
Democratic Population Decisions Result in Robust Policy-
Gradient Learning: A Parametric Study with GPU
Simulations
Paul Richmond1, Lars Buesing2, Michele Giugliano3, Eleni Vasilaki1*

1 Department of Computer Science, University of Sheffield, Sheffield, United Kingdom, 2 Gatsby Computational Neuroscience Unit, University College London, London,

United Kingdom, 3 Department of Biomedical Science, University of Antwerp, Wilrijk, Belgium

Abstract

High performance computing on the Graphics Processing Unit (GPU) is an emerging field driven by the promise of high
computational power at a low cost. However, GPU programming is a non-trivial task and moreover architectural limitations
raise the question of whether investing effort in this direction may be worthwhile. In this work, we use GPU programming to
simulate a two-layer network of Integrate-and-Fire neurons with varying degrees of recurrent connectivity and investigate
its ability to learn a simplified navigation task using a policy-gradient learning rule stemming from Reinforcement Learning.
The purpose of this paper is twofold. First, we want to support the use of GPUs in the field of Computational Neuroscience.
Second, using GPU computing power, we investigate the conditions under which the said architecture and learning rule
demonstrate best performance. Our work indicates that networks featuring strong Mexican-Hat-shaped recurrent
connections in the top layer, where decision making is governed by the formation of a stable activity bump in the neural
population (a ‘‘non-democratic’’ mechanism), achieve mediocre learning results at best. In absence of recurrent
connections, where all neurons ‘‘vote’’ independently (‘‘democratic’’) for a decision via population vector readout, the task is
generally learned better and more robustly. Our study would have been extremely difficult on a desktop computer without
the use of GPU programming. We present the routines developed for this purpose and show that a speed improvement of
5x up to 42x is provided versus optimised Python code. The higher speed is achieved when we exploit the parallelism of the
GPU in the search of learning parameters. This suggests that efficient GPU programming can significantly reduce the time
needed for simulating networks of spiking neurons, particularly when multiple parameter configurations are investigated.

Citation: Richmond P, Buesing L, Giugliano M, Vasilaki E (2011) Democratic Population Decisions Result in Robust Policy-Gradient Learning: A Parametric Study
with GPU Simulations. PLoS ONE 6(5): e18539. doi:10.1371/journal.pone.0018539

Editor: Paul L. Gribble, The University of Western Ontario, Canada

Received December 1, 2010; Accepted March 3, 2011; Published May 4, 2011

Copyright: � 2011 Richmond et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been supported by the Royal Society International Joint Projects grant 2009/R4 (royalsociety.org) for EV and MG. MG acknowledges
support from the Flanders Research Foundation grants G.0836.09 and G.0244.08 (www.fwo.be). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: E.Vasilaki@sheffield.ac.uk

Introduction

As the bounds of single processor speed-up have reached a

stringent limit, the self-fulfilling ‘‘Moores Law’’ dictating a

doubling of computational speed roughly every 24 months can

only be realised by increasing the number of processing cores on a

single chip. Inevitably this has serious implications on the design of

algorithms that must take into account the resultant parallel

architectures (parallelisation). Similar to multi-core CPU systems,

the Graphics Processing Unit (GPU) is a parallel architecture

which is currently emerging as an affordable supercomputing

alternative to high performance computer grids. In contrast to

multi-core parallelism, the GPU architecture consists of a much

larger number of simplistic vector processing units which follow a

stream-like programming model [1,2]. The availability of high

quality GPU programming tool-kits such as the Compute Unified

Device Architecture (CUDA) and Open Computing Language

(OpenCL), has without doubt propelled GPU computing into the

mainstream. Despite this, GPU programming requires careful

optimisations and knowledge of the underlying architecture in

order to gain notable performance speed-ups. It is therefore

imperative to use only algorithms which form a good fit to GPU

hardware by exploiting large amounts of fine grained parallelism

when applying GPU programming to scientific problems such as

the simulation of populations of biologically plausible neurons

which we explore in this paper.

The purpose of this work is twofold. First, we demonstrate that

GPU can be efficiently used in the context of Computational

Neuroscience, as a low cost alternative to computer clusters.

Second, using the GPU computing power, we study how specific

network architectures of biologically plausible (spiking) neurons

perform in learning an association task. More specifically, we

simulate a two layer network of spiking neurons entirely on the

GPU. The input layer represents the location of an artificial animal

and the output layer its decision, i.e. which action to perform. We

investigate two alternative architectures. In the first, the output layer

has recurrent, ‘‘Mexican-Hat’’-type connectivity[3–5], i.e. short

range excitatory, long range inhibitory connections. This type of

connectivity has been identified in cortex organisation [6–8] and

offers a ‘‘plausible’’ neural network implementation for reading out

the information (the decision) encoded in the output layer. We term

this scenario ‘‘non-democratic’’ decision making, as the participa-

PLoS ONE | www.plosone.org 1 May 2011 | Volume 6 | Issue 5 | e18539

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sissa Digital Library

https://core.ac.uk/display/287451537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tion of the neurons in the decision is influenced by others via

recurrent (lateral) connections. As a consequence, first occurring

spikes can significantly affect the activity bump formation in the

recurrent network. In the second architecture there are no recurrent

connections. The readout of the encoded information in the output

layer is done via a ‘‘population vector’’ [7,9], without taking into

account how this could be implemented in neural networks terms.

We term this scenario ‘‘democratic’’ decision making, as every

neuron participates in the decision without being influenced by

others. Learning in both scenarios takes place by modifying the

synapses between the input and the output layer according to a

spike-based Reinforcement Learning rule derived from reward

optimisation by gradient ascent [10–12], an approach that can be

linked to policy gradient methods in machine learning [13,14].

Our simulations indicate that ‘‘non-democratic’’ decision

making, which is based on ‘‘Mexican-Hat’’-type connectivity, is

prone to ‘‘crosstalk’’ of learning when input-layer neurons are

participating in the representation of multiple states. In our setup,

this is due to overlapping neuronal receptive fields. We borrow the

term ‘‘crosstalk’’ from the field of electronics in the following sense.

If a neuron in the input layer is active during more than one state

(network input), it can be considered as part of more than one sub-

network. Synaptic changes that take place in one sub-network

involving this specific neuron may affect the output of another sub-

network, inducing therefore ‘‘noise’’ in the decision making

process. The advantage of the ‘‘democratic’’ decision making

over the ‘‘non-democratic’’ is that ‘‘crosstalk’’ tends to cancel out

due to the linear nature of the population vector readout and the

symmetry of the task. We further underline this argument with sets

of experiments, which investigate the influence of varying the

reward function and the effect of additive noise. The results of the

study are presented in section Results.

The simulations presented here would have been extremely

time consuming (or even virtually impossible) on a low cost

desktop computer without the use of GPU programming. Our

GPU simulations shows speed-ups of up to a factor of 42

compared to a serial implementation running on a Intel i7-930

quad core CPU. Our implementation is also parallel over a

number of independent simulations, enabling us to produce

statistically accurate results and also to perform rapid searches

over various parameter configurations. This functionality has

allowed us to scan vast parameter spaces demonstrating important

and general differences between the two systems of ‘‘democratic’’

and ‘‘non-democratic’’ decision making. The code developed is

presented in Methods together with a brief introduction to GPU

Programming and a discussion of the resulting performance gain

and future work.

Results

In this section, we introduce and signify the importance of the

modelling problem, which is an essential element of a navigation

scenario. We describe the network architecture in detail and

present the simulation results for various configurations. Finally,

we draw conclusions related to the performance of the learning

system. More specifically, when the neurons in the output layer do

not equally contribute to the decision taken, but are influencing

each other via strong, non-linear dynamics, the system is more

susceptible to noise and learning performance generally degrades.

The Simulation Paradigm
Action selection mechanisms are often modelled as ‘‘winner-

take all’’ or ‘‘winner-take most’’ networks. Making a decision

involves some kind of competition [15,16] where the winner

exhibits maximum activation and hence represents the decision

whereas the losers’ activity decays to a low state. These

mechanisms, that are typically modelled by lateral connectivity,

are not only attractive from a conceptual point of view but are

scenarios worthy of exploration when building models, as they can

provide simple mechanisms by which information can be sent to

other neurons. Evidence of short range excitatory/long range

inhibitory connectivity has been identified in cortex organisation,

see for instance [6–8] and references therein.

Decision making [17–21] can be also considered in the context

of Reinforcement Learning [22–24], where an agent explores its

environment and learns to perform the right actions that bring

maximal reward. Such scenarios are often incorporated in

behavioural animal studies, where, for instance rodents are

learning to perform specific tasks that involve spatial learning

memory. One such task is the Morris water-maze[25].

A previous model [12] studied a Morris water-maze navigation

scenario, similar to [26–30], but implementing the agent with a

spiking neural network. This specific model explored ‘‘Mexican-

Hat’’- type lateral connectivity (MHC) as a simple ‘‘biologically

plausible scenario’’ for reading out information and action

selection. In fact, neurons do not simultaneously form excitatory

and inhibitory synapses, but such a behaviour could in principle be

achieved via interneurons. The MHC introduces a non-linear

(non-democratic) effect in the decision making process, as all

neurons are silenced by the inhibition introduced by the MHC

except for a small group of neighbouring neurons which form an

‘‘activity bump’’. This bump can be interpreted as corresponding

to the winning action (i.e. the animal decision), suggesting a simple

mechanism to extract information out of a competing group of

neurons, that can be implemented easily in neural networks,

without the need of additional ‘‘plugged on’’ read-out mecha-

nisms.

Learning in this network model takes place by modifying the

synapses via a spike-based Reinforcement Learning rule [12]

derived from reward optimisation by gradient ascent [10,11,31–35],

an approach that can be linked to policy gradient methods in

machine learning [13,14]. Other classes of spike-based Reinforce-

ment Learning rules are based on Temporal-Difference (TD)

learning [36–39], in particular actor-critic models [23,37,40] and

on the extension of classical STDP models [41–43] to reward-

modulated STDP rules [11,44–46].

