the subscript 〈ψψO〉 as part of the naming in order to fully specify the

objects belonging to this particular OPE channel.13

The OPE in the charged channel reads as

ψ(p1)ψ(p2) =
∑
O

∑
a

λa〈ψψO〉C
a
〈ψψO〉(p1,p2, ∂x1 , ∂s, ∂s)O

(`,`)
∆,+(x1, s, s), (2.11)

where the operators O and O have Q = −2 and Q = +2 charges respectively. The spin

representations (`, `) of the operator O are the same as in (2.9). Since O in this sum have

non-zero charge Q, we cannot relate anymore the (`, `+ 2) and (`+ 2, `) NTS operators by

hermitian conjugation.

Throughout this work we use conventions and notation of [38]. We also use their

“CFTs4D” package to perform all the algebraic computations below.

2.1 Two- and three-point functions

We choose our basis of operators to be orthogonal in the sense that non-vanishing two-point

correlation functions only appear for conjugate pairs of operators (2.5) and (2.6)

〈O(`,`)
∆,−Q(p1)O(`,`)

∆,Q(p2)〉 = i`−` x−2∆−`−`
12

(
Î12
)` (

Î21
)`
, (2.12)

where ` = ` or ` = `+ 2 and

xij ≡ |xµi − x
µ
j |, Îij ≡ xµij(siσµsj). (2.13)

12In the Young diagram language these mixed-symmetry representations are represented by a “hook”

with ` + 1 boxes in the first and one box in the second row. The two-row Young diagrams can have

(anti-)self-duality constraints in 4d, which is what distinguishes (`+ 2, `) from (`, `+ 2).
13The reason for the use of O instead of O in the subscript will become clear in section 2.1.
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In writing (2.12) we have used the freedom of changing the normalization of a primary

operator to achieve a standard form for all two-point functions.14 As we discuss below, for

conserved currents there is a different natural normalization, and (2.12) has to be modified.

The scaling dimensions of operators (2.5) and (2.6) are subject to the unitarity bounds

∆ ≥ ∆unitary(`, `) =

2 + `+`
2 , `` 6= 0,

1 + `+`
2 , `` = 0.

(2.14)

An operator saturating these bounds for `` 6= 0 is necessarily a conserved current.15 Trace-

less symmetric spin-1 and spin-2 currents are just the familiar global symmetry currents

and the stress tensor,

J ≡ O(1,1)
3,0 , T ≡ O(2,2)

4,0 . (2.15)

Normalization of J and T is fixed by the Ward identities and there is no more freedom in

choosing the overall scale of their two-point functions. Thus, instead of (2.12) their two

point functions have the form

〈J(p1)J(p2)〉 = CJ × x−8
12 Î12Î21, 〈T (p1)T (p2)〉 = CT × x−12

12

(
Î12Î21

)2
, (2.16)

where CJ and CT are often called the central charges.

The information contained in the OPE (2.8) and (2.11) is equivalent to the one con-

tained in the three-point functions16

〈ψ(p1)ψ(p2)O(`,`)
∆,0 (p3)〉, 〈ψ(p1)ψ(p2)O(`,`)

∆,−(p3)〉, (2.17)

where the allowed representations (`, `) are listed in (2.9). The three-point functions (2.17)

have a simple dependence on scaling dimensions through the kinematic factor

K−1
3 ≡ x2∆ψ−∆−`−p/2+1

12 x
∆+`+p/2
13 x

∆+`+p/2
23 . (2.18)

Analogously to the case of two-point functions the spin dependence is encoded into tensor

structures given by products of basic invariant objects. In case of three-point functions

besides Î we get three more invariants Ĵ, K̂ and K̂. We do not report their explicit form

here and instead refer the reader to appendix D in [38]. In the remainder of this section

we analyze the three-point functions (2.17) in detail.

Neutral channel. The first class of three-point functions in (2.17) reads as

〈ψ(p1)ψ(p2)O(`,`)
∆,0 (p3)〉 = λa=1

〈ψψO(`,`)
∆,0 〉
×K3 Î12

(
Ĵ3

12

)`
+ λa=2

〈ψψO(`,`)
∆,0 〉
×K3Î13Î32

(
Ĵ3

12

)`−1
,

〈ψ(p1)ψ(p2)O(`+2,`)
∆,0 (p3)〉 = λ〈ψψO(`+2,`)

∆,0 〉 ×K3 Î13K̂23
1

(
Ĵ3

12

)`
,

〈ψ(p1)ψ(p2)O(`,`+2)
∆,0 (p3)〉 = λ〈ψψO(`,`+2)

∆,0 〉 ×K3 Î32K̂
13

2

(
Ĵ3

12

)`
. (2.19)

14Our normalization of two-point function follows the conventions of [38].
15The identity operator is the only special case for which the unitarity bounds (2.14) do not apply.

Operators saturating the unitarity bounds for `` = 0 only exist in free theories [53].
16To see this one can multiply (2.8) and (2.11) by O respectively and take the vacuum expectation value.

Given that the two-point function is uniquely determined one obtains a relation between the form of the

three-point function and the functions C.
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Here λ’s are the OPE coefficients and the objects multiplying them are the tensor struc-

tures. For instance, the very first correlator in (2.19) has two tensor structures for ` ≥ 1.

Following [39] it is convenient to denote tensor structures by

〈ψ(p1)ψ(p2)O(`,`)
∆,0 (p3)〉(a), (2.20)

where the superscript (a) enumerates different structures and additionally indicates that

it is not a physical correlator. So we have, for example,

〈ψ(p1)ψ(p2)O(`,`)
∆,0 (p3)〉(1) ≡ K3 Î12

(
Ĵ3

12

)`
,

〈ψ(p1)ψ(p2)O(`,`)
∆,0 (p3)〉(2) ≡ K3 Î13Î32

(
Ĵ3

12

)`−1
. (2.21)

When ` = 0 only the (a) = (1) structure exists. When there is a unique tensor structure

we often use the notation (a) = (·) to stress the uniqueness, e.g.

〈ψ(p1)ψ(p2)O(0,0)
∆,0 (p3)〉(·) ≡ K3Î12. (2.22)

Three-point functions in (2.19) are invariant under a π12 permutation augmented by

complex conjugation, where a general permutation πij is defined by

πij : pi ↔ pj . (2.23)

We work in Lorentzian signature, and complex conjugation acts on a generic n-point cor-

relator as follows17

〈O1(p1)O2(p2) . . .On(pn)〉∗ = 〈On(pn) . . .O2(p2)O1(p1)〉 . (2.24)

This leads to the following properties of the OPE coefficients:

λ∗a
〈ψψO(`,`)

∆,0 〉
= (−1)`+1λa

〈ψψO(`,`)
∆,0 〉

, λ∗
〈ψψO(`+2,`)

∆,0 〉
= (−1)`λ

〈ψψO(`,`+2)
∆,0 〉

. (2.25)

From (2.25) it is clear that the OPE coefficients of TS operators are purely imaginary

for even ` and purely real for odd `. No similar statement can be made about the

NTS operators.

When O is a conserved NTS operator, its OPE coefficients in (2.19) must vanish to sat-

isfy the conservation constraint.18 On the contrary, conserved TS operators automatically

satisfy the conservation condition. When O is the conserved current J or the stress tensor

T one can additionally use the Ward identities to relate the associated OPE coefficients

to the U(1) and conformal charges of ψ. For our case this was done in [54].19 For the

conserved current they find

2λ1
〈ψψJ〉 + λ2

〈ψψJ〉 =
q√
2π2

, (2.26)

17Note that, unlike in Euclidean signature, hermitian conjugation does not act on coordinates of

local operators.
18This will lead to a fake primary effect when discussing upper bounds on scaling dimensions of NTS

neutral operators, as we will see in sections 5 and 6.
19See formula (3.15) and appendix A of [54]. Note the different conventions between the three-point tensor

structure (3.13) in [54] and (2.33) below. There is a relative factor −1 in front of the second structure.

There is an additional factor of (−
√

2)` due to the difference in vector-spinor map, see appendix A of

this paper.
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where q = +1.20 It is convenient to parametrize the OPE coefficients of J in such a way

that the Ward identity (2.26) is manifest; we adopt the following option

λ1
〈ψψJ〉 =

1

2
√

2π2
× cos θ

cos θ + sin θ
, λ2

〈ψψJ〉 =
1√
2π2
× sin θ

cos θ + sin θ
, θ ∈

[
− π

4
,

3π

4

]
.

(2.27)

For the stress tensor the result of [54] reads as

λ1
〈ψψT 〉 = − i

3π2
× (∆ψ − 3/2), λ2

〈ψψT 〉 = − i

π2
. (2.28)

We provide a simple derivation of (2.26) and (2.28) in appendix B using weight-shifting

operators. Notice that only in the case of stress tensor all the OPE coefficients are fixed. For

the conserved current only one linear combination of the OPE coefficients is constrained.

One can consider different ordering of operators in (2.19), and for technical purposes

it will be convenient to introduce new bases of tensor structures for them. There are two

sets of orderings which are important. The first set reads as

〈O(`,`)
∆,0 (p1)ψ(p2)ψ(p3)〉, 〈O(`+2,`)

∆,0 (p1)ψ(p2)ψ(p3)〉, 〈O(`,`+2)
∆,0 (p1)ψ(p2)ψ(p3)〉. (2.29)

These orderings can be obtained by applying hermitian conjugation and π13 permutation

to (2.19). We define the basis of the tensor structures for (2.29) by applying this procedure

to tensor structures for (2.19). Then the associated OPE coefficients are related to the

ones in (2.19) in the following simple way

λ∗a
〈ψψO(`,`)

∆,0 〉
= λa

〈O(`,`)
∆,0 ψψ〉

, λ∗
〈ψψO(`,`+2)

∆,0 〉
= λ

〈O(`+2,`)
∆,0 ψψ〉

, λ∗
〈ψψO(`+2,`)

∆,0 〉
= λ

〈O(`,`+2)
∆,0 ψψ〉

.

(2.30)

However, the two orderings can be related also by simply permuting the operators. Using

permutations to relate three-point functions we find

λa
〈ψψO(`,`)

∆,0 〉
= (−1)`+1λa

〈O(`,`)
∆,0 ψψ〉

(2.31)

for TS operators and

λ〈ψψO(`+2,`)
∆,0 〉 = (−1)`λ〈O(`+2,`)

∆,0 ψψ〉, λ〈ψψO(`,`+2)
∆,0 〉 = (−1)`λ〈O(`,`+2)

∆,0 ψψ〉 (2.32)

for NTS operators. This is consistent with (2.25).

The second set of orderings reads as

〈O(`,`)
∆,0 (p1)ψ(p2)ψ(p3)〉, 〈O(`+2,`)

∆,0 (p1)ψ(p2)ψ(p3)〉, 〈O(`,`+2)
∆,0 (p1)ψ(p2)ψ(p3)〉. (2.33)

Theses are related to (2.29) by applying π12 permutation and adding an overall minus sign

coming from the anti-commutation of fermions. We use this procedure to obtain the basis

20As explained later, in our setup we are only sensitive to the ratio q2/CJ , thus we can always reabsorb

the charge in the definition of CJ . In supersymmetric CFTs one should be more careful: if ψ is part of a

chiral multiplet and J is the R-charge, then q is fixed by the superconformal algebra in terms of ∆ψ and

CJ is fixed in terms of CT .
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of tensor structures for (2.33) from the basis for (2.29). This leads to the following relations

between the OPE coefficients

λa
〈O(`,`)

∆,0 ψψ〉
= λa

〈O(`,`)
∆,0 ψψ〉

, λ〈O(`+2,`)
∆,0 ψψ〉 = λ〈O(`+2,`)

∆,0 ψψ〉, λ〈O(`,`+2)
∆,0 ψψ〉 = λ〈O(`,`+2)

∆,0 ψψ〉.

(2.34)

Charged channel. The second class of three-point functions in (2.17) reads as

〈ψ(p1)ψ(p2)O(`,`)
∆,−(p3)〉 = λ〈ψψO(`,`)

∆,−〉
×K3

(
Î31K̂23

1 + (−1)` Î32K̂13
2

)(
Ĵ3

12

)`−1
, (2.35)

〈ψ(p1)ψ(p2)O(`+2,`)
∆,− (p3)〉 = λ〈ψψO(`+2,`)

∆,− 〉 ×K3 K̂13
2 K̂23

1

(
Ĵ3

12

)`
, ` ∈ odd, (2.36)

〈ψ(p1)ψ(p2)O(`,`+2)
∆,− (p3)〉 = λ〈ψψO(`,`+2)

∆,− 〉 ×K3 Î31Î32
(
Ĵ3

12

)`
, ` ∈ odd, (2.37)

The expression (2.35) holds for ` ≥ 1 and contains in general two tensor structures. However

an extra constraint must be imposted due to presence of identical fermions

〈ψ(p1)ψ(p2)O(p3)〉 = −〈ψ(p2)ψ(p1)O(p3)〉, (2.38)

which relates two structures. The same constraint is also responsible for removing even `

operators from the correlation functions (2.36) and (2.37). In the special ` = 0 case there

is a unique tensor structure in (2.35) given by

〈ψ(p1)ψ(p2)O(0,0)
∆,− (p3)〉(·) ≡ K3K̂12

3 . (2.39)

When O is a conserved TS operator, its OPE coefficients in (2.35) must vanish to satisfy

the conservation constraint.21 Thus, no conserved TS operators are allowed to appear in

this channel. On the contrary, conserved NTS operators automatically satisfy the conser-

vation condition.

Finally, the following set of three-point functions

〈O(`,`)
∆,+(p1)ψ(p2)ψ(p3)〉, 〈O(`+2,`)

∆,+ (p1)ψ(p2)ψ(p3)〉, 〈O(`,`+2)
∆,+ (p1)ψ(p2)ψ(p3)〉 (2.40)

is related to (2.35)–(2.37) by complex conjugation and π13 permutation. The tensor struc-

tures for (2.40) are obtained by this procedure. This implies that the OPE coefficients of

two sets of correlators are related as follows

λ∗a
〈ψψO(`,`)

∆,−〉
= λa

〈O(`,`)
∆,+ψψ〉

, λ∗
〈ψψO(`,`+2)

∆,− 〉
= λ

〈O(`+2,`)
∆,+ ψψ〉

, λ∗
〈ψψO(`+2,`)

∆,− 〉
= λ

〈O(`,`+2)
∆,+ ψψ〉

.

(2.41)

21This will lead to a fake primary effect when discussing upper bounds on scaling dimensions of TS

charged operators, as we will see in sections 5 and 6.
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2.2 Four-point tensor structures

We now analyze in detail the four-point function (2.2) and the crossing equations (2.3)

and (2.4) it must satisfy. We begin by using the anticommutation properties of space-like

separated fermions to rewrite the crossing equations in the following form

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = −π13〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉, (2.42)

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = −π13〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉, (2.43)

where we have used the short-hand notation (2.23) for permutation of points and the

fact that π41π13π34 = π13. We have expressed these equations using the π13 permutation

because it acts on the standard cross-ratios (z, z) defined as

zz ≡ u ≡ x2
12x

2
34

x2
13x

2
24

, (1− z)(1− z) ≡ v ≡ x2
14x

2
23

x2
13x

2
24

, (2.44)

in a very simple way:

π13 : (z, z) 7→ (1− z, 1− z). (2.45)

This fact allows us to study the crossing equations (2.42) and (2.43) in power series around

the π13 crossing symmetric point z = z = 1/2, as pioneered in [1].

Instead of working with the s-, t- and u-channel conformal block expansions of a single

correlator (2.2), the crossing equations (2.3) and (2.4) rewritten in the new form (2.42)

and (2.43) allow to work with the s-channel conformal block expansions of the following

three four-point functions

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉, 〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉, 〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉.
(2.46)

Since all these four-point functions are related by permutation we do not refer to them as

three different four-point functions, but rather as three different orderings of operators in

the four-point function (2.2).

In what follows we define a basis of tensor structures for three orderings (2.46) and

study their properties. While these orderings are related by simple permutations, it is

technically useful to introduce three different bases of tensor structures for them. Contrary

to section 2.1 we will be working in the conformal frame [37, 55].22 In this formalism we

put the four operators in standard positions, parametrized by the cross-ratios z and z,

x1 = (0, 0, 0, 0), x2 =

(
z − z

2
, 0, 0,

z + z

2

)
, x3 = (0, 0, 0, 1), x4 = (0, 0, 0,∞), (2.47)

and study the tensor structures as invariants of the SO(2) little group. We refer the reader

to [38] for details of this formalism applied to 4d CFTs.

22We do not use the embedding formalism [31, 42] for four-point tensor structures since it suffers from

redundancies which become worse when combined with permutation symmetries and crossing transforma-

tions. Conformal frame structures, on the other hand, are manifestly free of redundancies and transform in

a simple way under permutations and crossing. For three-point functions in 4d the embedding formalism

is, however, more convenient since it is manifestly covariant and has very little redundancies which can

be tamed.
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Ordering 〈ψψψψ〉. The four-point function (2.2) can be decomposed in a basis of four-

point tensors structures. Before imposing any constraints other than conformal invariance,

we find 6 structures,23

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =

6∑
i=1

T0
i g

0
i (z, z). (2.48)

We put the superscript “0” because we will shortly define a second basis. We define

T0
1 ≡

[
0 +1

2 0 −1
2

+1
2 0 −1

2 0

]
, T0

2 ≡

[
0 −1

2 0 +1
2

−1
2 0 +1

2 0

]
,

T0
3 ≡

[
0 −1

2 0 +1
2

+1
2 0 −1

2 0

]
, T0

4 ≡

[
0 +1

2 0 −1
2

−1
2 0 +1

2 0

]
, (2.49)

T0
5 ≡

[
0 +1

2 0 +1
2

+1
2 0 +1

2 0

]
, T0

6 ≡

[
0 −1

2 0 −1
2

−1
2 0 −1

2 0

]
,

where the symbols [
q1 q2 q3 q4

q1 q2 q3 q4

]
(2.50)

denote the tensor structures in the conformal frame basis as defined in [38] (see in particular

section 4.1.2). For analyzing further constraints it is convenient to introduce the following

change of basis,

T1,+ ≡
1

z
T0

1 +
1

z
T0

2, T1,− ≡
i

z
T0

1 −
i

z
T0

2,

T2,+ ≡
1

1− z
T0

3 +
1

1− z
T0

4, T2,− ≡
1

1− z
T0

3 −
1

1− z
T0

4,

T3,+ ≡ T0
5 + T0

6, T3,− ≡ T0
5 − T0

6,

(2.51)

and the appropriate decomposition

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =

3∑
i=1,±

Ti,±gi,±(z, z). (2.52)

The functions gi,±(z, z) entering (2.52) are not constrained by conformal symmetry,

but should obey further non-trivial constraints coming from permutation symmetry, reality,

parity invariance and smoothness of the four-point function.

Let us first understand the permutation symmetry. Using the anti-commutation prop-

erties of space-like separated fermions we can write

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = +π13π24〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉. (2.53)

23Note that in the conformal frame the functions g0
i include the contribution (zz)−∆ψ−1/2 coming from

the covariant kinematic factor (x2
12x

2
34)−∆ψ−1/2. As a matter of fact, this is the only term in g0

i that

explicitly depends on ∆ψ.
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Contrary to π13, the permutation π13π24 does not change the cross-ratios (z, z). This

property makes it a constraint on the functions gi,±(z, z) at a single point in the (z, z)-

plane, rather than a relation between different points. We refer to permutations which do

not change the cross-ratios as kinematic permutations. Using the results of [38] we can

immediately infer the constraints which (2.53) implies for the functions gi,±(z, z). We find

g1,−(z, z) = g2,−(z, z) = 0. (2.54)

Note that permutations do not leave the conformal frame (2.47) invariant, which leads

to functions of z and z appearing in the action of the permutations on conformal frame

structures [37, 38]. This explains the z- and z-dependent prefactors in (2.51).

Let us now address the reality constraints. The action of complex conjugation (2.24)

to the four-point function (2.52) implies that the functions gi,± are real,

g∗i,±(z, z) = gi,±(z, z), i = 1, 2, 3. (2.55)

Imposing parity symmetry does not lead to further constraints on the four-point function.

It gives however some constraints at the level of three-point functions, see appendix C.

The last constraint to consider comes from the smoothness properties [28, 37] of the

four-point function (2.2) which lead to the following

gi,±(z, z) = ±gi,±(z, z), (2.56)

1

z
g1,+(z, z) +

1

1− z
g2,+(z, z) + g3,+(z, z) = 0. (2.57)

The first constraint (2.56) comes from the fact that z and z can be exchanged by a ro-

tation, while the second constraint (2.57) comes from analyzing how the basis of tensor

structures (2.51) degenerates as (z − z)→ 0. See appendix D for details.

Orderings 〈ψψψψ〉 and 〈ψψψψ〉. The decomposition of these orderings into tensor

structures is as follows24

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =
∑
i,±

T′i,±g′i,±(z, z), (2.58)

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =
∑
i,±

Qi,±hi,±(z, z). (2.59)

The basis of structures entering (2.58) is defined as

T′01 ≡

[
0 +1

2 −
1
2 0

+1
2 0 0 −1

2

]
, T′02 ≡

[
0 −1

2 +1
2 0

−1
2 0 0 +1

2

]
, (2.60)

T′03 ≡

[
0 −1

2 +1
2 0

+1
2 0 0 −1

2

]
, T′04 ≡

[
0 +1

2 −
1
2 0

−1
2 0 0 +1

2

]
, (2.61)

T′05 ≡

[
0 +1

2 +1
2 0

+1
2 0 0 +1

2

]
, T′06 ≡

[
0 −1

2 −
1
2 0

−1
2 0 0 −1

2

]
, (2.62)

24Again the dependence on the external dimension ∆ψ is hidden inside the functions g′ and h.
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T′1,+ ≡
1

z
T′01 +

1

z
T′02 , T′1,− ≡

1

z
T′01 −

1

z
T′02 ,

T′2,+ ≡ T′03 + T′04 , T′2,− ≡ iT′03 − iT′04 , (2.63)

T′3,+ ≡ T′05 + T′06 , T′3,− ≡ T′05 − T′06 .

