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ABSTRACT
Massive black hole binaries (MBHBs) are expected to form at the centre of merging
galaxies during the hierarchical assembly of the cosmic structure, and are expected
to be the loudest sources of gravitational waves (GWs) in the low frequency domain.
However, because of the dearth of energy exchanges with background stars and gas,
many of these MBHBs may stall at separations too large for GW emission to drive
them to coalescence in less than a Hubble time. Triple MBH systems are then bound
to form after a further galaxy merger, triggering a complex and rich dynamics that
can eventually lead to MBH coalescence. Here we report on the results of a large set
of numerical simulations, where MBH triplets are set in spherical stellar potentials
and MBH dynamics is followed through 2.5 post-Newtonian order in the equations
of motion. From our full suite of simulated systems we find that a fraction ' 20 −
30 % of the MBH binaries that would otherwise stall are led to coalesce within a
Hubble time. The corresponding coalescence timescale peaks around 300 Myr, while
the eccentricity close to the plunge, albeit small, is non-negligible (∼< 0.1). We construct
and discuss marginalised probability distributions of the main parameters involved
and, in a companion paper of the series, we will use the results presented here to
forecast the contribution of MBH triplets to the GW signal in the nHz regime probed
by Pulsar Timing Array experiments.

Key words: black hole physics – galaxies: kinematics and dynamics – gravitation –
gravitational waves – methods: numerical

1 INTRODUCTION

Massive black holes (MBHs) are ubiquitous in the nuclei of
nearby spheroids (see Kormendy & Ho 2013, and references
therein), and are recognised to be a fundamental ingredient
in the process of galaxy formation and evolution. Indeed,
the tight correlations existing among the mass of the central
MBH and the properties of the host galaxy (see, e.g., Fer-
rarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al.
2002; Ferrarese 2004; Ferrarese et al. 2006) indicate that
galaxies and MBHs follow a linked evolutionary path during
the formation history of cosmic structures. It is therefore
understood that MBHs were commonly residing at the cen-
tres of galaxies at all cosmic epochs. This very circumstance,
when framed in the bottom-up hierarchical clustering of cold
dark matter overdensities, leads to the inevitable conclu-
sion that a large number of MBH binaries (MBHBs) formed

during the build-up of the large scale structure (Begelman,
Blandford & Rees 1980).

MBHBs are expected to be the loudest sources of
gravitational radiation in the nHz-mHz frequency range
(Haehnelt 1994; Jaffe & Backer 2003; Wyithe & Loeb 2003;
Enoki et al. 2004; Sesana et al. 2004, 2005; Jenet et al. 2005;
Rhook & Wyithe 2005; Barausse 2012; Klein et al. 2016), a
regime partially covered by the LISA interferometer (Con-
sortium et al. 2013; Amaro-Seoane et al. 2017), and by ex-
isting Pulsar Timing Array (PTA) experiments (Desvignes
et al. 2016; The NANOGrav Collaboration et al. 2015; Rear-
don et al. 2016; Verbiest et al. 2016). The observability of
MBHBs by LISA and PTAs relies on the ability of the two
black holes to coalesce within a Hubble time after a galaxy
merger1.

1 See however Dvorkin & Barausse (2017) for the stochastic grav-
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2 Bonetti et al.

The evolution of a MBHB in a galactic potential can
be divided in three different stages (Begelman, Blandford &
Rees 1980). Initially, driven by dynamical friction against
stars and gas, the two MBHs migrate toward the centre
of the newly formed spheroid to form a bound binary sys-
tem. The subsequent evolution of the binary depends on the
properties of the surrounding environment in the nucleus of
the merger galaxy remnant. In gas rich galaxies (wet merg-
ers), further shrinking can be caused by the interaction with
a massive circumbinary disc or with incoherent pockets of
accreted gas clouds (Dotti et al. 2007; Cuadra et al. 2009;
Nixon et al. 2011; Goicovic et al. 2017). However, most of the
simulations exploring these scenarios are highly idealised,
usually lacking realistic prescriptions for cooling, fragmen-
tation, star formation and supernova feedback. The actual
efficiency of gas-MBHB interaction in realistic physical con-
ditions is poorly known, and stalling of the binary is still
a possibility (see, e.g., Lodato et al. 2009). In dry galaxy
mergers (i.e., where gas is absent/negligible and therefore
can not substantially affect the dynamics), a MBHB can
evolve only because of stellar interactions. Indeed, after the
MBHs form a bound pair at ai ≈ GM/σ2 (M = m1 + m2

is the total mass of the binary, and σ is the stellar velocity
dispersion), the binary hardens by ejecting stars via single
three-body interactions. The efficiency of this process satu-
rates at the hardening radius ah ∼ Gm2/4σ

2 (where m2 is
the mass of the secondary, Quinlan 1996) and beyond that
point the MBHB hardens at a constant rate. However, since
in the process stars are ejected by the slingshot mechanism,
the orbital decay soon falters, unless new stars are forced
to replenish the otherwise depleting loss-cone. Because typi-
cally ah ∼ 1 pc for ∼ 108M� black holes, it is not guaranteed
that the MBHB can eventually close the gap down to sep-
arations agr ∼ 10−2 pc, i.e., the separations at which GW
emission alone can drive the two MBHs to coalesce within
a Hubble time. In the literature, this is often referred to as
the “final parsec problem” (Milosavljević & Merritt 2003).

In dry galaxy mergers a possible important mechanism
that could solve this problem is provided by triple MBH in-
teractions. Triple systems can form when a MBHB stalled
at separations . ah (because of the lack of sufficient gas and
inefficient loss-cone replenishment) interacts with a third
MBH – the “intruder” – carried by a new galaxy merger
(see, e.g., Mikkola & Valtonen 1990; Heinämäki 2001; Blaes,
Lee & Socrates 2002; Hoffman & Loeb 2007; Kulkarni &
Loeb 2012). More specifically, these hierarchical triplets –
i.e., triple systems where the hierarchy of orbital separations
defines an inner and an outer binary, the latter consisting
of the intruder and the centre of mass of the former – may
undergo Kozai-Lidov (K-L) oscillations (Kozai 1962; Lidov
1962). These resonances arise in the framework of a secu-
lar analysis of hierarchical triplets by Taylor-expanding the
Hamiltonian of the system in powers of the inner to outer
semi-major axis ratio, which is assumed to be small. The
results of Kozai and Lidov, valid at the quadrupole order
of approximation, demonstrate that if the intruder is on a

itational wave (GW) background under the hypothesis that all
MBHBs stalled. That background, while suppressed relative to
the case of efficient MBH mergers, would still be potentially ob-

servable by PTAs in the SKA era.

highly inclined orbit with respect to the inner binary, the
K-L mechanism tends to secularly increase the eccentricity
of the inner binary, eventually driving it to coalescence. By
considering a higher-order approximation (octupole), richer
physics arises, and in particular significant eccentricity can
build up even for triplets with low relative inclinations (see
e.g., Naoz 2016, for a comprehensive review and references).

We have recently started a comprehensive study of post-
Newtonian (PN) dynamics of MBH triplets in a cosmological
framework, ultimately aiming at the full characterisation of
the GW signal from the cosmic population of MBHBs. In a
first step of the project (Bonetti et al. 2016, hereafter Pa-
per I), we have discussed the importance of both chaotic
three-body encounters and the K-L mechanism in the dy-
namics of triplets, and we have presented and tested our
three-body PN code, which includes a realistic galactic po-
tential, orbital hardening of the outer binary, the effect of
the dynamical friction on the early stages of the intruder
dynamics, as well as the PN contributions to the dynamics
(through 2PN order in the conservative sector, and lead-
ing order in the dissipative one). As detailed in Paper I,
the employed equations of motion are consistently derived
from the three-body PN Hamiltonian, which, for the first
time in the framework of MBH interactions, allows us to
take into account the effect of the PN three-body terms in
the dynamics. Indeed, in the common practice, these kind
of terms are usually not accounted for, as the two-body PN
corrections are simply applied to each pair of bodies (see,
e.g., Mikkola & Merritt 2008; Rantala et al. 2017; Ryu et al.
2017). Finally, in a spin-off effort (Bonetti et al. 2017a), we
have highlighted and solved some subtle problems affecting
naive implementations of quadrupolar and octupolar gravi-
tational waveforms from numerically-integrated trajectories
of three-body systems.

In the present paper, formally the second of the series,
we will perform a systematic study of the dynamics and
evolution of MBH triplets. Employing the code presented in
Paper I, we will explore a large region of the 6-dimensional
parameter space of these systems, in terms of MBH masses,
eccentricities and relative inclinations. This will allow us to
fully characterise the evolution of MBH triplets in galactic
potentials. In a companion paper (Bonetti et al. 2017b), we
will then frame the whole picture in the hierarchical build-
up of cosmic structures (Barausse 2012), adopting a semi-
analytic model of galaxy and MBH co-evolution, and asses
the contribution of MBH triplets to the stochastic back-
ground of nHz GWs. In a follow-up paper (Bonetti et al. in
preparation), we will also explore the implications for the
GW signal from MBHBs in the mHz regime targeted by
LISA.

The paper is organised as follows: in Section 2 we de-
scribe the computational setup used to perform the simu-
lations; in Section 3 we present the results of our analysis,
while in Section 4 we discuss in more detail the strengths
and caveats of our work. Finally, in the last Section, we
draw our conclusions. Throughout the paper G and c repre-
sent Newton’s gravitational constant and the speed of light,
respectively.

c© 2017 RAS, MNRAS 000, 1–??
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2 METHODOLOGY

We numerically integrate the orbits of MBH triplets formed
by a stalled MBHB at the centre of a stellar spherical poten-
tial (m1, m2), and by a third MBH (m3) approaching the
system from larger distances.

2.1 Galactic potential and scaling relations

The properties of the stellar distribution are detailed in Pa-
per I (to which we refer for more details). Here, we only
provide a brief summary of the adopted setup.

The host’s stellar distribution is modelled as a Hern-
quist profile with total mass M? and scale radius r0 (Hern-
quist 1990). Moreover, in order to mimic the erosion of
the nuclear region caused by the stalled inner binary (see,
e.g., Ebisuzaki, Makino & Okumura 1991; Volonteri, Madau
& Haardt 2003; Merritt 2006; Antonini, Barausse & Silk
2015a,b), we assume the presence of a shallow central core
with scale length rc. With the above assumptions the chosen
density profile reads

ρ(r) =


M?

2π

r0

rc(rc + r0)3

(
r

rc

)−1/2

if r 6 rc,

M?

2π

r0

r(r + r0)3
if r > rc.

(1)

The numerical values of the total mass, the central ve-
locity dispersion and the scale radius are then consistently
determined from empirical scaling relations that link these
quantities to the hosted MBH’s mass (see, e.g., Dabring-
hausen, Hilker & Kroupa 2008; Kormendy & Ho 2013).
In particular, once the total MBH mass has been fixed
(M = m1 +m2), following Sesana & Khan (2015) the stellar
mass M? and the velocity dispersion σ can be obtained from

M

109M�
= 0.49

(
M?

1011M�

)1.16

, (2)

and

M

109M�
= 0.309

(
σ

200 km/s

)4.38

. (3)

The scale radius r0 can be derived from the galaxy effective
radius Reff , which, unlike r0, can be constrained from obser-
vations. Dabringhausen, Hilker & Kroupa (2008) found that
for elliptical galaxies Reff can be described as

Reff

pc
= max

[
2.95

(
M?

106M�

)0.596

, 34.8

(
M?

106M�

)0.399
]
,

(4)
which, combined with Reff ≈ 1.81r0 (Dehnen 1993), gives
the scale radius of the Hernquist profile.

Finally, the shallow density core is determined by ac-
counting for the mass deficit caused by the binary, quanti-
fied following Merritt (2013) and Antonini, Barausse & Silk
(2015a,b):

∆M = M

[
0.7q0.2 + 0.5 ln

(
0.178

c

σ

q4/5

(1 + q)3/5

)]
, (5)

where q = m2/m1. The core radius rc is then obtained by
imposing that ∆M equals the mass difference, within rc,
between the original Hernquist profile and the r−1/2 profile
(cf. eq. 1).

Reference plane

Inclination

Argument of 

pericentre

Orbital phase

Longitude of 

ascending node

Reference 

direction

Figure 1. Schematic representation of a binary orbit in 3D space.

We do not consider any dark matter (DM) extended
component associated to the stellar background. The prop-
erties of the stellar background are kept fixed during the
evolution of the MBH triplet, so that its properties are solely
determined by the mass of the stalled MBHB through the
scaling relations discussed above.

2.2 Initial orbital parameters

In principle, the complete characterisation of a system of
three MBHs requires specifying 21 parameters. However, the
initial configuration of the considered systems allows us to
reduce the number of free parameters.

We first fix the motion of the centre of mass (position
and velocity), thus reducing the effective number of initial
parameters to 15. We then note that the initial values of
some orbital elements (see figure 1) do not play any ma-
jor role in the dynamics. More specifically, among these we
have the two arguments of pericentre, the two longitudes
of the ascending node, and the two orbital phases. Indeed,
the various physical processes (e.g., dynamical friction, stel-
lar hardening, the precession due to the galactic potential
and the relativistic one), driving the evolution of MBHBs,
quickly make these parameters “lose memory” of the their
initial values, as soon as the three MBHs first bind in a hier-
archical triplet. The number of considered initial parameters
is then reduced to 9. Moreover, we set the initial semi-major
axis of the m3 orbit to the scale radius r0 of the stellar bulge,
which ultimately depends only on m1 + m2, thus reducing
the number of relevant free parameters to 8. We have veri-
fied that our results are robust against this choice of initial
semi-major axis.

We note that the choice to initialise the inner binary
as stalled implicitly determines its separation. In fact, ac-
cording to a vast literature on the evolution of MBHBs (see,
e.g., Begelman, Blandford & Rees 1980; Saslaw, Valtonen
& Aarseth 1974; Quinlan 1996; Yu 2002; Sesana, Haardt &
Madau 2006) and the final parsec problem (Milosavljević
& Merritt 2003; Vasiliev 2014; Vasiliev, Antonini & Merritt
2015), the binary shrinks to a separation ain . ah, where
ah ∼ Gm2/4σ

2 represents the hardening radius of the stellar
distribution. Further hardening of the system proceeds then
at a nearly constant rate, dictated by the efficiency at which
stars can be supplied to the binary loss cone. Depending on

c© 2017 RAS, MNRAS 000, 1–??



4 Bonetti et al.

Table 1. Parameter space sampling

Initial conditions

log(m1) [M�] 5, 6, 7, 8, 9, 10

log(qin) -1.5, -1.0, -0.5, 0.0
log(qout) -1.5, -1.0, -0.5, 0.0

ein 0.2, 0.4, 0.6, 0.8

eout 0.3, 0.6, 0.9
cos ι 13 values equally spaced in (−1, 1)

the properties of the host galaxy, evolution timescales can
be as long as several Gyr (see, e.g., Yu 2002; Berczik et al.
2006; Preto et al. 2011; Khan, Just & Merritt 2011; Gua-
landris & Merritt 2012; Vasiliev 2014; Vasiliev, Antonini &
Merritt 2014; Vasiliev, Antonini & Merritt 2015; Sesana &
Khan 2015; Khan et al. 2016; Gualandris et al. 2017). There-
fore, we initialise the inner binary at a separation around ah,
whose value, once m1 and m2 are specified, is completely de-
termined. The exact value of ain is practically irrelevant as
long as it is close to ah and sufficiently larger than agw,
where agw represents the scale at which GW emission starts
dominating the evolution of the binary. Specifically, for the
initialisation of ain . ah, we assume (somewhat arbitrarily)
ain/agw = (ah/agw)3/4, and we have checked that the results
are robust against this choice. At this point, we are left with
only 7 free initial conditions.

Finally, the isotropy of the problem allows us to specify
the relative inclination between the orbital planes of the
two orbits, i.e., ι ≡ ιin + ιout, thus reducing the final set
of relevant initial free parameters to 6. We will explore this
parameter space in the following.

In generating the initial conditions, for the mass of the
heavier MBH of the inner binary (m1) we choose 6 values
uniformly selected in logarithmic space, from 105 M� to 1010

M�. The inner and outer binary mass ratios qin ≡ m2/m1

and qout ≡ m3/(m1 +m2) can take 4 values each, uniformly
spaced (logarithmically) from 0.03 to 1. The eccentricity of
the inner binary, ein, takes 4 values uniformly spaced from
0.2 to 0.8, while the eccentricity of the outer binary, eout, is
chosen among 0.3, 0.6, 0.9.

Finally, in order to average our results over an isotropic
orientation of the angular momenta of the two binaries, we
sample the relative inclination of the two orbital planes, 0◦ <
ι < 180◦, in 13 values equally spaced in cos ι.

When presenting results marginalised over ein and eout,
those are simply obtained by summing up simulations with
different eccentricities, which corresponds to a uniform
weight in ein and eout. Similarly, results marginalised over qin
and qout are also obtained by direct summation, which corre-
sponds to a uniform weight in the logarithm of the mass ra-
tios. The sampling of the 6-dimensional space is summarised
in table 1, and consists of a grand total of 14,976 different
initial conditions.

Simulations are run with the code presented in Paper
I, which we briefly summarise here. The employed numeri-
cal scheme directly integrates the three-body (Hamiltonian)
equations of motion through 2.5PN order (i.e. through 2PN
order in the conservative dynamics and leading order in the
dissipative one), introducing velocity-dependant forces to
account for the dynamical friction on the intruder during

its initial orbital decay toward the galactic centre, and for
the stellar hardening (Quinlan 1996) of the outer binary.
Unlike in Paper I, the centre of mass of the triplet is not re-
centred every 1,000 integration steps, but we rather apply
the following algorithm: when the MBH dynamics is domi-
nated by the stellar background, dynamical friction acts on
the binary and on the perturber separately. When m3 later
binds to the inner binary (thus forming the outer binary),
the dynamical friction force is instead applied to the cen-
tre of mass of the triplet, and the stellar hardening of the
outer binary is simultaneously activated. Stellar hardening
is eventually switched off as the first close three-body MBH
encounter occurs and the dynamics becomes chaotic. More-
over, in order speed up our computations, we switch off the
conservative 2PN terms in the Hamiltonian dynamics. We
have checked in Paper I that 2PN corrections are indeed
negligible, at least in a statistical sense, although extremely
time-consuming computationally.

We stop the orbital integration when one of the follow-
ing conditions is first met: a minimum approach between
two members of the triplet is reached; one of the MBHs is
ejected; or the time spent exceeds the (present) Hubble time.
Regarding the first condition, the minimum separation is set
to 15 gravitational radii, i.e., the spatial threshold is given
by 15 G(mi+mj)/c

2, where mi and mj represent the masses
of the merging MBHs. When that separation is reached, we
count the event as a “binary coalescence”. 2 An ejection,
instead, is counted whenever one of the MBHs is kicked to
a distance in excess of 10 stellar bulge scale radii, irrespec-
tive of its binding energy. Note that this threshold is rather
conservative compared to, e.g., Hoffman & Loeb (2007), and
has been chosen to avoid overestimating the interaction rate
between the inner binary and the returning kicked MBH. In-
deed, in a perfect spherically symmetric potential like ours,
an MBH bound to the galaxy potential would always return
to the centre of the stellar distribution. In more realistic
situations, however, any deviation from spherical symme-
try would prevent further interactions of the kicked MBH
with the inner binary (see, e.g., Guedes et al. 2009). Our
combined choices of, i) neglecting the DM component of the
galactic potential, and ii) counting kicked MBHs as ejected
once they reach a relatively short distance from the centre,
are then conservative in terms of predicted MBHB coales-
cences. We plan to analyse in details the effects of triaxiality
on the dynamics of MBH triple systems in the future.

2 The choice about a minimum approach threshold is not an op-
tion, but a real requirement in the PN framework. Indeed, given
its perturbative character, it is clear that as soon as two MBHs

get sufficiently close, a full GR solution is needed to actually de-
scribe the merger event. Within the PN framework, we can safely
describe the dynamics until the very last phases before the coa-

lescence. Moreover, in order to to avoid possible unphysical be-
haviours determined by a not sufficiently high PN dynamics (we

have switched off the 2PN terms because of their huge computa-

tional cost), we have chosen such a conservative threshold.

c© 2017 RAS, MNRAS 000, 1–??
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Table 2. Merger percentage

logm1 % Mergers

[M�] m1-m2 m1-m3 m2-m3 Total

5 16.8 0.9 0.8 18.5(1.6)
6 16.2 1.4 1.0 18.5(1.9)

7 15.4 2.5 1.4 19.4(4.4)

8 14.7 4.0 2.5 21.2(6.3)
9 15.2 4.1 3.2 22.5(11.2)

10 21.1 7.6 3.3 31.9(12.7)

3 RESULTS

3.1 Merger fraction

Our full results, in terms of merger fractions as functions of
different triplet parameters, are reported in a series of tables
presented in Appendix A.

Table 2 shows in particular the dependence of the
merger fraction, i.e. the fraction of simulations ending with
a merger of any two members of the triplet, on the mass of
the primary MBH (m1). As can be seen, the merger fraction
is almost constant and around ' 20% for the entire sam-
pled mass range, except for the most massive case, where

∼> 30% of the systems are bound to coalescence. Averaged
over m1, the merger fraction is ' 22%. The merger excess
for m1 = 1010 M� is most probably due to the way we
generate the initial conditions. Since the inner binary is ini-
tialised with a separation of the order of its hardening radius,
ah = Gm2/(4σ

2), and since the efficiency of GW emission
scales with the binary mass, high-mass/low-qin systems are
not technically stalled. Indeed, their coalescence timescale
under GW emission, albeit of several Gyr, is still shorter
than the Hubble time (Sesana 2010; Dvorkin & Barausse
2017).

In table 2 we also report, as an ancillary entry in the
column “Total”, the fraction of MBHBs that are bound
to coalesce within a Hubble time after an ejection event.
Note that since we stop our simulations whenever an ejec-
tion occurs, we compute a posteriori the time the remain-
ing MBHB needs to coalesce because of GW losses. These
“post-ejection” coalescences add a further ' 6% to the over-
all merger fraction (hence accounting for ' 1/5 of the total
number of mergers), which is then ' 30%. Taken at face val-
ues, our results confirm that triple interactions represent a
possible, albeit partial, solution to the final-parsec problem.

In figure 2 the merger fraction (not inclusive of the post-
ejection coalescences discussed above) is plotted as a func-
tion of the initial relative inclination of the two binaries.
The merger fraction peaks around ' 90◦, which is indeed
the angle yielding the maximal eccentricity excitation in the
standard (i.e., quadrupole-order) K-L mechanism. K-L os-
cillations have therefore a strong impact on the dynamics of
our simulated MBHBs.

In a two-dimensional map (figure 3) we show again the
merger fraction, but now as a function of the initial values
of qin and qout

3. The peak of the merger fraction occurs

3 Note that an equal-mass triplet (i.e., m1 = m2 = m3) is char-

acterised by log qin = 0 and log qout = −0.3.

0 20 40 60 80 100 120 140 160 180
ι [deg]

15

20

25

30

35

%
m

er
ge

r

Figure 2. Merger fraction as a function of the initial relative in-

clination between the inner and outer binary. Post-ejection coales-

cences are not included. The prominent peak at ι ≈ 90◦ confirms
the important role of the K-L mechanism in driving the merger

of MBHBs.

−1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00
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u
t

2
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% merger

Figure 3. Merger fraction (colour coded) as a function of the
inner (qin = m2/m1) and outer (qout = m3/(m1 + m2)) mass
ratios. The merger fraction is larger (∼> 30 %) in the upper region,

corresponding to qout ∼> 0.3 and 0.1 ∼< qin ∼< 1. The circles in the
four corners of the plot represent, in cartoon-like fashion, the

corresponding mass hierarchy of the triplets.
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Figure 4. Break-up of figure 3 into different sub-populations. The

two columns distinguish between merging binaries that underwent

at least one close encounter leading to an exchange (right) and
merging binaries that experienced no such encounters (left). The

two rows identify sub-populations starting off with relative incli-

nations 70◦ < ι < 110◦ (top) and ι < 70◦ or ι > 110◦ (bottom).
Merger fractions are normalized with respect to the total number

of simulations in the respective inclination range.

for equal-mass triplets, but there is a large plateau in the
upper part of the plot, with hints of two distinct maxima.
A simple interpretation is that the inner binary, in order to
be perturbed, needs to interact with an intruder of at least
comparable mass (i.e., log qout ≈ −0.3). A light m3 is most
probably simply kicked out by the heavier inner binary, as
hinted at by the rapid decline of the merger fraction as qout

gets � 1 (see, Heggie 1975). Note, however, that even for
low values of qout the merger fraction is significant when qin
is also small (thus, when m2 ≈ m3).

A finer understanding of the results of figure 3 can be
gained by considering that, at the octupole level, the K-L os-
cillations are more easily triggered when the inner binary has
a small mass ratio. In this case, the inner binary can merge
when the triplet is still in the initial hierarchical phase, and
the eccentricity growth responsible for the coalescence is pri-
marily driven by secular processes. This is the cause of the
leftmost peak in the merger fraction, indeed occurring for
log qout ≈ −0.3 and log qin � 0. A second channel to coales-
cence is represented by merger-inducing strong non-secular
close encounters that the original inner binary experiences
once the triplet becomes unstable. This happens for almost
equal-mass triplets, i.e., when the intruder carries a mass
sufficiently large to perturb the inner binary, but, at the
same time, the K-L mechanism is not easily triggered. Dur-
ing the process, prior to coalescence, several exchanges4 may

4 An exchange is an event in which the intruder kicks one body
(usually the lightest one) out of the inner binary, and binds to

the other to form a new two-body system.
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Figure 5. Merger fraction (colour coded) as a function of the
initial inner (ein) and outer (eout) binary eccentricities.

occur, and therefore the final merger does not necessarily in-
volve the members of the original inner binary. This second
channel is responsible for the rightmost peak of the merger
fraction in figure 3.

In order to better understand the role played by these
two different channels in the merger fraction, we separately
analyse the systems in which no exchange occurs during the
evolution, and the rest of the systems that instead expe-
rience strong encounters, ultimately leading to one or more
exchange events. In addition, we single out systems with ini-
tial inclination in the range (70◦ < ι < 110◦), hence dividing
our simulations into four subsets.

The relative merger fraction of these subsets (i.e., rela-
tive to the number of simulations performed in a particular
inclination range) is shown in figure 4. Left panels represent
the systems in which no exchange occurs. In these cases the
coalescence is mainly due to secular K-L oscillations, a fact
confirmed by the comparatively much higher merger frac-
tion (factor of ≈ 3) at high initial inclinations (upper left
panel). Moreover, we note that low qin are more likely to
lead to mergers, irrespective of the inclination. As already
mentioned, this is to be ascribed to the octupole terms of
the K-L resonances, whose amplitude is proportional to the
mass difference m1 −m2, hence vanishing for qin → 1. Note
that, unlike in the standard quadrupole K-L resonances, the
introduction of the octupole terms can excite high eccen-
tricities even at low inclinations, a fact responsible for the
non-negligible merger fraction in the lower left panel of fig-
ure 4. At high inclinations, the region of both low qout and
low qin should be prone to the K-L mechanism, but our re-
sults show no significant merger fraction (figure 4, upper
left panel). This can be understood by noting that if the
timescale of the relativistic precession is shorter than that
of the K-L oscillations, the latter are damped. Since the K-L
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Table 3. Comparison of the merger fraction from the simulations with m1 = 109 M�, run with and without conservative 1PN corrections.

m1 = 109 M� % Mergers including 1PN % Mergers without 1PN
qin/qout m1-m2 m1-m3 m2-m3 Total m1-m2 m1-m3 m2-m3 Total

0.0316/0.0316 9.0 5.1 0.0 14.1(20.5) 44.2 5.8 0.0 50.0(5.1 )

0.0316/ 0.1 23.7 3.2 0.0 26.9(13.5) 59.0 1.9 0.0 60.9(5.1 )
0.0316/0.3162 9.0 1.3 0.6 10.9(3.8 ) 41.0 3.2 0.0 44.2(3.8 )

0.0316/ 1 25.0 0.0 1.9 26.9(0.0 ) 62.2 0.0 0.6 62.8(0.0 )

0.1/0.0316 4.5 1.9 0.0 6.4(16.7) 29.5 1.9 0.0 31.4(12.8)
0.1/ 0.1 16.0 5.8 0.6 22.4(17.3) 35.9 6.4 1.3 43.6(17.9)

0.1/0.3162 24.4 3.2 1.3 28.8(11.5) 44.9 4.5 0.6 50.0(7.7 )

0.1/ 1 25.6 0.0 7.1 32.7(1.3 ) 40.4 0.6 7.7 48.7(0.0 )
0.3162/0.0316 2.6 0.6 0.0 3.2(7.1 ) 9.0 0.0 0.6 9.6(5.8 )

0.3162/ 0.1 12.8 2.6 0.6 16.0(14.1) 17.3 5.8 0.0 23.1(9.6 )

0.3162/0.3162 26.3 14.1 3.8 44.2(16.0) 30.1 13.5 4.5 48.1(16.0)
0.3162/ 1 17.3 1.9 4.5 23.7(5.8 ) 29.5 3.2 5.8 38.5(6.4 )

1/0.0316 1.3 0.0 0.0 1.3(5.1 ) 3.2 0.6 0.0 3.8(1.3 )

1/ 0.1 5.8 0.0 0.6 6.4(8.3 ) 18.6 1.3 1.3 21.2(10.3)
1/0.3162 26.9 12.2 14.1 53.2(16.0) 33.3 9.6 6.4 49.4(13.5)

1/ 1 13.5 14.1 15.4 42.9(21.8) 19.9 16.0 18.6 54.5(11.5)

Average 15.2 4.1 3.2 22.5(11.2) 32.4 4.6 3.0 40.0(7.9 )

timescale increases as m3 decreases, in the limit qout � 1
the process is largely suppressed by relativistic precession.
The relatively large merger fraction visible in the lower left
area of figure 3 is then due to non-secular processes.

The right panels of figure 4 show the non-secular chan-
nel to merger. The first thing to notice is that the pattern of
the merger fraction is almost independent of the inclination
angle, consistent with the fact that exchanges occur when
chaotic interactions take place and secular processes play no
significant role. The merger fraction is larger when the three
MBHs have similar masses, and in general has non-negligible
values (> 10%) only along a broad band stretching from the
upper right to the lower left sides of the qin − qout plane.
This can be understood by considering that when qin ' 1
and qout � 1 (i.e., in the lower right corner of the plot), the
intruder cannot perturb significantly the much more mas-
sive inner binary. On the other extreme (i.e., qin � 1 and
qout ' 1, upper left corner of the plot), m3 simply kicks the
much lighter m2 out of the inner binary, taking its place. It
is only when m3 ∼ m2 that genuinely chaotic dynamics can
take place, in some cases leading to coalescence.

Finally, figure 5 shows the merger fraction as a func-
tion of the initial eccentricity of the inner and outer binary.
We note that the merger fraction increases with increasing
ein, while it decreases with increasing eout. The dependence
upon ein is readily understood, since highly eccentric inner
binaries are closer to the efficient GW-emission stage and
can easily be driven to coalescence by a relatively mild per-
turbation from a third body. The dependence upon eout is
likely due to the fact that quasi-circular outer binaries form
a stable hierarchical triplet for a comparatively longer time
during the inspiral of m3, hence leaving more room to the
development of K-L resonances, which are efficient at driving
the inner binary to coalescence. Conversely, in very eccentric
outer binaries, m3 soon interacts with the inner binary at
pericentre, entering the chaotic phase. Chaotic interactions
are more likely to result in ejections rather than mergers,
hence suppressing the overall merger fraction.

3.1.1 Importance of PN corrections

As pointed out in the previous section, the K-L mechanism
can be suppressed by general relativistic effects. In partic-
ular, relativistic precession tends to destroy the coherent
pile-up of the perturbation that the third body induces on
the inner binary, hence effectively damping the K-L reso-
nances5. In order to quantify the impact of the relativistic
precession on the merger fraction and to compare our results
with previous work that neglected this effect (e.g. Iwasawa,
Funato & Makino 2006; Hoffman & Loeb 2007), in table 3
and in figure 6 we compare, only for the case m1 = 109 M�,
the merger fraction obtained with and without 1PN correc-
tions. Overall, the merger fraction is substantially higher in
the case without 1PN terms (right panel of figure 6). As can
be seen, the largest differences compared to the full case oc-
cur for qin � 1, where, because of octupole-order terms, the
K-L mechanism is maximally effective. On the contrary, for
large qin the merger fractions with or without 1PN correc-
tions are similar, because, as previously discussed, coales-
cences are mainly due to chaotic strong encounters, rather
than to K-L oscillations. Our results highlight the impor-
tance of K-L resonances in inducing MBH mergers in triple
systems, and the need to account at least for 1PN correc-
tions.

3.2 Merger timescales

The time spent by triplets before coalescence is shown in
figure 7. The merger-time distribution is remarkably well fit
by a log-normal, with mean µ = 8.4 and standard deviation
σ = 0.4 in log(T/yr). The mean value µ = 8.4 corresponds
to ' 250 Myr, i.e., a timescale substantially shorter than the
Hubble time, indicating that the triplet channel can lead to
fast mergers. Indeed, most of the time prior to merger is

5 More precisely, any kind of precession tends to suppress the
K-L mechanism.
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with a third body (chaotic dynamics and/or K-L resonances plus

GWs), and the black line is a log-normal fit to the distribution.
The red histogram, instead, represents the binaries that are driven

to merger by GW emission alone after the ejection of one of the
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spent in the dynamical friction and stellar hardening domi-
nated regimes, i.e., most of the time the intruder is far from
the inner binary. Once a genuinely bound triplet is formed,
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Figure 8. Distribution of merger-times, grouped according to
the initial mass ratio of the inner (as labelled in the upper left

corner of all panels) and outer binary (differentiated by colours

as indicated in the lower right panel). The merger timescale only
has a weak dependence on the outer mass ratio.

secular and (in some cases) chaotic interactions drive the
system to coalescence on a much shorter timescale.

In figure 7 we also show, as a lower red histogram, the
merger-time distribution of the “post-ejection” coalescences
discussed in section 3.1. These events, which account for ap-
proximatively 1/5 of the total merger fraction and which are
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a binary at given values of frequency and eccentricity. For each mass, superimposed in red is the evolutionary track of a representative
binary that reached final coalescence. In the top panels such representative binary merges when the triplet is still in the hierarchical

phase, while in the lower panels the binary experiences strong chaotic three-body interactions, clearly visible in the noisy change of

orbital elements. The primary effects of the triple interactions (secular or chaotic) is the great increase of the orbital eccentricity, leading
one of the pairs in the triplet to coalescence.

relatively more probable for high m1 values (see table 2), in-
volve an ejection, and a leftover inner binary that coalesces
within a Hubble time under the effect of GW emission alone.
The merger-time distribution is quite broad for these sys-
tems, and these MBHBs typically need a few Gyr to merge.

In figure 8 the merger-time distribution is shown for the
different sampled values of qin (in the four panels) and qout

(indicated by different colours in each panel). While there is
no clear dependence of the merger timescale on qin, we note
a weak dependence on qout, with qout ' 1 systems coalescing
faster because of the stronger perturbations exerted by m3

on the inner binary.

3.3 Eccentricity distribution

Of particular importance for GW emission from MBHBs in
a cosmological setting is the study of the eccentricity evo-
lution of merging binaries. In the left panels of figure 9 we
track the evolution of the merging binaries in the orbital
frequency vs circularity plane (f, 1 − e), colour coding the
probability of finding a binary at given values of eccentricity
and frequency. We first discretise the (log f, log(1−e)) space
in the range −14 6 log f 6 −2 and −4 6 log(1− e) 6 0 on
a 150× 150 grid equally spaced along each direction. Then,
we evaluate the time spent by each merging binary in each
of the 22,500 bins of the grid during its evolution, then sum
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Figure 10. Distribution of eISCO of all merging binaries. Colour code as in figure 7. The binaries that merge after a strong interaction
with the third body retain a larger eccentricity close to merger compared to those that are GW-driven. Left panel: linear scale. Right

panel: log scale. Note the peculiar clustering of the red distribution in six different blocks corresponding to the six different values of m1,

i.e., from, left to right, 105M� to 1010M�.

over all merging binaries, and normalise to the total time
spent over all bins by all binaries. In this way, we obtain
a bivariate normalised function that gives the probability
of finding a binary in a given logarithmic two-dimensional
interval of frequency and circularity. We construct this func-
tion for the six sampled values of m1, and show in figure 9,
left panels, three cases (m1 = 105, 107, 109 M�). The evo-
lutionary tracks of single illustrative merging binaries are
shown as a red line.

In the orbital frequency-eccentricity plane, a typical
stalled inner binary starts its evolution in the upper left cor-
ner, i.e., at large separation (i.e., low f) and with an eccen-
tricity given by one of the 4 values of ein that we sample (see
table 1). As soon as the perturbations due to the approach-
ing third body become significant, the inner binary becomes
more eccentric. If the system undergoes K-L resonances, the
eccentricity actually oscillates on the K-L timescale between
high and low values (these oscillations are not visible in fig-
ure 9 due to the scale used), with a secular shift to higher
values because of the perturbation exerted by an increas-
ingly closer m3. The orbital frequency (i.e., the separation)
of the inner binary stays nearly constant during this evolu-
tionary phase. An example is given by the red line shown in
the m1 = 105 M� case (figure 9, upper left panel). When
chaotic interactions are instead the main driver of the binary
evolution, f can show large, random variations, as exempli-
fied by the tracks in the middle and lower left panels of
figure 9.

In any case, when the eccentricity becomes very high,

∼> 0.99, GW emissions starts dominating the dynamics, in-
creasing the orbital frequency and circularising the orbit un-
til coalescence, as can be seen from the rising branch of the
red tracks. The colour code shows that this circularisation
phase is much shorter than the preceding evolution. The

maximum eccentricity reached (the turnover point in the
evolutionary tracks) mainly depends on the mass of the in-
ner binary, i.e. the lower the mass, the higher the maximum
eccentricity. In fact, for more massive binaries GWs start
dominating sooner during the evolution, hence determining
the earlier orbital circularisation. This behaviour is clearly
visible in figure 9, moving from the top panel (m1 = 105

M�) to the bottom one (m1 = 109 M�). Note that for more
massive systems the orbital frequency at merger is necessar-
ily lower, since it scales as M−1, where M ≡ m1 +m2.

It is of a certain interest to analyse the same evolution
not in terms of the orbital frequency, but rather in terms of
the peak frequency of the GW power spectrum (Wen 2003)

fGW,p =
1

π

√
GM

[a(1− e2)]3
(1 + e)1.1954, (6)

which is clearly larger for more eccentric binaries. (Note that
this equation essentially means that GWs are mainly emit-
ted at the pericentre passages). The probability distribution
in the (log fGW,p, log(1−e)) plane is shown in the right pan-
els of figure 9, for the same three values of m1 considered
before.

During the initial phase of eccentricity growth, irrespec-
tive of the evolution driver (K-L resonances or chaotic inter-
actions), the orbital frequency does not change (left panels
in figure 9), but fGW,p increases because of its dependence
on e. As soon as GWs take over, the orbit circularises fast
while maintaining an almost constant fGW,p until the very
last phase of the evolution. This means that during the cir-
cularisation phase, the binaries maintain a fixed pericentre
separation while their the semi-major axis shrinks. Once the
circularisation is completed, GW losses keep shrinking the
semi-major axis. Therefore, fGW,p increases and eventually

c© 2017 RAS, MNRAS 000, 1–??



Post-Newtonian MBH Dynamics 11

0.0

0.5

1.0

1.5

2.0

2.5

fr
ac

ti
on

ein = 0.2 ein = 0.4

0.0 0.2 0.4 0.6 0.8
e

0.0

0.5

1.0

1.5

2.0

2.5

fr
ac

ti
on

ein = 0.6

0.0 0.2 0.4 0.6 0.8 1.0
e

ein = 0.8

Figure 11. Eccentricity distribution according to the initial value

of ein, for those binaries that, after the ejection of one of the

MBHs, do not merge within a Hubble time. The eccentricity
approximately follows a thermal distribution (i.e., f(e) = 2e,

represented as a black dashed line in the figure) in the range

0 ∼< e ∼< ein. At higher eccentricities the distribution shows a
turnover, as some binaries are driven to coalescence (and there-

fore counted as mergers) by GW emission.

becomes twice the orbital frequency (fGW,p = 2f), as ex-
pected for circular binaries at leading PN order. Like the
orbital frequency, in the GW dominated regime fGW,p is
lower for larger masses.

A particularly interesting result of our simulations is
that more massive binaries merge with a slightly larger ec-
centricity compared to their low mass counterparts, despite
their maximum eccentricity being comparatively lower. This
is essentially due to the shorter timescale of the inspiral
phase, which results in a sizeable residual eccentricity, as
can be seen in figure 9 by observing the positions marked as
“End”.

Figure 10 shows the distribution of the eccentricity of
merging MBHBs at an arbitrary spatial threshold corre-
sponding to the last stable circular orbit of a non-spinning
MBH with mass equal to the total binary mass, i.e., rISCO =
6RG with RG = GM/c2. In the left panel, we plot the dis-
tribution on a linear scale, while in the right panel we show
the logarithmic version of the same distribution. It is re-
markable that the distribution extends up to eISCO ' 0.1,
as shown by the blue histogram.

In the same figure, the red histogram refers to the “post-
ejection” coalescences, which we recall account for ' 1/5
of the total. As expected, given that the final coalescence
is purely driven by GW emission, these mergers are much
less eccentric. Their low residual eccentricity has a marked
dependence of the mass of the triplet, as can be inferred
from the logarithmic version of the plot. Indeed, the right
panel of figure 10 shows that the eISCO distribution clusters
around 6 different values, corresponding to the 6 values of
m1 that we have sampled, with m1 increasing from left to
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Figure 12. Same as figure 11, summing over all ein. Note that

the slope is steeper than thermal because of the contribution of

low ein.

right. Note that the distribution of eISCO for the mergers
driven by triple interactions does not show any clustering,
as expected in the case of coalescences induced by dynamical
processes.

Finally, in figure 11, for different values of ein, we plot
the eccentricity distribution of the inner binaries that did not
merge within a Hubble time after the ejection of one of the
three bodies. The distribution is approximatively thermal
(i.e., p(e) ∝ e, see, e.g., Jeans 1919; Heggie 1975, for further
details) in the range from 0 ∼< e ∼< ein. This behaviour is
typical of binaries that have experienced strong dynamical
encounters during their evolution. The distribution shows
a turnover at e ∼> ein, due to the fact that binaries with
a higher eccentricity merge within a Hubble time, and are
therefore not counted in the shown distribution. In figure 12
the same distribution is plotted summing over all ein. In
this case, the slope results steeper than thermal because of
the piling of binaries with low ein, which obey a thermal
distribution only in a narrower range of e.

4 DISCUSSION

4.1 Implications for the emission of gravitational
waves

The results presented in the previous section suggest that
MBH triplets might have a critical impact on the emis-
sion and detection of low-frequency gravitational waves. Al-
though two forthcoming papers in this series are devoted to
derive and analyse in depth the implications for LISA and
PTAs separately, we preview here some relevant points.

The fact that about 30% of triple systems lead to coa-
lescence of a MBHB implies that this is an effective “last re-
sort” to overcome the final-parsec problem, should all other
dynamical mechanisms fail. If the average galaxy undergoes
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a fairly large number of mergers during its cosmic history,
then triple MBH interactions guarantee that a significant
fraction of these galaxy mergers leads to a MBHB coales-
cence. (See, also, Mikkola & Valtonen 1990; Heinämäki 2001;
Blaes, Lee & Socrates 2002; Hoffman & Loeb 2007; Kulkarni
& Loeb 2012). For example, under the simplifying assump-
tion that the parameters of the forming triplets are uni-
formly distributed in the range explored in this study, this
fraction is expected to be around 30%. Therefore, compared
to a scenario where MBHBs merge efficiently, the merger
rate should be at most suppressed by a factor of ' 3. This
is particular encouraging for low-frequency GW probes. In-
deed, even if MBHB stalling turns out to be a problem, LISA
detection rates would be affected by a factor ' 3 only, while
the stochastic GW background in the PTA band would only
be suppressed by a factor

√
3 (since the GW background

is proportional to the square root of the number of merg-
ers). Conversely, if the average galaxy undergoes ∼< 1 merger
during its cosmic history, MBH triplets would not form fre-
quently. In this scenario, MBHB stalling would result in a
severe suppression of any low-frequency GW signals, posing
a potential threat to PTAs and LISA. In accompanying and
forthcoming papers of the series, we will couple our library
of simulations to a semianalytic model for galaxy and MBH
evolution, to explore which type of scenarios is more likely
to occur in Nature, and to properly quantify the fraction of
galaxy mergers resulting in MBHB coalescences.

Triple interactions also leave a distinctive imprint in
the eccentricity distribution of merging MBHBs. In fact,
whether secular processes or chaotic dynamics dominate the
evolution, the coalescence is triggered when one of the MBH
pairs is eccentric enough that a significant amount of GWs

is emitted at subsequent pericentre passages. The net result
is that triplet-induced MBHB coalescences typically involve
eccentric systems. Even at separation ∼ rISCO, eccentricity
can still be as high as 0.1, and is ∼> 0.01 for more than 50%
of the binaries.

LISA is mostly sensitive to 105M� − 106M� MBHBs
throughout the Universe. Those systems typically enter the
detector band at separations around 100RG. The cumulative
eccentricity distribution of merging systems for all simula-
tions with m1 = 105M� is shown in figure 13. Although
skewed towards e = 0, the distribution extends to e ≈ 0.8,
with about 30% of the systems having e ∼> 0.5. Therefore,
high eccentricities in the LISA band might be the smoking
gun of triple-driven coalescences, and waveforms accurate up
to high eccentricities might be necessary for proper recovery
of the source parameters. Conversely, PTAs are sensitive to
masses ∼> 108M� at low redshift. In figure 13 we also show
the eccentricity distribution of merging systems for all simu-
lations with m1 = 109M� at a separation of 1000RG, which
are representative of the sources dominating the GW sig-
nal in the nHz band. Note that the distribution extends to
e ≈ 0.99, and about 50% of the systems have eccentricity
in excess of 0.9. Thus, in a Universe dominated by triple
interactions, the PTA signal is expected to be dominated by
very eccentric binaries.

A further consequence of high eccentricities is the possi-
bility of generating bursts of GWs. In practice, binaries with
high e mostly emit GWs at every pericentre passage, result-
ing in a “burst signal” well localised in time and spread (in
frequency) over a large number of harmonics (Amaro-Seoane
et al. 2010). As an example, massive binaries with orbital
periods of hundreds of years can emit month-long bursts in
the PTA frequency band, while lighter binaries with periods
of several months can emit bursts detectable by LISA. This
latter case is particularly interesting, because it might en-
hance the number of LISA detections well beyond the nom-
inal MBHB merger rate. We will investigate this possibility
in a forthcoming paper.

4.2 Effect of massive intruders

Although the inner mass ratio is qin 6 1 by definition, the
outer mass ratio qout = m3/(m1 + m2) may be larger than
one if the intruder is more massive than the bound binary.
This can be relevant in a hierarchical structure-formation
scenario, where a pre-existing stalled binary can be involved
in a merger with a third, more massive black hole brought
on by a galaxy merger. To explore the possible outcomes of
this kind of configurations, we have run an additional set
of simulations for the case m1 = 109 with qout = 3, 10.
Although in this case one might expect the stellar potential
to be dominated by the host galaxy of the intruder m3, we
ignore this fact and simply centre the stellar potential in
the (initial) centre of mass of the bound inner binary. This
should not significantly affect the outcome of the simulation,
at least qualitatively and in a statistical sense, since we find
that the stellar potential has little effect on both the secular
K-L evolution and the later chaotic phase (if present).

Results are shown in figure 14, where the original pa-
rameter space of figure 4 is extended up to qout = 10. As one
might expect, the merger fraction stays quite high, around
30% when qout ∼> 1. This is the result of two competing

c© 2017 RAS, MNRAS 000, 1–??



Post-Newtonian MBH Dynamics 13

−1.5 −1.0 −0.5 0.0
log qin

−1.5

−1.0

−0.5

0.0

0.5

1.0

lo
g
q o

u
t

1

5

10
20

20

30

30

30

40

40

50

0 6 12 18 24 30 36 42 48
% merger

Figure 14. Same as figure 3, but now extended up to qout = 10.
Only the case m1 = 109M� is considered.

effects. On the one hand the K-L timescale is inversely pro-
portional to m3/(m1 + m2); a massive intruder can there-
fore excite the eccentricity of the inner binary several times,
favouring its prompt coalescence. On the other hand, at in-
clinations where K-L resonances are not very efficient, the
unequal mass ratio favours the ejection of the lightest black
hole, suppressing the fraction of systems that can merge in
chaotic interactions. In any case, it is therefore important
to take into account this kind of configurations when cou-
pling libraries of triplet outcomes to semianalytic galaxy-
formation models, because they can have an impact on the
global merger rate MBHBs.

4.3 Comparison with previous work

We compare the results of the analysis of our simulations
with the work of Hoffman & Loeb (2007), which our in-
vestigations is similar in spirit, although we introduce some
important novelties. The major differences are, i) the sur-
veyed parameter space, which we extend to a wider range of
masses, mass ratios and initial eccentricities, ii) our conser-
vative choice of not considering a DM component and, iii)
the introduction of the conservative 1PN dynamics.

By comparing the merger fractions (their table 1 com-
pared to our table 2), we immediately note that their values
are typically a factor ' 3 larger than our results, even if
“post-ejection” merger binaries are added to our total. The
discrepancy can be understood by analysing the differences
in the two implementations:

• All the simulations in Hoffman & Loeb (2007) have
nearly the same total mass (' 6 × 108M�), and more-
over they considered systems, except in one case, in which
the MBHs are nearly equal-mass. The interaction of nearly
equal-mass objects produces the highest merger fraction, as

can be seen from, e.g., our table 3, where in the nearly equal-
mass case the merger fraction is ' 50%. In the only case in
which Hoffman & Loeb (2007) consider a lower mass ratio,
the merger fraction decreases below ∼< 70%, suggesting that
the chosen mass ratio is in fact one of the reasons of the
higher merger percentage. In practice, when restricting to
comparable mass ratios, the merger fractions differ by less
than a factor ' 2 (≈ 50% vs ≈ 85%).
• The 1PN dynamics can further contribute to the differ-

ence. Even though it is mostly effective at low mass ratios
(as can be appreciated from figure 6), the merger fraction
can still be about 10% higher even at comparable mass ra-
tios when the 1PN relativistic precession is neglected.
• The absence of a DM halo and the conservative thresh-

old for MBH ejection assumed in our simulations also plays
a role. As already discussed in Section 2, our choice implies
that a larger number of MBHs are ejected, compared to Hoff-
man & Loeb (2007). This is confirmed by their run featuring
a less massive DM halo, where the merger fraction drops to
∼ 70%. As already discussed, our choice is meant to be con-
servative, in the sense that outside the stellar bulge signifi-
cant triaxiality and asymmetries in the potential will likely
prevent the ejected MBH from returning back to the centre
(Guedes et al. 2009; Sijacki, Springel & Haehnelt 2011). We
will explore this issue in greater detail in a future work.

In summary, we argue that the combination of the three
points above fully explains the differences between the two
studies.

5 CONCLUSIONS

In the present study we have utilised the three-body inte-
grator presented in Bonetti et al. (2016) to investigate the
outcome of MBH triple interactions over a vast parameter
space. The code evolves the dynamics of MBH triplets in-
cluding a variety of relevant factors, such as an external
galactic potential, the dynamical friction against the stellar
background, the stellar hardening, and the PN corrections to
the equations of motion consistently derived from the three-
body PN Hamiltonian. The set-up of the code is tuned to
capture the physics relevant to three-body interactions of
MBHs originated by repeated galaxy mergers in hierarchical
cosmologies. We have explored the parameter space relevant
to this specific context by considering primary MBH masses
in the range 105M� 6 m1 6 1010M�, a variety of inner and
outer binary mass ratios in the range 0.03 − 1, and several
inner and outer binary initial eccentricities and mutual or-
bit inclinations as detailed in table 1. We have integrated
a grand total of 14,976 configurations with the goal of de-
riving the fraction of merging systems as a function of the
relevant parameters, as well as the typical merger timescales
and properties of the coalescing MBHs.

Our main results can be summarised as follows:

• The fraction of systems experiencing the merger of one
of any pair of MBHs in the triplet is about 30%. About 4/5 of
these mergers are promptly induced during the three-body
interaction, whereas about 1/5 are driven by GW emission
following the ejection of the lightest black hole.
• Prompt mergers are induced both by secular K-L evo-

lution and chaotic dynamics. The former is more efficient
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for massive intruders (large qout) and eccentric inner bina-
ries, while the latter is most efficient for nearly equal-mass
systems. Overall, the merger fraction is higher for large qout,
reaching 40% of the systems.
• The 1PN terms in the equations of motion are impor-

tant at low qin/qout. Neglecting such correction, the fraction
of low-q systems leading to a merger goes from ≈ 20% to
about 40%. This happens because 1PN precession destroys
the K-L resonances, preventing the inner binary from reach-
ing eccentricities high enough to merge under the effect of
GW backreaction.
• The typical timescale for prompt mergers is well

described by a log-normal distribution centred around
log(T/yr) = 8.4 with a dispersion of 0.4 dex, almost inde-
pendent of the masses and mass ratios involved. Note that
this timescale is dominated the orbital decay of the intruder,
driven by dynamical friction and stellar hardening. Once the
chaotic phase starts, mergers can be triggered within a few
Myr Mergers following a MBH ejection occur on much longer
timescales, of the order of several Gyr
• Merging binaries are generally driven to eccentricities

in excess of 0.9 and up to 0.9999 in some cases, and even
at coalescence binaries can retain a significant eccentricity,
up to 0.1. Binaries driven by triple MBH interactions can
therefore have eccentricities in excess of 0.5 when entering
the LISA band, and in excess of 0.9 in the PTA frequency
range.

Compared to the merger fractions found in previous
studies (Hoffman & Loeb 2007), our numbers are signifi-
cantly lower. This is because our parameter space includes
lower mass ratios (which give a lower merger fraction), PN
dynamics (which partially suppresses K-L resonances) and
a conservative prescription for ejection (which does not in-
clude the galactic DM potential). Essentially, we consider
a MBH as ejected forever once it reaches the outskirts of
the stellar bulge. This is justified by the fact that triaxial-
ity and potential asymmetries will likely prevent the MBH
from sinking back to the centre in less than a few Gyr. In
a future work, we plan to include a triaxial DM halo in our
simulations, and study the impact on the MBHB merger
fraction.

The aforementioned results indicate that MBH triplets
can have a significant impact on MBH evolution and on
future GW detections by LISA and PTAs. In particular,
three-body interactions provide a partial solution to the
final-parsec problem, even if every all other binary shrinking
mechanisms fail. This should guarantee a fairly large num-
ber of detectable GW sources, both by LISA and PTAs,
regardless of the details of the interaction between MB-
HBs and their environment in galactic nuclei. In two pa-
pers, one accompanying and one forthcoming, we investigate
this issue further by coupling our extensive library of MBH-
triplet simulations to a state-of-the-art semianalytic model
of galaxy and MBH evolution.
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APPENDIX A: MERGER FRACTIONS

In this appendix we report the tables of the merger fraction
per range of m1 sliced according to various IC parameters,
i.e., mass ratios, outer eccentricity and initial relative incli-
nation.

c© 2017 RAS, MNRAS 000, 1–??



Post-Newtonian MBH Dynamics 17

Table A1. Results m1 = 1010M�

m1 = 1010 M� % Mergers
qin/qout m1-m2 m1-m3 m2-m3 Total

0.0316/0.0316 21.2 9.6 0.0 30.8(32.7)
0.0316/ 0.1 33.3 6.4 0.0 39.7(11.5)

0.0316/0.3162 19.9 4.5 0.0 24.4(7.7 )
0.0316/ 1 32.1 1.3 5.8 39.1(7.7 )

0.1/0.0316 7.7 7.7 0.0 15.4(15.4)

0.1/ 0.1 21.8 13.5 1.9 37.2(23.1)
0.1/0.3162 36.5 8.3 3.2 48.1(10.3)

0.1/ 1 18.6 4.5 4.5 27.6(7.1 )

0.3162/0.0316 4.5 1.3 0.0 5.8(10.9)
0.3162/ 0.1 16.7 3.8 1.3 21.8(12.2)

0.3162/0.3162 37.2 14.7 1.9 53.8(15.4)

0.3162/ 1 19.2 7.7 7.1 34.0(7.1 )
1/0.0316 0.6 1.3 0.6 2.6(5.1 )

1/ 0.1 9.6 1.3 0.0 10.9(12.2)

1/0.3162 32.7 16.7 10.9 60.3(9.6 )
1/ 1 25.6 18.6 15.4 59.6(14.7)

Average 21.1 7.6 3.3 31.9(12.7)

m1 = 1010 M� % Mergers
ein/eout m1-m2 m1-m3 m2-m3 Total

0.2/0.3 18.3 6.7 5.8 30.8(18.3)
0.2/0.6 8.2 9.6 2.9 20.7(6.7 )

0.2/0.9 8.2 13.9 3.8 26.0(3.8 )

0.4/0.3 24.5 4.8 3.4 32.7(7.2 )
0.4/0.6 15.9 4.8 2.9 23.6(14.9)

0.4/0.9 13.9 11.5 2.9 28.4(7.2 )

0.6/0.3 28.8 8.2 1.9 38.9(9.6 )
0.6/0.6 19.2 6.2 2.9 28.4(10.6)

0.6/0.9 14.4 10.6 2.9 27.9(13.0)

0.8/0.3 47.1 3.4 2.4 52.9(3.4 )
0.8/0.6 32.7 4.3 3.4 40.4(7.7 )

0.8/0.9 21.6 6.7 4.3 32.7(5.8 )

Average 21.1 7.6 3.3 31.9(12.7)

m1 = 1010 M� % Mergers

ι m1-m2 m1-m3 m2-m3 Total

10 14.6 9.4 7.8 31.8(14.1)

34.9323 11.5 8.9 3.6 24.0(14.6)
49.0917 16.7 7.3 4.2 28.1(12.0)
60.6678 20.8 7.8 2.1 30.7(14.6)
71.0409 23.4 9.4 3.6 36.5(10.4)

80.7981 23.4 8.9 3.6 35.9(12.5)
90.2902 29.7 6.2 2.1 38.0(12.5)

99.7903 33.9 4.7 2.6 41.1(10.9)
109.574 27.1 6.2 1.0 34.4(12.0)
120 25.5 5.7 1.6 32.8(15.1)
131.681 13.5 9.9 2.1 25.5(9.9 )
146.094 15.1 5.7 3.6 24.5(12.0)

174.231 18.8 8.3 4.7 31.8(14.1)

Average 21.1 7.6 3.3 31.9(12.7)

Table A2. Results m1 = 109M�

m1 = 109 M� % Mergers
qin/qout m1-m2 m1-m3 m2-m3 Total

0.0316/0.0316 9.0 5.1 0.0 14.1(20.5)
0.0316/ 0.1 23.7 3.2 0.0 26.9(13.5)

0.0316/0.3162 9.0 1.3 0.6 10.9(3.8 )
0.0316/ 1 25.0 0.0 1.9 26.9(0.0 )

0.1/0.0316 4.5 1.9 0.0 6.4(16.7)

0.1/ 0.1 16.0 5.8 0.6 22.4(17.3)
0.1/0.3162 24.4 3.2 1.3 28.8(11.5)

0.1/ 1 25.6 0.0 7.1 32.7(1.3 )

0.3162/0.0316 2.6 0.6 0.0 3.2(7.1 )
0.3162/ 0.1 12.8 2.6 0.6 16.0(14.1)

0.3162/0.3162 26.3 14.1 3.8 44.2(16.0)

0.3162/ 1 17.3 1.9 4.5 23.7(5.8 )
1/0.0316 1.3 0.0 0.0 1.3(5.1 )

1/ 0.1 5.8 0.0 0.6 6.4(8.3 )

1/0.3162 26.9 12.2 14.1 53.2(16.0)
1/ 1 13.5 14.1 15.4 42.9(21.8)

Average 15.2 4.1 3.2 22.5(11.2)

m1 = 109 M� % Mergers
ein/eout m1-m2 m1-m3 m2-m3 Total

0.2/0.3 18.3 3.8 3.4 25.5(9.1 )
0.2/0.6 7.7 3.8 3.4 14.9(8.7 )

0.2/0.9 5.3 5.3 2.4 13.0(2.4 )

0.4/0.3 16.3 3.4 3.8 23.6(13.5)
0.4/0.6 13.0 3.8 2.4 19.2(12.0)

0.4/0.9 7.7 5.3 3.4 16.3(8.2 )

0.6/0.3 22.6 2.4 6.2 31.2(6.2 )
0.6/0.6 12.0 5.3 2.9 20.2(11.1)

0.6/0.9 9.1 3.8 1.0 13.9(13.0)

0.8/0.3 34.1 1.9 1.9 38.0(5.3 )
0.8/0.6 24.5 4.3 4.3 33.2(7.2 )

0.8/0.9 12.0 6.2 2.9 21.2(13.0)

Average 15.2 4.1 3.2 22.5(11.2)

m1 = 109 M� % Mergers

ι m1-m2 m1-m3 m2-m3 Total

10 10.9 4.2 6.2 21.4(14.6)

34.9323 10.4 4.2 3.1 17.7(10.4)
49.0917 10.4 1.6 7.8 19.8(14.1)
60.6678 10.4 2.1 7.3 19.8(13.0)
71.0409 8.3 5.7 3.6 17.7(8.3 )

80.7981 17.7 6.2 0.5 24.5(12.5)
90.2902 26.6 6.2 1.0 33.9(8.3 )

99.7903 27.1 2.1 1.0 30.2(8.9 )
109.574 18.2 4.7 0.5 23.4(12.5)
120 22.4 2.6 3.1 28.1(13.0)
131.681 14.1 4.2 1.0 19.3(8.9 )
146.094 10.4 5.2 2.1 17.7(10.9)

174.231 10.9 4.7 3.6 19.3(9.9 )

Average 15.2 4.1 3.2 22.5(11.2)
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Table A3. Results m1 = 108M�

m1 = 108 M� % Mergers
qin/qout m1-m2 m1-m3 m2-m3 Total

0.0316/0.0316 9.6 8.3 0.0 17.9(5.1 )
0.0316/ 0.1 14.1 2.6 0.0 16.7(8.3 )

0.0316/0.3162 28.2 0.6 0.6 29.5(1.9 )
0.0316/ 1 14.7 1.3 2.6 18.6(3.2 )

0.1/0.0316 4.5 3.2 0.0 7.7(5.8 )

0.1/ 0.1 9.6 6.4 0.0 16.0(12.8)
0.1/0.3162 22.4 6.4 1.3 30.1(5.1 )

0.1/ 1 21.8 0.0 1.9 23.7(2.6 )

0.3162/0.0316 1.3 1.3 0.0 2.6(3.2 )
0.3162/ 0.1 10.3 1.3 0.6 12.2(7.1 )

0.3162/0.3162 25.6 9.0 1.9 36.5(11.5)

0.3162/ 1 23.1 3.2 8.3 34.6(5.1 )
1/0.0316 0.0 0.6 0.0 0.6(3.2 )

1/ 0.1 5.8 0.0 0.0 5.8(5.1 )

1/0.3162 25.0 9.6 10.9 45.5(11.5)
1/ 1 19.2 10.3 11.5 41.0(9.0 )

Average 14.7 4.0 2.5 21.2(6.3 )

m1 = 108 M� % Mergers
ein/eout m1-m2 m1-m3 m2-m3 Total

0.2/0.3 15.9 4.3 4.8 25.0(3.4 )
0.2/0.6 12.0 4.3 3.4 19.7(6.2 )

0.2/0.9 4.3 3.8 2.4 10.6(2.4 )

0.4/0.3 18.3 3.4 1.9 23.6(5.3 )
0.4/0.6 14.9 4.8 1.4 21.2(11.1)

0.4/0.9 4.8 5.8 2.9 13.5(5.3 )

0.6/0.3 20.7 2.9 1.4 25.0(1.4 )
0.6/0.6 13.0 3.8 1.4 18.3(4.3 )

0.6/0.9 3.4 5.3 2.9 11.5(1.4 )

0.8/0.3 34.6 1.4 2.4 38.5(1.0 )
0.8/0.6 23.6 4.3 1.9 29.8(2.4 )

0.8/0.9 11.1 3.8 2.9 17.8(5.8 )

Average 14.7 4.0 2.5 21.2(6.3 )

m1 = 108 M� % Mergers

ι m1-m2 m1-m3 m2-m3 Total

10 10.4 3.1 3.6 17.2(6.8)

34.9323 8.9 3.1 3.1 15.1(6.2)
49.0917 6.8 5.2 4.2 16.1(8.3)
60.6678 13.0 5.7 2.6 21.4(4.7)
71.0409 11.5 3.1 2.6 17.2(8.9)

80.7981 14.6 2.6 4.2 21.4(6.8)
90.2902 27.6 0.5 1.6 29.7(3.1)

99.7903 28.1 2.1 1.0 31.2(3.1)
109.574 20.3 4.2 2.1 26.6(6.8)
120 19.3 2.6 1.6 23.4(5.2)
131.681 13.5 4.2 2.1 19.8(5.2)
146.094 7.8 7.3 0.0 15.1(8.9)

174.231 9.4 8.3 3.6 21.4(7.8)

Average 14.7 4.0 2.5 21.2(6.3)

Table A4. Results m1 = 107M�

m1 = 107 M� % Mergers
qin/qout m1-m2 m1-m3 m2-m3 Total

0.0316/0.0316 5.1 4.5 0.0 9.6(6.4 )
0.0316/ 0.1 23.1 1.9 0.0 25.0(1.9 )

0.0316/0.3162 23.7 3.2 0.6 27.6(7.7 )
0.0316/ 1 23.7 5.8 0.0 29.5(1.9 )

0.1/0.0316 3.2 0.6 0.0 3.8(3.2 )

0.1/ 0.1 9.6 2.6 0.0 12.2(6.4 )
0.1/0.3162 32.1 1.3 0.6 34.0(5.1 )

0.1/ 1 22.4 1.9 0.6 25.0(3.2 )

0.3162/0.0316 0.0 0.6 0.0 0.6(0.6 )
0.3162/ 0.1 10.3 0.0 1.3 11.5(5.8 )

0.3162/0.3162 23.1 6.4 0.6 30.1(4.5 )

0.3162/ 1 23.1 0.0 7.1 30.1(0.6 )
1/0.0316 1.3 0.0 0.0 1.3(0.6 )

1/ 0.1 6.4 1.3 0.6 8.3(2.6 )

1/0.3162 24.4 3.8 5.1 33.3(9.0 )
1/ 1 14.7 6.4 6.4 27.6(11.5)

Average 15.4 2.5 1.4 19.4(4.4 )

m1 = 107 M� % Mergers
ein/eout m1-m2 m1-m3 m2-m3 Total

0.2/0.3 18.8 2.4 2.4 23.6(2.4)
0.2/0.6 6.7 2.4 1.9 11.1(0.0)

0.2/0.9 3.4 4.8 1.4 9.6 (1.4)

0.4/0.3 21.6 1.4 2.4 25.5(3.8)
0.4/0.6 13.9 1.0 1.0 15.9(6.2)

0.4/0.9 5.8 2.9 1.4 10.1(4.8)

0.6/0.3 21.6 2.4 1.0 25.0(1.4)
0.6/0.6 13.5 1.9 1.9 17.3(5.8)

0.6/0.9 8.7 2.9 0.5 12.0(3.8)

0.8/0.3 39.4 0.5 0.5 40.4(1.4)
0.8/0.6 22.6 4.8 1.4 28.8(1.9)

0.8/0.9 8.7 2.9 1.4 13.0(4.3)

Average 15.4 2.5 1.4 19.4(4.4)

m1 = 107 M� % Mergers

ι m1-m2 m1-m3 m2-m3 Total

10 12.5 2.6 1.6 16.7(5.7)

34.9323 10.4 1.0 2.1 13.5(6.8)
49.0917 12.0 2.1 3.1 17.2(3.6)
60.6678 11.5 3.1 1.6 16.1(4.7)
71.0409 14.6 2.6 1.6 18.8(5.2)

80.7981 14.1 4.2 1.0 19.3(4.7)
90.2902 31.2 1.6 1.0 33.9(3.6)

99.7903 26.0 1.0 1.0 28.1(3.1)
109.574 24.0 3.6 0.0 27.6(2.6)
120 17.2 1.6 1.0 19.8(4.7)
131.681 11.5 2.1 1.6 15.1(4.2)
146.094 8.3 3.6 1.0 13.0(4.2)

174.231 6.8 3.6 2.1 12.5(4.7)

Average 15.4 2.5 1.4 19.4(4.4)
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Table A5. Results m1 = 106M�

m1 = 106 M� % Mergers
qin/qout m1-m2 m1-m3 m2-m3 Total

0.0316/0.0316 4.5 0.6 0.0 5.1(1.3)
0.0316/ 0.1 11.5 0.0 0.0 11.5(0.0)

0.0316/0.3162 25.6 0.0 0.0 25.6(2.6)
0.0316/ 1 39.7 0.0 1.9 41.7(0.6)

0.1/0.0316 1.3 0.6 0.0 1.9(1.9)

0.1/ 0.1 9.0 1.3 0.0 10.3(6.4)
0.1/0.3162 38.5 0.0 0.0 38.5(2.6)

0.1/ 1 43.6 0.0 0.6 44.2(0.6)

0.3162/0.0316 0.6 0.6 0.0 1.3(1.3)
0.3162/ 0.1 3.2 0.6 0.0 3.8(0.0)

0.3162/0.3162 19.9 1.3 0.0 21.2(1.9)

0.3162/ 1 26.3 1.3 2.6 30.1(1.9)
1/0.0316 0.6 0.0 0.0 0.6(0.6)

1/ 0.1 1.9 0.6 0.6 3.2(1.3)

1/0.3162 17.9 6.4 4.5 28.8(5.1)
1/ 1 14.7 8.3 5.8 28.8(1.9)

Average 16.2 1.4 1.0 18.5(1.9)

m1 = 106 M� % Mergers
ein/eout m1-m2 m1-m3 m2-m3 Total

0.2/0.3 16.3 2.9 1.4 20.7(1.4)
0.2/0.6 6.7 0.5 0.5 7.7 (1.4)

0.2/0.9 6.2 1.0 1.4 8.7 (3.4)

0.4/0.3 18.8 1.4 1.4 21.6(1.9)
0.4/0.6 14.4 1.4 1.9 17.8(3.4)

0.4/0.9 7.7 1.0 1.0 9.6 (3.4)

0.6/0.3 27.4 0.5 0.5 28.4(0.0)
0.6/0.6 13.9 2.4 0.0 16.3(0.0)

0.6/0.9 9.1 1.4 0.5 11.1(0.0)

0.8/0.3 38.0 1.4 1.4 40.9(0.0)
0.8/0.6 22.6 0.5 0.5 23.6(0.0)

0.8/0.9 13.0 1.9 1.4 16.3(0.5)

Average 16.2 1.4 1.0 18.5(1.9)

m1 = 106 M� % Mergers

ι m1-m2 m1-m3 m2-m3 Total

10 13.0 3.1 1.0 17.2(3.6)

34.9323 13.5 0.0 2.1 15.6(1.6)
49.0917 15.6 2.1 1.0 18.8(1.0)
60.6678 17.7 0.5 1.6 19.8(2.6)
71.0409 14.1 0.5 1.0 15.6(1.6)

80.7981 18.2 0.5 0.0 18.8(1.6)
90.2902 33.3 0.5 0.5 34.4(0.5)

99.7903 25.5 0.5 0.0 26.0(1.6)
109.574 20.3 1.0 0.5 21.9(2.1)
120 15.6 2.6 1.6 19.8(0.5)
131.681 9.9 1.6 0.0 11.5(4.2)
146.094 5.7 1.6 3.1 10.4(1.0)

174.231 7.8 3.1 0.5 11.5(2.6)

Average 16.2 1.4 1.0 18.5(1.9)

Table A6. