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ABSTRACT
The process of RNA base fraying (i.e., the transient opening of the termini of a helix) is involved in many aspects of RNA dynamics. We
here use molecular dynamics simulations and Markov state models to characterize the kinetics of RNA fraying and its sequence and direction
dependence. In particular, we first introduce a method for determining biomolecular dynamics employing core-set Markov state models
constructed using an advanced clustering technique. The method is validated on previously reported simulations. We then use the method
to analyze extensive trajectories for four different RNA model duplexes. Results obtained using D. E. Shaw research and AMBER force fields
are compared and discussed in detail and show a non-trivial interplay between the stability of intermediate states and the overall fraying
kinetics.
Published under license by AIP Publishing. https://doi.org/10.1063/1.5083227

I. INTRODUCTION

Ribonucleic acid (RNA) plays a fundamental role in the biology
of the cell.1 RNA molecules fold in intricate structures, that undergo
complex rearrangements,2 to fulfill a number of biological functions,
such as gene regulation, splicing, catalysis, and protein synthesis. It
is thus key to get a more precise understanding of the mechanisms
involved in RNA folding and conformational transitions. Current
experimental techniques are limited to ensemble measurements or
to low spatiotemporal resolution. For this reason, computational
tools are fundamental for the study of biomolecular systems, includ-
ing ribonucleic acids. Molecular dynamics (MD) simulations using
empirical force fields, propelled by numerous theoretical and techni-
cal improvements,3–7 have enabled scientists to accurately study the
thermodynamics and kinetics of proteins8–11 and nucleic acids.12–15

In particular, the framework of Markov state models (MSMs)16–20

makes it possible to perform a systematic analyses of the metastable
states and kinetics of biomolecular systems. In principle, these com-
putational tools could be used as a highly accurate “computational
microscope,”21 allowing the quantitative description of the individ-
ual steps leading to, e.g., the rupture and formation of a double helix.
In practice, the results that can be obtained for RNA molecules are
still limited by several factors, the most important of which being the
accuracy of the force fields employed.14,22–24

The process of “base fraying,” that is, the breaking of base pair-
ing and stacking interactions at the termini of a RNA (or DNA)
double helix, is an apparently simple yet far from trivial process.
Frayed states are intermediate in the RNA zipping and unzip-
ping processes, have been proposed to be important in the inter-
action of RNA with proteins (see, e.g., Refs. 25–28), and might be
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relevant in strand invasion29 and, in general, in secondary structure
rearrangements required for the riboswitch function.30 The charac-
terization of fraying kinetics by experimental techniques is, however,
difficult due to their short lifetimes.31,32 Base fraying in RNA has
been characterized by means of computer simulations in several
studies.27,33,34 Colizzi and Bussi27 characterized the thermodynam-
ics of the process, suggesting that dangling bases at the 3′-end are
more stable than those at the 5′-end and thus might be important
intermediates in duplex unzipping. This finding is in agreement
with the higher stabilization provided to duplexes by 3′-end dan-
gling bases when compared to 5′-end dangling bases,35 although
this latter quantity also depends on the energy of stacking in sin-
gle stranded RNAs. The stabilities computed by Colizzi and Bussi
were, however, largely overestimated by the adopted unidirectional
pulling and were thus only usable to rank the fraying propensity
of different sequences. Zgarbová et al.33 performed a detailed char-
acterization of the non-canonical structures observed with current
force fields at the termini of DNA and RNA duplexes, without how-
ever, aiming at obtaining quantitative populations. Both these stud-
ies did not explicitly analyze the kinetics of the process. Finally, Xu
et al.34 presented a partial kinetic model reproducing the opening
of the base on the 5′ terminus of a RNA duplex. However, a com-
parison of the kinetics of the two ends and a quantitative analysis
of its sequence dependence are still missing. A number of papers
addressed fraying in DNA (see, e.g., Refs. 36–38 and the already
mentioned Ref. 33) or in an RNA:DNA hybrid in complex with a
protein.28

We here employ extensive MD simulations using 4 different
sequences with the goal of quantitatively characterizing the fray-
ing kinetics, through the use of MSMs. Specifically, we extend the
core-based MSM framework39,40 with density-based clustering.41,42

The procedure is validated on the kinetics of short oligonucleotides
first and then applied to base fraying in RNA duplexes. We chose
different sequences in order to assess the effect of the position of
purines/pyrimidines and the influence of the neighboring base pair.
Two state-of-the-art force fields are compared, specifically (i) the
one recently published by the D. E. Shaw research laboratory43

(in the following, DESRES) and (ii) the latest refinement of the
AMBER force field,44 which is the default AMBER force field for
RNA systems. Both force fields are based on previous versions of
the AMBER force field.45,46 We studied the sequence dependence of
stability, fraying rate, and the different pathways which the process
can follow. Interestingly, the results display a non-trivial interplay
between the stability of intermediate structures and the kinetics of
the process.

II. METHODS
A. Molecular dynamics simulations

We simulated the dynamics of short helices composed of a 3
base-pair GC stem plus a GC terminal pair. In particular, the fol-
lowing four permutations were used as model constructs: 5′−ACGC

3′−UGCG,
5′−AGCG
3′−UCGC, 5′−UCGC

3′−AGCG, and 5′−UGCG
3′−ACGC. In the rest of the paper, we will refer to

these constructs using only the sequence of the strand fraying at its
5′-end, respectively, ACGC, AGCG, UCGC, UGCG.

Initial structures were obtained using the Make-NA server
(http://structure.usc.edu/make-na/). RNA duplexes were solvated

in explicit water, adding Na+ counterions to neutralize the RNA
charge, plus additional NaCl to reach the nominal concentration
of 0.1M. The system was inserted in a truncated dodecahedral box
with periodic boundary conditions and box size 5.17 nm. RNA
was described using either the DESRES force field43,45,46 with the
TIP4P-D water model47 or the AMBER force field44–46 with the
TIP3P water model.48 Ions in DESRES simulations were described
using the CHARMM parameters49 as recommended in Ref. 43,
whereas in AMBER simulations, they were described using AMBER-
adapted parameters for Na+50 and Cl−.51 Based on previous results,
we do not expect RNA dynamics to be highly affected by the
ion parameters at this concentration.52,53 The equations of motion
were integrated with a 2 fs time step. All bond lengths were
constrained using the LINCS algorithm.54 Long-range electrostat-
ics was treated using particle-mesh-Ewald summations.55 Trajec-
tories were generated in the isothermal-isobaric ensemble using
stochastic velocity rescaling56 and the Parrinello-Rahman baro-
stat.57 All simulations were performed using GROMACS (ver-
sion 4.6.7, calculations using the AMBER force field, and 5.1.2,
calculations using the DESRES force field). Force field parame-
ters can be found at https://github.com/srnas/ff. Since we decided
to focus the study on the fraying of the A-U terminal pair, we
restrained the distances between the heavy atoms involved in the
hydrogen bonds corresponding to the G-C pairs, using harmonic
potentials. Additional details of the simulations are given in the
supplementary material.

For each system, we ran 32 independent simulations, each
approximately 1.0–1.5 µs long. After an initial energy minimiza-
tion using a steepest descent algorithm, 32 independent simulations
were initialized with random seeds and simulated for 100 ps at
T = 400 K, then equilibrated for additional 100 ps at T = 300 K.
The final configurations were used as starting points for the pro-
duction runs. The simulations using the DESRES and AMBER force
fields were performed starting from exactly the same conformations.
Frames were stored for later analysis every 100 ps. The minimum
distance observed between solute atoms from periodic images was
1.55 nm (DESRES simulations). Stacking interactions were analyzed
by using both the stacking score58 and the so-called G-vectors intro-
duced in Ref. 59. We analyzed the trajectories using Barnaba60 and
MDTraj.61

B. Core Markov state model combined
with density-based clustering

MSMs have been successfully applied to the study of many
biomolecular systems (see, e.g., Refs. 11 and 62–66). The idea under-
lying an MSM is to reduce the complexity of a simulation by par-
titioning the phase space into discrete microstates via a clustering
algorithm. The transition probabilities between these microstates
can be then computed counting the transitions observed in the MD
trajectories.