The basis of structures entering (2.59) is defined as

Q0
1 ≡

[
−1

2 +1
2 0 0

0 0 +1
2 −

1
2

]
, Q0

2 ≡

[
+1

2 −
1
2 0 0

0 0 −1
2 +1

2

]
, (2.64)

Q0
3 ≡

[
+1

2 −
1
2 0 0

0 0 +1
2 −

1
2

]
, Q0

4 ≡

[
−1

2 +1
2 0 0

0 0 −1
2 +1

2

]
, (2.65)

Q0
5 ≡

[
+1

2 +1
2 0 0

0 0 +1
2 +1

2

]
, Q0

6 ≡

[
−1

2 −
1
2 0 0

0 0 −1
2 −

1
2

]
, (2.66)

Q1,+ ≡
1

1− z
Q0

1 +
1

1− z
Q0

2, Q1,− ≡
1

1− z
Q0

1 −
1

1− z
Q0

2,

Q2,+ ≡ Q0
3 + Q0

4, Q2,− ≡ iQ0
3 − iQ0

4, (2.67)

Q3,+ ≡ Q0
5 + Q0

6, Q3,− ≡ Q0
5 −Q0

6.

Of course, the functions g′ and h are not independent of the functions g since they encode

the same four-point function.

We omit the identical reasoning leading to the properties of g′- and h-functions anal-

ogous to those derived for the g-functions and provide the final summary only.

The same way we have derived the properties of g-functions in the previous paragraph,

we can derive the analogous properties of g′- and h-functions. We omit the identical

reasoning and provide the final summary only. Permutation symmetry requires

g′1,−(z, z) = g′2,−(z, z) = h1,−(z, z) = h2,−(z, z) = 0. (2.68)

Complex conjugation implies

g′∗i,±(z, z) = g′i,±(z, z), h∗i,±(z, z) = hi,±(z, z). (2.69)

Finally the smoothness of g′- and h-functions implies

g′i,±(z, z) = ±g′i,±(z, z), hi,±(z, z) = ±hi,±(z, z) (2.70)

together with

1

z
g′1,+(z, z) + g′2,+(z, z) + g′3,+(z, z) = 0, (2.71)

1

1− z
h1,+(z, z) + h2,+(z, z) + h3,+(z, z) = 0. (2.72)
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2.3 Crossing equations

We can now plug the tensor structure decompositions (2.52), (2.58) and (2.59) into the

crossing equations (2.42) and (2.43). Applying the π13 permutation it is easy to show that

they translate into the following set of crossing equations:

g1,+(1− z, 1− z) = g2,+(z, z),

g3,+(1− z, 1− z) = g3,+(z, z),

g3,−(1− z, 1− z) = g3,−(z, z), (2.73)

and

g′1,+(1− z, 1− z) = h1,+(z, z),

g′2,+(1− z, 1− z) = h2,+(z, z),

g′3,±(1− z, 1− z) = h3,±(z, z). (2.74)

Following [1] we study these crossing equations by expanding them in a power series around

z = z = 1/2. For this purpose instead of (z, z) it is convenient to define new coordinates

x, y and t as

z ≡ x+ y +
1

2
, z ≡ x− y +

1

2
, t ≡ y2. (2.75)

Using these variables we define new functions

f̃i(x, t) ≡


fi,+(z, z), i = 1, 2, 3

1
y fi−3,−(z, z), i = 4, 5, 6

, (2.76)

where f represents g, g′, or h. The new functions are smooth functions of t due to the

constraints (2.56) and (2.70). This allows to rewrite the crossing equations (2.73) and (2.74)

in the following way:

∂mx ∂
n
t g̃1(0, 0) = (−1)m∂mx ∂

n
t g̃2(0, 0), n,m ≥ 0, (2.77)

∂mx ∂
n
t g̃3(0, 0) = 0, m ≥ 0, m odd, n ≥ 1 (2.78)

∂mx ∂
n
t g̃6(0, 0) = 0, m, n ≥ 0, m even, (2.79)

∂mx ∂
n
t g̃
′
1(0, 0) = (−1)m∂mx ∂

n
t h̃1(0, 0), n,m ≥ 0, (2.80)

∂mx ∂
n
t g̃
′
2(0, 0) = (−1)m∂mx ∂

n
t h̃2(0, 0), n,m ≥ 0, (2.81)

∂mx ∂
n
t g̃
′
3(0, 0) = (−1)m∂mx ∂

n
t h̃3(0, 0), m ≥ 0, n ≥ 1 (2.82)

∂mx ∂
n
t g̃
′
6(0, 0) = (−1)m+1∂mx ∂

n
t h̃6(0, 0), n,m ≥ 0. (2.83)

Note that the constraints (2.57), (2.71), and (2.72) imply a linear relation between f̃i for

i = 1, 2, 3 at t = 0, which allows us to express f̃3(x, 0) in terms of f̃1(x, 0) and f̃2(x, 0).

The crossing equations involving g̃3, g̃′3 and h̃3 with no ∂t derivatives are thus redundant.

This explains why n ≥ 1 in (2.78) and (2.82).
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2.4 Decomposition into conformal blocks

By using the OPE (2.8) and (2.11) we can express the three orderings (2.46) as sums over

contributions of individual primary operators. This allows to express the functions g, g′

and h (or equivalently g̃, g̃′ and h̃) in terms of the CFT data. In this section we discuss

these decompositions.

Orderings 〈ψψψψ〉 and 〈ψψψψ〉. We start by studying the s-channel OPE decom-

position of the first ordering in (2.46). We apply the OPE (2.8) twice to a pair of operators

at positions 1, 2 and 3, 4. Using the properties of two-point functions one arrives at

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =
∑
O

∑
a,b

λa〈ψψO〉λ
b
〈Oψψ〉G

ab
O (pi), (2.84)

where the sum runs over the primary operators O exactly as in (2.8), the OPE coefficients

λ are defined in section 2.1 and the functions

GabO (pi) ≡ Ca〈ψψO〉C
b
〈Oψψ〉〈O

(`,`)
∆,0 (x1, s, s)O(`,`)

∆,0 (x3, t, t)〉 (2.85)

are called the conformal blocks. We omit here for brevity the arguments of the functions

C. Since the C’s are completely fixed by the conformal symmetry, the conformal blocks

are also completely fixed and represent the contribution of the primary operator O and all

its descendants. The conformal blocks depend on the scaling dimension ∆ and the Lorentz

representation (`, `) of O:25 we will then often use the following more explicit labelling

Gab
∆,(`,`)

(pi) ≡ GabO (pi). (2.86)

Equivalently to (2.85) one can write the blocks as a certain gluing of three-point tensor

structures [31, 39], which we denote by

GabO (pi) = 〈ψ(p1)ψ(p2)O〉(a) ./ 〈Oψ(p3)ψ(p4)〉(b), (2.87)

where the operation ./ roughly corresponds to an integral over the coordinates and a sum

over the polarizations of O and O. Its precise definition is unnecessary for the purposes of

this paper. The calculation of the conformal blocks (2.85) or equivalently (2.87) presents

the main technical challenge in this paper which we postpone to section 3.

All the conformal blocks we compute are normalized in such a way that the two-point

function entering (2.85) is given by (2.12). In case of the conserved currents J and the stress

tensor T the correct normalization of the two-point functions is instead given by (2.16).

Recalling that the C’s in (2.85) also depend on the two point function normalization, we

get that the associated conformal blocks should be rescaled as

GabJ −→
1

CJ
×GabJ , GabT −→

1

CT
×GabT . (2.88)

25In general they also depend non-trivially on the scaling dimension of the “external operators”, but only

through their differences. When all the external fermions have the same scaling dimension ∆ψ, as in our

case, we are only left with the trivial dependence proportional to (zz)−∆ψ−1/2 coming from the kinematic

factor. See footnote 23.
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Let us now consider the products of OPE coefficients entering (2.84) in more detail.

So far the expansion is organized by individual local operators O. However, since the

conformal blocks depend only on scaling dimension and spin of O, we cannot distinguish

the contributions of operators which share these quantum numbers.26 This motivates

defining the following quantity,(
P∆,(`,`),0

)ba
≡
∑
O(`,`)

∆,0

λa〈ψψO〉λ
b
〈Oψψ〉, (2.89)

where we sum over all operators with given scaling dimension ∆, spin (`, `) and the U(1)

charge Q = 0. Due to our choice of three-point tensor structures we have the prop-

erty (2.30), which allows us to rewrite this as(
P∆,(`,`),0

)ba
=
∑
O(`,`)

∆,0

λa〈ψψO〉λ
∗b
〈ψψO〉, (2.90)

which in turn implies that

P∆,(`,`),0 � 0 (2.91)

are positive-semidefinite hermitian matrices. This is the key to applying semidefinite pro-

gramming to our setup.

As we discuss in section 2.1, there are three families of operators contributing to ψψ

OPE. These are operators of the type

O(`,`)
∆,0 , O(`+2,`)

∆,0 , O(`,`+2)
∆,0 . (2.92)

Correspondingly, we have three families of matrices P∆,(`,`),0. The matrices P∆,(`,`),0 are

2 × 2 for l ≥ 1, owing to the existence of two three-point tensor structures in the first

correlator in (2.19). The matrices P∆,(`,`+2),0, P∆,(`+2,`),0 and P∆,(`=0,`=0),0 are 1× 1, since

there is only one three-point tensor structure in the second and third correlators in (2.19)

and in (2.22). Furthermore, from (2.25) it follows that

P∆,(`,`+2),0 = P∆,(`+2,`),0. (2.93)

There is a corresponding relation between the NTS blocks

G∆,(`+2,`)(pi) = π13π24G∆,(`,`+2)(pi), (2.94)

26The degeneracies are to be expected if we consider the four-point function (2.2) in a theory with a

symmetry group sufficiently larger than U(1). If, on the other hand, U(1) is the only global symmetry,

then one might argue that generically there should be no degeneracies. However, we would like to be

agnostic about the complete global symmetry group, and we also do not want to rely on such expectations.

Furthermore, from the point of view of our numerical approach, it is in any case impossible to impose

a non-degeneracy condition on all operators at once. (It is only possible to do so for a finite number of

operators, at the cost of a scan over the ratios of the OPE coefficients.)

– 17 –



J
H
E
P
0
6
(
2
0
1
9
)
0
8
8

which follows from the “left-right” symmetry of the gluing operation and the identities27

〈ψ(p1)ψ(p2)O(p0)〉(·) = (−1)` × 〈O(p0)ψ(p1)ψ(p2)〉(·), (2.95)

〈O(p0)ψ(p3)ψ(p4)〉(·) = (−1)` × 〈ψ(p3)ψ(p4)O(p0)〉(·), (2.96)

which in turn follow from the definitions of tensor structures given in section 2.1. One can

then define a π13π24 symmetric block as

Gπ13π24

∆,(`,`+2)(pi) ≡ G∆,(`,`+2)(pi) + π13π24G∆,(`+2,`)(pi). (2.97)

Using the relations (2.97) and (2.94) one can write the following improved form of (2.84):

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =
∑
∆,`

tr
(
P∆,(`,`),0G∆,(`,`)(pi)

)
+
∑
∆,`

P∆,(`,`+2),0G
π13π24

∆,(`,`+2)(pi). (2.98)

In this form the four-point function is manifestly symmetric under the kinematic permu-

tation π13π24.

The discussion above holds identically for the second ordering 〈ψψψψ〉 in (2.46). Due

to the relation (2.34) between the OPE coefficients we have

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =
∑
∆,`

tr
(
P∆,(`,`),0G

′
∆,(`,`)(pi)

)
+
∑
∆,`

P∆,(`,`+2),0G
′π13π24

∆,(`,`+2)(pi), (2.99)

where the only difference with (2.98) are the conformal blocks defined, contrary to (2.87), as

G′abO (pi) ≡ 〈ψ(p1)ψ(p2)O(p0)〉(a) ./ 〈O(p0)ψ(p3)ψ(p4)〉(b). (2.100)

Each conformal block G in (2.98) can be further expanded into the basis of four-point

tensor structures defined in (2.52) as follows:

Gab
∆,(`,`)

(pi) =

3∑
i=1,±

Ti,± Gabi,±,∆,(`,`)(z, z). (2.101)

We refer to the objects Gabi,± multiplying the tensor structures as the components of the con-

formal blocks Gab.28 One should not confuse the labeling ± with the charges of operators.

The blocks do not contain information about charges and instead ± refers to the labeling

of tensor structures, see the definition (2.52). Similarly, the G′ blocks can be expanded in

the basis of four-point structures T′i,± defined in (2.58).

27Remember that the objects here are not the full correlators but rather their tensor structures.
28In many works including [38] the conformal blocks are referred to as conformal partial waves (CPWs).

Instead the components of conformal blocks are referred to as conformal blocks.
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Using the decompositions (2.98) and (2.99) and their expansions into four-point struc-

tures one can finally express the functions g and g′ of section 2.2 as follows:

gi,±(z, z) =
∑
∆,`

tr
(
P∆,(`,`),0Gi,±,∆,(`,`)(z, z)

)
+
∑
∆,`

P∆,(`,`+2),0G
π13π24

i,±,∆,(`,`+2)(z, z),

g′i,±(z, z) =
∑
∆,`

tr
(
P∆,(`,`),0G

′
i,±,∆,(`,`)(z, z)

)
+
∑
∆,`

P∆,(`,`+2),0G
′π13π24

i,±,∆,(`,`+2)(z, z). (2.102)

The expression for the functions g̃i(x, t) and g̃′i(x, t) defined in (2.76) follow straightfor-

wardly from (2.102). We note that since (2.98) and (2.99) are π13π24 symmetric, the expres-

sions (2.102) are also π13π24 symmetric and thus automatically satisfy the constraints (2.54)

and (2.68).

Ordering 〈ψψψψ〉. The same logic as above applies for the third ordering in (2.46):

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =
∑
O
λ〈ψψO〉λ〈Oψψ〉HO(pi), (2.103)

where now we sum over operators O with U(1) charge Q = −2 and H are the corresponding

conformal blocks defined as29

HO(pi) ≡ 〈ψ(p1)ψ(p2)O(p0)〉(·) ./ 〈O(p0)ψ(p3)ψ(p4)〉(·). (2.104)

There are no indices in the conformal block and associated OPE coefficients since all the

three-point functions always have a single tensor structure. As before we define

P∆,(`,`),− ≡
∑
O(`,`)

∆,−

λ〈ψψO〉λ〈Oψψ〉 =
∑
O(`,`)

∆,−

|λ〈ψψO〉|2 ≥ 0. (2.105)

Here we sum over all operators with a given scaling dimension ∆, spin (`, `) and U(1)

charge Q = −2. In the last equality we have exploited the property (2.41).

The operators O come in three families,

O(`,`)
∆,−, O(`,`+2)

∆,− , O(`+2,`)
∆,− , (2.106)

and we correspondingly have three families of P∆,(`,`),− coefficients. The second and third

families are restricted to have only odd spin due to (2.36) and (2.37). Unlike the first

two orderings, there is no relation between their contributions and the final form of the

conformal block expansion reads as

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =
∑
∆,`

P∆,(`,`),−H∆,(`,`)(pi)

+
∑

∆, `∈odd

P∆,(`,`+2),−H∆,(`,`+2)(pi) +
∑

∆, `∈odd

P∆,(`+2,`),−H∆,(`+2,`)(pi). (2.107)

29We use notation H instead of G to distinguish conformal blocks coming from ψψ OPE from the blocks

coming from ψψ OPE.
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We further expand the conformal blocks in the basis of four-point tensor structures (2.67) as

H∆,(`,`)(pi) =

3∑
i=1,±

Qi,± Hi,±,∆,(`,`)(z, z). (2.108)

Using (2.108) we can finally write the expansion of the h functions from section 2.2 in

terms of the conformal block components as

hi,±(z, z) =
∑
∆,`

P∆,(`,`),−Hi,±,∆,(`,`)(z, z) +
∑

∆, `∈odd

P∆,(`,`+2),−Hi,±,∆,(`,`+2)(z, z)

+
∑

∆, `∈odd

P∆,(`+2,`),−Hi,±,∆,(`+2,`)(z, z). (2.109)

The expression for the functions h̃i(x, t) defined in (2.76) follow straightforwardly

from (2.109).

2.5 Semidefinite problems

Given the crossing equations written in the final form (2.77)–(2.83) and the conformal block

decompositions (2.102) and (2.109) one can obtain various bounds on scaling dimensions

∆ of the operators (2.92) and (2.106) and products of their OPE coefficients

P ab∆,(`,`),0, P∆,(`,`+2),0, P∆,(`,`),−, P∆,(`,`+2),−, P∆,(`+2,`),− (2.110)

in terms of the scaling dimension of the external Weyl fermion ∆ψ. This is done in the

standard fashion by setting up semidefinite problems [47]. For previous studies of a single

spinning correlator in 3d using this method see [25–28].

To begin, we truncate the crossing equations (2.77)–(2.83) to a finite set by imposing

m+ 2n ≤ Λ, (2.111)

where Λ will be a parameter in our bounds. As usual, the bounds obtained at any finite

Λ are rigorous but not optimal. We expect the optimal bound to be recovered in the limit

Λ → ∞. Bringing all the terms in the truncated crossing equations (2.77)–(2.83) to the

left-hand side, we can re-interpret them as a finite-dimensional vector equation

~FΛ = 0 , dim( ~FΛ) =
3

2
Λ2 +

9

2
Λ +

{
5 for Λ even

3 for Λ odd
. (2.112)

Clearly, the components of ~FΛ are certain linear combinations of functions g̃, g̃′ and h̃ and

their derivatives precisely specified by (2.77)–(2.83). Using the conformal block expan-

sions (2.102) and (2.109) one arrives at

0 = ~FΛ =
∑
∆,`

tr
(
P∆,(`,`),0

~GΛ,∆,(`,`)

)
+
∑
∆,`

P∆,(`,`+2),0
~GΛ,∆,(`,`+2) +

∑
∆,`

P∆,(`,`),− ~HΛ,∆,(`,`)

+
∑

∆, `∈odd

P∆,(`,`+2),− ~HΛ,∆,(`,`+2) +
∑

∆, `∈odd

P∆,(`+2,`),− ~HΛ,∆,(`+2,`), (2.113)
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where ~G and ~H are vectors constructed from the appropriate linear combinations of con-

formal block components

G̃i,∆,(`,`), G̃′
i,∆,(`,`)

, H̃i,∆,(`,`), i = 1, 2, 3, 6, (2.114)

and their derivatives. The later objects are in turn obtained from the conformal block

components

Gi,±,∆,(`,`), G′
i,±,∆,(`,`), Hi,±,∆,(`,`), i = 1, 2, 3 (2.115)

defined in equations (2.101) and (2.108) by performing the change of variables (2.75) and

the redefinition (2.76). Notice that ~FΛ implicitly depends on the scaling dimension ∆ψ due

to the implicit dependence of the conformal block components (2.115).

Let us now zoom on the very first entry in (2.113). It contains several important terms

which we should single out and discuss carefully. First, we have the identity operator with

∆ = 0 and ` = 0 for which30

P0,(0,0),0 = 1. (2.116)

Second, we have the conserved current J with ∆ = 3 and ` = 1.31 Third, we have the

stress tensor T for ∆ = 4 and ` = 2.32 In the last two cases one has to rescale the blocks

according to (2.88). We now absorb the central charges coming from these rescaling in the

definitions of P and use the Ward identities to obtain the final form for the coefficients P .

Utilizing (2.27) for the conserved current J we get

P ab3,(1,1),0 =
1

8π4CJ
× 1

(1 + tan θ)2

(
1 2 tan θ

2 tan θ 4 tan2 θ

)
. (2.117)

Utilizing (2.28) for the stress tensor T we get instead

P ab4,(2,2),0 =
1

36π4CT
×

(
(2∆ψ − 3)2 6 (2∆ψ − 3)

6 (2∆ψ − 3) 36

)
. (2.118)

In what follows will always treat the identity operator separately from other contributions,

while J and T will be treated separately only in some bounds.

To proceed we consider vectors ~α with real components and write the crossing equa-

tion (2.112) in the form

~α · ~FΛ = 0, (2.119)

30Recall that P∆,(`,`),0 is a 1 × 1 matrix for ` = 0. Setting ∆ = 0 and ` = 0 in the first entry of (2.19)

one recovers the two-point function (2.12) if λ1
〈ψψO〉 = i.

31When bounding the CJ central charge we assume that J is the unique U(1) conserved current. However

in all the other bounds we are completely agnostic to the number of spin-1 currents.
32As usual, we assume that there is a unique conserved spin-2 operator T , although this will not be visible

in our setup except for bounds on CT .
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which reads in the expanded form as

0 =
∑
∆,`

tr
(
P∆,(`,`),0 ~α · ~GΛ,∆,(`,`)

)
+
∑
∆,`

P∆,(`,`+2),0 ~α · ~GΛ,∆,(`,`+2)

+
∑
∆,`

P∆,(`,`),−~α · ~HΛ,∆,(`,`) +
∑

∆, `∈odd

P∆,(`,`+2),−~α · ~HΛ,∆,(`,`+2)

+
∑

∆, `∈odd

P∆,(`+2,`),−~α · ~HΛ,∆,(`+2,`). (2.120)

The objects entering the above equation

~α · ~Gab
Λ,∆,(`,`)

, ~α · ~HΛ,∆,(`,`) (2.121)

are functionals which map a set of conformal blocks to 1 × 1 or 2 × 2 matrices of real

numbers. In what follows we look for functionals (2.121), or equivalently for the vector ~α,

satisfying certain conditions. If such functionals can be found we say that the problem is

feasible. For performing this task in practice we use SDPB [43].