Interestingly, learning was shown to fail when MHC-based

architectures were combined with the policy gradient spiking

Reinforcement Learning rule derived in [10–12] (within the range

of tested parameters). If however, we are not concerned about how

the population decision is communicated between layers of

neurons (and therefore do not implement MHC) but simply read

out the activity via the population vector [7,9], learning does not

fail. We term this operation a‘‘democratic decision’’, because the

non-linear effect of the lateral connections is absent from the

process: all neurons ‘‘vote’’ freely without being ‘‘influenced’’ by

other neurons and their votes are weighted by their activity (in a

linear fashion) so every spike per neuron counts the same.

These findings naturally raise the following questions. Which

precisely are the conditions that favour the ‘‘democratic’’ decisions

versus the ‘‘non-democratic’’ ones? In order to answer this

question, we study the results of a similar problem but with a

reduced complexity (in one dimension) that allows a systematic

parameter study via high performance GPU simulation. Our

animat (artificial animal) ‘‘lives’’ on a circle (1D space) and

performs the following task. We set the animat randomly to one

position on the circle (encoded as an angle from 0 to 2p). The

animat then chooses a direction. At each position there is one

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 2 May 2011 | Volume 6 | Issue 5 | e18539

‘‘correct’’ direction, which depends smoothly on the position; if the

animat chooses it, it will receive maximum reward. Choices

‘‘near’’ the correct direction also receive some reward, according

to a reward function. This smoothness assumption with respect to

the rewarded action makes learning possible. The setting of the

animat at a location and selection of a decision constitutes a single

trial. After completion of a trial the animat is placed randomly at a

new position and the task is repeated. The problem will be fully

learned if the animat chooses the correct direction at each position

in the cycle. In the simulations that follow, without loss of

generality we assume that the ‘‘correct’’ (maximally rewarded)

direction is the one that is equal to the initial position that the

animat is placed.

Model Architecture
Our model architecture implements a simple two-layer network

of neurons. The cells of the input layer, which we term ‘‘Place

Cells’’ due to the conceptual similarity to the biological place cells

discovered by O’Keefe and Dostrovsky in 1971 [47], are arranged

on a circle. Each cell has a tuning curve with a unique preferred

direction (0 to 2p). Preferred directions are equally spaced on the

circle. In accordance with evidence [48], the ensemble of Place

Cells codes for the position of the animat. The output layer has a

similar structure; each output cell has a preferred direction and the

population vector of the ensemble codes for the ‘‘action’’ the

animat takes. A schematic diagram of the network is shown in

Figure 1A.

Figure 1. Model Architecture. Our animat (artificial animal) ‘‘lives’’ on a circle and performs the following task. We place the animat randomly to
one position on the circle. The animat then chooses a direction, the decision, h. At each position there is one ‘‘correct’’ direction ht. Choices h close to
the correct direction ht receive some reward, according to a Gaussian reward function. This processes (the setting of the animat at a location,
selection of a decision, receiving a reward and updating of the feed-forward weights) constitutes a single trial. After completion of a trial the animat is
placed randomly at a new position and the task is repeated. The task will be fully learned if the animat chooses the correct direction at each position
on the circle. A: Shows a schematic overview of our two layer model architecture consisting of Place Cells (red) and Action Cells (blue). Place Cells
(modelled as Poisson neurons) are connected to Action Cells (Integrate-and-Fire neurons) using an all-to-all feed forward network (not all connections
are shown). In addition Action Cells may be interconnected via lateral Mexican hat-type connections (not all connections are shown). The layer of
Place Cells is arranged in a ring like topology with each neuron j having a preferred angle, and firing with maximum probability if the location of the
animat happens to coincide with this preferred angle. In the example shown the animat is placed at the location that corresponds to the preferred
direction of neuron index i~128. The top layer, also arranged in a ring topology, codes for the location the animat will choose. B: Shows the output
spike train of the Action Cells demonstrating a bump formation around neuron (i~128) with a resulting decision angle h matching the preferred
angle of i~128. In this example the target angle ht~h, and therefore the animat has made the correct decision. C: Shows the spike train of the input
layer (Place Cells) when the animat is placed at the location encoded by neuron j~128.
doi:10.1371/journal.pone.0018539.g001

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 3 May 2011 | Volume 6 | Issue 5 | e18539

We study two variants of the same architecture, one with a

recurrent Mexican-Hat connectivity (MHC) among the neurons of

the output layer, and one without lateral connections. We note

that in the case where MHC is present, the population vector,

which decodes the decision, points very precisely at the direction

that corresponds to the neuron(s) with the maximal activity. For a

direct comparison, we use the population vector in both

architectures to extract the decision of the output cells, though it

would have being equivalent if, in the case of lateral connections,

we were reading out the decision as the activity peak.

In Figure 1B we show the activity of the input layer, the Place

Cells. In Figure 1C we plot the activity of the output layer (‘‘Action

Cells’’) for the network with MHC. Learning is achieved by the

modification of the feedforward connections from the input layer

to the output layer according to a Reinforcement Learning policy

gradient spiking rule [10–12].

Place Cells. Place Cells are modelled as Poisson neurons.

The stochastic firing rate xj of Place Cell j is determined by the

distance between its preferred direction wj and the animat’s

location wl :

xj~x0
:g

p=M{d(wl ,wj)

b

� �
, ð1Þ

where the function g(x)~1=(1zexp({x)) is the sigmoidal

(logistic) function (the neuron’s response function), b a positive

parameter that determines the steepness of the sigmoidal function,

M is the total number of Place Cells, and x0 a factor that scales the

maximum frequency at which the Place Cells can fire. The

purpose of p=M in Equation 1 is that the firing rate of neuron j
drops to half of the maximum (g(x)~0:5) when the animat is

placed in between neuron j and either of its directly neighbouring

neurons jz1, j{1, i.e. d(wl ,wj)~0:5:(2p=M). Parameter M

allows scaling of this property with the number of neurons. The

distance d between the two angles w1 and w2 and is given by:

d(w1,w2)~
Dw1{w2Dmod2p if Dw1{w2Dmod2pvp

2p{Dw1{w2Dmod2p else:

�
ð2Þ

The neurons are Poisson for the following reason. Given the

rate xj (which is constant in each trial), the spikes are generated

according to a Poisson process with intensity xj , which is

equivalent to saying that all spikes are independent with the

expected number of spikes in an interval of length T being xj
:T .

Throughout our simulations we use the constant values of

M~256, b~0:2 and x0~0:35 (unless otherwise stated) resulting

in a maximum firing rate of 180 Hz at the most active neuron in

the population.

The parameter b is crucial for the system as it determines the

overlap of neighbouring receptive fields of the Place Cells. In plain

words, every cell j fires maximally when the animat is at its

preferred location (wl~wj). By making the sigmoidal function less

steep (decreasing b), the neuron will respond with a higher

probability when the animat is located far away from wj . This

results in that neuron j will contribute with a higher probability to

the representation of more potential locations of the animat.

Action Cells. Action cells are modeled as Leaky Integrate-and-

Fire units [49] with escape noise, which are a special case of the Spike

Response Model [50]. The change in membrane potential ui(t) of a

neuron i, which receives input from Place Cell j at time t
f
j (with f

being an index on the individual spikes of neuron j), and input via

lateral connections from Action Cell k at time t
f
k, is given by:

dui(t)

dt
~{

1

tm

(ui{urest)z
X

j

wij

X
f

d(t{t
f
j)z

X
k

wlc
ik

X
f

d(t{t
f
k)

ð3Þ

where tm is the membrane time constant of 10 ms, urest is the resting

potential of {70 mV and wij is the synaptic strength between the

presynaptic (place) cell j and the postsynaptic (action) cell i.

Furthermore d(t) denotes the Dirac function and wlc
ik the synaptic

strength of the lateral connection between Action Cells i and k.

Spikes are generated with an instantaneous probability ri

determined by an exponential function of the form:

ri~r0exp
ui{uh

Du

� �
ð4Þ

where r0~1=ms is a scaling factor of the firing rate. The

parameter uh~50 mV can be considered as a ‘‘soft’’ firing

threshold and Du~5 mV controls the "sharpness" of the ‘‘soft’’

threshold, see also [50], chapter 5.3.

After a neuron fires, its membrane voltage does not return

directly to the resting potential. Instead, it increases its negative

polarization even further (known as hyperpolarizing spike

afterpotential). To account for this phenomenon, right after a

spike is emitted we set the neuron’s membrane potential to

uhsa~{75mV , i.e. 5mV below the resting potential.

Lateral Connections. In our model, the weights of the

lateral connections are determined by a Mexican-Hat-shaped

function of the distance between Action Cells k and i, yielding a

(fixed) synaptic strength wlc
ik determined by:

wlc
ik~rwEexp {

d(2pi=N,2pk=N)2

2s2
E

 !
{rwI ð5Þ

where r is the scaling of the MHC, wE~7:0 is the strength of the

excitatory MHC weights, d is the distance function defined in

Equation 2, sE~7:0 is the length scale of the MHC, wI~0:9 is

the strength of inhibitory MHC, and N~256 is the number of

Action Cells. Parameter r takes the value of 0:325 unless otherwise

stated. In Figure 2 we plot the activity of the output layer for a

system without lateral connections (r~0:0, panel A), a system with

lateral connections (r~0:325, panel B) and a system with very

strong lateral connections (r~0:60, panel C).

Action Selection and Reward. For each cycle of the

simulation the decision angle h is determined from the average

population vector of the neuronal activity over the cycle time

T~128 ms as follows:

h~arctan

PN
i~1 yisin(2pi=N)PN
i~1 yicos(2pi=N)

 !
ð6Þ

where N is the number of Action Cells and yi is the average

neuronal activity of the Action Cell i over the cycle calculated as:

yi~
1

T

ðT

0

Yi(t)dt, ð7Þ

with Yi(t)~
P

f d(t{t
f
i) being the entire postsynaptic spike train

of the Action Cell i fired at times t
f
i .

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 4 May 2011 | Volume 6 | Issue 5 | e18539

Given the decision angle, a reward is determined by the

following reward function:

R(ht,h)~exp {
d(ht,h)2

2s2
R

 !
ð8Þ

where ht denotes the target angle, h is the decision angle of the

Action Cell population as determined by Equation 6, d is the

distance function defined in Equation 2 and sR is the standard

deviation of the reward function with a default value of p=2 (unless

specified otherwise in the text).

Learning Rule. Learning takes place by modifying the

feedforward connections wij between place and Action Cells at

the end of each trial according to the following policy gradient

learning rule [10–12]:

Dwij~a R{bð Þeij(t)zm ð9Þ

where a is the learning rate, R the reward calculated from

Equation 8, b a reward baseline and eij(t) the eligibility trace [44]

defined below. The variable m is a uniformly distributed random

noise sample from the interval ½{0:75mMAX ,mMAX �. The reward

baseline takes the value of 0:25 and its presence speeds up learning

for both systems.

The eligibility trace eij(t) is a memory of the previous activity of

the synapse, and is calculated as:

eij~

ðT

0

Yi(t){ri(t)½ �
X

f

�(t{t
f
j)dt ð10Þ

where Yi(t)~
P

f d(t{t
f
i) is the spike train of the postsynaptic

neuron i, ri(t) the instantaneous probability of firing and �(t{t
f
j)

the time course of the excitatory (or inhibitory) postsynaptic

potential (EPSP or IPSP) caused by the f {th firing of neuron j,
which is modelled as:

�(s)~exp({s=tm)H(s) ð11Þ

with tm being the membrane time constant of 10 ms and H the

step (Heaviside) function.

We would like to emphasise that the rule presented here can be

mapped to a classical Reinforcement Learning rule in discrete

time, namely the Associative Reward Inaction (ARI) [13,16,51],

see also [12].

Analysis of System Performance
In the following section, we discuss the system performance with

and without lateral connections under four different scenarios

focusing on the effects of (i) varying the lateral connection strength,

(ii) varying the shape of the reward function, (iii) varying the

overlap of the Place Cell receptive fields and (iv) adding uniform

noise onto the synaptic updates.

Performance and Lateral Connections. Our simulations

show that lateral connections have a strong effect on the

performance of the animat. In Figure 2 we show a raster plot of

the Action Cell spikes for three different cases. Panel A

corresponds to a system without lateral connections (r~0),

panel B to a system with weak lateral connections (r~0:325) and

panel C for a system with strong lateral connections (r~0:6).

The strength r~0:325 of the lateral connections was chosen as

small as possible under the constraint that the dynamics still

exhibit a pronounced activity bump (assessed visually). The

corresponding performance for these three cases is shown in

Figure 3. Panels A–C (left column) show the average

performance (= average reward obtained) over 16 animats as

a function of the number of training blocks. Each block consists

of 512 learning cycles. During these blocks, the weights are

updated at the end of each trial according to the learning rule of

Figure 2. Lateral Connection Strength. Figure shows the effect of
varying the lateral connection strength parameter r on the spiking
activity of the Action Cells over a period of 128 ms (before learning has
taken place). For clarity, the figures show a decision angle of value of p
suggesting a centralised high activity around Place Cell index 128 (as in
Figure 1). A: Shows a system without lateral connections where r~0:0.
B: Shows a system with lateral connections where r~0:325. C: Shows a
system with very strong lateral connections where r~0:60.
doi:10.1371/journal.pone.0018539.g002

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 5 May 2011 | Volume 6 | Issue 5 | e18539

Equation 9. The average reward is calculated independently

from the blocks of learning trials. Following a block of learning

trials, the animat performs 128 analysis trials with learning

disabled, based on which the performance of the system is

evaluated (mean reward over a total of 128x16 samples). The

sole purpose of this procedure is to obtain an accurate estimate

of the performance without interference from learning. Error

bars show the standard deviation over the 16 independent

animats. Simulation parameters are reported in Table 1.

Parameters for neurons are taken from the literature, learning

parameters (learning rate a, reward baseline b) and overlap of

neighbouring receptive fields (b) were jointly optimised for each

of the systems studied.

We note that the system without lateral connections achieves

the level of 70% of the maximum reward twice as fast as the best of

the systems with lateral connections. Furthermore, the system with

strong lateral connections completely fails to learn the task. In

order to obtain a better understanding of the difference between

the three systems, we plot the ‘‘weight gradient’’
P

j Dwij for each

case correspondingly (Figure 3, right column). We calculate this

gradient numerically in the following way. Before learning (i.e. all

weights randomly initialised as zero), we sum up the values of the

potential weight changes over the index j and subsequently shift

the index i of the Action Cell population by the respective target

angle (hzp=2) so that the peak will always appear at the middle of

the graph. To achieve a smooth graph, we average over a total of

Figure 3. Analysis of System Performance. Panels A–C (left column) show the average performance of 16 animats calculated in the following
way. Every animat completes a number of blocks of 512 trials (the number here varies from 0 to 5), with weights being updated at the end of each
trial. We term these ‘‘blocks of learning trials’’. In these figures, 0 blocks of learning trials means that no learning has taken place. The average reward
is calculated independently from the blocks of learning trials. Following a block of learning trials, the animat performs of 128 independent (analysis)
trials with learning being disabled, based on which the performance of the system is evaluated (mean reward over a total of 128x16 samples). The
parameters for systems A–C are the same as in the previous figure (i.e. A: no lateral connections, B: lateral connections and C: very strong lateral
connections). We note that the system without lateral connections achieves 70% of reward twice as fast as the system with lateral connections. The
system with strong lateral connections completely fails to learn the task. We can obtain a better understanding of the difference between the three
systems by plotting the gradient term for each case correspondingly (Panels A–C, right column). We calculate the gradient numerically by summing
the value of the potential weight change (before learning where the potential change is maximal)

P
j Dwij over Place Cell index j and by shifting the

index i of the Action Cell population so that the peak will always appear at the middle of the graph. To achieve a smooth graph, we average over a
total of 216 trials. We note that the gradient is larger when lateral connections are absent.
doi:10.1371/journal.pone.0018539.g003

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 6 May 2011 | Volume 6 | Issue 5 | e18539

216 trials. We note that the gradient and hence the information for

learning the weights is larger when lateral connections are absent.

If lateral connections are strong enough to systematically result in

an activity bump, they can achieve at best a speed almost half of

the system without lateral connections. We would like to

emphasise that the learning rate was optimised for both systems

to achieve maximum performance. Increasing further the learning

rate for the MHC system would also increase the noise and result

in a similar or lower performance. This fact underlines that there is

a smaller signal-to-noise ratio in the gradient of the MHC system

compared to the system without MHC.

These results can be partially understood by taking into account

that in systems with lateral connections, the activity bump and

thus the decision settles into a location that is largely determined

by the most active neurons over a short time interval at the

beginning of the trial. With increasing strength of the lateral

connections, this time interval becomes shorter. The neuron

models considered here feature escape noise and therefore shorter

time intervals result in higher relative noise levels, making systems

with strong lateral connections prone to noise (i.e. activity that

carries no information about the task). In Reinforcement

Learning, performance is strongly affected by the Exploration/

Exploitation trade-off, i.e. the percentage of choosing random

actions in hope of discovering a ‘‘better way’’ to achieve the goal

versus making choices based on the system’s current knowledge.

Under the conditions discussed here, we may obviously conclude

that there is too much noise in systems with strong lateral MHC.

It is worth considering additional aspects that may cause

degrading performance in systems with strong lateral connections.

The Place Cells have overlapping receptive fields, meaning that

one neuron participates in the representation of different states of

the system, namely those that are close to its preferred direction.

Here closeness is measured in terms of the overlap parameter b.

This is a feature of the network that allows information ‘‘diffusion’’

between different learning states and speeds up learning, as

simulations (not presented here) show. However, a neuron that

participates in representing a state, say s1, can affect the decision

based on the weights it has learned during its participation to

another state s2. We term this effect ‘‘crosstalk’’. This phenom-

enon is more likely to cancel out when the decision of the network

is based on the population vector of the activity without lateral

connections (corresponding to a linear operation) rather than

when a non-linear operation (MHC) is in place.

To collect evidence for this hypothesis, we perform three sets of

experiments. In the first one, we vary the shape of the reward

function. By making the reward function more sharp, we expect

that synaptic weight changes will affect a smaller number of

neurons and therefore performance may improve for a system

with lateral connections. In the second one, we explicitly increase

the overlap of the response function of the Place Cell receptive

fields, ie. we increase b, expecting that the system with lateral

connections will perform worse. In the third experiment, we add

uniform additive noise with a positive bias to the synaptic weight

updates, with the intention of ‘‘mimicking’’ the ‘‘crosstalk’’ effect.

We expect that performance will deteriorate for the systems with

lateral connections more than that of systems without lateral

connections.

Shape of the Reward Function. We consider the effect of

varying the reward function R (Equation 8) by modifying the

standard deviation of the reward function sR from sR~p=2 to

sR~p=8. Since our reward is not normalised and in essence by

changing sR the total amount of reward changes, we introduce an

error function E~Dd(ht,h)D=p, a function of the angle between the

decision h and the target ht, that directly measures system

performance. Figure 4 shows the effect of the two different reward

functions with respect to the learning performance. Panels A and B

show the results for configurations using the ‘‘wide’’ Gaussian with

parameters r~0:0 and r~0:325 respectively. Panels C and D

show the results for configurations using the ‘‘narrow’’ Gaussian

with parameters r~0:0 and r~0:325 respectively. To produce the

average error graphs (left column) in the panels A–D, we have

averaged over 16 independent animats performing up to 5 blocks

of 512 trials. Every point of the graph represents the average

normalised error of the system, which, similar to Figure 3, is

calculated over a separate block of 128 analysis trials (without

updating the synaptic weights). Error bars show the standard

deviation over the 16 independent animats.