A possible approach to compute these probabilities is the so-
called “transition-based-assignment” or “coring,” first proposed in
Ref. 39 and further analyzed in Ref. 40. The idea is to define a col-
lections of “core sets,” i.e., metastable regions of the phase space,
which are not required to be in contact among each other. A tran-
sition between states A and B is counted only when a trajectory
goes from the core region of A (CA) to the core region of B (CB)
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without passing through any other core region. Then, the system will
be considered in state B until it goes back to CA or reaches a third
core region, independently of how many times it exits and re-enters
in CB before reaching a new state.

The fundamental step of this approach is to start with a good
definition of metastable core sets. This requirement is usually in
contrast with the fact that, when studying the dynamics of a com-
plex biomolecule, no prior knowledge of the free-energy landscape
of the system is available. Therefore, in order to successfully apply
this method, it is necessary to extract this information from the
simulation data, preprocessing the trajectories in order to identify
different states and define realistic core regions. A smart way to
do this is to make use of a density-based clustering algorithm to
separate the MD data set into a collection of clusters and iden-
tify the core regions of these clusters as the regions with higher
density.67

To construct core-based MSMs we proceed as follows. We
started by describing the system using the same set of coordinates
that we employed in a previous study:62 (i) G-vectors (4D vectors
connecting the nucleobases ring centers, as described in Ref. 59), and
(ii) the sine and cosine of backbone dihedrals, sugar ring torsional
angles, and glycosidic torsional angles. The dimensionality of this
input was then reduced using time-lagged independent component
analysis (TICA)68 with a lag time of 5 ns, and data were projected
on the slowest TICs using a kinetic map projection.69 Subsequently,
we used the pointwise-adaptive k-free energy estimator (PAk) algo-
rithm70 combined with the TWO-NN algorithm71 to estimate the
pointwise density in TICA space, which was then used to cluster the
data using density peak clustering.41,42 We defined the core of each
cluster as the set of all points i for which ρi/ρMAX > e−1, where ρMAX
is the maximum density in the cluster. According with Rodriguez
et al.,70 this corresponds approximately to a maximum of 1 kBT free-
energy difference between the configurations included in the core set
and those belonging to the transition areas. Finally, the MD trajec-
tories were discretized by assigning each frame to the last core set
visited, and the resulting discrete trajectories were used to estimate a
reversible MSM.72,73 More details on the procedure are given in the
supplementary material.

This procedure leads to robust and reliable MSMs. In order to
validate this procedure, we compared the results with those of a stan-
dard MSM in which the phase space was discretized using k-means
clustering on TICA projected space, and a transition was counted
every time a trajectory jumped from one microstate to the other.
Results of this validation are given in Sec. III A.

Afterwards, a lag time τ = 100 ps was then used to construct a
core-based MSM that approximates the dynamics of the discretized
system. The quality of the Markovian approximation was tested by
looking at the convergence of the implied time scales predicted by
the MSM for increasing values of τ as described in Ref. 17.

The MSM construction and analysis was performed using the
software PyEMMA 2.2.74 Density peak clustering was performed
using the code available at https://github.com/alexdepremia/Advan
ced-Density-Peaks.

C. Classification of states
In order to obtain an easy-to-interpret representation of the

fraying kinetics, we classified the microstates obtained with the MSM

procedure in different groups. The classification was performed
using a number of structural determinants, including root-mean-
square deviation (RMSD) from native conformation75 and stacking
score.58

For each system, microstates were grouped into the following
states:

● closed (C): canonical double helix, with both terminal bases
in their native conformations, stacking on the adjacent G
or C base, and forming pairing interactions between each
other;

● open (O): frayed structures, with broken pairing between
the two terminal bases, which are both unstacked and freely
moving;

● 5′-open (5P): the base at the 5′ terminal base is not forming
any stacking and pairing interactions, while the base in 3′ is
still in its native conformation;

● 3′-open (3P): same as 5P, but inverting 5′ and 3’;
● misfolded (M): the base on the 3′ terminus is rotated by 180○

and stacking “upside down” on its adjacent base; and
● undefined (U): all conformations not falling into the previ-

ous categories, including, among others, microstates where
the base at the 5′ terminus is rotated upside down, or con-
figurations in which one of the two terminal bases stacks on
the top of a base in the opposite strand.

Technical details of this classification are reported in the sup-
plementary material.

III. RESULTS
A. Validation of the core-based MSM

As a first step, we performed a validation of the introduced
MSM procedure using core-sets obtained with the PAk algo-
rithm and DP clustering. In particular, we here analyzed trajec-
tories reported in a previous paper62 for RNA adenine di- and
tri-nucleotides. Details of this analysis are provided in Sec. II B
and in the supplementary material. Figure 1(a) reports a compar-
ison between the results obtained with a core-set MSM and those
obtained with a standard MSM approach, as described in Sec. II.
Specifically, the time scales as a function of the lag time τ are
shown, and we can see that the core-based MSM lead to time
scales fully compatible with the standard approach. Strikingly, the
time scales are basically independent of the chosen lag time, show-
ing that this procedure is extremely robust and allows the selec-
tion of a relatively short lag time for the MSM construction. We
also notice (See Table SI 1) that the number of clusters result-
ing from the DP clustering is consistently smaller than the num-
ber of microstates that are required for a good discretization using
k-means.

B. Energetic and kinetic analysis
After being validated, the method is used to analyze large scale

simulations of 4 short duplexes, consisting in 32 simulations, with a
total simulation time of 35–54 µs for each sequence (see Table SI
1 for details). Two different force fields were employed. We here
report results using the DESRES force field,43 whereas results using
the standard AMBER force field are presented in Sec. III C.
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FIG. 1. Implied time scales of the MSM for different systems, as a function of the lag time. The three slowest time scales obtained with the core-based MSM (continuous
lines) are compared with a standard MSM with k-mean clustering (dashed lines). Panel (a) shows the validation on the adenine di- and trinucleotide simulations taken from
Ref. 62. Panel (b) reports the results for the 4 RNA duplexes studied in this work.

From the equilibrium population of the microstates obtained
from the MSM, we computed the free-energy difference between
the O and C states. Table I reports the computed difference in free
energy between the closed (C) state and the open (O) one. The
native structure is the most stable one, as expected. The stability of
the closed structure can be compared with thermodynamic experi-
ments35 where the stabilization of a duplex due to the presence of
an additional base pair is measured. The negative of this number
provides a lower bound for the stacking energy. Indeed, by assum-
ing that unstacked nucleobases do not form any interaction, the

TABLE I. Thermodynamic and kinetic properties obtained from the MSMs of the
4 RNA duplexes, specifically: Free-energy difference between O and C states
(∆FC→O) negative experimental stabilization of each duplex by the terminal base
pair computed with nearest neighbors parameters (−∆Fstab);35 MFPTs from C to O,
and vice versa; slowest implied time scale (t1) obtained from the MSM. Energies are
expressed in kcal/mol. Notice that the negative experimental stabilization is by con-
struction expected to be smaller than the stacking energy (see the text for discussion).
Uncertainties were estimated by using a Jackknife procedure.