Bounds on the spectrum. We first explain how to construct bounds on the spectrum

of scaling dimensions. This is standard material in the numerical bootstrap literature, but

we believe it can be useful to review the procedure adopted to our case in what follows.

We first single out the contribution of the identity operator in (2.120) and normalize ~α in

such a way that

~α · ~GΛ,0,(0,0) = 1. (2.122)

We then look for a vector α obeying the following properties

~α · ~GabΛ,∆,(`,`) � 0, ∀` ≥ 0, ∀∆ ≥ ∆unitary(`, `),

~α · ~GΛ,∆,(`,`+2) ≥ 0, ∀` ≥ 0, ∀∆ ≥ ∆unitary(`, `+ 2),

~α · ~HΛ,∆,(`,`) ≥ 0, ∀` ≥ 0, ∀∆ ≥ ∆unitary(`, `),

~α · ~HΛ,∆,(`+2,`) ≥ 0, ∀ odd ` > 0, ∀∆ ≥ ∆unitary(`+ 2, `),

~α · ~HΛ,∆,(`,`+2) ≥ 0, ∀ odd ` > 0, ∀∆ ≥ ∆unitary(`, `+ 2), (2.123)

where we demand only the unitarity bounds (2.14) on the spectrum. If such ~α is found, the

crossing equation (2.120) cannot be satisfied, since in the right-hand side we get one plus a

non-negative contribution which cannot sum up to zero. Clearly, in the correct setup one

will never be able to find ~α satisfying (2.122) and (2.123), since otherwise we would prove

that there exist no unitary CFTs with fermionic operators, which is clearly false. However

things change if we introduce further assumptions on the scaling dimension of operators in

the spectrum.

As an example let us assume that the CFTs we are looking for satisfy the constraint

∆ ≥ ∆(`∗, `∗) = ∆unitary(`∗, `∗) + x, x > 0, (2.124)

on the scaling dimension of operators (neutral or charged) in the spectrum with a given

spin (`∗, `∗) and use it in (2.123) instead of the unitarity bound. The parameter x is often
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called the gap. It is very possible that a CFT with a big enough value of x is inconsistent

or in other words does not satisfy the crossing equation (2.120), in which case we will be

able to find the vector ~α. If ~α is not found one cannot draw any further conclusion, CFTs

satisfying these assumptions might or might not exist. The single gap assumption (2.124)

can be trivially generalized to more complicated assumptions about the spectrum. As

we explain in detail in section 5, however, one must be careful with the interpretation of

these gaps.

To construct a bound we assume (2.124) and perform a weighted binary search to find

the smallest value of the parameter x for which ~α can be found at some fixed ∆ψ. As

a result we find a value xmin such that assumption (2.124) is inconsistent with crossing

symmetry if x > xmin. This implies that any consistent CFT should have an operator with

the dimension less or equal to ∆min(`∗, `∗) in the channel that we are studying.

In the case of the conserved current J and the stress tensor T one can instead put

assumptions on the second ` = 1 and ` = 2 operators respectively. In order to do that one

must single out and treat separately contributions of these operators in (2.120) similarly

to the identity operator. We can also single out some non-conserved operators but this

brings an extra parameter to the search, namely the scaling dimension of this operator.

Bounds on OPE coefficients. Another type of bound we consider are bounds on OPE

coefficients or more precisely on the P coefficients (2.110) of an operator with a given

charge, spin (`∗, `∗), and scaling dimension ∆∗. This is also standard material, but it can

be useful to review here how such bounds are imposed in our setup. We focus only on

cases where P is a 1× 1 matrix. This restriction does not exclude bounds on CJ and CT ,

since in those cases P has the special form (2.117) or (2.118). In other words, the effective

P matrix is 1 × 1 and given by 1/CJ or 1/CT (assuming θ is fixed in the J case). Thus,

the upper/lower bound on OPE coefficients described below in these cases translates into

lower/upper bound on the central charges CJ and CT . Note that in the case of the current

we have to scan over different values of θ.33

In what follows let us focus for concreteness on the OPE coefficient of a neutral scalar

with scaling dimension ∆∗. The discussion below trivially applies to other cases. We start

by deriving an upper bound. Consider vectors ~α satisfying the following normalization

~α · ~GΛ,∆∗,(0,0) = 1. (2.125)

Using (2.125) one can rewrite (2.120) as

P∆∗,(`,`),0 = − ~α · ~GΛ,0,(0,0) −
∑

∆ 6=∆∗, `

tr
(
P∆,(`,`),0 ~α · ~GΛ,∆,(`,`)

)
−
∑
∆,`

P∆,(`,`+2),0 ~α · ~GΛ,∆,(`,`+2) −
∑
∆,`

P∆,(`,`),−~α · ~HΛ,∆,(`,`) (2.126)

−
∑

∆, `∈odd

P∆,(`,`+2),−~α · ~HΛ,∆,(`,`+2) −
∑

∆, `∈odd

P∆,(`+2,`),−~α · ~HΛ,∆,(`+2,`).

33It is possible to bound CJ over all values of θ at once since there is a relation C−1
J = tr(P3,(1,1),0W )

for a suitable θ-independent choice of matrix W . This relation is simply the matrix analog of the Ward

identity (2.26). However, we will not use this approach here.
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We will now look for the vector ~α satisfying (2.125) and (2.123) with neutral scalars of

dimension ∆∗ excluded.34 Let us assume that such an α is found. Since except for the

very first term in the right-hand side of (2.126) all the terms are non-positive, we find that

P∆∗,(`,`),0 ≤ −~α · ~GΛ,0,(0,0). (2.127)

To obtain the strongest possible bound (2.127) we also require that the vector ~α minimizes

the right-hand side of (2.127). We thus finally obtain

P∆∗,(0,0),0 ≤ min
~α

(
−~α · ~GΛ,0,(0,0)

)
. (2.128)

To summarize, one can construct an upper bound on P∆∗,(0,0),0 by solving the following

problem: minimize

− ~α · ~GΛ,0,(0,0) (2.129)

with ~α satisfying the normalization condition (2.125) and subject to the positivity condi-

tions (2.123) where the neutral scalar operator with ∆∗ is excluded.

In order to obtain a lower bound, instead of the normalization condition (2.125) we

have to use

~α ·GΛ,∆∗,(0,0) = −1. (2.130)

Repeating the above arguments one arrives at

P∆∗,(0,0),0 ≥ max
~α

(
~α · ~GΛ,0,(0,0)

)
. (2.131)

To summarize, one can construct a lower bound on P∆∗,(0,0),0 by solving the following

problem: maximize

~α · ~GΛ,0,(0,0) (2.132)

with ~α satisfying the normalization condition (2.130) and subject to positivity condi-

tions (2.123) where the neutral scalar with ∆∗ is excluded.

There is a subtle problem however with constructing a lower bound if the dimension ∆∗
is not separated from all the other neutral scalars by a gap. The positivity condition (2.123)

and continuity of the blocks in ∆ imply in such a case

~α · ~GΛ,∆∗,(0,0) ≥ 0, (2.133)

which is in a direct conflict with the normalization condition (2.130). No nontrivial lower

bound can then be obtained. An intuitive explanation for this fact is that the contribution

to the OPE from the exact scaling dimension ∆∗ can always be reduced to 0 at the cost of

increasing infinitesimally close contributions.

34Notice that one can also use (2.123) with stronger assumptions for more advanced bounds.
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3 Computation of conformal blocks

The goal of this section is to compute the fermion blocks (2.87), (2.100) and (2.104). We

derive their analytic expressions in section 3.2 by relating them to the known 4d seed blocks

described in section 3.1. We then explain in section 3.3 our method for obtaining their

rational approximations at the crossing-symmetric point z = z = 1/2 as required for the

numerical analysis.

3.1 Seed blocks

The seed conformal blocks are the simplest conformal blocks with an internal operator

in the (`, ` + p) or (` + p, `) spin representations [32]. Following [35, 38] we define them

as follows

G
(p) primal
∆,`,∆i

(pi) ≡ 〈O(0,0)
∆1

(p1)O(p,0)
∆2

(p2)O(`,`+p)
∆ 〉(·) ./ 〈O(`+p,`)

∆ O(0,0)
∆3

(p3)O(0,p)
∆4

(p4)〉(·),
(3.1)

G
(p) dual
∆,`,∆i

(pi) ≡ 〈O(0,0)
∆1

(p1)O(p,0)
∆2

(p2)O(`+p,`)
∆ 〉(·) ./ 〈O(`,`+p)

∆ O(0,0)
∆3

(p3)O(0,p)
∆4

(p4)〉(·).
(3.2)

We refer to the blocks (3.1) and (3.2) as the primal seed and the dual seed blocks. In

the p = 0 case the primal and dual blocks coincide by definition. Note that in the above

definitions we have removed all the charge labels since the seeds block are purely kinematic

objects and do not depend on representations of global symmetries. In what follows we

will adopt this convention whenever we refer to seeds blocks.

The left and right three-point structures appearing in the definitions (3.1) and (3.2)

are called the seed three-point structures. The convention for them was chosen in [35], we

summarize it here for convenience. The left seed structures are35

〈O(0,0)
∆1

(p1)O(p,0)
∆2

(p2)O(`,`+p)
∆ (p3)〉(·) ≡ Kseed

left

(
Î32
)p (

Ĵ3
12

)`
, (3.3)

〈O(0,0)
∆1

(p1)O(p,0)
∆2

(p2)O(`+p,`)
∆ (p3)〉(·) ≡ Kseed

left

(
K̂23

1

)p (
Ĵ3

12

)`
. (3.4)

The right seed structures are

〈O(`+p,`)
∆1

(p1)O(0,0)
∆2

(p2)O(0,p)
∆3

(p3)〉(·) ≡ Kseed
right

(
Î31
)p (

Ĵ1
23

)`
, (3.5)

〈O(`,`+p)
∆1

(p1)O(0,0)
∆2

(p2)O(0,p)
∆3

(p3)〉(·) ≡ Kseed
right

(
K̂

13

2

)p (
Ĵ1

23

)`
. (3.6)

The dependence on scaling dimensions hides in the kinematic factors K which read as

Kseed
left ≡ x

−∆1−∆2+∆3+`
12 x−∆1+∆2−∆3−`

13 x∆1−∆2−∆3−`−p
23 , (3.7)

Kseed
right ≡ x

−∆1−∆2+∆3−`
12 x−∆1+∆2−∆3−`−p

13 x∆1−∆2−∆3+`
23 . (3.8)

35In the formulas that follow p3 denotes the position and polarization of the exchanged operator O and

should not be confused with the position and polarization of the external O(0,0)
∆3

operator in (3.1) and (3.2).
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Analytic expressions. The analytic expressions for the seed blocks were found in [35]

and are implemented in the “CFTs4D” package [38] for p ≤ 4. The seed blocks can be

further expanded into the basis of four-point structures. Following [35, 38] we write

G
(p) seed
∆,`,∆i

(pi) = Kseed

p∑
e=0

(−2)p−eG
(p) seed
e,∆,` (z, z)(̂I42)e(̂I42

31)p−e (3.9)

where in conformal frame Kseed → (zz)−(∆1+∆2)/2−p/4. The components of the seed blocks

in this expansion are labeled by the index e = 0, . . . , p and have the following form (here

the left-hand side can either stand for the primal or the dual blocks)

G
(p) seed
e,∆,` (z, z) =

(
zz

z − z

)2p+1∑
m,n

cem,nF
(ae,be;ce)
ρ1+m,ρ2+n(z, z), (3.10)

where cem,n are some rational functions of the parameters and

F (a,b;c)
ρ1,ρ2

(z, z) ≡ k(a,b;c)
ρ1

(z)k(a,b;c)
ρ2

(z)− (z ↔ z), (3.11)

while ae, be, ce, ρ1, and ρ2 have simple expressions in terms of the parameters of the confor-

mal blocks. We stress that the seed block components depend on the scaling dimensions

of the external operators only through the quantities

a = −∆1 −∆2 − p/2
2

, b =
∆3 −∆4 − p/2

2
. (3.12)

while the full seed conformal block also depend on ∆1 + ∆2, as shown in (3.9). The

k-functions appearing above are given in turn by the hypergeometric function as

k(a,b;c)
ρ (z) ≡ zρ2F1(a+ ρ, b+ ρ, c+ 2ρ; z). (3.13)

For p = 0 the expression (3.10) reduces to the Dolan and Osborn result for scalar

blocks [44, 45, 56]

G
(0) seed
e=0,∆,`(z, z) = (−1)` × zz

z − z
F (−∆1−∆2

2
,
∆3−∆4

2
;0)

∆+`
2
,∆−`−2

2

(z, z). (3.14)

Unfortunately, the coefficients cem,n for p > 0 are rather complicated and it is challenging to

construct rational approximations of seed blocks based on the analytic solutions. Instead,

we obtain the p > 0 seed blocks starting from the p = 0 case.

Recursion relations. In [39] it was shown that any two conformal blocks in a given

number of spacetime dimensions can be related to each other by means of differential

operators. In particular, differential operators were found which relate the seed blocks for

p and p− 1. When decomposed into components, they take the schematic form

G
(p) seed
e,∆,` (z, z) = D0G

(p−1) seed
e,∆,` (z, z) +D1G

(p−1) seed
e−1,∆,` (z, z) +D2G

(p−1) seed
e−2,∆,` (z, z), (3.15)

where the parameters a and b in the blocks appearing in the right-hand side of (3.15)

coincide with those of G
(p) seed
e,∆,` in the left-hand side, and the operators D0, D1, and D2 are

some explicit differential operators in (z, z) with coefficients which are rational functions

of ∆, a, b, p, `, e. The explicit expressions for these operators are different for primal and

dual blocks and are given in [39]. They are also implemented in CFTs4D package.
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Permuted seed blocks. It will be convenient for us to have the seed blocks with a

different orderings of spinning operators. In addition to the seed blocks (3.1) and (3.2) we

then define permuted seed blocks

G
(p) primal
∆,`,∆i; π34

(pi) ≡ 〈O(0,0)
∆1

(p1)O(p,0)
∆2

(p2)O(`,`+p)
∆ 〉(·)./〈O(`+p,`)

∆ O(0,p)
∆3

(p3)O(0,0)
∆4

(p4)〉(·),
(3.16)

G
(p) dual
∆,`,∆i; π34

(pi) ≡ 〈O(0,0)
∆1

(p1)O(p,0)
∆2

(p2)O(`+p,`)
∆ 〉(·)./〈O(`,`+p)

∆ O(0,p)
∆3

(p3)O(0,0)
∆4

(p4)〉(·).
(3.17)

In the above formulas the only change compared to (3.1) and (3.2) was made in the position

of the last two operators in the right-hand three-point structures. We use a convention for

them such that the seed blocks (3.16) and (3.17) are related to the original seed blocks (3.1)

and (3.2) in the following way

G
(p) primal
∆,`,∆i; π34

(pi) = (−1)` × π34G
(p) primal
∆,`,∆i

(pi)
∣∣
∆3↔∆4

, (3.18)

G
(p) dual
∆,`,∆i; π34

(pi) = (−1)` × π34G
(p) dual
∆,`,∆i

(pi)
∣∣
∆3↔∆4

. (3.19)

The π34 permutation changes tensor structures in a straightforward way and transforms

the conformal cross-ratios as follows

(z, z) −→
(

z

z − 1
,

z

z − 1

)
. (3.20)

This implies a simple transformation rule for the components of the tensor conformal

blocks (3.10). Conjugating the differential operators Di in (3.15) by this transformation,

we immediately obtain recursion relations for the permuted seed blocks.

3.2 Fermion blocks

One can construct the fermion three-point tensor structures defined in section 2.1 from the

seed three-point structures (3.3)–(3.6) using differential operators [30, 32, 39]. The latter

do not interfere with the ./ operation in (3.1) and (3.2) and allow us to express the fermion

blocks (2.87), (2.100) and (2.104) in terms of the seed blocks.

The differential operators can be constructed as products of basic differential operators

defined in [32]. In the case of Weyl fermions it is simpler and more transparent however

to build them directly from the fundamental and anti-fundamental weight-shifting opera-

tors [39].36 These differential operators change both the spin and the scaling dimensions

of external operators. For this reason it is convenient to define the following notation for

shifted scaling dimensions:

∆
+(a)
ψ ≡ ∆ψ + (3/2− a), ∆

−(a)
ψ ≡ ∆ψ − (3/2− a), ∆+

ψ ≡ ∆
+(1)
ψ , ∆−ψ ≡ ∆

−(1)
ψ . (3.21)

In what follows we provide the details of this procedure. We will split the discussion

of fermion blocks (2.87), (2.100) and (2.104) into neutral channel and charged channel

subsections respectively.

36The operators constructed in [32] can in turn be written as products of weight-shifting operators

corresponding to higher-dimensional representations of the conformal group.
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3.2.1 Neutral channel

We compute here the s-channel conformal blocks for the 〈ψψψψ〉 and 〈ψψψψ〉 orderings.

By looking at the differential operators available, the spin structure of these four-point

functions and the (permuted) seed blocks available, it is clear that the first ordering should

be expressed in terms of the permuted seed blocks (3.16), (3.17), whereas the second

ordering should be expressed instead in terms of the standard seeds (3.1), (3.2).

Ordering 〈ψψψψ〉. We start by considering the conformal blocks (2.87). For TS ex-

changed operators the left three-point structures can be written as

〈ψ(p1)ψ(p2)O(`,`)
∆,0 (p3)〉(a) =

2∑
b=1

MabD
(b)
12, p=0 〈O

(0,0)

∆
+(b)
ψ

(p1)O(0,0)

∆
+(b)
ψ

(p2)O(`,`)
∆ (p3)〉(·), (3.22)

〈O(`,`)
∆,0 (p1)ψ(p2)ψ(p3)〉(a) =

2∑
b=1

M ′abD
(b)
23, p=0 〈O

(`,`)
∆ (p1)O(0,0)

∆
+(b)
ψ

(p2)O(0,0)

∆
+(b)
ψ

(p3)〉(·). (3.23)

In the above expression, the shifted scaling dimensions in the right-hand side are defined

in (3.21) and the differential operators are given in terms of the weight-shifting operators as

D
(b=1)
ij, p=0 ≡ (Di−0+ · D

−+0
j ), D

(b=2)
ij, p=0 ≡ (Dj++0 · D

+0+
i ). (3.24)

The matrices M and M ′ entering (3.22) and (3.23) are given by

Mab =

 1 0

(2∆ψ+∆−`−5)(2∆ψ−∆+`−1)
4`(∆−1)

1
`(∆−1)(2∆ψ−3)2

 , M ′ab = (−1)`+1Mab. (3.25)

For ` = 0 we have a single tensor structure represented by a = 1 and thus only the first

differential operator in (3.24) is needed. The matrices M and M ′ in (3.25) collapse to

their first entries which are +1 and −1 respectively. Using (3.22) and (3.23) the fermion

conformal blocks in the neutral channel for traceless symmetric exchanged operators (p = 0)

can be written as37

Gab∆,(`,`)(pi) =

2∑
c,d=1

MacM ′bdD
(c)
12,p=0D

(d)
34,p=0 G

(0) primal

∆,`,∆
(cd)
i ; π34

(pi), (3.26)

where the shifted external scaling dimensions are given by

∆
(cd)
i ≡ {∆+(c)

ψ ,∆
+(c)
ψ ,∆

+(d)
ψ ,∆

+(d)
ψ }. (3.27)

For NTS operators there is a single differential operator for the left and right three-

point structures:

Dleft
ij, p=2 ≡ −

1

2
(Di−0+ · D

−−0
j ), Dright

ij, p=2 ≡ −
1

2
(−1)`(Di−0− · D

−+0
j ). (3.28)

37For p = 0 there is no distinction between primal, dual or permuted seed conformal blocks.
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Using these we relate the fermion structures to the permuted seed structures as

〈ψ(p1)ψ(p2)O(`,`)
∆,0 (p3)〉(·) =

`− `
2
×Dleft

12, p=2〈O
(0,0)

∆+
ψ

(p1)O(2,0)

∆+
ψ

(p2)O(`,`)
∆,0 (p3)〉(·), (3.29)

〈O(`,`)
∆,0 (p1)ψ(p2)ψ(p3)〉(·) =

`− `
2
×Dright

23, p=2〈O
(`,`)
∆ (p1)O(2,0)

∆+
ψ

(p2)O(0,0)

∆+
ψ

(p3)〉(·), (3.30)

where |`− `| = 2 and the shifted scaling dimensions are defined in (3.21). Here by (`, `) we

mean either (` + 2, `) or (`, ` + 2). Using (3.29) and (3.30) we get the fermion blocks for

the NTS (p = 2) operators

G∆,(`,`)(pi) = −Dleft
12, p=2D

right
34, p=2G

(2) seed
∆,`,∆i; π34

, ∆i = {∆+
ψ ,∆

+
ψ ,∆

+
ψ ,∆

+
ψ}. (3.31)

In this expression we use the dual permuted seed blocks for (`+ 2, `) operators and primal

permuted seed blocks for (`, `+ 2) operators.

Ordering 〈ψψψψ〉. We now move to the conformal blocks (2.100). The only difference

with respect to the previous case is in the form of the right three-point structure. For TS

exchanged operators (p = 0) instead of (3.23) we have

〈O(`,`)
∆,0 (p1)ψ(p2)ψ(p3)〉(a) =

2∑
b=1

MabD
(b)
32, p=0 〈O

(`,`)
∆,0 (p1)O(0,0)

∆
+(b)
ψ

(p2)O(0,0)

∆
+(b)
ψ

(p3)〉(·), (3.32)

where the matrix M and the differential operator are exactly the ones given in the previous

paragraph. The p = 0 conformal block is thus given by

G′ab∆,(`,`)(pi) =
2∑

c,d=1

MacM bdD
(c)
12,p=0D

(d)
43,p=0 G

(0) primal

∆,`,∆
(cd)
i

(pi), (3.33)

with the shifted scaling dimensions defined in (3.27). For NTS (p = 2) operators instead

of (3.30) we have

〈O(`,`)
∆,0 (p1)ψ(p2)ψ(p3)〉(·) = (−1)`+1 `− `

2
×Dright

32, p=2〈O
(`,`)
∆ (p1)O(0,0)

∆+
ψ

(p2)O(0,2)

∆+
ψ

(p3)〉(·).
This leads to the following conformal block

G′
∆,(`,`)

(pi) = (−1)`Dleft
12, p=2D

right
43, p=2G

(2) seed
∆,`,∆i

(pi), ∆i = {∆+
ψ ,∆

+
ψ ,∆

+
ψ ,∆

+
ψ}. (3.34)

We use the dual seed blocks for (` + 2, `) exchanged operators and primal seed blocks for

(`, `+ 2) exchanged operators.