We observe that, after 5 blocks of trials, the system without

lateral connections (with the ‘‘wide’’ Gaussian reward function)

shown in (A) has reached a lower (final) error than that of the

system with lateral connections (B). These results are repeated

from Figure 3 with a different error measure. With a narrow

Gaussian reward function, the system with lateral connections (D)

recovers this difference in final error with respect to the system

without lateral connections (C). As in Figure 3, we show (right

column) the gradient
P

j Dwij for the system configurations A–D.

In summary, systems with strong MHC learn better with more

narrow reward functions, whereas systems without MHC achieve

the same performance. This is in agreement with our ‘‘crosstalk’’

hypothesis.

Overlapping Receptive Fields. We further investigate how

increasing the overlap of the Place Cell receptive fields to b~0:8
affects the simulations. A higher degree of overlap introduces

ambiguity about the position, and a lower performance is

anticipated due to the decreased signal to noise ratio in general

but nevertheless we expect that this is more observable in the

system with lateral connections than the system without.

Table 1. Default model parameters used for producing
simulation results.

Parameter Value Description

tm 10 ms membrane time constant

Du 5 mV width of the threshold region

urest {70 mV resting potential

uh {50 mV firing threshold

r0 1 KHz scaling factor of the firing rate

uhsa {75 mV membrane potential after spike emission

r 0 or 0:325 lateral connectivity scale

wE 7 lateral connectivity excitation

wI 0:1 lateral connectivity inhibition

x0 0:35 KHz input activity factor

b 0:2 overlap of the receptive fields

sR p=2 standard deviation of the reward function

a 0:005 learning rate

b 0:25 reward baseline

mMAX 0:0 additive noise

Simulation results shown in Figures 1–7 use the above parameters except
where indicated otherwise. The value of r is either 0 or 0:325 depending on
where lateral connections are present (the later indicates that they are). The
parameter x0 is chosen produce an input of 180Hz. Parameters for the neuronal
model are taken from the literature. Other parameters are found through
parameter search.
doi:10.1371/journal.pone.0018539.t001

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e18539

Figure 4. Reward Function Shape. We investigate the effect of the reward function shape by changing it from a ‘‘wide’’ Gaussian (Panels A and B,
sR~p=2) to a ‘‘narrow’’ Gaussian (Panels C and D, sR~p=8). Here we plot average error graphs as they provide a measurement that allows us to
compare systems with different reward functions. To produce the average error graphs (panels A–D, left column), we have averaged over 16
independent animats performing 5 blocks of 512 trials. Every point of the graph represents the average normalised error of the system (i.e. the
normalised absolute difference between the target angle ht and the decision angle h) which, similar to Figure 3, is calculated over a separate block of
128 analysis trials (without updating the synaptic weights). Error bars show the standard deviation over the 16 independent animats. We observe that
after 5 blocks of trials, the system corresponding to the ‘‘wide’’ Gaussian reward function without lateral connections shown in (A) has reached a
lower final error than that of the system with lateral connections (B). When a narrow Gaussian reward is instead used, the system with lateral

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e18539

Figure 5 shows the simulation results. In panel Panel A (left

column) we see the average reward for the system without lateral

connections versus the blocks of learning trials and in panel B (left

column) the reward for the system with lateral connections, again

versus the blocks of learning trials. These plots are calculated in

exactly the same way as in Figure 3. The red dashed lines shows

the corresponding graphs from Figure 3 over 9 blocks of trials for a

direct comparison. We can observe that the system without lateral

connections is indeed less affected by the increase of the b
parameter than the system with lateral connections. We also show

the gradient (right column panels) similar to Figures 3 and 4, by

plotting the sum of the potential weight change. Reduced

amplitude of the gradient corresponds to reduced performance.

Additive Synaptic Noise. Finally, we heuristically mimic the

effect of ‘‘crosstalk’’ on the synaptic connections by adding noise

with a positive bias to the weight update rule described by

equation 9. The non-zero bias is motivated by the fact that the

shape of the gradient indicates that learning takes place mostly via

positive synaptic updates. To find the appropriate parameter

regime for the noise, we have performed a parameter search over

the variable mMAX Figure 6 shows the simulation results for

mMAX ~0:0006. Panels A and B show the network performance

without and with lateral connections (as in previous figures)

respectively. The plots of average reward (left column) are

calculated as in Figures 3 and 5. The red dashed line shows the

values without noise from Figure 3 (systems A and B correspond)

for direct comparison. The plots of average error (right column)

are calculated as in Figure 4. The red dashed line shows the values

without noise from Figure 4 (again, systems A and B

correspondingly). As expected, we observe that both the average

reward and average error performance measures show that the

system without lateral connections is more robust to noise added

directly to the synaptic weight updates.

We further analyse the difference between the performance of

the two systems in Figure 7 (A: no lateral connections, B: with

lateral connections) in the following way. We plot the eligibility

trace for each case with and without an additive noise term m. This

corresponds to
P

j Dwij from Equation 9 for a~1 R~1 and b~0
and allows us to look at the gradient information without taking

into account the shape of the reward function. We calculate the

Figure 5. Overlapping receptive fields. Figure shows the effect of increasing the overlap of the receptive fields (to b~0:8) of the Place Cells.
Panel A shows a configuration without lateral connections and panel B shows a configuration with lateral connections (and corresponds to systems A
and B from Figures 3 and 4). The plots of the average reward (left column, solid line) are calculated in exactly the same way as in Figure 3 shown over
9 blocks of 512 trials, rather than 5. The red dashed line shows the values from Figure 3 over 9 blocks for direct comparison. We can observe that the
system without lateral connections is less affected by the increase of the b parameter than the system with lateral connections. The plots of the
gradient (right column) are produced as in Figures 3 and 4, by plotting the sum of the potential weight change (calculated in the same way as in
previous figures).
doi:10.1371/journal.pone.0018539.g005

connections (D) recovers this difference in final error with respect to the system without lateral connections (C). As with the previous plot we show
(right column panels) the gradient of the system configurations A–D by plotting the sum of the potential weight change (calculated in the same way
as previously). For clarity, plots A and B are repeated from Figure 3. We note that when a narrow Gaussian reward is used the system with lateral
connections (D) learns over a very narrow band close to the target angle. In contrast the profile of the system without lateral connections (C) remains
consistent with that of the wide reward, learning across a broader range of the population.
doi:10.1371/journal.pone.0018539.g004

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 9 May 2011 | Volume 6 | Issue 5 | e18539

eligibility trace (
P

j Deijzm) numerically by summing the value of

the potential eligibility trace (before learning where the potential

change is maximal) over the (input neurons) index j and by shifting

the index i of the Action Cell population so that the maximum will

be at the middle of the graph. Curves resulting from this procedure

are particularly noisy when a small number of samples is used. To

smooth them out we calculate them over a total of 216 trials. The

left column panels show the eligibility trace without noise. The

right column plots show the eligibility trace, including noise

(mMAX ~0:0006 as in Figure 6). We note that the eligibility trace of

the system without lateral connections is relatively unchanged by

the effect of noise, where as the system with lateral connections has

an eligibility trace which is drastically reduced in magnitude.

Discussion

Here, we presented a study of two spiking networks, one with lateral

connections among the neurons of the output layer (Mexican Hat-

type connectivity, MHC) and one without lateral connections. The

two networks are learning a simple association learning task, which

corresponds to a simplified yet self contained version of a full

navigation problem. We use GPU programming to perform

exhaustive optimisation of the simulation parameters and to produce

a set of scenarios that investigate the learning performances of the two

systems under various conditions. We conclude the following. In

systems that feature lateral MHC, which introduces a non-linear

(‘‘non-democratic’’) decision making process, the first few spikes

occurring in each trial can significantly influence the activity bump

formation and therefore the decision, see also [7]. This effect manifests

itself in a low signal-to-noise ratio in the learning rule compared to

systems without lateral MHC, which was revealed by investigating the

weight ‘‘gradient’’
P

j Dwij . As a result, more samples are required for

MHC systems to reliably extract the values for the synaptic weights

that correspond to the ‘‘correct’’ input-output relationship. In the

extreme case of strong lateral connections, the activity bump

formation of the recurrent network (the ‘‘decision’’) is strongly driven

by noise rather than the feed forward input and thus no reasonable

weights are learned. If lateral synaptic weights are present, and strong

enough to result in bump formation, the system can at best reach half

of the learning speed of a network without MHC.

Furthermore, we formulated the following additional hypothesis

that may partially explain the reduced learning performance in

MHC systems. Our simulation results hint that systems with MHC

are prone to ‘‘crosstalk’’ between learning trials when the state of

the agent is coded with the help of neurons with opverlapping

receptive fields. We borrow the term ‘‘crosstalk’’ from electronics

to describe that a neuron participates in different ‘‘circuits’’ or sub-

networks (consisting of connections from active input neurons to

output neurons). Learning in one sub-network may lead to

synaptic changes that could affect another sub-network. We

identify this behaviour by performing three additional simulations:

1. Increasing overlap of the receptive fields (state representation),

2. Widening of the rewarded function and

3. Adding uniform noise with a positive bias to the weight vector.

In all these cases, learning is impaired for the ‘‘non-democratic’’

decision making in MHC networks. This can be understood in the

Figure 6. Additive Synaptic Noise. Figure shows the effect of additive uniformly distributed synaptic noise on the network performance by
setting mMAX ~0:0006 (see Equation 9). Panels A and B show the network performance without and with lateral connections (as in previous figures)
respectively. The plots of average reward (left column, solid line) are calculated as in Figures 3 and 5 showing learning curves over 9 blocks of 512
trials. The red dashed line shows the values without noise from Figure 3 (systems A and B correspond) for direct comparison. Similarly, the plots of
average error (right column, solid line) are calculated as in Figure 4. The red dashed line shows the values without noise from Figure 4 (again, systems
A and B respectively). We can observe that both the average reward and average error performance measures show that the system without lateral
connections is far more robust to noise applied directly to the synaptic weight.
doi:10.1371/journal.pone.0018539.g006

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 10 May 2011 | Volume 6 | Issue 5 | e18539

following way. Neuron i (Place Cell) that participates in the

representation of state si may have a weak connection to the

neurons (Action Cells) participating to the ‘‘correct’’ decision ai.

However, it may have a strong connection to neurons encoding a

different action aj acquired during its participation to representing

sj . As a consequence, when being active again during si, it could

bias the decision to a wrong action. This ‘‘crosstalk’’ is of course

also present in the system without lateral MHC. There, however,

crosstalk effects tend to cancel out due to the linear population

vector readout and the symmetry of the task. This is in contrast to

MHC systems where the crosstalk effects do not cancel out in

general due to the non-linear dynamics of the activity bump

formation. This results in further reduction of the signal-to-noise

ratio of the learning rule for MHC systems, and as a consequence

learning slows down and converges to lower performances. Hence

‘‘democratic’’ decision making is more robust than the ‘‘non-

democratic’’ alternative.

We would like to emphasise that the presence of noise in neural

systems is not necessarily a curse. Though in our study noise seems

to impair a network with MHC, exploration itself is an essential

part of Reinforcement Learning. Moreover, noise in neural

systems might be beneficial as, for instance, it prevents

synchronisation and allows for fast and accurate propagation of

signals, see [52–54].

As a final note, the study here would have been very difficult

using a low cost desktop computer, without resorting to GPU

programming. Not only parameter search itself can be very time

consuming but producing statistically accurate results for systems

with multiple sources of noise (poisson neurons, escape noise,

additive noise) can be very challenging. To achieve smooth graphs,

averages were often calculated over 2,048 independent trials. This

was possible due to exploiting the parallelism of the GPU

architecture by running multiple instances of the model in parallel.

We hope that our Methods will be applicable to problems of

similar nature, whenever numerous samples are required to

guarantee the validity of the results.

Methods

This section describes the GPU implementation of the model

presented in Results and is divided in three parts. The first part

introduces the CUDA programming Application Programming

Interface (API) and hardware architecture. The second part

describes our implementation and the third part evaluates the

performance of our GPU implementation and suggests techniques

which will be used in the future to further improve simulation

performance. A general introduction to GPU computing and

CUDA can be found at [55].

An Introduction to the GPU and CUDA
We have chosen to implement our spiking neural network on

the GPU using the CUDA programming API which is described

in detail in the CUDA Programming Guide [56]. The key concept

within this API is the use of a special purpose function (a ‘‘kernel’’

Figure 7. Noise Analysis. To obtain a better understanding of the difference between the performance of the two systems from Figure 6 (A: no
lateral connections, B: with lateral connections) we plotting the eligibility trace for each case with and without an additive noise term m. This
corresponds to

P
j Dwij from Equation 9 for a~1 R~1 and b~0 and allows us to look at the gradient information without taking into account the

shape of reward. We calculate the eligibility trace (
P

j Deijzm) numerically by summing the value of the potential eligibility trace (before learning,
where the potential change is maximal) over Place Cell index j and by shifting the index i of the Action Cell population so that the maximum will be
at the middle of the graph. To obtain smooth curves, we calculate this value over a total of 216 trials. The left column panels show the eligibility trace
without noise. The right column panels show the the eligibility trace, including noise (mMAX ~0:0006 as in Figure 6). In both cases the same random
seeds are used when generating spikes and target angles to ensure both systems are presented with the same information. The resulting right
column figures therefore give an indication of the effect of the noise. We note that the eligibility trace of system without lateral connections is
relatively unchanged by the effect of noise, where as the system with lateral connections results in an eligibility trace drastically reduced in
magnitude.
doi:10.1371/journal.pone.0018539.g007

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 11 May 2011 | Volume 6 | Issue 5 | e18539

function) identifying code to be run on the GPU device and which

describes the behaviour of a large number of independent but

functionally equivalent units of computational execution. Each

independent unit of execution, more commonly referred to as a

thread, can be assumed to operate simultaneously (i.e. in parallel)

but on a different stream of data. This differs from traditional CPU

parallelism in that the parallelism is formed through the

distribution of the streams of data across processors, referred to

as data parallelism, rather than of separate tasks, which are

described by different functions, known as task parallelism. In

Computational Neuroscience a simple conceptual example is the

following. A non-recurrent population of similar neurons can be

simulated using the data parallel thread paradigm as each

individual neuron is described by the same functional behaviour

(i.e. the kernel function) but operates in parallel using its own local

stream of information which indicate, for example, the neurons

membrane potential, synaptic weights, etc.

At a hardware level the CUDA architecture consists of a varying

number of multiprocessors each with access to dedicated Dynamic

Random Access Memory (DRAM). The DRAM is equivalent but

independent from traditional memory accessed by the CPU and

therefore information on the CPU (host) must be transferred to the

GPU (device) memory before any execution of a kernel can take

place (and vice versa once GPU execution has completed). Each

multiprocessor contains an array of scalar processors, responsible

for execution of the individual threads. A scalar processor is the

simplest form of a processor that processes one data point at a

time. Large groups of threads are split between physical

multiprocessors by arranging them into smaller groups which

are called thread blocks. For the sake of simplicity one can assume

a simple mapping between each scalar processor and individual

threads. For a more factual explanation of the reality of technical

aspects such how threads are broken down into smaller

executional units and how threads are interleaved on a single

processors the reader is directed towards the CUDA programming

Guide [56] or the book CUDA by Example [55].

Perhaps the most powerful feature of the CUDA architecture is

the availability of a small amount of user configurable shared

memory cache, which is an area of memory available on each

multiprocessor considerably faster to access than main memory,

that allows simple communication between threads within the

same group. Considering the simple conceptual neuron example

presented above it is not immediately clear how this can be of any

benefit. To illustrate the benefits of the memory cache consider a

matrix multiplication example where each thread is responsible for

computing an element cij of the Matrix C which is the product of

two matrices A and B. Naively each thread may compute cij by

considering the dot product of row i and column j, an operation

which requires each thread to read both an entire column and row

from matrices A and B respectively. Alternatively by using the

memory cache intelligently, the total number of memory reads

from the two matrices can be drastically reduced (and perfor-

mance increased substantially) by allowing each thread within a

group to calculate a single product. Each of these single products

can be stored within the cache and then used by the other threads

in calculating the element cij of C. The example assumes a

situation where a single block of threads is small enough to hold

the single element products without exceeding the size of the

memory cache. More generally, it is advisable to maximise the

ratio of computational arithmetic to memory access, commonly

referred to as arithmetic intensity, by maximising usage of the user

configurable cache (or other similar caches which are not discussed

within this paper) which will ensure simulations attain maximum

performance.

GPU programming in Neuroscience
Prior to our own work there has already been some interest in

performing simulations of neuron populations on high perfor-

mance architectures including GPUs. Simulations of artificial

neural networks in discrete time [57,58] present the most

simplistic case where large matrix multiplication operations,

known to be very efficient on the GPU, bear the brunt of the

computational load. With respect to simulating more biologically

plausible neuron systems operating in continuous time and where

dense matrix multiplications can not be used, a notable GPU

implementation is that of Bernhard and Keriven [59] which

employs the technique (prior to modern CUDA and OpenCL

libraries) of mapping an algorithm to graphics primitives in order

to utilise GPUs. A multi-purpose spiking neural-network

simulator is implemented, using a limited neighbourhood of

connections between local neurons to minimise communication

overhead. The Brian simulation package [60,61] not only

provides a simple syntax for specifying systems of spiking neurons

within a Python Application Programming Interface (API) but

also demonstrates GPU acceleration for various aspects of the

simulation processes. The first use of CUDA was in the context of

accelerating the automatic fitting of neuron models to electro-

physiological recordings [62]. More recently [63] the same

authors have turned their attention to GPU accelerated

simulations of neuron dynamics, performing simulations of a

number of spiking neuron models on GPUs. However, the

simulation of propagation and back-propagation of spikes is not

implemented on the GPU but instead it remains on the Central

Processing Unit (CPU) due to the lack of inherent parallelism. An

alternative configurable simulation environment for simulating

spiking neurons on the GPU is proposed in [64]. Moreover,

Bhuiyan et al. [65] have demonstrated the implementation of the

Hodgkin Huxley and Izhikevich models of neurons on a number

of parallel architectures including multi-core CPUs, the Cell

Broadband Engine and the GPU. In their work, the GPU is used

to perform the simulation of a single layer of neurons, whereas

the simulation of the second layer of neurons and processing of

spike data takes place on the host (after the data has been

transferred from the GPU device). This work shows that the

GPU is able to perform considerably well for the Hodgkin

Huxley model, with a speed-up of over 100 times for 5.8 million

neurons. This is attributed to the ratio of arithmetic work load

over data transfer (also known as arithmetic intensity) which is

considerably greater for the Hodgkin Huxley model than for the

Izhikevich’s model, for which the speed-up (only being 9.5) does

not amortize the cost of communication between neurons. Aside

from simulations of neuron systems using commodity (or

consumer hardware), several research projects aim to perform

large scale simulations of biological neuron systems using large

computer clusters. The Swiss institution EPFL are currently

developing highly accurate sub-neuron level simulations [66] and

the IBM Almaden Research Center has simulated systems of

sizes equivalent to that of the cortical system of a cat [67], both

using the IBM BlueGene/L supercomputing architecture.

Additionally, the Biologically Inspired Massively Parallel Archi-

tecture (BIMPA) project takes a completely new approach to

brain simulation choosing to design a highly interconnected low

power hardware architecture inspired by neuron interconnectiv-

ity [68]. Another similar attempt, the Fast Analog Computing

with Emergent Transient States (FACETS) project resorted to

dedicated analogue VLSI hardware [69–71] to achieve high

simulation speeds and developed PyNN [72–77], a Python-based

simulator-independent language for building neuronal network

models.

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 12 May 2011 | Volume 6 | Issue 5 | e18539

Implementing our Spiking Neuron Model in CUDA
In our implementation, we discretize the model’s equations using

Euler’s method. Conceptually the various stages of a single trial of

the learning are broken down into small functional units which map

directly to CUDA kernels. Figure 8 shows these various kernel

functions (running on the GPU device) as well as the CPU host

functions which are described individually below in more detail.

While the figure refers to a simple case where only a single trial

is considered, in reality we are able to perform many independent

trials at once. Each of these independent trials may use a different

parameter configuration or the same configuration. In addition to

the main simulation loop, additional host side code is used to

allocate all GPU memory in advance and seed a number of

independent streams of pseudo random parallel numbers [78]

which are used in spike generation and noise application. Each of

the kernels described below uses a common technique called

memory coalescing which describes the processes of reading

sequential consecutive (in each thread) values from memory in a

Figure 8. Simulation Flowchart. Figure shows the simulation process of our spiking neural network model. Steps shown on the left are broken
down into CUDA kernels where the figure in vbracketsw represents the total number of threads which are invoked for each kernel (for simplification
this assumes only a single independent trial). The value N represents the number of Action Cell neurons (256), the value M represents the number of
Place Cell neurons (256) and the value T represents the total number of number of discrete time steps, i.e. T~total time=Dt (which is 128 when
Dt~1 ms). Steps shown on the right indicate calculations performed on the Host CPU.
doi:10.1371/journal.pone.0018539.g008

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 13 May 2011 | Volume 6 | Issue 5 | e18539

way which allows fewer large memory requests to be issued,

improving performance.

Set Random Initial Angles. Preceding the brunt of the GPU

simulation the CPU host calculates a random unique initial animat

location (angle) for each trial to be performed. This is then

transferred to the GPU using a CPU host to GPU device memory

copy. As the number of possible initial locations is relatively small,

it does not make sense to perform this operation on the GPU due

to overheads associated with calling a CUDA kernel function.

Reset Membrane Potential Kernel. This CUDA kernel is

responsible only for resetting the block of GPU memory allocated

to hold the N Action Cell membrane potentials from the previous

learn step’s final value to urest.

Poisson Neuron Simulation Kernel. This CUDA kernel is

launched with M total threads each of which calculates the firing

rate frequency (given in Equation 1) for each of the M Place Cells.

This value is then compared to T GPU generated random

numbers, where T is the number of discrete steps in the total time

period (i.e. total time=Dt), to output T total spike values of 0 (not

fired) or 1 (fired). Conceptually it would have been possible to

launch M*T independent threads to perform this operation

however the overhead of recalculating the firing rate frequency for

each thread is greater than the overhead of performing a loop over

T.

Place Cell Spike Propagation Kernel. This CUDA kernel

represents the first stage of the simulation loop over time T. For

each time step the kernel is launched and performs a dense matrix

vector multiplication for the Place Cell inputs at time t and the

corresponding synaptic strengths for each Place Cell to Action Cell

combination. Our implementation of the matrix vector

multiplication is based upon the technique described by [79]

and uses shared memory to cache the input spikes and an

optimisation called loop unrolling (see [56] or [55]) to perform a

parallel reduction to reduce instruction overhead.

Action Cell Lateral Spike Propagation Kernel. As with

the ‘‘placeCellSpikePropagation’’ kernel, this CUDA kernel

performs a dense matrix vector multiplication for the Action

Cell output spikes from the previous time step (t{1) and the

corresponding lateral cell synaptic connection weights.

Integrate and Fire Neuron Simulation Kernel. This

CUDA kernel launches a thread for each of the N Action Cells,

each of which updates and saves to global memory the membrane

potential using the spiking activity contributions of the Place Cell

spike propagation (and the Action Cell lateral spike propagations if

the system uses lateral connections). Following this, the kernel

computes the instantaneous probability of firing (which is output to

global memory) and then using a randomly generated number

outputs a spiking value at the given discrete time step t. For

neurons which produce a spike emission, a refractory period is

applied by resetting the membrane potential to the value urest.

Figure 9 shows our actual CUDA kernel code for performing this

stage of the simulation.

Spike Train Reduction Kernel. In order to calculate the

population vector of our Action Cells we consider the average

firing rate over the total time period of 128 ms. To calculate this

quantity in parallel on the GPU we sum the number of spikes of

each neuron over the total number of discrete time steps T (i.e.

T~ total time=Dt) by performing a parallel reduction of values

over log(T) steps. We use the parallel reduction technique

described by [80] which employs a number of advanced

optimisation techniques to obtain maximum performance.

Before this kernel operates we also perform a matrix transpose

of the spike train information Y to ensure that the reduction step is

able to perform coalesced memory reading. The additional

computation proves more efficient than performing the

reduction using an uncoalesced memory access pattern.

Calculate Population Vector Kernel. This CUDA kernel

calculates the output components of the population vector. That is

the individual terms yisin(2pi=N) and yicos(2pi=N) for each

Action Cell i from Equation 6.

Output Component Reduction Kernel. The population

vector is calculated by performing two parallel reduction

operations on the output components in order to reduce them to

a pair of single values. The same parallel reduction technique is

used as in the ‘‘spikeTrainReduction’’ step, however the output

components of the population vector do not need to be transposed

to ensure a coalesced memory access pattern is followed. Whilst

there is a large overhead for performing this operation with very

few threads in the final log(N) steps this is compensated for when

multiple independent trials perform the same kernel function.

Calculate Reward. The calculation of the reward function is

not suitable for GPU implementation as it requires calculation of

only a single value per trial. Fortunately, as the output

compensates have been reduced to two single values in the

previous step, the transfer of data from the device back to the host

is minimal (only two values). Following the calculation of the

reward function as described by Equation 8, the reward is then

copied back to the device to be used in subsequent steps.

Calculate Gradient Kernel. This kernel performs the

calculation of the term Deij from Equation 9. Functionally this

operation is a dense matrix multiply operation based on the CUDA

matrix multiplication example from the CUDA SDK. This uses

shared memory to substantially reduce the number of global

memory reads. The matrix P (the probability of firing) is transposed

to ensure coalesced memory access. Spike train Y was transposed

and stored previously (during the ‘‘spikeTrainReduction’’ step).

Update Learning Weights Kernel. This CUDA kernel

performs the synaptic weight adjustment of the connections

between the Action Cells and Place Cells. They are updated using

Equation 9 where the reward value and the component of the

gradient for each Action Cell i and Place Cell j combination are

multiplied.

Apply Noise Kernel. This CUDA kernel is called only if the

noise contribution value mMAX is greater than 0:0. The kernel

simply applies a basic linear operation to add a noise component

to each synaptic strength connection value. This is performed

using M threads which loop over the N synaptic weights. While it

would be possible to perform this with M*N independent threads

(and as part of the previous step) this would require a considerably

larger number of independent random streams (a separate stream

is required also for each independent trials) which we have found

to cause the random number generation algorithm to break down

(at roughly 222 total streams).

Simulation code and analysis scripts, developed in CUDA, are

available from ModelDB [81] at http://senselab.med.yale.edu/

modeldb via accession number 136807. In the results presented

here we use a time step of Dt~1 ms, but we have verified that our

results remain consistent when smaller time steps are used.

Performance Analysis and Discussion
We consider the performance of our GPU implementation by

comparing its performance to that of a version of the same model

implemented in Python using the BLAS enabled numpy library.

This library uses natively implemented SSE vector instructions

(which optimise operations carried out on groups of data) and

multi-core support to accelerate linear algebra operations.

Figure 10 shows the performance of the system configuration

without and with lateral connections (the difference being the

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 14 May 2011 | Volume 6 | Issue 5 | e18539

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 15 May 2011 | Volume 6 | Issue 5 | e18539

execution of the ‘‘actionCellLateralSpikePropagation’’ function).

Performance is measured in relative speedup over the Python

implementation by considering the difference in execution time

between the two versions over the period of an entire simulation

10 blocks of 512 trials (10 blocks of 256 for the system without

dynamics) including analysis of 128 trials for each of the 10 blocks.

The hardware configuration used for benchmarking consists of a

Intel i7-930 quad core CPU with 6 GB of RAM and a NVIDIA

GTX 480 GPU. We have observed that as the number of

independent trials is increased, the relative performance does also.

This is not surprising as with a single independent trial the number

of threads used by many of CUDA kernels is far below the number

Figure 9. Spiking Simulation Kernel. This figure shows the CUDA kernel used to perform the update of a spiking Action Cell neuron.
Conceptually the kernel is relatively simple, using linear algebra style computation to update the neurons membrane potential (d_u_out) using the
previous potential (d_u). The kernel also saves to the GPU Device memory the probability of firing (d_YProb) and the actual spike contribution (d_Y)
of the neuron without requiring any localised caching of data. The variable index is calculated using a thread (tx) and block of thread identifiers
(blockIdx.x) and represents the neuron index position within a large list of all neurons being simulated by the kernel. The value blockIdx.y indicates
the independent trial number for each neuron this used to calculate the offset variables of N_offset and NT_offset which are used to ensure unique
values for each neuron in each independent trial are accessed. The variable configuration_offset is similarly used to represent an index in which to
look up one of the independent parameter configuration values. The corresponding function pow2mod uses bit shift operations to perform an
efficient integer modulus operation where the divisor is a power of 2. The kernel function arguments are all prefixed with ‘‘d_’’ to indicate memory on
the GPU device rather than the GPU host. The argument ‘‘seeds’’ is also an area of memory on the GPU device which is used to hold seeds for the
parallel random number generation.
doi:10.1371/journal.pone.0018539.g009

Figure 10. Relative Performance Speedup. Figure shows the relative performance improvement of our GPU model with respect to a similar
Python implementation using numpy’s BLAS implementation. Relative performance refers to the percentage increase in performance by considering
the absolute timings of the two implementations over an entire simulation. The horizontal axis indicates Ind_total, that is the total number of
independent trials which in this case represents independent animats (rather than animats in different configurations). A: Represents the case for our
model without lateral connections. B: Represents a case with lateral connections which is the same however it includes an additional code execution
to perform simulation of the lateral spike propagation.
doi:10.1371/journal.pone.0018539.g010

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 16 May 2011 | Volume 6 | Issue 5 | e18539

required to ensure all of the hardware multiprocessors have work

to carry out. We have found that 8 independent trials to be the

minimum to ensure that each of the multiprocessors will be kept

busy. Beyond this number of independent trials, performance

levels out for each of the two system configurations. This is useful

as we have found that a minimum of 8 independent trials (we have

used 16 throughout our experimentation unless otherwise stated)

provides a good numeric numeric average to calculate the

standard deviation of the average reward value for each learning

step. For each of the simulation result obtained in Figure 10 we

have used an optimal value of 256 threads per block. By ensuring

we only use system wide model parameter values (i.e. N, M and T)

of power two numbers we also ensure that our kernel launches fit

neatly within our chosen thread block size. Whilst it would be

possible to use non power of two values the decision to use them

represents the best case scenario for the GPU as their is exactly the

number of threads required to perform the computations.

The performance difference between the two system configu-

rations in Figure 10 can be accounted for by considering where the

majority of GPU time is spent. Figure 11 shows where the

percentage of GPU simulation time is spent for both system

configurations (without and with lateral connections). The obvious

observation is that for both systems the majority of simulation time

is spent performing the spike propagation operations which are

repeated T{1~127 times during our profiling observation. In

the case of the system with lateral connections this is most evident

and a total of only 26% constitutes other aspects of the simulation

(in contrast with 43% where there are no lateral connections). As

all other aspects of the system simulation are the same it can be

deduced that the calculation of spike propagations is considerably

less efficient than other aspects of our implementation. This is not

surprising as each propagation calculation is a matrix vector

operation which is inherently bound by memory operations

(bandwidth) is is therefore less likely to offer the kind of

performance improvement we can observe with operations which

contain a higher percentage of arithmetic intensity (such as the

‘‘integrateAndFireNeuronSimulation’’ kernel) or heavy use of

shared memory (such as the gradient calculation). As a result we

must conclude that whilst our simulation performance is

considerably better when using the GPU (a simulation without

Figure 11. Performance Profile. Figure shows the performance profile of our GPU implementation with respect to where GPU time is spent
during the simulation (shown as a percentage for each GPU kernel corresponding with figure 8). The figure in brackets next to the vertical axis label
indicates the total number of times the kernel function is called over single ‘‘learn step’’ with a total time simulation period of T = 128 and Dt~1 ms.
An additional amount of CPU time is also required however this is negligible in the scale of the overall simulation. A: Represents the case for our
model without lateral connections. B: Represents a case with lateral connections which is the same however it includes a kernel function
‘‘actionCellLateralSpikePropagation’’ which performs the lateral spike propagation simulation.
doi:10.1371/journal.pone.0018539.g011

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 17 May 2011 | Volume 6 | Issue 5 | e18539

lateral connections and with 128 independent trials takes for

example almost 7 hours on the CPU when compared to 9 minutes

on the GPU) that future work must address the limitation of the

matrix vector performance. In previous work [59], which used

simulated spiking neurons for pattern recognition tasks, this has

been done by considering only a small subset of feed forward

connections (based on a 2D grid layout). For more general neuron

populations using all to all feed forward connections, we propose

that future work will assess the use of a sparse vector matrix

implementation which will reduce computational load (and

increase performance) by performing calculations only where

there are spikes (perhaps by reducing the matrix/vector magni-

tudes using parallel reduction). Alternatively we may consider the

use of an agent based simulation framework on the GPU (such as

GPU FLAME [82,83]) which will similarly avoid redundant

computations by processing spikes as communicated messages

passed between neurons rather than through the dense matrix

based mathematical implementation presented here. The vector

containing spike information is sparse in the sense that over a

single discrete time step only a small number of neurons actually

fire. As a result the matrix vector multiplications, which are where

the majority of GPU time is spent, are inefficient as they are

performing a dense calculation i.e. calculating many terms with

zero values. Using a sparse matrix vector operation would make

this more efficient as would using an agent based approach where

neurons would perform computation only on spikes which were

generated.

Acknowledgments

EV would like to thank Eilif Muller for bringing to her attention the use of

GPU for simulations in the first place as well as a relevant reference on

simulations of large-scale spiking neural networks on GPU.

Author Contributions

Conceived and designed the experiments: EV LB. Performed the

experiments: PR. Analyzed the data: EV. Contributed reagents/materi-

als/analysis tools: LB. Wrote the paper: EV PR. Participated in discussions:

MG. Partially wrote the manuscript: LB.

References

1. Gummaraju J, Rosenblum M (2005) Stream programming on general-purpose

processors. In: MICRO 38: Proceedings of the 38th annual IEEE ACM
International Symposium on Microarchitecture. Washington, DC, USA, IEEE

Computer Society, pp 343–354.

2. Buck I, Foley T, Horn D, Sugerman J, Fatahalian K, et al. (2004) Brook for

gpus: stream computing on graphics hardware. In: SIGGRAPH 904: ACM
SIGGRAPH 2004 Papers. New York, NY,USA, ACM, pp 777–786. doi:http://

doi.acm.org/10.1145/1186562.1015800.

3. Amari SI (1975) Homogeneous nets of neuron-like elements. Biological

Cybernetics 17: 211–220.

4. Amari S (1977) Dynamics of pattern formation in lateral-inhibition type neural
fields. Biol Cybern 27: 77–87.

5. Hamaguchi K, Okada M, Yamana M, Aihara K (2005) Correlated firing in a

feedforward network with mexican-hat-type connectivity. Neural Comput 17:

2034–2059.

6. Coultrip R, Granger R, Lynch G (1992) A cortical model of winner-take-all
competition via lateral inhibition. Neural Networks 5: 47–54.

7. Spiridon M, Gerstner W (2001) Effect of lateral connections on the accuracy of
the population code for a network of spiking neurons. Network: Computation in

Neural Systems 12: 409–421257-272.

8. Piekniewski F (2010) Persistent activation blobs in spiking neural networks with
mexican hat connectivity. In: Rutkowski L, Scherer R, Tadeusiewicz R,

Zadeh L, Zurada J, eds. Artifical Intelligence and Soft Computing, Springer

Berlin/Heidelberg, volume 6114 of Lecture Notes in Computer Science. pp 64–71.

9. Georgopoulos AP, Schwartz A, Kettner RE (1986) Neuronal population coding
of movement direction. Science 233: 1416–1419.

10. Pfister JP, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing
dependent plasticity for precise action potential firing in supervised learning.

Neural Computation 18: 1309–1339.

11. Florian RV (2007) Reinforcement learning through modulation of spike-timing-
dependent synaptic plasticity. Neural Computation 19: 1468–1502.

12. Vasilaki E, Frémaux N, Urbanczik R, Senn W, Gerstner W (2009) Spike-based
reinforcement learning in continuous state and action space: When policy

gradient methods fail. PLoS Comput Biol 5: e1000586.

13. Williams R (1992) Simple statistical gradient-following methods for connectionist
reinforcement learning. Machine Learning 8: 229–256.

14. Baxter J, Bartlett P, Weaver L (2001) Experiments with infinite-horizon, policy-
gradient estimation. Journal of Artificial Intelligence Research 15: 351–381.

15. Wang X (2006) A microcircuit model of prefrontal functions: ying and yang of

reverberatory neurodynamics in cognition. The frontal lobes: development,

function, and pathology. pp 92.

16. Vasilaki E, Fusi S, Wang XJ, Senn W (2009) Learning exible sensori-motor
mappings in a complex network. Biol Cybern 100: 147–158.

17. Beierholm U, Dayan P (2010) Pavlovian-Instrumental Interaction in ‘‘Observing

Behavior’’. PLoS Computational Biology 6.

18. Dayan P (2009) Goal-directed control and its antipodes. Neural Networks 22:

213–219.

19. Talmi D, Dayan P, Kiebel S, Frith C, Dolan R (2009) How humans integrate

the prospects of pain and reward during choice. Journal of Neuroscience 29:
14617.

20. Dayan P, Daw N (2008) Decision theory, reinforcement learning, and the brain.

Cognitive, Affective, & Behavioral Neuroscience 8: 429.

21. Dayan P (2008) The role of value systems in decision making. Better than

conscious. pp 51–70.

22. Sutton RS, Barto AG (1981) Towards a modern theory of adaptive networks:

expectation and prediction. Psychol Review 88: 135–171.

23. Barto A, Sutton R, Anderson C (1983) Neuronlike adaptive elements that can

solve difficult learning and control problems. IEEE transactions on systems,

man, and cybernetics 13: 835–846.

24. Sutton R, Barto A (1990) Time-derivative models of pavlovian reinforcement.

In: Gabriel M, Moore J, eds. Learning and Computational Neuroscience:

Foundations of Adaptive Networks. Cambridge: MIT-Press. pp 497–537.

25. Morris R, Garrard P, Rawlins J, O9Keefe J (1982) Place navigation impaired in

rats with hippocampal lesions. Nature 297: 681–683.

26. Foster D, Morris R, Dayan P (2000) Models of hippocampally dependent

navigation using the temporal difference learning rule. Hippocampus 10: 1–16.

27. Arleo A, Gerstner W (2000) Spatial cognition and neuro-mimetic navigation: a

model of hippocampal place cell activity. Biological Cybernetics 83: 287–

299.

28. Stroesslin T, Sheynikhovich D, Chavarriaga R, Gerstner W (2005) Robust self-

localisation and navigation based on hippocampal place cells. Neural Networks

18: 1125–1140.

29. Sheynikhovich D, Chavarriaga R, Strösslin T, Gerstner W (2005) Spatial

representation and navigation in a bio-inspired robot. In: Biomimetic Neural

Learning for Intelligent Robots: Intelligent Systems, Cognitive Robotics, and

Neuroscience. pp 245–264.

30. Legenstein R, Wilbert N, Wiskott L (2010) Reinforcement learning on slow

features of highdimensional input streams. PLoS Comput Biol 6: e1000894.

31. Seung HS (2003) Learning in spiking neural networks by reinforcement of

stochastic synaptic transmission. Neuron 40: 1063–1073.

32. Xie X, Seung H (2004) Learning in neural networks by reinforcement of

irregular spiking. Physical Review E 69: 41909.

33. Fiete I, Seung H (2006) Gradient Learning in Spiking Neural Networks by

Dynamic Perturbation of Conductances. Physical Review Letters 97: 48104.

34. Baras D, Meir R (2007) Reinforcement learning, spike-time-dependent

plasticity, and the bcm rule. Neural Computation 19: 2245–2279.

35. Friedrich J, Urbanczik R, Senn W (2010) Learning spike-based population codes

by reward and population feedback. Neural computation 22: 1698–1717.

36. Watkins C (1989) Learning from delayed rewards. Cambridge: PhD-thesis,

Cambridge University.

37. Sutton R, Barto A (1998) Reinforcement learning. MIT Press, Cambridge.

38. Potjans W, Morrison A, Diesmann M (2009) A spiking neural network model of

an actor-critic learning agent. Neural Comp 21: 301–339.

39. Di Castro D, Volkinshtein S, Meir R (2009) Temporal difference based actor

critic learning - convergence and neural implementation. NIPS 22: 385–392.

40. Suri R, Schultz W (2001) Temporal difference model reproduces anticipatory

neural activity. Neural Computation 13: 841–862.

41. Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal

learning rule for submillisecond temporal coding. Nature 383: 76–78.

42. Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and spiking

neurons. Phys Rev E 59: 4498–4514.

43. Abbott LF, Nelson SB (2000) Synaptic plasticity: Taming the beast. Nature

Neuroscience 3: 1178–1183.

44. Izhikevich E (2007) Solving the distal reward problem through linkage of stdp

and dopamine signaling. Cerebral Cortex 17: 2443–2452.

45. Farries MA, Fairhall AL (2007) Reinforcement Learning With Modulated Spike

Timing Dependent Synaptic Plasticity. J Neurophysiol 98: 3648–3665.

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 18 May 2011 | Volume 6 | Issue 5 | e18539

46. Legenstein R, Pecevski D, Maass W (2008) A learning theory for reward-

modulated spiketiming-dependent plasticity with application to biofeedback.
PLoS Computational Biology 4(10): e1000180.

47. O9Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. preliminary

evidence from unit activity in the freely-moving rat. Brain Res 34: 171–175.
48. Jensen O, Lisman JE (2000) Position Reconstruction From an Ensemble of

Hippocampal Place Cells: Contribution of Theta Phase Coding. J Neurophysiol
83: 2602–2609.

49. Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:

173–194.
50. Gerstner W, Kistler WK (2002) Spiking Neuron Models. Cambridge UK:

Cambridge University Press.
51. Barto A (1985) Learning by statistical cooperation of self-interested neuron-like

neuron elements. Human Neurobiology 4: 229–256.
52. Van Rossum M (2001) The transient precision of integrate and fire neurons:

Effect of background activity and noise. Journal of Computational Neuroscience

10: 303–311.
53. Van Rossum M, Turrigiano G, Nelson S (2002) Fast propagation of firing rates

through layered networks of noisy neurons. Journal of Neuroscience 22: 1956.
54. Van Rossum M, Renart A (2004) Computation with populations codes in

layered networks of integrate-and-fire neurons. Neurocomputing 58: 265–270.

55. Sanders J, Kandrot E (2010) CUDA by Example: An Introduction to General-
Purpose GPU Programming. Addison-Wesley.

56. NVIDIA Corporation (2008) NVIDIA CUDA Programming Guide.
57. Ly DL, Paprotski V, Yen D (2008) Neural networks on gpus: Restricted

boltzmann machines. Technical report, University of Toronto.
58. Martnez-Zarzuela M, Daz Pernas F, Dez Higuera J, Rodrguez M (2007) Fuzzy

art neural network parallel computing on the gpu. In: Sandoval F, Prieto A,

Cabestany J, Graa M, eds. Computational and Ambient Intelligence, Springer
Berlin, Heidelberg, volume 4507 of Lecture Notes in Computer Science. pp 463–470.

59. Bernhard F, Keriven R (2006) Spiking neurons on GPUs. In: International
Conference on Computational Science (4). pp 236–243.

60. Goodman D, Brette R (2008) Brian: a simulator for spiking neural networks in

Python. Frontiers in neuroinformatics 2.
61. Goodman D, Brette R (2009) The Brian simulator. Frontiers in neuroscience 3:

192.
62. Cyrille R, M GDF, Jonathan P, Romain B (2010) Automatic fitting of spiking

neuron models to electrophysiological recordings. Frontiers in Neuroinformatics
4: 12.

63. Goodman D (2010) Code generation: A strategy for neural network simulators.

Neuroinformatics 8: 183–196.
64. Nageswaran J, Dutt N, Krichmar J, Nicolau A, Veidenbaum A (2009) A

configurable simulation environment bfor the efficient simulation of large-scale
spiking neural networks on graphics processors. Neural Networks 22: 791–800.

65. Bhuiyan M, Pallipuram V, Smith M (2010) Acceleration of spiking neural

networks in emerging multi-core and gpu architectures. In: Parallel Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE International

Symposium on. pp 1–8. doi:10.1109/IPDPSW.2010.5470899.
66. Markram H (2006) The blue brain project. Nature Reviews Neuroscience 7:

153–160.

67. Ananthanarayanan R, Esser SK, Simon HD, Modha DS (2009) The cat is out of

the bag: cortical simulations with 109 neurons, 1013 synapses. In: SC 909:
Proceedings of the Conference on High Performance Computing Networking,

Storage and Analysis. New York, NY, USA: ACM 1–12: doi:http://doi.acm.

org/10.1145/1654059.1654124.
68. Furber S, Temple S (2008) Neural systems engineering. In: Fulcher J, Jain L,

eds. Computational Intelligence: A Compendium, Springer Berlin Heidelberg,
volume 115 of Studies in Computational Intelligence. pp 763–796.

69. Renaud S, Tomas J, Bornat Y, Daouzli A, Saighi S (2007) Neuromimetic ICs

with analog cores: an alternative for simulating spiking neural networks. In:
Circuits and Systems, 2007. ISCAS 2007. IEEE International Symposium on.

IEEE, pp 3355–3358.
70. Bruederle D, Bill J, Kaplan B, Kremkow J, Meier K, et al. (2010) Simulator-Like

Exploration of Cortical Network Architectures with a Mixed-Signal VLSI
System. In: Proceedings of the 2010 IEEE International Symposium on Circuits

and Systems (ISCAS 10). pp 2784–8787.

71. Bill J, Schuch K, Bruederle D, Schemmel J, Maass W, et al. (2010)
Compensating inhomogeneities of neuromorphic vlsi devices via short-term

synaptic plasticity. Frontiers in Computational Neuroscience 4: 12.
72. Davison A, Yger P, Kremkow J, Perrinet L, Muller E (2007) PyNN: towards a

universal neural simulator API in Python. BMC Neuroscience 8: P2.

73. Davison A, Bruederle D, Eppler J, Kremkow J, Muller E, et al. (2008) PyNN: a
common interface for neuronal network simulators. Frontiers in neuroinfor-

matics 2.
74. Eppler J, Helias M, Muller E, Diesmann M, Gewaltig M (2008) PyNEST: a

convenient interface to the NEST simulator. Frontiers in neuroinformatics 2.
75. Bruederle D, Mueller E, Davison A, Muller E, Schemmel J, et al. (2009)

Establishing a novel modeling tool: a python-based interface for a neuromorphic

hardware system. Frontiers in neuroinformatics 3.
76. Davison A, Hines M, Muller E (2009) Trends in programming languages for

neuroscience simulations. Frontiers in neuroscience 3: 374.
77. Davison A, Muller E, Bruederle D, Kremkow J (2010) A common language for

neuronal networks in software and hardware. The Neuromorphic Engineer.

78. van Meel J, Arnold A, Frenkel D, Portegies Zwart S, Belleman R (2008)
Harvesting graphics power for MD simulations. Molecular Simulation 34:

259–266.
79. Bell N, Garland M (2008) Efficient sparse matrix-vector multiplication on

CUDA. NVIDIA Technical Report NVR-2008-004, NVIDIA Corporation.
80. Sengupta S, Harris M, Zhang Y, Owens JD (2007) Scan primitives for gpu

computing. In: GH 907: Proceedings of the 22nd ACM SIGGRAPH/

EUROGRAPHICS symposium on Graphics hardware. Aire-la-Ville, Switzer-
land, Switzerland: Eurographics Association, 97–106.

81. Hines M, Morse T, Migliore M, Carnevale N, Shepherd G (2004) ModelDB: a
database to support computational neuroscience. Journal of Computational

Neuroscience 17: 7–11.

82. Richmond P, Romano D (2008) A high performance framework for agent based
pedestrian dynamics on gpu hardware. Proceedings of EUROSIS ESM 2008.

83. Richmond P, Walker D, Coakley S, Romano D (2010) High performance
cellular level agent-based simulation with FLAME for the GPU. Briefings in

bioinformatics 11: 334.

Spike-Based Policy-Gradient Learning on GPU

PLoS ONE | www.plosone.org 19 May 2011 | Volume 6 | Issue 5 | e18539

