View metadata, citation and similar papers at core.ac.uk

SCUOLA INTERNAZIONALE SUPERIORE DI STUDI AVANZATI

SISSA Digital Library

The final spin from binary black holes in quasi-circular orbits

-

P
brought to you by i CORE

provided by Sissa Digital Library

This is the peer reviewd version of the followng article:

Original
The final spin from binary black holes in quasi-circular orbits / Hofmann, F; Barausse, E; Rezzolla, L. - In: THE
ASTROPHYSICAL JOURNAL LETTERS. - ISSN 2041-8205. - 825:2(2016), pp. 1-6.

Availability:
This version is available at: 20.500.11767/89695 since: 2019-04-18T11:52:19Z

Publisher:

Published
DOI:10.3847/2041-8205/825/2/L.19

Terms of use:
openAccess

Testo definito dall’ateneo relativo alle clausole di concessione d’uso

Publisher copyright
IOP- Institute of Physics

This version is available for education and non-commercial purposes.

(Article begins on next page)

09 March 2020



https://core.ac.uk/display/287451238?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DRAFT VERSION JUNE 8, 2016

THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS

FABIAN HOFMANN', ENRICO BARAUSSE*?, LUCIANO REzZOLLA '
Draft version June 8, 2016

ABSTRACT

We revisit the problem of predicting the spin magnitude and direction of the black hole resulting from the
merger of two black holes with arbitrary masses and spins inspiralling in quasi-circular orbits. We do this by
analyzing a catalog of 619 recent numerical-relativity simulations collected from the literature and spanning
a large variety of initial conditions. By combining information from the post-Newtonian approximation, the
extreme mass-ratio limit and perturbative calculations, we improve our previously proposed phenomenological
formulae for the final remnant spin. In contrast with alternative suggestions in the literature, and in analogy
with our previous expressions, the new formula is a simple algebraic function of the initial system parameters
and is not restricted to binaries with spins aligned/anti-aligned with the orbital angular momentum, but can be
employed for fully generic binaries. The accuracy of the new expression is significantly improved, especially
for almost extremal progenitor spins and for small mass ratios, yielding a root-mean-square error ¢ ~ 0.002 for
aligned/anti-aligned binaries and o ~ 0.006 for generic binaries. Our new formula is suitable for cosmolog-
ical applications and can be employed robustly in the analysis of the gravitational waveforms from advanced

interferometric detectors.

Subject headings: black hole physics, gravitational waves, gravitation

1. INTRODUCTION

According to the predictions of general relativity, binary
systems of compact objects are the most efficient emitters of
gravitational waves (GWs). Indeed, Advanced LIGO has re-
cently detected the GW signal from a black-hole (BH) binary
with masses M; ~ 36 My and My ~ 29 M (Abbott et al.
2016), at a (luminosity) distance of ~ 410 Mpc. In general,
Advanced LIGO and other terrestrial interferometers, such as
Advanced Virgo and KAGRA, target BH binaries with a va-
riety of masses (up to a few hundred M, if they exist; Bel-
czynski et al. 2014, 2016). More massive BH binaries are
targeted by existing pulsar-timing arrays (in the mass range
10% — 10'9 My; Manchester & IPTA 2013) and by future
space-borne interferometers such as eLISA (in the mass range
10* — 107 My ; Klein et al. 2016).

One of the obvious difficulties of observing BH binaries
with terrestrial interferometers is that only the final part of
the inspiral and the merger/ringdown are in band. This is
where the perturbative post-Newtonian (PN) techniques valid
earlier in the inspiral become inaccurate, preventing the ex-
traction the source’s physical parameters. Hence, to obtain
the full gravitational waveforms, it is necessary to resort to
numerical-relativity (NR) simulations. In practice, even under
the reasonable assumption that BH binaries near the merger
have been circularized by earlier GW emission, the space of
parameters to be probed (the mass ratio ¢ and the spin vectors
S1, So, i.e., seven parameters) is too large to be handled by
NR simulations alone.

To ensure a sufficient coverage of the parameter space,
semi-analytical techniques allowing faster waveform produc-
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tion are employed, e.g., the spin-effective-one-body (sEOB)
model (Buonanno & Damour 1999; Damour 2001; Barausse
& Buonanno 2010) or “hybrid” waveforms (Ajith et al. 2008;
Khan et al. 2015), which combine results from NR simu-
lations with PN and quasinormal-mode calculations. These
techniques are faster, but require great care when modeling
the merger and the transition to the ringdown. Indeed, al-
though the ringdown can be modeled via a linear superposi-
tion of quasi-normal modes, their frequencies depend on the
remnant BH’s mass and spin, which, in turn, depend on the
initial binary parameters.

This relation between the binary’s initial and final states is
highly non-trivial because it encodes the details of the strong-
field, highly relativistic merger, which is only accessible via
NR calculations. Yet, a number of approaches to predict an-
alytically or semi-analytically the remnant’s final spin mag-
nitude and direction have been proposed. These range from
modeling the GW fluxes throughout the binary’s evolution
within the EOB model (e.g., by Damour & Nagar 2007, for
nonspinning BHs) to approaches that combine information
from PN theory, the extreme mass-ratio limit (EMRL), sym-
metry arguments, and fits to NR data, to provide “formulae”
for the final spin (Rezzolla et al. 2008a; Kesden 2008; Rez-
zolla et al. 2008b; Tichy & Marronetti 2008; Rezzolla et al.
2008c; Buonanno et al. 2008; Barausse & Rezzolla 2009;
Healy et al. 2014). Similar formulae have also been derived
for the remnant’s final mass (Tichy & Marronetti 2008; Kes-
den 2008; Barausse et al. 2012; Healy et al. 2014), which
differs from the binary’s total mass by the energy emitted in
GWs. Again, acommon problem in these attempts is the diffi-
culty to cover with sufficient accuracy the seven-dimensional
parameter space of quasi-circular BH binaries. Indeed, while
most of these formulae formally cover the whole parameter
space, they can be rather inaccurate, especially for BHs with
almost extremal spins.

By combining results from NR and information from the
EMRL and PN theory, we here derive a new formula for the
spin magnitude and direction for the merger remnant from
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quasi-circular BH binaries with arbitrary masses and spins.
We calibrate our formula against a catalog of 619 recently
published NR simulations (Chu et al. 2009; Hannam et al.
2010; Nakano et al. 2011; Sperhake et al. 2011; Pollney
& Reisswig 2011; Kelly et al. 2011; Buchman et al. 2012;
Lovelace et al. 2012; Hemberger et al. 2013; Hinder et al.
2013; Kelly & Baker 2013; Pekowsky et al. 2013; Healy et al.
2014; Lousto & Zlochower 2014; Lovelace et al. 2015; Scheel
et al. 2015; Szildgyi et al. 2015; Zlochower & Lousto 2015;
Husa et al 2016; SXS collaboration 2016)°, and validate it
by comparing its results to self-force calculations and plunge-
merger-ringdown fluxes for nonspinning binaries with small
mass ratios, as well as to a set of 248 NR simulations not in-
cluded in the calibration dataset (Karan et al. 2016).

Our new formula builds upon Barausse & Rezzolla (2009),
who introduced a final-spin formula that is widely used both
in the production of semi-analytical waveforms (e.g., in SEOB
and phenomenological waveforms) and in cosmological stud-
ies of massive BH evolution (see, e.g., Berti & Volonteri 2008;
Fanidakis et al. 2011; Barausse 2012; Volonteri et al. 2013;
Dubois et al. 2014; Sesana et al. 2014). Our novel prescrip-
tion especially improves the accuracy of the formula by Ba-
rausse & Rezzolla (2009) for extreme mass ratios and for
near-extremal spins. This is important since near-extremal
spins are expected, at least in some cases, for supermassive
BHs (Berti & Volonteri 2008; Fanidakis et al. 2011; Barausse
2012; Volonteri et al. 2013; Dubois et al. 2014; Sesana et al.
2014) and possibly also for stellar-mass BHs (McClintock
etal. 2011). We assume G = 1 = c¢ hereafter.

2. MODELING THE FINAL SPIN

Let us first consider a BH binary with spins parallel
(i.e., aligned or anti-aligned) to the orbital angular momentum
L, and denote the masses by M; o (with ¢ = Mo /M; < 1)
and the spin projections on the angular-momentum direction
by S12 = a2 M 1272 (a1,2 being the dimensionless spin-
parameter projections). In the EMRL ¢ <« 1, the final-spin
projection on the angular-momentum direction must be

Qfin = Q1 +V (LISCO (al) - 2aflElsco (al)) + O(V2) (D

with v = ¢/(1 + ¢)? the symmetric mass ratio, and L., (a),
E . (a), respectively the specific (dimensionless) angular
momentum and energy for a test particle at the innermost sta-
ble circular orbit (ISCO) of a Kerr BH with spin parameter
a (Bardeen et al. 1972)

2
Eigeola) =4 [1~ m ) ()

2
LISCO (a) = ﬁ [1 +2 V 3TISCO (a) - 2} s 3)

Frowo (@) = 3+ Zs — %\/(3 “Z)(B+ Z1 +272) (%)

Zy=1+(1-a?)/3 [(1+a)1/3+ (1 —a)”ﬂ , O

Zy = \/3a% + Z2. ©)

5 Note that for the simulations of Zlochower & Lousto (2015), we only
consider the horizon-extracted data, and not the radiation-based ones, which
may be imprecise (Lousto private comm. 2016).

The final-spin expression of Rezzolla et al. (2008c) and Ba-
rausse & Rezzolla (2009) reproduces Eq. (1) only in the spe-
cial case a; = 0, when ag, = 2v3v + O(v?). Indeed, one
of the drawbacks of those early expressions is that they may
yield spins ag, > 1 for small mass ratios v < 1, in clear dis-
agreement with Eq. (1), which predicts ag, < 1, the equality
holding for a; = 1.

To enforce the EMRL exactly, we consider the following
ansatz for the final-spin projection:

Qfin = Qtot + V[Llsco (a'eff) — 2at0t (EISCO (a'eff) - 1)]

+ XMj Z ki’ taly, ()

i=0 j=0

where k;; are free coefficients to be determined from the NR
data, agor = (S1+S2)/ (M1 + M2)? = (a1 +a2q?)/(1+q)?
is the “total” spin parameter used in Barausse et al. (2012),
while acr = S /(M + M3)? is an “effective” spin param-
eter. In more detail, we assume Segr = (1 + EMo/M7)S1 +
(1 4+ €M1 /M>)Ss, which yields aer = ator + {v (a1 + a2).
This choice is inspired by Damour (2001), who finds that the
leading-order conservative spin-orbit dynamics depends on
the spin only through S.g with £ = 3/4, while the leading-
order conservative spin-spin dynamics depends on S.g with
& = 1 (see also Racine 2008; Kesden et al. 2015; Gerosa et
al. 2015). In the following, we will keep & as a free parameter
and determine it from the NR simulations.®

Note that Eq. (7) matches Eq. (1) for v < 1, since a0y =
a1(1—2v)+O(v?). Moreover, by singling out a.; as the first
term in Eq. (7), we have isolated the “direct” contribution of
the progenitor spins to the remnant’s spin. However, this does
not mean that all leading-order effects of the smaller BH’s
spin as are already included. For instance, the specific energy
and angular momentum at the ISCO receive corrections of
O(aqv) (see e.g., Barausse & Buonanno 2010), which propa-
gate into a term of O(ay ?) in the final spin, c.f. Eq. (1). This
effect, together with other ones, is captured by the coefficient
k()l .

The coefficients ky; of the v? terms in Eq. (7) also en-
code the information about the self-force dynamics (both dis-
sipative and conservative) and the leading-order (in mass ra-
tio) plunge-merger-ringdown emission. More specifically,
the conservative self-force produces shifts v AE ., and
v AL, in the ISCO specific energy and angular momen-
tum away from the geodesic values of Eqgs. (2) and (3). For a
nonspinning binary (a; = a2 = 0) withv < 1

ALy, ~ —0.802. 8)

This follows from evaluating Eq. (3¢) of Le Tiec et al. (2012)
at the ISCO frequency, which should include conservative
self-force effects as in Eq. (5) of the same reference. The
plunge-merger-ringdown angular-momentum flux is instead
given by (Bernuzzi & Nagar 2010)

AJ,,, ~ 3.46 7. 9)

6 Setting & = 3/4 or & = 1 yields a much larger reduced x? (see below
for how we compute it). Forn,, = 1,n;, = 2 (n,, = 3, n, = 4) we
obtain x2 ; ~ 5 (1.4) for £ = 3/4, and x2,; ~ 51 (10) for £ = 1. This
strong statistical evidence that £ # 3/4, 1 is not surprising, as one indeed
expects the leading-order spin-orbit and spin-spin couplings to be “deformed”
for highly relativistic binaries (Barausse & Buonanno 2010).
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ko1 ko2 k1o k11 k12 3
—1.2019 —1.20764 3.79245 1.18385 4.90494 0.41616
ko1 ko2 ko3 k1o k11 k12
2.87025 —1.53315 —3.78893 32.9127 —62.9901 10.0068
k13 k20 ka1 ka2 ka3 k30
56.1926 —136.832 329.32 —13.2034 —252.27 210.075

k31 k32 k33 3
—545.35 —3.97509 368.405 0.463926
ko1 ko2 ko3 koa k1o k11
3.39221 4.48865 —5.77101 —13.0459 35.1278 —72.9336
k12 k13 k14 k20 ka1 ka2
—86.0036 93.7371 200.975 —146.822 387.184 447.009
ka3 k24 k30 k31 k32 k33
—467.383 —884.339 223.911 —648.502 —697.177 753.738
k34 3
1166.89  0.474046
Table 1

2 (top block),

The coefficients of our formula, forn,, =1, n; =
= 3, n; = 4 (bottom block).

o = 3, n; = 3 (middle block) and n,, =

Therefore, for a nonspinning binary one expects

Gfin =~ I/LISCO (0) -2/ [EISCO (O) - 1]Llsco (0)
—AJ,, +0

+ A[/ISCO MR ( )
~2V3v —3.8712 + O(1?),

hence koo =~ —3.87. (Note that at O(v) and after setting
a1 = ag = 0, this equation reduces to Eq. (1).) How-
ever, since the transition from inspiral to plunge does not hap-
pen exactly at the ISCO when accounting for deviations from
adiabaticity, but takes place smoothly around the ISCO (Ori
& Thorne 2000), and since the the plunge-merger-ringdown
fluxes are intrinsically approximate (as it is difficult to de-
fine unambiguously the plunge-merger-ringdown as separate
from the late inspiral), we keep kg as a free parameter. As
it happens, at least for n,, = 1, n, = 2, the fitted value is
koo ~ —3.82, which is reasonably close to the one predicted
by the considerations above’.

In principle, we could fit all the coefficients k;; (as well as
&) to the NR results. However, since simulations for equal-
mass non-spinning BH binaries have determined the final
remnant’s spin with accuracy far better than for other config-
urations, we impose that Eq. (7) withg =1anda; = a3 =0
yields exactly the final spin ag, = 0.68646 = 0.00004 mea-
sured by the NR simulations of Scheel et al. (2009). This
gives the relation

V3§

2 42+1
=0

(10)

= 0.68646 £ 0.00004 . an

With this constraint, we fit Eq. (7) to the 246 simulations for
parallel-spin binaries in our calibration dataset.

However, before performing the fit, it is useful to quan-
tify the average error of the final spins calculated from NR
simulations. This is possible because our calibration dataset
contains simulations by different groups with the same initial
data. More precisely, 71 parallel-spin simulations have one or

7 For the cases n, =3,n; =3andn,, = 3,n; = 4, also considered
in the following, koo ~ —5.9. However, we will show that unlike n,, =1,
n; = 2, those cases are probably overfitting the data.

Model coeffs. o o Xed
ny,=1n,=2 6 —0.000215 0.00198 0.985
ny, =3, n; =3 16 —0.000066 0.00168 0.712
ny, =3, n; =4 20 —0.000029 0.00166 0.694
Barausse & Rezzolla (2009) 4 —0.002310 0.00564 9.313
Husa et al. (2016) 11 —0.000240 0.00453 5.150
Healy et al. (2014) 19 0.000014 0.00170 0.718
Table 2

The mean and rms (u and a) of the residuals ah™ — aﬁt from the

numerical data, as well as X re , for our formula and those of Barausse &
Rezzolla (2009), Husa et al (20 16) and Healy et al. (2014); also displayed is
the number of coefficients in the various cases.

more “twins”, i.e., binaries with exactly the same initial prop-
erties, so that the mean of the absolute differences between
twin NR simulations can be measured to be dag, ~ 0.002.
This estimate allows not only performing a fit, but also com-
puting its reduced chi-squared X2, thus gauging whether we
are overfitting the data, which would correspond to x2,; < 1.

Since Eq. (7) can be expanded to arbitrary order via its
last term, we have performed fits of the parallel-spin cal-
ibration dataset with n,, = 1, n, = 2 (6 coefficients),

=3, n, =3 (6 coefﬁc1ents) andn,, =3, n, =4
(20 coefﬁc1ents) The fitted coefficients are given in Table
1. Table 2 reports the mean (u) and root-mean- s%uare (rms,
o) of the residuals from the NR data, as well as xz,4, for the
three aforementioned sets of coefficients, and for the formulae
of Barausse & Rezzolla (2009), Husa et al (2016) and Healy
et al. (2014) (which use 4, 11 and 19 coefficients, respec-
tively). Table 2 shows that our new formula converges when
increasing the number of coefficients, although the optimal
choice to avoid overfitting appears to be n,, = 1, n, = 2.
The convergence of our formula is also displayed in the left
panel of Fig. 1, which shows the probability distribution func-
tions (PDFs) of the residuals, obtained as Gaussian fits. The
right panel shows instead the (fitted) PDFs for our formula
(for n,, = 3, n, = 4) and for the formulae of Barausse &
Rezzolla (2009), Husa et al (2016) and Healy et al. (2014);
the inset shows the actual residual distribution for our for-
mula. Note that already with 16 coefficients our new formula
has a slightly smaller rms than Healy et al. (2014), with the
important advantage that it can be used also for generic bina-
ries (see below), unlike the formulae of Husa et al (2016) and
Healy et al. (2014).

To generalize Eq. (7) to generic spins, we write the rem-
nant’s spin as the total spin S = S; + S plus an angular
momentum contribution (i.e., the angular momentum at the
binary’s “effective” ISCO), i.e., Sg, = S + AL. Since the
final mass is Mg, = (M1 + M3)(1 — Eyaq) (with Eppg < 0.1
the mass radiated in GWs; Barausse et al. 2012), the final spin
parameter is

Qfin = Qiot TV, Qtor = (al + (12(]2) , (12)

1
(1+9q)?
where we have reabsorbed the radiated energy I),q in
£ = AL/[M{M3(1 — Eaq)?] + S[2Ewa + 3ELy +
O(Eaa)3] /(M1 Ms) (note that £ remains finite in the test-
particle limit because |[AL| = O(v) = Eyaq as v — 0). By
evaluating Eq. (12) for parallel spins and comparing it to (7),
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Figure 1. Left panel: probability distribution functions (PDFs), obtained as Gaussian fits, for the residuals of our formula with increasing number of coefficients

(e,ny =1,n;, =2;n, =3,n; =3; ny

= 3, n; = 4) and for that of Barausse & Rezzolla (2009). Right panel: same as the left panel, but for

our formula with n ), = 3, n; = 4 and for the formulae of Barausse & Rezzolla (2009), Healy et al. (2014), and Husa et al (2016); the inset shows the actual

distribution for our formula.

we obtain

|£| = |Lisco (aeff) — 2at0t (EISCO (aeff) - 1)

"aong

YO kipttialy|, (13)

i=0 j=0
which can be generalized to precessing spins by following Ba-
rausse et al. (2012) (see also Rezzolla et al. 2008c; Barausse
& Rezzolla 2009) and replacing

v cos B + |as] cos 7y ¢?

Aot — atot(ﬂa'%Q) = (1 F q)2 ) (14)
aeff = et (8,7, q) = aot(B,7) + Ev(ar cos B+ az COS(}Y%;

with § () being the angle between a4 (a2) and the orbital an-
gular momentum. Clearly, with this choice Eq. (12) matches
Eq. (7) for parallel spins (i.e., for 5 = 0,7 and v = 0, 7).

Moreover, for equal masses (¢ = 1), the leading-order PN
spin effects in the conservative sector (i.e., the leading-order
spin-orbit coupling) enter the dynamics only through the com-
bination L - §/M? = a0 (5,7,1) x acg(53,7,1) (see e.g.,
Damour 2001; Barausse & Buonanno 2010), where a “hat”
denotes a unit-norm vector. Therefore, at this approximation
order, the binding energy and angular momentum at the ef-
fective ISCO depend on the spins only through aot (53,7, 1)
(or equivalently aqq(5,7,1)), as reflected in Egs. (13)—(15).
Similarly, in the EMRL, the leading contributions to |£| come
from the ISCO energy and angular momentum of a test par-
ticle in Kerr. By construction, |£| has the correct EMRL for
parallel spins, but the EMRL is also recovered approximately
for generic-spin configurations, at least at leading order in the
primary-BH spin. Indeed, this happens because the ISCO
angular momentum and energy for a test particle in a non-
equatorial orbit in a Kerr spacetime are L ., (atot(3,7,0))
and F .., (at01 (8,7, 0)), at leading order in the spin (see dis-
cussion in Barausse et al. 2012).

Putting things together, the final-spin magnitude reads

|agn| = g7 [lai® + |az?¢* + 2|ai||az|q® cos a
+2(|an| cos B + |as|g? cos)[elg + [€22] 2, (16)

where « is the angle between the two spins. In principle, the
angles «, 8 and v depend on the binary separation. However,
B and + enter in our formulae only through a.t (53,7, ¢) and
aot (3,7, q). These combinations remain constant during the
adiabatic inspiral (Apostolatos et al. 1994), if only the lead-
ing PN order in the spins (i.e., the leading-order spin-orbit
coupling) is included, and either (i) the masses are equal,;
or (ii) only one BH is spinning; or (iii) the mass ratio is
extreme (i.e., v ~ 0). Similarly, under the same assump-
tions, we can safely assume that o remains constant during
the adiabatic inspiral (Apostolatos et al. 1994), i.e., the an-
gle between the two spins is preserved by the leading-order
spin-orbit coupling for equal masses, while it does enter the
final-spin prediction if only one BH is spinning, or when
v = 0 (indeed, the effect of the smaller BH’s spin van-
ishes at leading order in v, because |S2| = O(v)?). Out-
side these special cases, «, [ and « are not exactly con-
stant. For instance, in general « oscillates and the oscilla-
tions may even become “flip-flop”-unstable between separa-
tions ryat = (y/ar + \/gaz)*(My + Ms)/(1 — q)* for cer-
tain unequal-mass configurations where the primary-BH spin
is aligned with the orbital angular momentum and the spin of
the secondary is anti-aligned with it (Lousto & Healy 2016;
Gerosa et al. 2015). These configurations, however, are un-
likely if the spins are isotropically distributed, or if the spins
are almost aligned with the angular momentum of a circumbi-
nary disk due to the Bardeen-Petterson effect (Bardeen & Pet-
terson 1975).

Therefore, we follow Barausse et al. (2012); Barausse &
Rezzolla (2009); Rezzolla et al. (2008c) and define «, 3 and
«y at the initial binary separation 7y

cosa = aj - Qo

cosﬁzifn

Tin ) A7)
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Figure 2. The residual distribution for the remnant spin magnitude, for bina-
ries with generic spins; the inset shows how the modest bias of the distribution
can be reduced by adjusting the angles 3, ~.

Indeed, Barausse & Rezzolla (2009) and Kesden et al. (2010)
have verified that the final-spin predictions are robust against
the initial separation 7y, i.e., in most cases the definitions (17)
are justified.

A comparison between our new formula with n, = 2,
n,, = 1 and the generic-spin simulations in our calibration
dataset yields the residuals displayed in Fig. 2. Also shown
is the corresponding PDF with mean ¢ ~ —0.005 and rms
o ~ 0.007. Note that in this case we cannot reliably estimate
X2 4> as none of the generic-spin configurations have “twins”
in our calibration dataset, and the NR error is expected to
be larger than in parallel-spin binaries because of precession.
Also shown by Fig. 2 is an unattractive feature of our formula,
namely, that the distribution of residuals is biased toward neg-
ative values (i.e., our formula systematically overpredicts the
final spin for generic binaries). Although this bias is small,
and because it follows from assuming that «, 3,7 are con-
stant, we can amend it by replacing the angles «, 3, -y by “ef-
fective” angles o*, 8%, v* defined as

O* = 2arctan [(1 + €o) tan (;)] ~0O +eosin®, (18)

where © = «, 3, v, €g are free coefficients to be fixed by the
data, and we impose €5 = €, to make our formula symmetric
under exchange of the two BHs. Clearly, for parallel spins
o = o, f* = fand v* = 7. A comparison with the NR
data gives €, ~ 0 and eg = ¢, =~ 0.024, where we have used
the second equality of Eq. (18) (the first equality gives similar
results). The corresponding residual distribution has a smaller
bias and is shown in the inset of Fig. 2, together with a PDF
with p ~ —0.001, o ~ 0.006.

As a further “blind” test of our formula, we consider data
from the recently published catalogue of Karan et al. (2016)
that is not already included in our calibration dataset (i.e., 83
parallel-spin and 165 precessing-spin simulations). Already
when using only n,, = 1 and n, = 2, the comparison yields
mean and rms residuals y ~ —5 x 107° and 0 ~ 1.4 x
10~* for parallel spins, and 1 ~ —0.004 (¢ ~ —0.0005), and
0~ 3.3x107% (¢ ~ 3.5 x 10~%) for precessing spins with
unadjusted (adjusted) angles 3, .
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Figure 3. The distribution of the angle between the final spin and the initial
direction of the total angular momentum.

Finally, for the final-spin direction we follow Barausse &
Rezzolla (2009); Apostolatos et al. (1994) and note that at
leading PN order in the spins (i.e., including the leading-
order spin-orbit coupling alone), the GW-driven evolution in
the adiabatic inspiral approximately preserves the direction of
the total angular momentum J = L + S. Barausse & Rez-
zolla (2009), and later Lousto & Zlochower (2014), verified
that J is approximately preserved (to within a few degrees)
also in the plunge, merger and ringdown. The only exception
to this “simple-precession” picture are binaries with spins al-
most anti-aligned with the orbital angular momentum at large
separations (Apostolatos et al. 1994; Kesden et al. 2010). In-
deed, when the GW emission sheds enough angular momen-
tum that L ~ — S, these binaries undergo “transitional pre-
cession” (Apostolatos et al. 1994), whereby the direction of
J changes significantly on short timescales. Note that among
the configurations that give rise to “simple precession” are
also the “flip-flop” binaries of Lousto & Healy (2016) and
Gerosa et al. (2015). Since transitional-precession configura-
tions comprise a small portion of the parameter space (Kes-
den et al. 2010), we follow Barausse & Rezzolla (2009) and
assume that the final-spin direction is simply given by J (in),
i.e., the final-spin angle g, relative to the initial angular mo-
mentum is simply

cos B, = f(rin) . i(rin) . (19)

Indeed, the 157 simulations (Zlochower & Lousto 2015;
Lousto & Zlochower 2014) in our dataset that report the final-
spin direction confirm that the final spin is almost aligned with

J(7in), to within ~ 18° in the worst case, and to within 4°
(6°) in 64% (78%) of the cases. The distribution of the an-
gle between the final spin and J(rj,) is shown in Fig. 3; it
is unclear whether the small counts for fg,, = 10° are due to
imprecisions in the formula or in the numerical simulations.
Finally, we note that unlike other formulae for the final-
spin direction (Buonanno et al. 2008; Tichy & Marronetti
2008; Rezzolla et al. 2008c), Eq. (19) is valid also when
Tin > My + Ms. (This is also the case for our formula for
the final-spin magnitude.) This is particularly important to
predict the final spin in massive BH mergers. Indeed, cosmo-
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logical simulations (both numerical and semi-analytical ones)
cannot follow the evolution of massive BH binaries below the
separation r,, at which the GW dynamics starts driving the
orbital evolution. For a binary with M; + My ~ 108 M, ina
gas-poor environment, 7., ~ 1072 pc ~ 2x 103 (M;+ M),
a separation at which other prescriptions for the final-spin di-
rection become significantly inaccurate (see discussion in Ba-
rausse & Rezzolla 2009; Barausse 2010).8

3. CONCLUSION

By combining information from the test-particle limit,
perturbative/self-force calculations, the PN dynamics, and an
extensive set of NR simulations collected from the literature,
we have constructed a novel formula for the final spin from
the merger of quasi-circular BH binaries with arbitrary mass
ratios and spins. When applied to parallel-spin configura-
tions, our novel formula performs better than other expres-
sions in the literature, and we have also tested its validity for
precessing-spin binaries, which other formulae are not able to
model accurately. Also, unlike models such as that of Healy
et al. (2014), our formula is purely algebraic. Finally, we
have used our collected NR dataset to confirm that the final-
spin direction is almost parallel to the initial total angular-
momentum direction, as first suggested by Barausse & Rez-
zolla (2009).

We thank Nathan Johnson-McDaniel for useful comments
and Davide Gerosa for clarifications on flip-flop binaries. We
acknowledge support from the European Union’s Seventh
Framework Programme (FP7/PEOPLE-2011-CIG) through
the Marie Curie Career Integration Grant GALFORMBHS
PCIG11-GA-2012-321608, from the H2020-MSCA-RISE-
2015 Grant No. StronGrHEP-690904, and from the ERC Syn-
ergy Grant “BlackHoleCam - Imaging the Event Horizon of
Black Holes” (Grant 610058).

8 In a gas-rich environment, the separation row below which GWs dom-
inate the binary evolution and our formulae can be applied is smaller (Ar-
mitage & Natarajan 2012), while for “flip-flop” binaries our formula for the
final-spin magnitude might be applicable only below 7,4+ .
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