3.2.2 Charged channel

Finally we compute the conformal blocks (2.104) for the third ordering 〈ψψψψ〉. In case

of TS exchanged operators there are in general two independent differential operators one

can use to generate tensor structures. For the left three-point functions they read as

L
(a=1)
ij,p=0 ≡ (Di++0 · D

−+0
j ), L

(a=2)
ij,p=0 ≡ (Dj++0 · D

−+0
i ). (3.35)
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For the right three-point functions they read as

R
(a=1)
ij,p=0 ≡ (Di−0+ · D

+0+
j ), R

(a=2)
ij,p=0 ≡ (Dj−0+ · D

+0+
i ). (3.36)

For ` = 0 it is enough to use only the first differential operators in both (3.35) and (3.36).

One can write

〈ψ(p1)ψ(p2)O(0,0)
∆,− (p3)〉(·) = +C × L(a=1)

12,p=0〈O
(0,0)

∆−ψ
(p1)O(0,0)

∆+
ψ

(p2)O(0,0)
∆ (p3)〉(·), (3.37)

〈O(0,0)
∆,+ (p1)ψ(p2)ψ(p3)〉(·) = −C ×R(a=1)

23,p=0〈O
(0,0)
∆ (p1)O(0,0)

∆−ψ
(p2)O(0,0)

∆+
ψ

(p3)〉(·), (3.38)

where the coefficient C is defined as

C ≡ 2

(2∆ψ − 3)(∆− 1)
. (3.39)

For ` ≥ 1 there is a single structure (2.35) which consists however of two different pieces

which can be generated by the above operators. We find

〈ψ(p1)ψ(p2)O(`,`)
∆,−(p3)〉(·) =

2∑
a=1

NaL
(a)
12,p=0〈O

(0,0)

∆
−(a)
ψ

(p1)O(0,0)

∆
+(a)
ψ

(p2)O(`,`)
∆ (p3)〉(·), (3.40)

〈O(`,`)
∆,+(p1)ψ(p2)ψ(p3)〉(·) =

2∑
a=1

N ′aR
(a)
23,p=0〈O

(`,`)
∆ (p1)O(0,0)

∆
−(a)
ψ

(p2)O(0,0)

∆
+(a)
ψ

(p3)〉(·), (3.41)

where the shifted external scaling dimension are defined in (3.21) and the matrices N and

N ′ are given by the expressions

Na ≡ E × {+1, (−1)`+1}, N ′a ≡ E × {(−1)`+1, +1}, N ′a = (−1)`+1 ×Na, (3.42)

with the coefficient E defined as

E ≡ −(∆ + `− 1) + (−1)`+1 × (∆− `− 1)

2`(∆− 1)(2∆ψ − 3)
. (3.43)

As a result the conformal block in the charged channel for TS (p = 0) exchanged operators

are given by

H∆,(`,`)(pi) =
2∑

a,b=1

NaN ′bL
(a)
12,p=0R

(b)
34,p=0 G

(0) primal

∆,`,∆
+−(ab)
i

(pi), (3.44)

where the shifted external scaling dimensions are defined as

∆
+−(ab)
i ≡ {∆−(a)

ψ ,∆
+(a)
ψ ,∆

−(b)
ψ ,∆

+(b)
ψ }. (3.45)

For NTS operators the left and right three-point functions can be generated as follows

〈ψ(p1)ψ(p2)O(`,`)
∆,−(p3)〉(·) = FL

`,`
× L12,p=2〈O(0,0)

∆−ψ
(p1)O(2,0)

∆+
ψ

(p2)O(`,`)
∆ (p3)〉(·), (3.46)

〈O(`,`)
∆,+(p1)ψ(p2)ψ(p3)〉(·) = FR

`,`
×R12,p=2〈O(`,`)

∆ (p1)O(0,0)

∆−ψ
(p2)O(0,2)

∆+
ψ

(p3)〉(·), (3.47)

– 30 –



J
H
E
P
0
6
(
2
0
1
9
)
0
8
8

where as in the neutral case by (`, `) we mean either (`+ 2, `) or (`, `+ 2). The differential

operators L and R are defined as

Lij,p=2 ≡ (Di++0 · D
−−0
j ), Rij,p=2 ≡ (−1)` × (Dj−0+ · D

+0−
i ) (3.48)

and the coefficients FL and FR are given by

FL
`,`
≡ `− `

2κ (2∆ψ − 3)
, FR

`,`
≡ `− `

2κ (2∆ψ − 7)
, κ ≡ ∆−3− 1

4
` (`+2)+

1

4
` (`+2). (3.49)

As a result the fermion conformal blocks for the NTS (p = 2) operators read as

H∆,(`,`)(pi) = F × L12,p=2R34,p=2 G
(p=2) seed

∆,∆+−
i

(pi), F ≡ FL
`,`
FR
`,`
, (3.50)

where we use the dual seed blocks for (`+2, `) exchanged operators and primal seed blocks

for (`, `+ 2) exchanged operators. The shifted external scaling dimensions are defined as

∆+−
i ≡ {∆−ψ , ∆+

ψ , ∆−ψ , ∆+
ψ}. (3.51)

3.3 Rational approximation

Our basic strategy for computing rational approximations of fermion blocks will be to start

with rational approximations for scalars conformal blocks, then successively obtain from

them the approximations for seed blocks using the recursion relations (3.15), and finally

get the rational approximations of fermion blocks by using the construction of section 3.2.

While in principle this procedure is conceptually straightforward, each step involves a

number of subtle points, which we clarify in this section. For concreteness, we will focus

on obtaining the fermion blocks for a p = 2 NTS exchange for the neutral channel ordering

〈ψψψψ〉. All other cases can be treated in a completely analogous way.

The order of the computation can be summarized as follows

G
(0) seed
e=0,∆,` → G

(1) seed
e,∆,` → G

(2) seed
e,∆,` → Gi,∆,(`,`+2), (3.52)

where Gi,∆,(`,`+2) are the blocks which enter the expansion of functions gi in (2.102). We

start by expressing the scalar blocks G
(0) seed
e=0,∆,` in terms of the parameters x and t defined

in (2.75) Since scalar blocks are invariant under z ↔ z, they are holomorphic functions of

x, t near x = t = 0.38 We then compute rational approximations for their derivatives in

the form

∂mx ∂
n
t G

(0) seed
e=0,∆,`(0, 0) ≈ (4r0)∆∏

i(∆−∆i)κi
Pm,n` (∆), (3.53)

where ∆i ≤ ∆unitary(`, `), κi ∈ {1, 2}, r0 = 3 − 2
√

2, and Pm,n` are some polynomials.

The set of poles ∆i depends on `, and their number depends on the desired precision

of the approximation. The positions of the poles ∆i and their orders κi are dictated by

representation theory [33] . Approximations such as (3.53) are usually constructed using

38Recall that x = t = 0 is the crossing-symmetric point.

– 31 –



J
H
E
P
0
6
(
2
0
1
9
)
0
8
8

Zamolodchikov-like recursion relations [8, 33, 47], but those are tricky to implement in

even dimensions. While it is possible to adapt these recursion relations to d = 4, we

choose a more simple-minded approach to obtain the approximation (3.53) directly from

the Dolan-Osborn formulas (3.14). This is described in appendix E.

Our goal is now to start from the approximations (3.53) and make our way

through (3.52). In (3.52) every step is performed by applying differential operators in

(z, z) as described in sections 3.1 and 3.2. We always rewrite these differential operators in

(x, t) coordinates. This is important because the differential operators in (z, z) contain in-

verse powers of z− z, which make the result apparently singular at the crossing-symmetric

point z = z = 1
2 . For example, when we write out the first step of (3.52) using (3.15)

G
(1) seed
0,∆,` (z, z) = D0G

(0) seed
e=0,∆,`(z, z),

G
(1) seed
1,∆,` (z, z) = D1G

(0) seed
e=0,∆,`(z, z), (3.54)

we find that the differential operator D1 acting on the scalar conformal block contains a

term proportional to

∝ zz

z − z
((1− z)∂z − (1− z)∂z)G

(0) seed
e=0,∆,`(z, z) (3.55)

which naively appears singular at z = z. However, the singularity goes away if we remember

that the scalar block G
(0) seed
∆,` (z, z) is symmetric under z ↔ z. When we express everything

in terms of (x, t) coordinates, this symmetry is automatically taken into account, and such

apparent singularities go away. For instance, the term (3.55) becomes

∝

(
1

2

(
t+

(
x+

1

2

)2)
∂x +

(
x− 1

2

)(
t−

(
x+

1

2

)2)
∂t

)
G

(0) seed
e=0,∆,`(x, t). (3.56)

In fact the differential operators often become polynomial in (x, t). In these variables it is

straightforward to find relations of the form

∂mx ∂
n
t G

(1) seed
e,∆,` (0, 0) =

∑
m′,n′

Mm,n
e,`;m′,n′(∆)∂m

′
x ∂n

′
t G

(0) seed
e=0,∆,`(0, 0) (3.57)

by simply differentiating expressions such as (3.56) with respect to (x, t) and setting x =

t = 0. Since the differential operators have coefficients which are rational functions in ∆,

the same is true for the matricesMm,n
e,`;m′,n′(∆), and we can use (3.53) to obtain the rational

approximation for G
(1) seed
e,∆,` . In this way we find the approximations

∂mx ∂
n
t G

(1) seed
e,∆,` (0, 0) ≈ (4r0)∆∏

î(∆−∆î)
κî
P̂m,n(1),e,`(∆), (3.58)

where the set of poles ∆î now includes both the poles from the scalar blocks (3.52) and the

poles from the matrices Me,`(∆). We temporarily put a hat on P̂m,n(1),e,`(∆) and the index i

because there is a problem with the approximation (3.58) which we now discuss and fix.
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The problem is that the matrices Mm,n
e,`;m′,n′(∆) occasionally have poles which are

not allowed to appear in G
(1) seed
e,∆,` by representation theory. In principle this is not so

problematic, but sometimes these poles are above the unitarity bound and this ruins the

numerics [43]. But even if they are below the unitarity bound, it is desirable to get rid of

them since they are only making the approximation more complicated, without improving

the accuracy. Let ∆0 be such a pole. Being forbidden by representation theory, consistency

requires that the polynomials P̂m,n(1),e,`(∆) have a zero at ∆ = ∆0. This would mean that

P̂m,n(1),e,`(∆) = (∆−∆0)Pm,n(1),e,`(∆), but since the scalar blocks are only approximate at this

point, P̂m,n(1),e,`(∆0) is not exactly 0. The solution is to divide these polynomials by (∆−∆0)

and discard the remainder,

P̂m,n(1),e,`(∆) = (∆−∆0)Pm,n(1),e,`(∆) + remainder. (3.59)

The size of the remainder is of the same order of magnitude as the error in (3.58). The

error of the resulting approximation is smaller or of the same order as the error in (3.58).

This step can also be (exactly) rephrased as manually removing a spurious pole from the

pole expansion [8, 33, 46] of the conformal block. This only improves the approximation,

because the accuracy of the approximation is determined by the accuracy of the residues

of physical poles, and on the number of physical poles we keep. We then arrive at the

approximation

∂mx ∂
n
t G

(1) seed
e,∆,` (0, 0) ≈ (4r0)∆∏

i(∆−∆i)κi
Pm,n(1),e,`(∆), (3.60)

where now the poles ∆i do not include the spurious pole ∆0. If there is more then one

spurious pole, we perform this procedure for every one of them.

Another problem that arises occasionally is as follows. For m = n = 0 we just get

the conformal block, and it is known that it has the large ∆ asymptotic r∆
0 × O(1). This

implies that the degree of P is bounded by

degP 0,0
(1),e,` ≤

∑
i

κi. (3.61)

For non-zero m,n each derivative brings down at most a power of ∆ and we find

degPm,n(1),e,` ≤ m+ n+
∑
i

κi. (3.62)

This condition is indeed obeyed by the polynomials Pm,n(1),e,` found numerically, with a small

caveat. In the intermediate steps the degree can be larger, but the extraneous leading

powers of ∆ cancel in the end. However, as in any numerical calculation with floating-

point numbers, this cancellation is not exact, and (3.62) ends up being violated by powers

of ∆ with extremely small coefficients. These terms should be removed by hand, since even

a small coefficient can potentially alter the analysis of positivity at large ∆.39

The procedure we just described is completely generic and works for all steps in the

sequence (3.52), as well as for the other fermion blocks G′ and H.

39In practice these coefficients are so small that Mathematica treats them as 0 when producing input files

for SDPB, but it is still useful to bear in mind that there is room for a numerical error here.
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4 Generalized free theory

In this section we study the generalized free theory (GFT), also known as mean field theory,

of a Weyl fermion ψ. For ∆ψ > 3/2 this is a unitary CFT which does not have a conserved

stress-energy tensor, while for ∆ψ = 3/2 the fermion GFT reduces to the theory of a free

Weyl fermion.40 We refer here to ψ and its conjugate ψ as fundamental fields. The fermion

GFT is defined by a set of n-point functions which are computed using Wick contractions

of the fundamental fields ψ and ψ.

We focus here on two four-point functions, which due to Wick contractions split into

products of two-point functions (2.12) as follows

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = 〈ψ(p1)ψ(p2)〉〈ψ(p3)ψ(p4)〉 − 〈ψ(p1)ψ(p4)〉〈ψ(p3)ψ(p2)〉,
(4.1)

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = 〈ψ(p3)ψ(p2)〉〈ψ(p4)ψ(p1)〉 − 〈ψ(p3)ψ(p1)〉〈ψ(p4)ψ(p2)〉.
(4.2)

Besides the identity operator, the only operators which give a non-zero contribution to

the conformal block expansion of these correlators are the double-twist operators of the

following schematic form

O∆,0 ∝:ψ
α̇
∂µ1 . . . ∂µ`∂2nψα : +descendants, (4.3)

O∆,− ∝:ψ
α̇
∂µ1 . . . ∂µ`∂2nψ

β̇
: +descendants. (4.4)

By descendants in the above equations we mean terms that are total derivatives and are

needed to make the operators in the left-hand side to be primaries. Here ` and n are non-

negative integers. Notice that the operators (4.3) and (4.4) are generically in a reducible

spin representation. Their scaling dimensions are given by

∆ = 2∆ψ + 2n+ `. (4.5)

Using the s-channel conformal block decomposition of section 2.4 we can interpret (4.1)

and (4.2) as equations for the OPE data of the exchanged double-twist operator and com-

pute all the products of OPE coefficients (2.110) between two fundamental Weyl fermions

and the double-twist operators (4.3) and (4.4) order by order in
√
zz. Concretely, this is

done by using the explicit expressions for the fermion conformal blocks found in section 3.2,

decomposing (4.1) and (4.2) into six independent equations spanned by six independent

four-point tensor structures, making the replacement

z → εz, z → εz (4.6)

and expanding in ε. At order εN , only a finite number of operators (4.3) and (4.4) con-

tribute. Matching all the coefficients proportional to zN−kzk, k = 0, . . . , N , gives rise to

an over-determined system of equations for the products of OPE coefficients (2.110), from

40See [54] for an example of a scalar-fermion GFT.
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which we find the OPE data fo the low-lying operators. Having obtained the coefficients

for several values of ` and n we can guess the general result.

The main reasons for studying the spectrum of the double-twist operators in the

fermion GFT are the following. First, it provides a consistency check for our setup: finding

a solution for an over-determined system is non-trivial, the solution must obey all the prop-

erties of OPE coefficients from section 2.1 and the correctly approximated blocks at the

crossing-symmetric point z = z = 1/2 must still reproduce the GFT correlation functions.

Second, in the numerical analysis the fermion GFT provides a reference point on all the

plots and should always lie in the allowed region.41 Finally, the result is important on

its own, since the double-twist operators describe approximately part of the spectrum for

generic CFTs which consists of large spin operators [57, 58].

In what follows we will discuss the spectrum of the operators (4.3) and (4.4) in more

detail and provide the final expressions for the products of OPE coefficients (2.110). We

also derive the free fermion CFT data as a ∆ψ → 3/2 limit of our results.

One could in principle compute directly the CFT data associated to the operators (4.3)

and (4.4). First, this would require to fix their precise form by demanding that these

operators are primaries. Second, one would have to normalize and diagonalize their basis

by computing their two-point functions using Wick contractions. Third, one would need to

compute their three-point functions with ψ and ψ. This procedure gives more information

compared to the one we use here, namely it provides the individual OPE coefficients rather

then their products. However, it is rather tedious, and we will not pursue this direction.

There exists yet another method of computing the products of OPE coefficients [59]. It

is based on the harmonic analysis of the conformal group [60] which allows one to derive an

Euclidean inversion formula.42 It expresses the CFT data in terms of the four-point func-

tion, and is especially easy to apply to four-point functions of GFT fundamental operators.

4.1 Neutral channel

We address here the double-twist operators (4.3). We start by decomposing them into

irreducible spin representations. We have43

(1, 0)⊗ (`, `)⊗ (0, 1) = (`− 1, `− 1)⊕ (`+ 1, `+ 1)⊕ (`+ 1, `− 1)⊕ (`− 1, `+ 1). (4.7)

As we see, there are four types of double-twist operators which we refer to as “towers”: two

towers of TS operators and two towers of NTS operators related by hermitian conjugation.

Notice that the case of scalar TS operators is special since they are contained only in

the first entry of the right-hand side of (4.7). Using an obvious redefinition of the spin

parameter ` we write the schematic form of all four towers in the right-hand side of (4.7)

41Unless of course an assumption on the CFT spectrum is made that is not respected by the GFT.
42The interest in harmonic analysis in CFTs was recently revived by the derivation of the Lorentzian

inversion formula [61], see [62, 63] for its further developments.
43We treat the µi indices as traceless, because traces are taken care of by the ∂2n factor.
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respectively as44

O(`,`)
∆,0 =:ψα(x)∂αβ̇(s∂s)`∂2nψ

β̇
(x) :, ∆ = 2∆ψ + 2n+ `+ 1, ` ≥ 0, (4.8)

O′(`,`)∆,0 =:ψ(x, s)(s∂s)`−1∂2n′ψ(x, s) :, ∆ = 2∆ψ + 2n′ + `− 1, ` ≥ 1, (4.9)

O(`+2,`)
∆,0 =:ψ(x, s)(s∂)β̇(s∂s)`∂2nψ

β̇
(x) :, ∆ = 2∆ψ + 2n+ `+ 1, ` ≥ 0, (4.10)

O(`,`+2)
∆,0 =:ψα(x)(s∂)α(s∂s)`∂2nψ(x, s) :, ∆ = 2∆ψ + 2n+ `+ 1, ` ≥ 0. (4.11)

In order not to clutter the notation we have suppressed the dependence of the operators on

the non-negative integers n and n′, omitted the contributions of the descendants needed

to make these operators primaries, and ignored their normalization. For ` ≥ 1 the TS

operators (4.8) and (4.9) have degenerate scaling dimensions when n′ = n+1. This implies

that from the four-point function (4.1) we cannot extract the products of individual OPE

coefficients and instead we can only compute their combined contribution (2.90), where we

sum over the two degenerate operators.

The lowest dimensional ` ≥ 1 TS operators in the fermion GFT spectrum appear in

the (4.9) tower with n′ = 0. They saturate the unitarity bound (2.14) only if ∆ψ = 3/2.

We thus see explicitly that the fermion GFT has neither the conserved current nor the

stress tensor for ∆ψ > 3/2.

Results. We summarize here the analytic expressions found for the products of the neu-

tral OPE coefficients. Let us first focus on the two TS operators (4.8) and (4.9). As we

already mentioned, for ` = 0 only the first tower of operators contributes and their squared

OPE coefficients are found to be

P∆,(0,0),0 =
4

n!(n+ 2)!

(
∆ψ − 3

2

)2
n+2

(
∆ψ − 1

2

)
n

(
∆ψ − 1

2

)
n+1

(2∆ψ − 1)2 (2∆ψ + n− 3)n+1 (2∆ψ + n− 1)n+1

, (4.12)

where ∆ = 2∆ψ+2n+1. The TS operators O′ in (4.9) with n′ = 0 are also non-degenerate

and their products of OPE coefficients read as

P 22
∆,(`,`),0 =

1

(`− 1)!