∆FC→O −∆Fstab MFPT (µs)

Seq. MSM Experiment C→ O O→ C t1 (ns)

ACGC 3.7 ± 0.05 2.0 10 ± 1 0.28 ± 0.01 336 ± 12
AGCG 3.1 ± 0.15 1.8 10 ± 4 0.47 ± 0.03 479 ± 31
UCGC 4.6 ± 0.02 2.1 52 ± 6 0.36 ± 0.05 371 ± 57
UGCG 2.9 ± 0.07 1.8 10 ± 1 0.29 ± 0.01 424 ± 21

contribution of an additional base pair to the stability of a duplex
(∆Fstab) can be approximated as

∆Fstab ≈ ∆Fss1
S→U + ∆Fss2

S→U − ∆FC→O. (1)

Here, ∆Fss1
S→U and ∆Fss2

S→U are the free-energy changes related to
breaking a terminal stacking interaction in the two individual sin-
gle strands. Since single strands are expected to display a significant
amount of stacking76 these terms are expected to be positive so that
−∆Fstab < ∆FC→O. The ranking of the four investigated systems is
thus qualitatively consistent.

We also computed the stability of the intermediate states where
only one of the two nucleobases is open and the other is stacked
(3′-open, 3P, and 5′-open, 5P, if the stacked nucleobase is at the 5′
or 3′ end of the helix, respectively). The relative ∆F, with respect to
state C, of the 3P and 5P intermediate states are reported in Table
SI 3–6. As expected, adenine (purine) terminal bases form stacking
interactions that are stronger when compared with uracils (pyrim-
idines). Moreover, we find that the 5′-open states are on average
more stable than the 3′-open states, although the difference is mod-
ulated by the sequence. In particular, the two stabilities are roughly
comparable when the purine (A) is located at the 5′-end, whereas the
5′-open state is significantly more stable when the purine is located
at the 3′-end. These results are qualitatively consistent with previous
findings.27

Finally, states U and M, where one or both nucleotides are not
in their native structure nor unstacked, appear with non-negligible
population. Their stabilities are significantly smaller than that of the
native closed structure. We are not aware of solution experiments
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that rule out these structures as possible alternatives. Focusing on
state M, which consists of a clearly defined ensemble of conforma-
tions, we tried to search structures similar to these ones59 within
the whole structural database using Barnaba.60 Although fragments
extracted from the database are expected to be highly biased due
to their structural context and to the variety of experimental con-
ditions under which they were obtained, they were shown to agree
with solution experiments to a significant extent both in proteins77

and nucleic acids.78 A significant number of fragments with vir-
tually identical base pairing can be found (see Table SI 6), sug-
gesting that these misfolded structures are plausible metastable
states.

We then used the obtained MSMs to characterize the kinet-
ics of fraying. Interestingly, the slowest process always corresponds
to the unstacking and rotation of the nucleobase at the 3′-end [see
Fig. 2(a)], and thus represents the interconversion to the misfolded
structure mentioned above. The time scales of this process for the
four different systems are also reported in Table I. We then com-
puted the fraying kinetics for the four systems using transition-
path-theory (TPT),79 in the formulation of MSMs.80 The mean-first-
passage time (MFPT) associated with the fraying transition for the
four systems is reported in Table I. This number is inversely propor-
tional to the fraying rate. Interestingly, the MFPT for ACGC, AGCG,
and UGCG are very similar (10 µs) to each other, while UGCG
exhibits a much smaller fraying rate. The MFPT for the inverse pro-
cess, i.e., terminal pairing, is also reported in Table I. We can see that
this quantity shows a small dependence on the sequence and is cor-
related with the time scale of the slowest process, i.e., the rotation
of the 3′ nucleobase, showing that the state M acts as a kinetic trap
during terminal pairing.

We further investigated the mechanism of fraying, focusing on
the first opening base. Using TPT, we obtained the flux of fraying
trajectories going from C to O through either 3P or 5P. Results
are reported in Fig. 2(b). The most likely path for fraying is, for
the four investigated systems, the one through the 3P intermedi-
ate. In other words, based on these results one would expect the

nucleobase at the 3′-end to most likely break its stacking interac-
tion with the adjacent base before the one at the 5′-end. Interest-
ingly, the most probable intermediate in the transition between C
and O is always 3P, even in sequences UCGC and UGCG where it is
the “least” stable one according to the free-energy analysis reported
above. This can be rationalized by the individual rates reported
in Table SI 3–6. Estimated rates for transitions from 5P to O are
either null or very small. This is a consequence of the fact that no
or few transitions are observed in the MD simulation along this
pathway.

C. Comparison with AMBER force-field
We also analyzed an identical set of simulations performed

using the latest AMBER force field.44 Results are reported in Fig.
SI 2 and Table SI 7. These simulations resulted in a larger number
of non-canonical structures when compared with those obtained in
the simulations performed with the DESRES force field. In particu-
lar, we observed a non-negligible population of so-called ladder-like
structures44 (See Fig. SI 2B). Similar structures were also observed in
previous studies22,81 and might be a consequence of both the short
length of the duplex simulated here and the presence of restraints on
the base-pair distances in the duplex.

In addition, our simulations show a large population of
misfolded structures. See the supplementary material for more
details about these structures. In particular, for all the con-
structs except UCGC the stability of the misfolded structures
was larger than that of the native structure. Whereas these con-
formations are plausible metastable states (see also Table SI 6),
their high populations make the results much more difficult to
interpret.

In general, the closed state is less stable with respect to the open
state. This can be seen both from the ∆F, which are smaller in gen-
eral, and from the shorter MFPTs (See Fig. SI 2A). Regarding the
predicted fraying mechanics, most of the fraying pathways are going
through the misfolded (M), the undefined (U), or the ladder-like (L)

FIG. 2. Results of the MSMs of the four sequences, based on DESRES simulations. Panel (a): Slowest process in the MSMs of the 4 duplexes. Two structures from the
simulations of ACGC are shown, as representatives for all sequences. Panel (b): Flux of fraying trajectories computed from the four MSM by means of TPT.
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states. This makes it difficult to reach a definite conclusion regarding
the mechanism. However, one can observe a general tendency for a
mechanism where the 5′ base opens before the 3′ one, in contrast
with what predicted from the simulations with the DESRES force
field.

IV. DISCUSSION AND CONCLUSIONS
In this work, we developed a robust recipe for the construc-

tion of core-based MSMs and applied it to the characterization of
fraying kinetics in RNA. When compared with standard MSMs the
core-based method enables to obtain MSMs with a limited num-
ber of microstates, making the following analysis both clearer and
more practical. At the same time, the implied time scales are robustly
estimated, even for very short values of the lag time. One of the
advantages of a short lag time is a statistically robust estimation of
the MFPT, which is in general a challenging task for an MSM with a
large lag time, due to the effect of recrossing events.

We applied the introduced core-based MSM to study the ther-
modynamics and kinetics of base fraying and analyzed the pathway
followed during the process. We first focused on the free-energy
difference between the native helical conformation and the frayed
state using the DESRES force field.43,45,46 This difference can be com-
pared with the stabilization of a duplex resulting from the addition
of an individual base pair, as obtained from optical melting experi-
ments.35 The ranking of the four analyzed sequences is qualitatively
consistent with the experiments. This result is by itself not obvi-
ous, given that we are comparing systems with the same numbers
of GC and AU pairs. In other words, the force field is capable to
qualitatively capture the difference between placing a purine or a
pyrimidine on each of the two strands, and the interplay between
the hydrogen bonds formed in the first and in the second base
pair of a helix. The comparison is, however, only qualitative since
the experimental free energies report the difference in the stability
of two duplexes with a different number of pairs. By closing the
thermodynamic cycle, the experimental free energies should cor-
respond to the difference between the stacking energy in a duplex
and the stacking energy in two separated single strands that are
not included here. Previous studies performing the full thermody-
namic cycle using an older version of the AMBER force field82 and
the version used here83 report agreement with experimental free
energies. In addition, optical melting experiments are not sensi-
tive to the precise structure and only report the overall stability of
a bimolecular complex that might originate from the combination
of different structures. It must be also observed that, although the
DESRES force field is the only force field to date that was shown
to be able to predict the folded structure of RNA tetraloops includ-
ing their signature interactions,43 its capability to reproduce exper-
imentally observed non-canonical interactions has been recently
questioned.84