(
∆ψ + 1

2

)2
`−1

(2∆ψ + `− 1)`−1

, P 11
∆,(`,`),0 = P 12

∆,(`,`),0 = P 21
∆,(`,`),0 = 0 , (4.13)

where ∆ = 2∆ψ + `− 1. When ` ≥ 1 and n′ > 0, the sums of product of OPE coefficients

of O and O′ read as

P 11
∆,(`,`),0 =

n

`

n+ (`+ 1)(2∆ψ + 2n+ `− 3)(2∆ψ + n− 4)

2∆ψ + 2n+ `− 2
× C, (4.14)

P 12
∆,(`,`),0 = P 21

∆,(`,`),0 = −n (2∆ψ + n− 5)× C, (4.15)

P 22
∆,(`,`),0 =

(
(2 + `)(2∆ψ + `− 4) + 2n (2∆ψ + `− 3) + 2n2

)
× C, (4.16)

44The derivatives are defined as follows ∂
α̇β ≡ σα̇βµ ∂µ and ∂αβ̇ ≡ σµ

αβ̇
∂µ. We also use the standard

convention for contracting the Lorentz indices.
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where the common factor C is defined as

C ≡
2∆ψ + 2n− 5

4n(`+ 2)(`− 1)!n! (`+ 2)n

×
(
∆ψ − 3

2

)
n−1

(
∆ψ + 1

2

)2
n+`−1

(2∆ψ − 3)n−1 (2∆ψ + `+ n− 3)n−1

(∆ψ − 1)n−1 (2∆ψ + `+ n− 3)2
n (2∆ψ + `+ 2n− 1)`−1

(4.17)

and the scaling dimension is ∆ = 2∆ψ + 2n+ `+ 1. It turns out that the coefficient (4.13)

is identical to (4.16) for n = 0. For NTS operators (4.10) and (4.11) we get

P∆,(`+2,`),0 = P∆,(`,`+2),0

=
2

`!n! (2 + `)n+1

(
∆ψ − 3

2

)2
n+1

(
∆ψ + 1

2

)
`+n

(
∆ψ + 1

2

)
`+n+1

(2∆ψ + n− 3)n+1 (2∆ψ + `+ n− 1)n+1 (2∆ψ + `+ 2n+ 1)`
,

(4.18)

where ∆ = 2∆ψ + 2n+ `.

Equations (4.14)–(4.17) fully agree with (3.141), (3.142)–(3.145) of [59], where these

results were obtained independently using harmonic analysis.

Free theory. In the special ∆ψ = 3/2 case the GFT reduces to the theory of a free Weyl

fermion which satisfies the usual equations of motion

∂α̇βψβ = 0 =⇒ ∂2ψβ = 0 . (4.19)

This immediately implies that the tower of operators (4.8), (4.10) and (4.11) must vanish.

The only non-vanishing tower of operators is given by (4.9) with n = 0. The result for the

product of OPE coefficients follows from (4.13) and reads as

P 11
∆,(`,`),0 = P 12

∆,(`,`),0 = P 21
∆,(`,`),0 = 0,

P 22
∆,(`,`),0 =

`

(2 + `)`−1

× Γ(`+ 1), ∆ = `+ 2, ` ≥ 1. (4.20)

In other words, there are no scalar or NTS operators which can appear in the neutral

channel in the free fermion theory, there are only conserved spin ` ≥ 1 currents satisfying

the unitarity bound (2.14). The OPE coefficients (4.20) have been already derived (in an

arbitrary number of dimensions) in [64] by a direct computation of three-point functions.

Their result (2.28) perfectly matches (4.20).45

To conclude, let us also compute here CJ and CT central charges. This is done by

equating (4.20) with (2.117) and (2.118) for ` = 1 and ` = 2 respectively. In the former

case one gets

θ = π/2, λ1
〈ψψJ〉 = 0, λ2

〈ψψJ〉 =
1√
2π2

, CJ =
1

2π4
. (4.21)

45In matching the results one has to pay attention to the different normalizations of the two point-

functions: in detail we have P 22
∆,(s,s),0 = CsψψC

2
ψψ/Css, where Csψψ, Css and Cψψ are defined in (2.24),

(2.26) and (2.28) of [64] respectively.
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In the later case one gets

λ1
〈ψψT 〉 = 0, λ2

〈ψψT 〉 = − i

π2
, CT =

1

π4
. (4.22)

These central charges agree with [55].

4.2 Charged channel

We address now the double-twist operators (4.4). As before we start by decomposing them

into irreducible spin representations which read as

(0, 1)⊗ (`, `)⊗ (0, 1) = (`, `)⊕ (`, `)⊕ (`, `+ 2)⊕ (`, `− 2). (4.23)

As before there are generically four towers of operators. Notice however that in the right-

hand side of the decomposition (4.23) the second entry can appear only for ` ≥ 1 and the

last entry only for ` ≥ 2. Again using a redefinition of the spin parameter ` we write the

schematic form of all four towers in the right-hand side of (4.23) respectively as

O(`,`)
∆,− =:ψα̇(x)(s∂s)`∂2nψ

α̇
(x) :, ∆ = 2∆ψ + 2n+ `, ` ∈ Even,

(4.24)

O′(`,`)∆,− =:ψ
α̇
(x)(s∂)(α̇sβ̇)(s∂s)

`−1∂2nψ
β̇
(x) :, ∆ = 2∆ψ + 2n+ `, ` ∈ Odd,

(4.25)

O(`+2,`)
∆,− =:ψ

α̇
(x)(s∂)α̇(s∂)β̇(s∂s)`∂2nψ

β̇
(x) :, ∆ = 2∆ψ + 2n+ `+ 2, ` ∈ Odd,

(4.26)

O(`,`+2)
∆,− =:ψ(x, s)(s∂s)`∂2n′ψ(x, s) :, ∆ = 2∆ψ + 2n+ `, ` ∈ Odd.

(4.27)

The same comments apply to the notation here as below (4.8)–(4.11). Contrary to the neu-

tral case, the NTS operators in (4.26) and (4.27) are not related by hermitian conjugation.

Additionally the restriction to even or odd ` in the above expressions is due to the identity

:ψα̇∂µ1 · · · ∂µ`∂
2nψβ̇ := (−1)`+1 :ψβ̇∂µ1 · · · ∂µ`∂

2nψα̇ : +descendants, (4.28)

which effectively implies (anti-)symmetry in αβ modulo terms that are descendants of other

operators. We thus find that for each ` one of the two TS operators is a descendant, and for

even ` both NTS operators are descendants. In particular the primary (4.24) exists only

for even `, while the primaries (4.25)–(4.27) exist only for odd `. Note that for ` ≥ 1 the

traceless symmetric operators O and O′ with the same n would seem to have degenerate

scaling dimensions, but since only one of them exists at any given `, we can actually extract

squares of their individual OPE coefficients.

Results. We start from TS operators (4.24) and (4.25). For any ` ≥ 0 the product of

OPE coefficients is always a number and not a 2×2 matrix, like in the neutral case, due to

presence of the Z2 permutation symmetry exchanging two identical fermions which relates
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the two otherwise independent tensor structures, recall (2.35). Since depending on the

parity of ` we are studying (4.24) or (4.25), we expect two different expressions for the

product of OPE coefficients for even and odd spin operators. We get

P∆,(`,`),− =
`(`+ 1)

2`−1n! (2 + `)Γ(n+ `+ 2)

×

(
∆ψ − 3

2

)2
n+1

(
∆ψ + 1

2

)
n+ `−1

2

(
∆ψ + 1

2

)
n+`

(2∆ψ + n− 3)n+1

(
∆ψ + `−1

2 + n
)
`+1

2
(2∆ψ + `+ n− 2)n

, ` ∈ Odd,

(4.29)

P∆,(`,`),− =
`+ 1

2`n! Γ(`+ n+ 2)

2∆ψ + 2n− 3

2∆ψ + 2n+ `− 3

×

(
∆ψ − 3

2

)2
n

(
∆ψ + 1

2

)
n+ `

2

(
∆ψ + 1

2

)
n+`

(2∆ψ + n− 3)n
(
∆ψ + n+ `

2

)
`
2

(2∆ψ + `+ n− 2)n
, ` ∈ Even ,

(4.30)

where ∆ = 2∆ψ + 2n+ `.

The fact that NTS operators only exist for odd ` is consistent with the Z2 permutation

symmetry of the external fermions, see (2.36) and (2.37). The products of their OPE

coefficients read

P∆,(`+2,`),− =
1

2``!n! (`+ 2)n+2

Γ(∆ψ + n+ `+3
2 )

Γ(∆ψ + n+ `+ 1)

×

(
∆ψ − 3

2

)2
n+1

(
∆ψ + 1

2

)
n+ `−1

2

(
∆ψ + 1

2

)
n+`+1

(2∆ψ + n− 2)n (2∆ψ + `+ n− 1)n+1

, ` ∈ Odd , (4.31)

where ∆ = 2∆ψ + 2n+ `+ 2, and

P∆,(`,`+2),− =
1

2`−1`!n! (`+ 2)n

Γ(∆ψ + n+ `+1
2 )

Γ(∆ψ + n+ `)

×

(
∆ψ − 3

2

)2
n+1

(
∆ψ + 1

2

)
n+ `−1

2

(
∆ψ + 1

2

)
n+`

(2∆ψ + n− 4)n (2∆ψ + `+ n− 1)n
, ` ∈ Odd, (4.32)

where ∆ = 2∆ψ + 2n+ `.

Free theory. Due to the free fermion equations of motions (4.19), the operators (4.25)

and (4.26) vanish and the operators (4.24) and (4.27) can be non-zero only for n = 0.

Interestingly enough, the only TS operator which has a non-vanishing OPE coefficient is

the scalar ∆ = 3 operator ψα(x)ψα(x) with46

P∆,(0,0),− = 1 . (4.33)

46It appears that for free fermions the TS primaries (4.24) with ` > 0 do not exist. For example, it is

easy to see that (4.24) with ` = 2 is absent by studying the first few terms in the character of the relevant

tensor product of Verma modules.
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The NTS operators have the following products of OPE coefficients

P∆,(`,`+2),− =
Γ(`+ 2)Γ(`+ 3)

Γ(2`+ 2)
, ∆ = 3 + `, ` ∈ Odd. (4.34)

The operators (`, `+2) with ` ≥ 1 saturating the unitarity bound as in (4.34) are conserved

NTS currents. These operators have been discussed in [64], but their OPE coefficients with

ψ and ψ have not been derived.

5 Fake primary effect

In this section we discuss the fake primary effect alluded to in the introduction. It originates

from the peculiar properties of conformal blocks in a given bootstrap setup. This is best

formulated in a slightly formal but very convenient way in terms of the space of functionals

entering the setup and its topology.

The crossing equations (2.113) are expressed in terms of the functionals (2.121) which

we list here again explicitly for the reader convenience

~α · ~GabΛ,∆,(`,`), ~α · ~GΛ,∆,(`,`+2), ~α · ~HΛ,∆,(`,`), ~α · ~HΛ,∆,(`+2,`), ~α · ~HΛ,∆,(`,`+2). (5.1)

Given a vector ~α the entries in (5.1) can be seen as functions of the scaling dimension ∆

and spin (`, `). Let us denote the full set of functionals (5.1) by

~α · ~GΛ,σ, σ = (∆, (`, `), Q), (5.2)

where σ is the collective label specifying the scaling dimension ∆, the spin representation

(`, `) and the block type G or H. More precisely, the blocks G and H appear in the

neutral and charged channels respectively and we use the labels Q = 0 and Q = − here

to distinguish between them. For a given vector ~α one can now treat the objects (5.2) as

functions of σ ∈ Σ, where the space Σ includes all values of σ which enter in (2.123) (when

no assumptions on the spectrum are made).

When defining the semi-definite problems of section 2.5 we require various positivity

constraints. Implications of these constraints can be strongly affected by the continuity

properties of ~GΛ,σ in σ — a continuous function which is positive at some point has to

remain positive in an open neighborhood of this point. A convenient way to describe these

properties is to specify the topology of the space Σ.

The intuitive picture of this topology for charge 0 is shown in figure 1. For each value

of (`, `), we have a half-line R+ of operators of spin (`, `), parametrized by ∆. For ` = ` = 0

we have an extra disconnected point for the identity operator. In other words, we would

expect that Σ is a disconnected sum of a point and an infinite countable tower of half-

lines R+. We have indeed tacitly assumed this intuitive picture when we wrote (2.123)

in reviewing the way upper bounds on operator dimensions are obtained in numerical

bootstrap studies. However, as we will soon see, this intuitive topology does not capture

all the continuity properties of ~GΛ,σ. In other words, there is a coarser (“more connected”)

topology on Σ with respect to which ~GΛ,σ is continuous. With this improved topology not

only does Σ have much fewer connected components, but these components are not even

simply-connected.
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∆ = 1

∆ = 3

∆ = 4

Id
(0, 0), 0

(1, 1), 0

(2, 2), 0

∆ = 2

∆ = 4

∆ = 5

(2, 0), 0

(3, 1), 0

(4, 2), 0

...
...

Figure 1. Naive topology of Σ in charge q = 0 sector.

5.1 Unitary poles in conformal blocks

It is known that conformal blocks and thus ~GΛ,σ have poles in ∆ [8, 33, 46]. For concreteness

let us take σ = (∆, (`, `),−), in which case GΛ,σ is related to the blocks H∆,(`,`). There exists

an expansion of H∆,(`,`) which converges for all ∆ ∈ C and has the following schematic form

H∆,(`,`) =
∑
n

〈ψψ|n〉〈n|ψψ〉
〈n|n〉

, (5.3)

where the sum is over an orthogonal set of states |n〉 related by the operator-state cor-

respondence to the descendants of O(`,`)
∆,−. Instead of assuming that the descendants are

unit-normalized we explicitly divide by their norms. These norms are polynomial functions

of ∆ and vanish at a discrete set of scaling dimensions, leading to poles in H∆,(`,`). One

can furthermore check that this is the only way in which singularities can arise, provided

that the conformal blocks are appropriately normalized.47

Therefore, poles in GΛ,σ are associated with some descendants becoming null. All null

descendants have been classified [33]. They occur for ∆ < ∆unitary(`, `) and generally give

rise to simple poles in ∆ for CFTs defined in d dimensions. Poles can and do occur also

at ∆ = ∆unitary(`, `), because the unitarity bound itself is determined by some descendant

developing negative norm [65]. When d approaches an even integer value, some simple

poles can collide and give rise to double poles, but this effect can only occur for values

of ∆ strictly below the unitarity bound ∆ < ∆unitary(`, `). We then conclude that in all

dimensions, including d = 4, the poles at the unitarity bound are simple. These are the

poles we will focus on in what follows.

As can be seen from (5.3), poles will not appear if either

〈ψψ|n〉 = 0 or 〈n|ψψ〉 = 0, (5.4)

where |n〉 is the descendant which becomes null.48 Importantly, if the pole does appear,

the residue is known to be proportional to the conformal block for exchange of a primary

47Indeed we can trivially add poles by changing the normalization as H∆,(`,`) → (∆−∆∗)
−1H∆,(`,`). The

statement that the only poles come from null descendants is true if the three-point structures which are

used to define the blocks are entire functions of ∆, and the two-point functions do not have zeros in ∆, as

is the case in our conventions.
48For σ in the neutral channel we should check 〈ψψ|n〉 instead.

– 41 –



J
H
E
P
0
6
(
2
0
1
9
)
0
8
8

∆ = 1 ∆ = 4
(0, 0),−

(1, 1),−

Figure 2. Merging of scalar and vector lines due to a pole in vector blocks. Scaling dimensions

indicate dimensions of the scalar blocks.

with the same quantum numbers as |n〉 [33, 46]. For `` 6= 0 the null descendant is the

“conservation” operator

(∂s∂x∂s)O(`,`)
∆,q (x, s, s), (5.5)

which has dimension ∆unitary(`, `)+1 and spin (`−1, `−1). For ` = 0, ` 6= 0, it is given by

(∂s∂xs)O(`,0)
∆,q (x, s), (5.6)

with dimension ∆unitary(`, 0) + 1 and spin (`−1, 1). The null descendant for ` = 0, ` 6= 0 is

constructed analogously. For scalars ` = ` = 0 the null descendant is the Laplace operator

∂2O(0,0)
∆,q , (5.7)

and has dimension ∆unitary(0, 0) + 2 and spin (0, 0).

Let us consider for concreteness an example of charged vector operators. Applying the

differential operator in (5.5) to the tensor structure 〈ψψO(1,1)
∆ 〉 in (2.35) we find

(∂s3∂x3∂s3)K3

(
Î31K̂23

1 + (−1)1 Î32K̂13
2

)
∝ K3 K̂12

3 (5.8)

with a non-zero proportionality coefficient. We see that the three-point functions in (5.4)

are non-vanishing. The conformal block H∆,(1,1) then behaves near the unitarity bound

∆unitary(1, 1) = 3 as

H∆,(1,1) ∼
c

∆− 3
H4,(0,0), (5.9)

where in the right hand side we have a block exchanging a scalar operator of dimension 4,

which are the quantum numbers of the null state (5.5). Using unitarity one can show that

the coefficient c must be positive. If we now define a rescaled conformal block

Ĥ∆,(1,1) = c−1(∆− 3)H∆,(1,1), (5.10)

we conclude

Ĥ3,(1,1) = H4,(0,0). (5.11)

Since replacing H by Ĥ is equivalent to a positive rescaling of the OPE coefficients, which is

inessential, we must conclude that the line of conformal blocks for charged spin-1 operators

joins the line of scalar blocks at dimension 4, see figure 2. In other words, from the point
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of view of our numerical setup, vector contributions infinitesimally close to the unitarity

bound are indistinguishable from scalar contributions at ∆ = 4. This is the fake primary

effect — the limit of vector primaries at the unitarity bound produces a fake scalar primary

with ∆ = 4.

It is straightforward to see that this phenomenon persists to higher-spin TS conformal

blocks in the charged sector. For generic ` we have

Ĥ∆unitary(`,`),(`,`) = H∆unitary(`,`)+1,(`−1,`−1). (5.12)

As we discussed above, the nature of the pole for ` = 0 TS blocks is different, and is due to

the Laplace operator. We can again check that the three-point tensor structures at ` = 0

do not satisfy Laplace equation and thus we have a pole at the unitarity bound ∆ = 1.

However, the residue is now again an ` = 0 block, and we have

Ĥ1,(0,0) = H3,(0,0), (5.13)

and hence the charged scalar line reconnects into itself. It turns out that charged NTS

blocks with odd ` (recall that even ` is forbidden) do not have poles at unitarity bound

because the three-point functions satisfy the appropriate equations, and thus these blocks

remain isolated.

In the neutral sector we find that TS blocks have no poles at the unitarity bound,

except for ` = 0 which behaves exactly as in the charged sector. However, now the NTS

blocks have poles and for ` > 0 we get

Ĝ∆unitary(`+2,`),(`+2,`) = G∆unitary(`+2,`)+1,(`+1,`−1). (5.14)

For ` = 0 we again have a pole, but the type of the null descendant is different, see (5.6),

and we find

Ĝ2,(2,0) = G3,(1,1). (5.15)

This case needs a special clarification. The equation above cannot be literally true because

the block on the left hand side is 1× 1 while the one on the right is 2× 2. In other words,

there is only one tensor structure

〈ψψO(2,0)
2 〉(·) (5.16)

but two tensor structures

〈ψψO(1,1)
3 〉(a). (5.17)

The precise statement is instead

Ĝ2,(2,0) = λaλ
∗
bG

ab
3,(1,1), (5.18)
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∆ = 3
∆ = 4

∆ = 5

Id
(0, 0), 0

(2, 2), 0

(3, 3), 0

∆ = 3

∆ = 5

∆ = 6

∆ = 7

(1, 1), 0

(2, 0), 0

(3, 1), 0

(4, 2), 0

...
...

Figure 3. Topology of Σ in neutral sector after taking into account poles. The dimensions shown

near intersections correspond to the block which appears as the residue.

∆ = 4

∆ = 6

∆ = 8

(3, 1),−

(5, 3),−

(7, 5),−

(1, 3),−

(3, 5),−

(5, 7),−

∆ = 4∆ = 3

∆ = 5

∆ = 6

∆ = 7

(0, 0),−

(1, 1),−

(2, 2),−

(3, 3),−

...
...

Figure 4. Topology of Σ in charged sector after taking into account poles. The dimensions shown

near intersections correspond to the block which appears as the residue.

where λa is determined by49

(∂s3∂x3s3)〈ψψO(2,0)
2 〉(·) ∝ λa〈ψψO(1,1)

3 〉(a). (5.19)

This gives more refined information than simply the topology of Σ, it would be interesting

to find the appropriate mathematical object which captures also this additional structure.

Collecting all these observations together, we find the topology of Σ which is shown in

figure 3 for the neutral sector and in figure 4 for the charged sector. As promised, it is far

from the naive expectation in figure 1.

5.2 Implications for numerics

The fact that Σ has a non-trivial topology has strong implications for traditional numerical

bounds. With the benefit of hindsight, let us consider the bound on the dimension of the

first charged scalar. As we discussed in section 2.5, in order to construct such a bound

49There is a simple characterization of λa. These coefficients are such that they do not contribute to the

Ward identity (2.26), i.e. 2λ1 + λ2 = 0, because the left-hand side of (5.19) is identically annihilated by

(∂s3∂x∂s3), as opposed to giving some contact terms. The Ward identity essentially counts the coefficient

of the contact term, and hence this structure does not contribute to it.
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∆ = 4
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(0, 0),−
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(a)

∆ = 4

∆ = 5

(0, 0),−

(1, 1),−

(b)

Figure 5. Topology of Σ near charged scalar sector with a gap. Left: the gap in scalar sector is

less than 4. Right: the gap in scalar sector is greater than 4.

we remove all the charged scalars of dimension below ∆∗ from Σ, and try to disprove the

existence of solutions to crossing which only contain contributions from this reduced space.

In practice of course we consider many different values of ∆∗ to find the smallest value for

which we can disprove the existence of solutions to crossing. Let us denote this minimum

value by ∆min
∗ and denote by Σ∆min

∗
the associated reduced space.

The crucial observation is that Σ∆∗min looks very differently depending on whether

∆min
∗ is greater or less than 4. The two situations are shown in figure 5. We see immediately

that for ∆min
∗ > 4 there is in fact no way to exclude contributions of charged scalars at

dimension 4 by imposing a gap in this sector only, since the dimension 4 scalars can

be obtained as a limit of spin-1 contributions. This implies that for ∆min
∗ > 4 we are

not actually studying the problem of bounding the dimension of the first charged scalar,

but rather the dimension of the second charged scalar, assuming that the first scalar has

dimension 4. However, for ∆min
∗ < 4 we are indeed bounding the dimension of the first

charged scalar. Therefore, as ∆min
∗ crosses dimension 4, the problem we are studying

changes. This change is discontinuous since we expect the bound on dimension of the

second scalar to be much weaker than the bound on the dimension of the first scalar.

This leads to a striking prediction that the bound on the gap in the charged scalar

sector should jump discontinuously as soon as it reaches ∆min
∗ = 4, at any value of Λ.

Similarly, this can happen in all other sectors where a topology similar to figure 5 is

observed. In particular, we expect such jumps in bounds on gaps in charged TS sectors,

and neutral NTS sectors. The critical value of the scaling dimension at which the jump

should occur in the charged TS and neutral NTS sectors respectively is

∆
(`,`)
− jump = ∆unitary(`+ 1, `+ 1) + 1 = 4 + `, (5.20)

∆
(`+2,`)
0 jump = ∆unitary(`+ 3, `+ 1) + 1 = 5 + `. (5.21)

The jumps are of course only expected if the bound ever crosses this value. In section 6

we will confirm these predictions and perform some further tests.

As a final comment, we should note that the fake primary effect could also work

in the opposite direction. Without further assumptions, in principle we should interpret

bounds on charged TS operators and neutral NTS operators as bounds on the dimension

of the second allowed operator, with the first one being almost at unitarity. For instance

a scalar charged operator of dimension ∆ ' 4 could mimic an almost conserved charged

operator in the (1, 1) representation. In practice however we observe that the solutions of
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crossing extremizing the gap in a given sector do not contain operators close to the unitarity

bound.50 The only exception is the bound on the dimension of the first neutral operator

(2, 0). As shown in figure 3, this branch of Σ connects with the neutral NTS operator in the

(3,1) and the neutral TS operators in the (1, 1) representation at the unitarity bound, i.e. a

U(1) conserved current. Since the latter generically is present in a solution of crossing, the

bound on (2, 0) is actually a bound on the next operator after 2. If this bounds happens to

be above 5, then in reality it becomes a bound on the next operator after 5. We will see in

section 6 that indeed this bound does not display any jump and it starts approximatively

at 10.

5.3 Topology of Σ in other setups

In what follows we discuss other conformal bootstrap setups where the jump-like behavior

was also observed. In section 5.3.1 we consider the scalar mixed correlator bootstrap in

3d and discuss the implications of the fake primary effect for the 3d Ising model. In

section 5.3.2 we address the 3d Majorana fermion bootstrap.

5.3.1 Scalar mixed-correlator bootstrap in 3d

As mentioned in section 5.1, Σ has a non-trivial topology only if some of the conformal

blocks have a pole at the unitarity bound. This is not the case for the correlation function

of identical scalars.51 Indeed the three-point function of two scalars and a TS operator with

∆ = `+ d− 2 is automatically conserved whenever the scalars have equal dimension. The

minimal example then requires correlation functions of scalars with different dimensions.

The prototypical example is then the Ising model in 3d, where one considers the mixed

system of the fields σ and ε. We will not describe the technical setup here, referring to [47]

for details.

Before continuing the discussion let us make a disclaimer: the mechanism presented

in this work does not affect in any way the precision measurements of the 3d Ising critical

exponents of [12, 66]. At best it can help in shrinking the size of the allowed region.

By studying the correlation function of the σ field only, one can obtain an upper

bound ∆max
ε (∆σ) on the dimension of the lowest Z2-even scalar appearing in the OPE

σ × σ ∼ 1 + ε + . . .. This bound has a nice kink coinciding with the expected values of

(∆σ,∆ε) for the 3d Ising model, see for instance figure 3 of [47]. Next, let us consider the

OPE σ × ε; it contains Z2-odd operators of all spins, schematically:

σ × ε ∼ σ + σ′ + . . . (5.22)

where the dots stand for higher dimensional scalars and higher spin operators. By consid-

ering the mixed system 〈σσσσ〉, 〈σεσε〉, 〈εεεε〉 and assuming for instance ∆ε = ∆max
ε (∆σ),

we can obtain an upper bound on the σ′ dimension. This was first done in [47]. How-

ever, since the conformal blocks of Z2-odd vectors are singular at the unitarity bound, the

residue mimics the contribution of a Z2-odd scalar of dimension 3. Without any further

50The extremal functional is strictly positive at the unitarity bound, even if it was not required to.
51Except for the pole in the ` = 0 block.
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Figure 6. Upper bound on the dimension of the first parity odd scalar σ′ appearing in the

OPE (5.22) assuming that ∆ε saturates the bound shown in figure 3 of [47]. Light blue has no

further assumptions. Dark blue assumes a gap in the Z2-odd spin-1 sector ∆`=1
− ≥ 2.3. The red

cross corresponds to the values (∆σ,∆σ′) = (0.5181489, 5.2906) determined in [12].

assumptions, the bound obtained on ∆σ′ is then a bound on the next Z2-odd scalar after

3. This effect can be straightforwardly eliminated by introducing a small gap in the spin-1

Z2-odd sector ∆`=1
− ≥ 2.3.52 The results with and without the gap are shown in figure 6.

The two lines agree whenever the bounds are below 3 and differ substantially above. In

particular, on the right side the jump disappears, while on the left side the bound still

grows rapidly but it gets smoother. We expect that a similar phenomenon is responsible

for the jumps present in figure 3 of [48].

5.3.2 Majorana fermion bootstrap in 3d

Jumps similar to ours have been observed in 3d fermion bootstrap [25, 26]. For simplicity

we will discuss [25], although similar conclusions apply to [26].

In their setup one studies a four-point function of a single Majorana fermion ψ = ψ†

operator. There is only one type of OPE ψ × ψ, and the operators appearing in it are

characterized by spin ` and P -parity. For even spin both P -even and P -odd operators can

be exchanged, while for odd spin only P -odd operators are exchanged. This immediately

implies that P -even ` > 0 three-point tensor structures are automatically conserved at the

unitarity bounds: if they were not, then the action of the conservation operator would

produce a valid P -even odd-spin tensor structure, which does not exist. However, the P -

odd tensor structures with ` > 0 can potentially be not conserved at the unitarity bound.

And indeed, an explicit calculation shows that the conservation equation is not satisfied,

52We are grateful to Ning Su for making a preliminary plot and for checking that larger gaps ∆`=1
− ≥ 3, 4

give similar bounds as ∆`=1
− ≥ 2.3. In the 3d Ising model the first Z2-odd vector is expected to have

dimension ∼ 8 [12].
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and we have a pole at the unitarity bound for all P -odd exchanges. Both P -even and

P -odd scalar exchanges have the usual pole at the unitarity bound due to a violation of

the Laplace equation.

This means that the topology in the P -even sector is similar to the topology of neutral

TS operators in our setup as shown in the left panel of figure 3, and the topology in the

P -odd sector is similar to that of our TS operators in the charged sector, as shown in the

left panel of figure 4.

In [25, 26] jumps were observed in the upper bound on the dimension of the first

P -odd scalar operator. We now recognize that these jumps are completely explained by

fake P -odd scalar primaries at ∆ = 3 coming from the unitarity bound pole of P -odd

vector exchanges. We can furthermore predict the existence of such jumps in all P -odd

bounds (assuming that these bounds are ever below the fake primary dimension). There is

however one important difference between [25] and [26]: in the former a kink at the same

value of ∆ψ as the jump is observed in the upper bound on the leading P -even scalar. This

kink does not have a straightforward explanation in terms of the topology of the blocks.

Moreover the jump seems to happen before 3. Instead, in [26] there are no kinks in the

P -even sector and the jumps are exactly at 3. This suggests that with no global symmetry

the situation is very much like the bound on σ′ in the Ising model: the bound on the P -odd

scalar would rapidly grow above 3 for other reasons (real CFT?) and when it reaches 3

it jumps because of the fake primary effect. It would be therefore interesting to redo the

analysis of [25] with a small gap in P -odd vector sector.

6 Numerical results

We now present various numerical bounds obtained by solving the optimization problems of

section 2.5. We start by considering bounds on scaling dimensions of the first charged and

neutral operators in sections 6.1 and 6.2 respectively. We will use the following short-hand

notation for their scaling dimensions

∆
(`,`)
− , ∆

(`,`)
0 . (6.1)

In section 6.3 we show bounds on the central charges CJ and CT . Finally, in sec-

tion 6.4 we address bounds on the product of OPE coefficients for the neutral and charged

scalar operators.

6.1 Bounds on scaling dimensions: charged channel

In what follows we construct upper bounds on the scaling dimensions of the lowest di-

mensional charged operators (denoted “lightest” for short in the following) as a function

of ∆ψ. We will consider (0, 0), (1, 1), (2, 2) TS operators and (1, 3), (3, 1), (3, 5), (5, 3)

NTS operators.

The fermion GFT defined in section 4 gives an example of a consistent (non-local)

CFT. Thus the operators in this theory should always lie in the allowed region of the

bounds. According to section 4.2, the lightest charged GFT operators have the following
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Figure 7. Upper bound on the dimension of the first charged scalar TS operator. The shaded

region is the allowed one. The bound has been computed at Λ = 20. The dashed line represents

the GFT line. The bound has a discontinuity at ∆ψ ≈ 1.84.

scaling dimensions:

∆
(`,`)
− GFT = 2∆ψ + `, ∆

(`+2,`)
− GFT = 2∆ψ + `+ 2, ∆

(`,`+2)
− GFT = 2∆ψ + `. (6.2)

We depict their values by dashed lines on all the plots. One can try to remove the GFT

in the attempt to make the bounds stronger and probe CFTs with operators lighter than

the ones in (6.2). This can be done for example by requiring the central charge CT to be

finite when constructing the bounds. We found in practice that this requirement does not

bring strong constraints unless CT is taken to be very small and starts violating bounds

found later in section 6.3. We will not therefore discuss such bounds in this work.

We start by presenting the bound on the scaling dimensions ∆
(0,0)
− of the lightest

charged scalar as a function of ∆ψ in figure 7. This plot displays a striking feature that is

shared by many other plots presented in this work: the upper bound starts following the

GFT line and then, when it crosses the next integer, 4 in this case, it suddenly jumps to a

much higher value.

Let us zoom in on the region of ∆ψ where the jump appears and construct the bound

for different values of the parameter Λ defined in (2.111). The result is presented in figure 8.

We observe that the location of the jump in ∆ψ keeps moving as the number of derivatives

is increasing. This clearly demonstrates that the jump occurs when the bound crosses the

integer value 4: as Λ increases the bound gets stronger and the crossing point can only

move to the right. Moreover from extrapolation to Λ→∞ it appears that the presence of

jumps remains intact.

This is precisely the jump anticipated in section 5. Let us reiterate the reasoning.

Due to the non-trivial topology of TS blocks in the charged channel, as depicted in the

left part of figure 4, the (1, 1) block at the unitarity bound ∆ = 3 fakes the presence of a
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Figure 8. Upper bound on the dimension of the first charged scalar operator in the proximity

of the jump as shown in figure 7. Different lines corresponds to increasing number of derivatives

Λ = 14, 16, . . . , 24, 26.
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Figure 9. Upper bound on the first charged scalar assuming a gap on the first charged (1, 1)

operator, namely ∆
(1,1)
− ≥ 3 + gap. The values of the gaps 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0 and 2.0

correspond to the regions from lighter to darker colors respectively. The bounds are computed at

Λ = 16.
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Figure 10. Left: upper bound on the dimension of the first charged (1, 1) operator. Right: upper

bound on the dimension of the first charged (2, 2) operator. The shaded region is the allowed one.

The bounds have been computed at Λ = 16. The dashed lines represent the GFT.

scalar operator with the dimension ∆ = 4. As long as the bound in figure 7 remains below

∆ = 4, it is a bound on the scaling dimension of the first charged scalar operator. However

as soon as the bound crosses ∆ = 4, we instead get a bound on the dimension of the second

charged scalar operator given that the first operator has the scaling dimension 4.

One way to check this statement is to explicitly assume the existence of a scalar charged

operator with ∆ = 4 and to bound the second one. For ∆ψ . 1.84 no CFTs satisfying

it exist due to the bound 7. For ∆ψ & 1.84 however this assumption leads to exactly the

same upper bound as in figure 7.

Now let us show how one can remove the jump. According to section 5, one needs to

impose a gap for the charged (1, 1) operators above the unitarity bound, namely ∆
(1,1)
− ≥

3 + gap. The resulting bounds for different values of the gap are shown in figure 9. We can

observe how the jump transitions into a smooth curve for high enough values of the gap.

A finite region of transition from the jump-like behavior into the smooth one is expected,

since the vector blocks above the unitarity bound are not exactly equal to the scalar block

at ∆ = 4, they are still reasonably close to it if the gap is small enough.

Let us mention another interesting feature. In figure 9 the largest value of the gap

is 2. However, we have also computed the bound for the gap 3. In the latter case the

corresponding bound does not become stronger and coincides precisely with the former

one. This can be explained once again by the topology of the charged blocks. Due to the

(2, 2) TS charged block at the unitarity bound ∆ = 4 we have always a fake (1, 1) charged

operator with dimension ∆ = 5. Thus a gap higher than 2 is irrelevant since it becomes

effectively the gap on the second (1, 1) charged operator and not on the first one. To get

a stronger bound the gap value should be increased significantly.

We now present the bounds on the first (1, 1) and (2, 2) charged TS operators as a

function of ∆ψ in figure 10. As in the scalar case, jumps occur when the bound hits an

integer value

∆
(`,`)
− jump = 4 + `. (6.3)
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Figure 11. Left: upper bound on the first charged (1, 3) NTS operator. Right: upper bound on the

first (3, 1) NTS operator. The shaded region is the allowed one. The bounds have been computed

at Λ = 16. The dashed lines represent the GFT.
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Figure 12. Left: upper bound on the first charged (3, 5) NTS operator. Right: upper bound on the

first (5, 3) NTS operator. The shaded region is the allowed one. The bounds have been computed

at Λ = 16. The dashed lines represent the GFT.

We have checked explicitly the validity of (6.3) up to ` = 5. As expected this is in precise

agreement with the discussion of section 5.

Finally we present bounds on charged NTS operators as a functions of ∆ψ in fig-

ures 11 and 12. We stress that this is the first time one is able to get upper bounds on

operators that are non-traceless symmetric tensors, although we knew already by analytic

bootstrap techniques that at least at large ` these operators must exist, and their spectrum

should approach the GFT spectrum obtained in section 4. This was concretely shown for

instance in [54].

We remind that in the charged sector, the operators (`, ` + 2) and (` + 2, `) are inde-

pendent of each other and must be treated separately. The spin ` is constrained to be odd

due to presence of identical fermions in the setup.
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Figure 13. Allowed values of the first scalar charged operator assuming that the second charged

scalar is irrelevant. The plot has been done at Λ = 16.

Note the absence of jumps compared to the charged TS plots, in agreement with the

topology of conformal blocks depicted in the right panel of figure 4. Note also that the

bound (`, `+ 2) follows closely the GFT line for small value of ∆ψ whereas the bound for

(`+2, `) always stays significantly above it. An asymmetry between the bounds on (`, `+2)

and (` + 2, `) operators is expected, because the former do and the latter do not exist in

the free theory.

We conclude the discussion by considering once again the charged scalar (0, 0) operator.

According to figure 7, for ∆ψ . 1.84 any consistent CFT must contain at least one light

relevant (∆ < 4) charged scalar. We can further assume that there is only a single relevant

charged operator and all the others are irrelevant (∆ > 4). By imposing this requirement

we can construct both an upper and a lower bound on the lightest scalar. The result is

presented in figure 13. The assumption carves out most of the region leaving only a narrow

peninsula surrounding the fermion GFT line. The plot can be compared with figure 6

in [25]. Contrary to their case we do not observe any features which might correspond to

interesting physical theories.

If one supplements the assumption of a single charged scalar with the complete absence

of neutral relevant scalars, figure 13 is marginally modified: the only effect is to move

slightly the lower branch of the allowed region. We do not show this plot here since the

region affected by the modification turns out to be unphysical. The reason is that a CFT

with a charged scalar must also contain a neutral scalar as dictated by the bootstrap

bounds obtained for instance in [9, 20]. As it turns out, the absence of neutral relevant

scalars is inconsistent with the presence of charged ones below ∆
(0,0)
− . 1.59. We show

this excluded region with a light shading in the plot. Unfortunately the fermion crossing

equations alone do not enforce this constraint; on the other hand it would manifest itself

in a mixed correlator analysis involving a charged scalar and the fermion.
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Figure 14. Upper bound on the first neutral scalar operator. The shaded region is the allowed

one. The bounds has been computed at Λ = 20. The dashed line represents the GFT.

6.2 Bounds on scaling dimensions: neutral channel

We now present our results for the neutral channel. We remind that this channel contains

(1, 1) conserved current J with ∆ = 3 and (2, 2) stress tensor T with ∆ = 4. In what follows

we show bounds on the first neutral (0, 0) scalar, second (1, 1) operator (after J), second

(2, 2) operator (after T ), first (3, 3) and (4, 4) operators. We then show the bounds on

the NTS (0, 2), (1, 3) and (2, 4) operators. We remind that the dual operators (2, 0), (3, 1)

and (4, 2) are related by hermitian conjugation. As a consequence (`, ` + 2) and (` + 2, `)

operators enter in the same conformal block (2.97) and thus have an identical bound.

As in the charged case, we recall that the values of scaling dimensions of the lightest

GFT operators, according to section 4.1, are

∆
(0,0)
0 GFT = 2∆ψ + 1, ∆

(`,`)
0 GFT = 2∆ψ + `− 1, ∆

(`+2,`)
0 GFT = 2∆ψ + `+ 1. (6.4)

In the second entry ` ≥ 1. As before we depict (6.4) by dashed lines on all the plots below.

We start by considering the bound on the first scalar given in figure 14. This bound is

usually the principal object of bootstrap investigations since it defines the conditions under

which a CFT allows the absence of relevant perturbations. Unfortunately in our case the

bound appears to be very weak, and by construction must allow the GFT solution, which

never contains relevant neutral operators. Thus, without further assumptions the bootstrap

does not give any constraint on the stability or naturalness of CFTs containing fermions.

Since we are mostly interested in local CFTs, we assume the presence of the conserved

current J and the stress tensor T . As a consequence we have not explored the bounds on

the very first (1, 1) and (2, 2) TS operators. Instead we look for the bounds on the second

(1, 1) and second (2, 2) operators. The results are shown in figure 15.

The bounds on the first (3, 3) and (4, 4) operators are given in figure 16. They have

a similar structure: the bound is initially saturated by the GFT line and then eventually
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Figure 15. Left: upper bound on the second (1, 1) TS operator appearing after the conserved

current J . Right: upper bound on the second (2, 2) TS operator appearing after the conserved

stress tensor T . The bounds have been computed at Λ = 16. The dashed lines represent the GFT

lines.
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Figure 16. Left: upper bound on the dimension of the neutral (3, 3) TS operator. Right: upper

bound on the first neutral (4, 4) TS operator. The shaded region is the allowed one. The bounds

have been computed at Λ = 16. The dashed lines represent the GFT lines.

smoothly departs from it as ∆ψ increases. The larger ` the closer it stays to the GFT line.

This pattern might be related to the results of [57, 58] where GFT operators have been

shown to be accumulation points for higher spin operators in CFTs.

We conclude by addressing the (0, 2), (1, 3) and (2, 4) NTS operators. Their bounds

are presented in figures 17, 18(a) and 18(b) respectively. According to the discussion of

section 5 we expect to observe jumps here, similar to the ones in the charged TS sector, at

the position

∆
(`,`)
0 jump = 4 +

`+ `

2
= 5 + `. (6.5)

For ` = 1 and ` = 2 this is indeed the case as can be seen from figure 18. We have also

explicitly checked that this is true for ` ≤ 4.
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Figure 17. Upper bound on the dimension of the first neutral (0, 2) NTS operator. The shaded

region is the allowed one. The bounds has been computed at Λ = 20. The dashed line represents

the GFT.
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Figure 18. Left: upper bound on the dimension of the first (1, 3) neutral NTS operator. Right:

upper bound on the first (2, 4) neutral NTS operator. The shaded region is the allowed one. The

bounds have been computed at Λ = 16. The dashed lines represent the GFT.

We do not observe the jump for the ` = 0 case because the bound starts above ∆ > 5

right from the beginning.53 Thus, in figure 17 we effectively solve the following problem:

given that the first (0, 2) operator has the scaling dimension ∆ = 5, what is the maximal

value of the second lightest (0, 2) operator in a consistent CFT? The only reminiscence

of the jump is the presence of a little bump at ∆ψ ≈ 1.8. It should also be noticed that

this bound is very sensitive to the parameter Λ, for instance we observed a significant

improvement of this bound by increasing Λ from 16 to 20. It is then possible that for high

enough values of Λ we can push the bound below 5 for ∆ψ around 1.5. In that case we

would expect to recover the jump.

53See discussion at the end of section 5.2 for a possible explanation of why this is the case.
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Figure 19. Lower bound on the central charge normalized to the free fermion value Cfree
T . The

dashed line indicates the free fermion theory. The bound has been computed at Λ = 20.

6.3 Bounds on central charges

Let us first address the lower bound on the central charge CT . We remind that a generic

non-conserved TS operator has two independent OPE coefficients but in the case of the

stress tensor they are both fixed by the Ward identities (2.28). We can then construct an

upper bound on the prefactor in (2.118) or equivalently a lower bound on CT . The result

is shown in figure 19, where for convenience we plot the ratio of CT to the one in the free

fermion theory C free
T derived in (4.22). For ∆ψ → 3/2 the bound approaches C free

T , and the

approach is consistent with

CT

C free
T

. 1 + α

√
∆ψ −

3

2
(6.6)

for some α > 0.

For the bound in figure 19 we assumed nothing besides unitarity and crossing symme-

try. One might introduce some assumptions on the spectrum of operators to get a stronger

bound. As an example let us focus on CFTs without relevant scalar (charged or neutral)

operators known as dead-end CFTs.54 We thus assume that ∆
(0,0)
0 ≥ 4 and ∆

(0,0)
− ≥ 4.

The result is shown in figure 20. As we can see, we get a stronger, but only slightly, lower

bounds for CT . The CT bound does not exist for ∆ψ . 1.84, consistently with the bound

on ∆
(0,0)
− . More precisely the bound in figure 7 implies that ∆ψ & 1.84.

We now address the bound on CJ , the central charge associated with the U(1) con-

served current J . In this case the two OPE coefficients are related by a single Ward

identity (2.26). As a result we can build an upper bound on the prefactor of (2.117) or

equivalently a lower bound on CJ as a function of an additional parameter θ ∈ [−π
4 ,

3π
4 ]

54A trivial example of a dead-end CFT is the fermionic GFT studied in section 4. It does not have

relevant neutral scalars and contains the charged ones only for ∆ψ ≤ 2.
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Figure 20. Lower bound on the central charge normalized to the free value under the assumptions

that relevant scalars are absent, both in the neutral and charged sector. The shaded region is

allowed. The ∆ψ . 1.84 region is excluded by the condition of no relevant charged scalars, see

figure 7. The bound has been computed at Λ = 20.

-0.5 0.0 0.5 1.0 1.5 2.0
θ0

2

4

6

8

CJ/CJ
free

(a)

����� ����� ����� ����� ����� ����� �����
θ����

����

����

����

����

����
��/��

����

(b)

Figure 21. Left: lower bound on the global symmetry current central charge CJ , normalized to

the free value, as a function of the parameter θ defined in (2.27). The shaded regions are allowed.

Different shadings correspond (from darker to lighter) to ∆ψ = 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2. Vertical

red lines indicate the extremes of the θ parameter −π/4 and 3π/4. The blue vertical line indicates

the value θ = π/2. The blue dot on this line corresponds to the free fermion theory. The bounds

have been computed at Λ = 16. Right: same plots zoomed aroung θ = π/2, with different shading

corresponding (from darker to lighter) to ∆ψ = 1.501, 1.505, 1.51.

defined in (2.27). Note that the Ward identity only fixes a particular linear combination

of OPE coefficients, which are still free to be arbitrarily large. In our parametrization this

region is mapped to the boundaries of the θ interval.

In figure 21(a) we plot a lower bound on CJ as a function of the angle θ for several values

of ∆ψ. The bounds become stronger when we approach the free fermion theory, ∆ψ = 3/2,
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Figure 22. Left: lower bound on the global symmetry current central charge CJ , normalized to

the free value, as a function of the parameter θ defined in (2.27) for ∆ψ = 1.7. On the vertical

axis we plot the rescaled central charge ξJ defined in (6.7). Different shading corresponding (from

lighter to darker) to Λ = 14, 16, 18, 20, 22. The vertical red lines indicates the values −π/4 and

3π/4 which are the extremes of the θ parameter.

where the CFTs are forced to live in the vicinity of θ = π/2, see (4.21). In figure 21(b),

we show that, as ∆ψ → 1.5, the bound creates a sharper and sharper minimum, whose

value approaches the free fermion CFT from above. As the fermion dimension increases the

bounds get weaker and seem to diverge as θ → 3π/4 or θ → −π/4. As mentioned earlier,

the extremes of the θ interval corresponds to the region of large OPE coefficeints: it is then

not surprising that the large central charge compensates the divergent OPE coefficients.

One can indeed show that the quantity

ξJ ≡ (cos θ + sin θ)2 × CJ/C free
J (6.7)

is finite over the whole θ interval.

Finally we want to explore the possibility that by increasing the number of derivatives

Λ we can exclude part of the θ ∈ [−π
4 ,

3π
4 ] region. We thus construct a lower CJ bound as

a function of θ for a fixed value ∆ψ for several values of Λ. In fact it is convenient to plot

the quantity ξJ . The result is shown in figure 22. We do not see evidences that any value

of θ is disallowed in the large Λ limit.

6.4 Bounds on scalar OPE coefficients

We conclude the exploration of the parameter space of fermion CFTs by studying upper

bounds on products of OPE coefficients for neutral and charged scalar operators as a

function of their scaling dimension ∆. The results are presented in figure 23. Notice that

we use a log scale here. Lines with different colors correspond to different values of ∆ψ. In

figure 23(a) the dashed lines represent the bound under the further assumption that the
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Figure 23. Left: upper bound on the squared OPE coefficient of a charged scalar as a function of

its dimension for ∆ψ = 1.85 (blue line) and ∆ψ = 2.0 (orange line). Dashed lines are the bounds

with the further assumption that the scalar is the lightest in the spectrum. Right: upper bound

on the squared OPE coefficient of a neutral scalar as a function of its dimension for ∆ψ = 1.6

(green line), ∆ψ = 1.85 (blue line) and ∆ψ = 2.0 (orange line). The bounds have been computed

at Λ = 16. Crosses corresponds to the fermion GFT values. Both plots are given in the log scale.

operator is the lightest in the spectrum. We do not plot the dashed lines on figure 23(b)

because they almost coincide with the solid ones.

We indicate the values of squared OPE coefficients in the fermion GFT by the little

crosses. The consistency of the setup requires the bound to pass above them. In the case

when we bound the lightest operator the bound (dashed line) is required to be above only

the leftmost cross (the lightest GFT operator).

As ∆ → 1 the bounds approach zero as expected, due to the presence of a pole at

the scalar unitarity bound ∆→ 1. The bound becomes weaker as soon as we go to higher

values ∆ and reaches a maximum which is clearly visible. In the non-log scale this feature

is much more pronounced.

Finally we address the case of CFTs with a single relevant charged operator. The

scaling dimension of such an operator is confined to the region given in figure 13. Here we

construct in addition the upper and lower bound on its squared OPE coefficient.55 We take

several ∆ψ slices of figure 13 and show the bound in figure 24. For the slices with small

∆ψ we get an island. Going to slices with bigger ∆ψ we see how the island grows. At some

point an isolated island appears in the bottom left corner of figure 24, corresponding to the

lower part of the allowed region in figure 13. For high enough ∆ψ the two islands merge.

7 Conclusions

In this work we studied the constraints imposed by unitarity and crossing symmetry on a

generic 4d CFT containing at least one Weyl fermion. By applying numerical bootstrap

techniques to the four-fermion correlator (1.1) we constructed several bounds on operator

dimensions, central charges and OPE coefficients, with and without extra assumptions on

55A lower bound exists since this operator is isolated by assumption.
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Figure 24. Allowed region in the plane of the dimension and the OPE coefficient of a sin-

gle relevant scalar charged operator. On the horizontal axis δ ≡ ∆
(0,0)
− − 2∆ψ. The bounds

have been computed at Λ = 16. Shaded regions corresponds to (from darker to ligther)

∆ψ = 1.55, 1.6, 1.65, 1.7, 1.73, 1.75. The two isolated regions in the lower left corner correspond

to ∆ψ = 1.7, 1.73. The red mark shows the value of GFT, see section 4.2.

the operator spectrum. The main qualitative advantage of our analysis, compared to previ-

ous bootstrap works in four dimensions, is that we are sensitive to operators transforming

in the mixed-symmetry representations (` + 2, `) and (`, ` + 2), which are invisible in the

case of scalar four-point functions. This is also the first time the numerical conformal

bootstrap has been applied to a non-scalar correlation function in 4d.

A distinguishing feature of many of our plots are the sharp jumps occurring when

the upper bound on charged TS and neutral NTS operators dimensions crosses the value

∆jump = (`+ `)/2 + 4. While discontinuities on the boundary of the allowed region usually

signal the presence of existing CFTs, the integer nature of ∆jump calls for another expla-

nation. Indeed, we tracked down this phenomenon to a peculiar feature of the conformal

blocks entering the crossing equations that leads to the appearance of fake primary oper-

ators. As described in section 5, the occurrence of simple poles of conformal blocks at the

unitarity bound changes the topology of the spectrum of a CFT as probed by a numerical

bootstrap analysis. We refer to this phenomenon as the fake primary effect.

This effect is of course not limited to our case, but in general can have an impact for

any correlation function with intermediate three-point functions not satisfying equations

analogous to (5.4), in any d-dimensional CFT. In particular, we have verified that a jump

observed in the study of mixed correlators in the 3d Ising model [47] is partly induced by

a fake primary effect, see figure 6. As discussed in section 5.3.2, the jumps observed in the

3d fermion bootstrap [25, 26] can also be explained in this way.56

56Other analysis could be affected by the fake primary effect, for instance [48].
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Note that the fake primary effect should not necessarily be interpreted as a mere

artifact of numerical studies. For example, within our four fermion correlator, if a 4d CFT

has an almost conserved charged (1,1) current, there could be a solution to crossing with

a quite high value of the smallest scaling dimension of the charged primary scalar. CFTs

with such a property might then exist and sit on the top of the jump.57 In order to establish

that, one should however check that the effect persists when we increase the precision of

the numerics (higher values of Λ) and also that it is consistent with bounds coming from

other correlators. Figure 8 shows that without extra assumptions the effect persists at

higher values of Λ and a linear extrapolation of the bounds predicts a finite jump value

even at Λ→∞. Figure 9 demonstrates that at finite Λ the jump remains intact even after

assuming a gap in the (1,1) charged channel but only if it is small enough. However, it

is possible, that given an arbitrary small gap in the (1,1) charged channel, there exists a

sufficiently high value of Λ and order of approximation of conformal blocks such that the

numerical algorithm is able to distinguish a primary from a fake primary. We have not

investigated this possibility in this work.

A second highlight of the present work concerns the development of the rational ap-

proximation techniques for spinning conformal blocks in 4d. More precisely, it was known

that generic spinning conformal blocks can be obtained through the action of differential

operators on the seed blocks. Despite the latter being known explicitly, their complicated

structure makes it extremely hard to efficiently construct their rational approximation,

which is ultimately the form needed for numerical studies using SDPB. To overcome this

difficulty, in this work we implemented a recursion relation of [39] for the seed blocks and

used it to express their derivatives in terms of the scalar conformal blocks. The rational

approximations then follow from the expansion of the hypergeometric functions appearing

in the scalar conformal blocks.

Fermion four-point functions with a single Weyl fermion do not allow us to put signifi-

cant constraints on the hypothetical CFTs which are typically invoked in phenomenological

considerations (e.g. in composite Higgs models). A simple enough generalization that might

bring us closer to interesting scenarios is the addition of non-abelian global symmetries.58

However, a severe problem has to be faced: as found in previous numerical studies, the

numerical bounds become weaker and weaker as ∆ψ increases from its free field value 3/2.

As discussed in the introduction, the smallest UV scaling dimensions in gauge theories with

fermions in the fundamental or adjoint representation, such as ordinary and adjoint QCD,

are ∆UV
ψ = 9/2 or ∆UV

ψ = 7/2. CFTs with these values appear to be deep in the allowed

region of parameter space and cannot manifest themselves as a feature on the boundary

even in the presence of extra theory-specific assumptions on the spectrum.59 On the other

57An existence of the solution to a particular set of crossing equations is not enough in general to claim

the existence of a CFT.
58See e.g. figure 8 of [21] for an example with scalars of how global symmetries can lead to stronger

constraints potentially relevant for phenomenological applications.
59Global symmetries alone do not seem to be of great help in this context. We thank Bernardo Zan for

sharing with us some unpublished results on studying “composite” scalars with global symmetries coming

from the SU(2) gauge theory with fundamental fermions.
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hand, CFTs featuring fermions with ∆UV
ψ = 5/2 are more accessible and expected to be

not that far from our current bounds.

The formalism developed in this paper can be straightforwardly extended to super-

conformal field theories (SCFTs), the only missing ingredients being the precise form of

superconformal blocks. The simplest possibility is to identify the external fermion operator

ψ with the unique spinor present in a chiral scalar supermultiplet in N = 1 4d SCFTs.

However, past boostrap works already considered this problem by studying the correlation

function of the superprimary operator sitting in the same supermultiplet [9, 18, 20, 24, 67]

and we do not expect the fermion bootstrap to lead to new results.60 A second more in-

teresting possibility is to interpret ψ as the lowest component of a chiral spinor superfield

Wα which would also contain a two-form Fµν .

Finally, the knowledge of 4d spinning conformal blocks, together with their rational

approximations developed in this work, allows us to investigate other spinning correlators.

Among these, the four-point function of conserved currents is one of the simplest correlators

that should be considered next.
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A Connection between tensor and spinor formalisms

The spinor formalism used in this paper allows to work with operators in arbitrary spin

representation (`, `). In case of traceless symmetric operators (`, `) one can use the tensor

formalism [29, 55] instead. Many results in the literature were obtained using the latter

(for example the values of CJ and CT in free theories), it is thus important to establish a

precise connection between them.

60The correlation function in super-space of chiral operators is indeed fully determined by the lowest

component four-point function [68].
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The index-free operators in both formalism have the following form

O(`,`)
tensor(x, z) ≡ Oµ1...µ`(x)zµ1 . . . zµ` , z2 = 0, (A.1)

O(`,`)
spinor(x, s, s) ≡ O

β̇1...β̇`
α1...α`(x)sα1 . . . sα`sβ̇1

. . . sβ̇`
. (A.2)

Here zµ are constant null vector polarizations and sα and sβ̇ are spinor polarization. In

the ` = ` traceless symmetric case one can relate (A.1) and (A.2) by requiring

zµ = c× (s σµs), (A.3)

where c is an arbitrary constant which is a matter of convention. Requiring than that (A.1)

and (A.2) are equal then fixes also the relation between O with spinor and vector indices.

Tensor structures of n-point functions are constructed as products of basic invariants.

In the tensor (parity invariant) formalism there are two of them [29], they read as

Hij = x2
ij ×

(
(z1 · z2)− 2

(z1 · x12)(z2 · x12)

x2
12

)
, (A.4)

Vk,ij =
x2
kix

2
kj

x2
ij

×

(
(zk · xki)
x2
ki

−
(zk · xkj)
x2
kj

)
. (A.5)

The tensor invariants in spinor formalism are summarized in appendix D of [38]. Given

the connection (A.3) one can express the tensor invariants (A.4) and (A.5) in terms of the

spinor ones as follows

Hij = 2c2 × Îij Îji, Vk,ij = −c× Ĵkij . (A.6)

Two-point correlation functions are uniquely determined and are given in two for-

malisms by

〈O(`,`)
tensor(x1, z1)O(`,`)

tensor(x2, z2)〉 = const × H`
12

x
2 (∆+`)
12

, (A.7)

〈O(`,`)
spinor(x1, s1, s1)O(`,`)

spinor(x2, s2, s2)〉 = const′ ×

(
Î12Î21

)`
x

2 (∆+`)
12

. (A.8)

Here const and const′ are positive real numbers which specify normalization of the CFT

in two formalisms. The two-point function (A.8) is a special case of (2.12) with ` = ` and

arbitrary normalization. It is very convenient to require

const = const′. (A.9)

Due to (A.6) this requirement leads to

c = ±2−1/2. (A.10)

The same relation was found in (C.107) in [59] by equivalently requiring that the conformal

two-point pairing is the same in two formalisms. Note that this is not the convention used

in Wess-Bagger [69]. In addition we can also remove an inconvenient minus sign in the

second equality of (A.6). This leads to our final convention

c = −2−1/2 ⇒ Hij = Îij Îji, Vk,ij = 2−1/2 × Ĵkij . (A.11)
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B Ward identities

In this section we show how to use weight shifting operators to compute Tµν and Jµ Ward

identities starting from the more familiar scalar ones. Let us start with the former. We

recall that starting from the stress tensor we can construct the set of conserved charged

associated to various conformal symmetry generators by

Qε =

∫
S
dSµεν(x)Tµν(x) (B.1)

where the integral is taken over any complete spacelike surface S, which can be taken to

be x0 = 0. For example, we have the Hamiltonian

H =

∫
d3xT00(x), (B.2)

which corresponds to εµ = (1, 0, 0, 0). We can get all the conformal charges LAB,61 by

using appropriate Killing vectors εµAB(x),

LAB ∝
∫
S
dSµενAB(x)Tµν(x). (B.3)

Here the proportionality coefficient depends on the normalization convention for εAB and

LAB; we will not need it. The expressions for εAB are the simplest in the embedding

formalism. For example, in the embedding formalism of [29] these Killing tensors are

given by

εAB(X,Z) = X[AZB]. (B.4)

In the 6d embedding formalism used in this paper they are given by

εab(p) = SaSb. (B.5)

Here we used an equivalent set of indices for the adjoint of SO(4, 2) by using the isomor-

phism with SU(2, 2). It will be convenient to work with a formal primary vector operator

Qµ(y) of dimension −1 defined as

Qµ(y) = εµAB(y)LAB. (B.6)

The fact that it transforms as a primary follows from transformation properties of εµAB and

LAB. Note that despite the fact that Qµ(y) is labeled by a point y, it is by no means a

local operator. Using the fact that62

εµAB(y)εν,AB(x) ∝ 〈εµ(y)εν(x)〉, (B.7)

61Here A and B are vector indices in Rd,2, and LAB = −LBA are the generators of the conformal algebra

SO(d, 2).
62This follows straightforwardly from the explicit expressions for εAB . Alternatively, it simply suffices to

check the conformal transformation properties on both sides.
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where in the right hand side we mean the standard two-point function for vector operators

of dimension −1, we can write

Qµ(y) = R[T ]µ(y) ≡ N
∫
S
dSσ〈εµ(y)εν(x)〉Tσν(x), (B.8)

for some normalization factor N . The notation R[T ] stresses that we have an object which

is obtained from T by applying an integral transform. This transform is conformally-

invariant, since it yields a vector primary Qµ of dimension −1, and is a special case of the

integral transforms considered in [63]. We will see that R[T ] encodes the Ward identities

in a convenient form.

The Ward identities express the fact that if we use T in a three-point function to

construct the charges, these charges should act appropriately on the other two primary

fields. In particular,

〈0|O1(p1)R[T ](p3)O2(p2)|0〉 = 〈0|O1(p1)Q(p3)O3(p2)|0〉
= εAB(p3)〈0|O1(p1)LABO2(p2)|0〉
= εAB(p3)〈0|O1(p1)(LABO2)(p2)|0〉, (B.9)

where L are the differential operators which implement the action of the conformal group

generators on primaries,

[LAB,O(p)] = (LABO)(p). (B.10)

The right-hand side contains a two-point function and thus is only non-trivial if O2 = O1,

which we assume in what follows.63 The general Ward identity is then

〈0|O(p1)R[T ](p3)O(p2)|0〉 = εAB(p3)〈0|O(p1)(LABO)(p2)|0〉. (B.11)

Let us analyze the general features of the equation (B.11). On both sides we have natu-

ral conformally-invariant objects. For example, on the left hand side we have a conformally-

invariant integral transform applied to a conformally-invariant three-point function. As we

discussed above, R[T ] = Q transforms as a primary vector field of dimension −1. Further-

more, it satisfies the conformal Killing equation. This is simply by definition (B.8), since

εµ(x) satisfies it in the two-point function. The same is true of the right hand side. There-

fore, we can expand both sides in the appropriate basis of three-point tensor structures Ta3.

The tensor structures Ta3 are the conformally-invariant three-point tensor structures for op-

erators O, O, and a vector primary of dimension −1. Furthermore, these structures should

satisfy the conformal Killing equation for the vector primary. After the expansion (B.11)

takes form ∑
a

laTa3 =
∑
a

raTa3, (B.12)

63Even though the right hand side vanishes, the left hand side can still be non-zero and give a non-trivial

condition on the three-point function coefficients. This will not be relevant for our discussion.
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where la and ra are the coefficients of the left- and right-hand side expressions. The Ward

identity simply requires that la = ra.

As we can see, the Ward identity for a given three-point function can in general include

more then one equation if there is more that one Ta3. The counting of such three-point

functions is a bit complicated due to the conformal Killing equation that they must solve.

Fortunately, precisely such structures have been considered in [39]. Their result is simply

that the number of Ta3 is the number of Lorenz invariants64

(ρO ⊗ ρ∗O ⊗ (• ⊕ adj))SO(d−1,1), (B.13)

where, ρO is the Lorentz irrep of O, ρ∗O is the dual irrep, and adj is the adjoint irrep of

SO(d − 1, 1). In our case of d = 4 we have adj = (2, 0) ⊕ (0, 2), and we are interested in

O = ψ, which has irrep ρ = (1, 0). We find

(1, 0)⊗ (1, 0)⊗ (• ⊕ (2, 0)⊕ (0, 2)) = 2 • ⊕ . . . (B.14)

where . . . represent non-scalar irreps. This means that there are two possible tensor struc-

tures and thus 2 constraints from the Ward identity.

To find these constraints it is useful to employ weight-shifting operators and use the

scalar case O = φ as the seed. In the case O = φ the three-point function

〈φ(p1)φ(p2)T (p3)〉 = −
∆φ

3π2

(
Ĵ3

1,2

)2
K3, (B.15)

where K3 is the appropriate three-point kinematic factor, and the two-point function

〈φ(p1)φ(p2)〉 =
1

X
∆φ

12

(B.16)

satisfy the Ward identity (B.11) [55]. We can compute the right-hand side of (B.11)

straightforwardly by using CFTs4d package. Using opL function of CFTs4D we find

εba(p3)〈0|φ(p1)(Labφ)(p2)|0〉 = 2∆φĴ3
1,2K3. (B.17)

This means that a correctly-normalized R operation should take the standard structure

〈φφT 〉(·) (which is the same as (B.15) but without −∆φ/3π
2 prefactor) to

〈0|φ1(p1)R[T ](p3)φ(p2)|0〉 = −6π2Ĵ3
1,2K3. (B.18)

Since the transform R acts only on p3, it commutes with weight-shifting operators

acting on p1 and p2, so we can use the above equation as a seed to compute action of R

on other three-point functions involving T . In particular, using the differential operators

defined in section 3.2 we find

〈0|ψ(p1)R[T ](p3)ψ(p2)|0〉 = 2π2
(
−(3λ1

〈ψψT 〉 + 2λ2
〈ψψT 〉)̂I

1,2Ĵ3
1,2 + λ2

〈ψψT 〉Î
1,3Î3,2

)
K3,

(B.19)

64This rule works if there are no differential equations imposed on O.
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while the right hand side computed by CFTs4D is

εba(p3)〈0|ψ(p1)(Labψ)(p2)|0〉 =
(
−i(2∆ψ + 1)̂I1,2Ĵ3

1,2 + 2îI1,3Î3,2
)
K3. (B.20)

This leads precisely to the relations (2.28).

The discussion above applies almost identically to the case of spin-1 conserved current,

except that everywhere the adjoint irrep of SO(2, d) must be replaced with the trivial irrep,

which makes matters much simpler. In particular, R[J ] is given by

R[J ] =

∫
d3xJ0(x) (B.21)

and produces a constant function simply equal to the U(1) charge Q. Accordingly, the

right-hand side of (B.11) is replaced with

QO〈O(p1)O(p2)〉. (B.22)

Due to this, we effectively get that the quantities equated in the J analog of (B.11) are

two-point functions and we always get a single condition. In the case of scalars it is

straightforward to check that the standard three-point function 〈φφJ〉(·) = Ĵ3
12K3 gets

sent by R to

2
√

2π2i〈φ(p1)φ(p2)〉. (B.23)

Applying weight-shifting operators we find

〈0|ψ(p1)R[J ](p3)ψ(p2)|0〉 = i
√

2π2
(

2λ1
〈ψψJ〉 + λ2

〈ψψJ〉

)
Î12X

−∆ψ− 1
2

12 , (B.24)

which has to be equal to

q〈ψ(p1)ψ(p2)〉 = iqÎ12X
−∆ψ− 1

2
12 , (B.25)

leading to (2.26).

C Parity constraints

If the CFT under consideration preserves space parity, there is a unitary operator P which

relates various local operators in the spectrum.65 Given an operator O in the (`, `) spin

representation, the generic action of space parity is, according to equation (A.26) in [38],

PO(`,`)
∆,ρ (p)P† = Õ(`,`)

∆,ρ′(Pp), Pp ≡ (Px,Ps,Ps), (C.1)

65By combining P with CPT symmetry, one can construct CT symmetry. In principle, CT is a valid

anti-unitary time-reversal symmetry, so we may say that if theory preserves parity, then it also preserves

time-reversal. If we demand additional properties from time-reversal (such as particular commutation rules

with global charges, which is traditional in some contexts) which are not satisfied by CT , it then may be

meaningful to say that there is no time-reversal.
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where the arguments in the right-hand side are given by

(Px)µ = (x0,−xi), (Ps)α = isα̇, (Ps)α̇ = isα, (C.2)

and Õ is some local operator in the (`, `) representation. In equation (C.1) we added an

explicit index ρ specifying the representation of local operators under the global symmetry.

If parity commutes with the global symmetry we have ρ = ρ′. At the level of correlation

functions parity implies

〈O(p1) . . .O(pn)〉 = 〈Õ(Pp1) . . . Õ(Ppn)〉. (C.3)

In our setup we have a U(1) symmetry, thus the charge under this U(1) plays the role

of ρ. We can distinguish between vectorial and axial U(1) symmetry by the commutation

rule of P with the charge Q,66,67

PQP† = ±Q, (C.4)

where (+) sign is for vectorial and (−) for axial. According to (C.1) we can write the parity

transformation property for the Weyl fermion (2.1) as

Pψ∆ψ ,q(p)P† = ψ̃
(0,1)
∆,±q(Pp), (C.5)

where in the right-hand side the sign is the same as in (C.4). The operator ψ̃ can either be

related to the hermitian conjugate of the same Weyl fermion ψ or to a hermitian conjugate

of a different Weyl fermion which we denote by χ,

ψ̃
(0,1)
∆ψ ,±q(p) = ηψψ∆ψ ,±q(p) or ψ̃

(0,1)
∆ψ ,±q(p) = ηψχ∆ψ ,±q(p). (C.6)

We first address the second case in (C.6). The two Weyl fermions ψ and χ can be

combined into a four-component Dirac fermion ΨD ≡ (ψα, χ
α̇), and this option is consistent

with both axial and vectorial symmetry. In this work we do not consider this situation

since we deal only with one Weyl fermion. In order to bootstrap such theories we would

need to add extra mixed correlators with both ψ and χ, which would complicate the setup

significantly. The results of this paper still apply to theories with Dirac fermions but are

not optimal.

Now let us address the first case in (C.6). Clearly, for the vectorial U(1) symmetry

q = 0 and thus we drop the charge label everywhere below. As a consequence we can

construct a four-component Majorana fermion ΨM = (ψα, ψ
†α̇). The absence of charges

imply that there is no distinction between the “charged” and “neutral” sectors discussed in

section 2.1, in other words the exchanged operators appearing in both channels are actually

the same. In practice when constructing the bounds if the gap is imposed on an operators

66If the full global symmetry group is larger than U(1) then there can be more general options, which we

do not consider here for the sake of simplicity.
67One might worry that axial U(1) symmetries can be broken by the ABJ anomaly. However, the charge

Q can still be a Cartan of a non-abelian symmetry. Furthermore, even if U(1) is broken by the ABJ anomaly,

it is generically only broken down to a sufficiently large Zn subgroup, and most of the analysis still applies.
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in neutral channel, the same gap should be imposed on the operator with the same spin in

the charged channel and vice versa. For an axial symmetry the charge q can be non-zero,

and the analysis is not modified.

The parity transformation rules can be summarized as

Pψ(p)P† = ηψψ(Pp), (C.7)

Pψ(p)P† = ηψψ(Pp). (C.8)

Applying hermitian conjugation to (C.7) and comparing it to (C.8) we deduce that

ηψ = η∗ψ. (C.9)

Applying parity transformation to (C.7) we should get back the original operator, thus

P2ψ(p)P†2 = −|ηψ|2ψ(p), (C.10)

where the (−) sign comes from (P2s)α = i(Ps)α̇ = i2sα = −sα. This implies that states∫
dpf(p)ψ(p)|0〉 are eigenstates of P2 with eigenvalue −|ηψ|2. Since P is unitary we find

|ηψ|2 = 1, P2ψ(p)P†2 = −ψ(p). (C.11)

If all operators in the theory can be obtained by repeated OPE of ψ, this implies that

P2 = (−1)F , but we won’t be needing this conclusion.

Let us see what are the implications of (C.7) and (C.8) for our setup. Applying (C.6)

to the four-point function (2.2) we get

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 = |ηψ|4〈ψ(Pp1)ψ(Pp2)ψ(Pp3)ψ(Pp4)〉. (C.12)

Using the expansion (2.52) of the four-point correlation function into tensor structures,

the anti-commutation properties of Weyl fermions and (C.11), we can rewrite the parity

constraint (C.12) as

3∑
i=1,±

gi,±(z, z)Ti,± =

3∑
i=1,±

gi,±(z, z)π12π34PTi,±, (C.13)

where PT are the tensor structures obtained from T by applying (C.2). Notice that (z, z)

are invariant under parity which is clear from their definition (2.44). We have

PTi,± = Ti,±, i = 1, 2; PT2,+ = T2,+; PT2,− = −T2,−. (C.14)

As a result the only constraint we get from (C.13) is the requirement that

g2,−(z, z) = 0. (C.15)

We see that this constraint is automatically satisfied by (2.54) coming from permutation

symmetry. Thus, parity requirement does not bring extra constraints on the four-point

function (2.2).
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In the same way one can study parity constraints on the three-point functions defined

in section 2.1 assuming that there are no new operators in the spectrum, so parity relates

existing operators among themselves. They will enforce some extra reality properties on

the OPE coefficients λ. Our setup is insensitive to such constraints. Indeed, the only way

that λ′s enter into our equations is, schematically, through

tr (PG) , (C.16)

where P are the Hermitian matrices

P ba =
∑
λ

λa(λb)∗ (C.17)

and G are various conformal blocks. If phase of λ’s is fixed, then P is restricted to be real

symmetric. However, the conformal blocks G turn out to be themselves real symmetric

matrices. This implies that only the real part of P contributes to (C.16), and in practice

there is no difference whether P is Hermitian or real symmetric.

Since our setup is insensitive to the reality properties of λ’s, we will not discuss

them further.

D Smoothness constraints

In this section we derive the constraints in (2.57), which follow by imposing smoothness

properties of the four-point function in conformal frame. Constraints of this kind have

been described in appendix A of [37], but we repeat the logic here, adding a few details for

the reader convenience. We focus on the ordering 〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉, but the logic

is similar for other orderings.

As discussed in [37], at generic z, z, four-point tensor structures must be invariant

under the conformal frame stabilizer group, in our case SO(2). This means that the six

structures T0
i defined in (2.49) are singlets under SO(2). On the other hand, at the special

configuration z = z, the stabilizer group enhances from SO(2) to SO(3),68 and the struc-

tures T0
i can be recast in SO(3) representations. Since the external fermions transform in

the j = 1/2 representation of SO(3), we have the tensor product

1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (D.1)

We then see that the six structures T0
i can be seen as the neutral components of 1 quintuplet,

3 triplets and 2 singlets under SO(3). Let us denote by T̂0
i the SO(3) diagonal structures

defined by (D.1). Instead of (2.48), we could alternatively expand the four-point function

in this basis:

〈ψ(p1)ψ(p2)ψ(p3)ψ(p4)〉 =

6∑
i=1

T̂0
i ĝ

0
i (z, z). (D.2)

68In our case SO(3) is actually SO(2, 1) and stabilizes the third spatial axis. We will keep using SO(3)

since it does not alter the discussion.

– 71 –



J
H
E
P
0
6
(
2
0
1
9
)
0
8
8

We see from (D.1) that at z = z there are only two SO(3) invariant structures, which

implies that the four functions ĝi(z, z) associated to non-SO(3) invariant structures must

vanish in the limit z → z. We can determine the way in which they vanish by matching the

SO(2) and SO(3) descriptions close to the z = z line. Indeed, in the conformal frame (2.47),

we can expand each ĝ0
i (z, z) in the variable yp = (z − z, 0, 0), which is a vector under the

SO(3) stabilizer group:

ĝ0
i (z, z) = ĝ

p1...pj
i (z + z)yp1 . . . ypj +O(y2) , (D.3)

where j = 0, 1, 2 depending on the corresponding structure defined by (D.1). We conclude

that, in the limit z → z, the function ĝ0
i vanishes as (z − z)j , where j is the SO(3)

representation of the associated structure T̂0
i . Furthermore, these combinations have to be

even (odd) under z ↔ z for even (odd) j.

The relation between the structures T0
i and T̂0

i is easily found using the tabulated

Clebsch-Gordan coefficients up to spin 2. We get

T0 = R T̂0, (D.4)

where R is the orthogonal matrix

R =



1√
6

1√
6

1√
6

1√
6

1√
6

1√
6

0 0 0 0 − 1√
2

1√
2

0 0 − 1√
2

1√
2

0 0

− 1√
2

1√
2

0 0 0 0

−1
2 −1

2 0 0 1
2

1
2

− 1
2
√

3
− 1

2
√

3
1√
3

1√
3
− 1

2
√

3
− 1

2
√

3


(D.5)

and the structures T̂0
i are ordered as eigenstates corresponding to spins {2, 1, 1, 1, 0, 0},

respectively. Alternatively, the decomposition in SO(3) irreducible representations can be

obtained by solving the eigenproblem for the SO(3) quadratic Casimir operator in the space

of the T0
i ’s. We remind that the Casimir reads

CSO(3) = M01M01 +M02M02 −M12M12. (D.6)

Using CFTs4D we compute the action of the Casimir69 to be

CSO(3)T0
i = Mi

jT0
j , (D.7)

where

M =



2 0 1 1 1 1

0 2 1 1 1 1

1 1 2 0 1 1

1 1 0 2 1 1

1 1 1 1 2 0

1 1 1 1 0 2


. (D.8)

Diagonalizing the matrix M gives back the rotation matrix (D.5).

69The action of the SO(3) Casimir operator is implemented in a Mathematica notebook attached to

this work.
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We thus find that the structures T̂1, T̂5, T̂6 are even under z ↔ z, while the structures

T̂2, T̂3, T̂4 are odd under z ↔ z, ĝ0
1 should vanish as (z − z)2, while ĝ0

2,3,4 should vanish as

z − z. The last requirement is in fact trivial since these functions are odd anyway, while

the first reads

ĝ0
1 = R1

ig0
i (z, z) =

1√
6

6∑
I=1

g0
i (z, z) = O((z − z)2). (D.9)

Rephrasing the above condition in terms of gi,± one obtains precisely (2.57).

Finally let us understand z ↔ z symmetry. Note that it is implemented by a boost

by iπ in the plane 0-1 or 0-2 [37]. It does not matter which one to use because of SO(2)-

invariance. We will use 0-2. In the notation of [38], it sends

η → ξ, ξ → −η, η → −ξ, ξ → η, (D.10)

and thus, in the notation of [38],[
q1 q2 q3 q4

q1 q2 q3 q4

]
→ (−1)(`−`)/2

[
−q1 −q2 −q3 −q4

−q1 −q2 −q3 −q4

]
. (D.11)

In our case we have (−1)(`−`)/2 = 1. By looking at our definitions of tensor structures, we

see that

T0
1 − T0

2, T0
3 − T0

4, T0
5 − T0

6 (D.12)

are odd under z ↔ z, while

T0
1 + T0

2, T0
3 + T0

4, T0
5 + T0

6 (D.13)

which implies the relation in (2.56).

We do not repeat the analysis here, but similar arguments lead to the constraints listed

in (2.70) and (2.71).

E Rational approximations of scalar blocks

In even dimensions the standard Zamolodchikov-like recursion relations [8, 46, 47] tradi-

tionally used for rational approximations of scalar blocks becomes more complicated,70 and

in this work we instead use the exact Dolan-Osborn expression [44, 45],

Ga,b∆,`(z, z) = (−1)`
zz

z − z
[k∆−`−2(a, b; z)k∆+`(a, b; z)− k∆−`−2(a, b; z)k∆+`(a, b; z)] , (E.1)

kβ(a, b; z) = zβ/22F1(a+ β/2, b+ β/2, β, z). (E.2)

70Closer to the completion of this work we have implemented the scalar Zamolodchikov-like recursion

relations directly in 4d. This approach was used in this work only for the upper bound on CT . It will be

described elsewhere.
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The parameters a and b are given by

a = −∆1 −∆2

2
, b =

∆3 −∆4

2
, (E.3)

where ∆i are the scaling dimensions of the external scalars. The notation above slightly

differs from the main text and we use it here for convenience. Let us start by analyzing

the k-function, which in large-β limit behaves as

kβ(a, b; z) = (4ρ)β/2

[
1√

1− ρ2

(
1 + ρ

1− ρ

)a+b

+O(β−1)

]
, (E.4)

ρ =
1−
√

1− z
1 +
√

1 + z
=

z

(1 +
√

1− z)2
, (E.5)

z =
4ρ

(1 + ρ)2
, (E.6)

which can be derived from an integral representation or directly from the hypergeometric

equation. This function has poles at β = −m, m ∈ Z≥0,

kβ(a, b; z) =
Ra,bm
β +m

km+2(a, b; z) +O(1), β → −m, (E.7)

Ra,bm =
(−1)m(a−m/2)m+1(b−m/2)m+1

m!(m+ 1)!
. (E.8)

Note that for (half-)integral a or b, half of the residues vanish starting from sufficiently large

m. In practice this is useful for simplifying the denominator of the rational approximation

when there are relations between external scalar dimensions, which is the case for the scalar

blocks we need.

We can therefore as usual define

hβ(a, b; z) = (4ρ)−β/2kβ(a, b; z), (E.9)

which has the poles

hβ(a, b; z) = (4ρ)m+1 Ra,bm
β +m

hm+2(a, b; z) +O(1), β → −m. (E.10)

At the same time we know the behavior of hβ at β →∞, so that we can conclude

hβ(a, b; z) =
1√

1− ρ2

(
1 + ρ

1− ρ

)a+b

+

∞∑
m=0

(4ρ)m+1 Ra,bm
β +m

hm+2(a, b; z). (E.11)

Naively this appears to be an expansion in powers of 4ρ, since hm+2 approaches a constant

value at large m, but in fact it is in powers of ρ because there is a 4−m in the asymptotic

behavior of Ra,bm ,

Ra,bm = 4−m
(−1)m

2π
sin(πa− πm/2) sin(πb− πm/2)(1 +O(m−1)). (E.12)

This expression also reproduces the selection rule for poles at (half-)integral a or b.
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This structure of k-functions implies that there are poles in Ga,b∆,` at

∆ = `+ 2−m, m ∈ Z≥0, (E.13)

and the poles at m > 2`+ 1 are in general double poles.

To compute rational approximations of the blocks Ga,b∆,` first note that we can set

z = 1
2 + x + y, z = 1

2 + x − y in (E.1), and then straightforwardly Taylor-expand. This

essentially gives us

∂nx∂
m
y G

a,b
∆,`

(
1

2
,

1

2

)
=
∑
n′,m′

cn,mn′,m′∂
n′k∆−`−2

(
a, b;

1

2

)
∂m
′
k∆+`

(
a, b;

1

2

)
(E.14)

It is easy to check that n+m− 2 ≤ n′ +m′ ≤ n+m+ 1. This gives us an expression for

derivatives of Ga,b∆,` in terms of products of derivatives of k-functions. We can furthermore

reduce it to products of derivatives of h-functions with polynomial (in ∆) coefficients, so

we can simply approximate these h-functions.

We thus consider approximating

h∆−`−2(a, b; z)h∆+`(a, b; z) (E.15)

to a fixed order in ρ-expansion. In other words, we will simply substitute expansions (E.11)

and truncate them so that the highest-order terms in the sum are proportional to ρnρm

with n+m =keptPoleOrder, a parameter to our approximation. Note that this is as good

as keeping first keptPoleOrder terms in both expansions (and sometimes even better), but

produces fewer terms.

Let us comment a bit on the structure of the poles in (E.15). Consider first-order poles

in (E.15), ∆ = `+ 2−m, 0 ≤ m ≤ 2`+ 1. The behavior near these poles is given by

(4ρ)m+1Ra,bm
∆− (`+ 2−m)

hm+2(a, b; z)h2`+2−m(a, b; z) (E.16)

and thus they contribute at ρ-order m + 1. Now consider the second order poles at ∆ =

−`−m, m ≥ 0. The pole behavior is

(4ρ)2`+3+m(4ρ)m+1Ra,b2`+2+mR
a,b
m

(∆− (−`−m))2
h2`+4+m(a, b; z)hm+2(a, b; z)

+
(4ρ)2`+3+mRa,b2`+2+m

∆− (−`−m)
h2`+4+m(a, b; z)hreg

−m(a, b; z)

+
(4ρ)m+1Ra,bm

∆− (−`−m)
hreg
−2`−2−m(a, b; z)hm+2(a, b; z). (E.17)

Here hreg
β (a, b; z) is defined by

hβ(a, b; z) =
(4ρ)m+1Ra,nm

β +m
hm+2(a, b; z) + hreg

−m(a, b; z) +O(β +m), (E.18)
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problem (A) (B)

precision 400 400

findPrimalFeasible True False

findDualFeasible True False

detectPrimalFeasibleJump True False

detectDualFeasibleJump True False

dualityGapThreshold 10−10 10−10

primalErrorThreshold 10−30 10−30

dualErrorThreshold 10−20 10−20

initialMatrixScalePrimal 1020 1020

initialMatrixScaleDual 1020 1020

feasibleCenteringParameter 0.1 0.1

infeasibleCenteringParameter 0.3 0.3

stepLengthReduction 0.7 0.7

choleskyStabilizeThreshold 10−120 10−120

maxComplementarity 10100 10100

Table 1. SDPB parameters for bounds on scaling dimensions (A) and OPE coefficients (B).

and can be computed from (E.11). We have a second order pole at ρ-order 2m+2`+4, a first

order pole at ρ-order 2`+3+m and a first order pole at ρ-order m+1. Since these contribute

at different ρ-orders, they are cut off at different values of m. Therefore, effectively in our

ansatz we will have first-order poles which come from second-order poles with second-order

piece neglected due to its high ρ-order. Similarly, when computing hreg
β from (E.11), we

truncate (E.11) at the ρ-order dictated by the power of ρ or ρ multiplying hreg
β in (E.17).

In practice we do not care to do the same for hβ themselves since they, together with their

derivatives, are efficiently calculated by the Mathematica built-in support for 2F1.

F Parameters of numerical searches

There are two separate instances where various parameters needed for numerical searches

should be chosen appropriately. First, we address parameters governing truncation of

the bootstrap equations of section 2.3 and rational approximations of conformal blocks in

section 3.3. Second, we address SDPB parameters [43] used for solving the semidefinite

problems of section 2.5.

The strength of numerical bounds depends on the number of total derivatives Λ (which

in principle should be ∞). In the majority of plots we use Λ = 16 or Λ = 20. Another

truncation parameter is the maximal spin of “exchanged” operators denoted by maxSpin.

For a given Λ any bound should be independent of maxSpin, we find that for our setup one

can choose

maxSpin = Λ + 15. (F.1)

Failure of taking maxSpin big enough results in stronger but incorrect bounds. The pa-

rameter characterizing the precision of the conformal block approximation is denoted by
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keptPoleOrder. We have discovered that the choice of this parameter depends on the

scaling dimension of the Weyl fermion ∆ψ. We divide all the values ∆ψ into two parts:

close and far from the fermion unitarity bound. We then use

keptPoleOrder = Λ + 15, ∆ψ ≥ 1.6; (F.2)

keptPoleOrder = Λ + 25, ∆ψ ∈ [1.505, 1.6].

Better ways of approximating the scalar blocks than the one described in appendix E will

solve this inconvenience. In obtaining the final bootstrap equations we use the following

number of digits after the comma: prec=200.

In general we have two distinct types of semi-definite problems: bounds on scaling

dimensions (A) and bounds on OPE coefficients (B). We thus use two different sets of SDPB

parameters for (A) and (B). We make a choice independent on Λ which is summarized in

table 1.
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