We then focused on the kinetics of the fraying process, esti-
mating the fraying rate and the weight of different pathways. The
fraying rates of three of the four sequences are all around 105 s−1.
The fourth sequence, UCGC, displays a 5-times slower fraying. This
effect can be attributed to the larger stability of the UC and AG stack-
ing interactions, also observed in the thermodynamic parameters.
The reported rates are in qualitative agreement with those measured
using imino-proton exchanges.31 We observe that rates for terminal

pairing show a slight dependence with respect to the sequence. The
ratio between the lowest and highest rate is ≈1.7, corresponding to
a contribution of ≈0.3 kcal/mol to the sequence-dependence of the
stability of individual base pairs. In comparison, the ratio between
the highest and the lowest unpairing rate is ≈5, corresponding to a
contribution of ≈1 kcal/mol. This agrees with the common notion
that the stability differences depend more on the off rates than on
the on rates.85

Interestingly, the fraying path with the largest flux always cor-
responds to a 3′-open intermediate, which is typically the least stable
among the two intermediates. The opening of the 5′ end likely results
in a reclosure of the pair because the 3′ dangling end stays stacked.
The opening of the 3′ end can result in complete opening because
the 5′ dangle is less stable. Therefore, a 3′ end opening, although less
frequent, is more likely to proceed to complete opening. The 5′-open
path has been proposed as the most likely one based on the frequency
of 3′-dangling bases in crystal structures86 and on the relative stabil-
ity of the two intermediates as computed by molecular simulations.27

It is, however, important to underline that the results reported here
might be affected by the choice of the force field. In particular, we
are not aware of any validation of the kinetics reported so far for the
DESRES RNA force field.

Finally, we report a comparison with simulations performed
with the standard AMBER force field.44–46 Results are significantly
different in the stability of the canonical duplexes, in the esti-
mated fraying rates, and in the predicted pathways. In particular, the
AMBER force field generates a larger population of non-canonical,
misfolded structures. Whereas the observed ladder-like structures44

might be an artifact related to the short length of the simulated
helices, the non-canonical interactions at the terminal bases have
been already reported elsewhere in the context of longer duplexes33

and are probably intrinsically stabilized by this force field. The rel-
ative population of these structures might change using recent cor-
rections that aimed at providing a better balance between impor-
tant hydrogen bond interactions.84 Overall, the presence of these
structures makes the interpretation of the fraying process more
difficult.

Interestingly, whereas the relative stability of the different inter-
mediates exhibits a similar trend between different force-fields, the
pathways of fraying are substantially different. Indeed, it is known
that the impact of force fields on kinetics can be large even when
the thermodynamic properties are similar.87 In this particular case,
the different kinetics might be a consequence of different energetic
barriers (e.g., in the backbone torsional angles) that are difficult to
validate experimentally. The possibility to have different force fields
resulting in the same native structure but predicting different path-
ways have been discussed for instance in the case of protein folding
simulations.88

In conclusion, we constructed a core-based MSM with the goal
of reproducing the kinetic properties of the terminal base pair of
an RNA double helix. The introduced method makes it possible to
obtain a robust estimation of rates and MFPT between folded and
frayed structures to identify metastable states and their relative sta-
bilities, as well as the unzipping pathways followed by the system.
Although the obtained rates are in qualitative agreement with exper-
imental data, the appearance of non-canonical structures and/or
their excessive suppression make the preferential unzipping pathway
dependent on the chosen force field.
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SUPPLEMENTARY MATERIAL

Supplementary material contains details of MD and MSM con-
struction, definition of states, supplementary results of kinetic analy-
sis, results of structural database search, and results of AMBER force
field simulations.
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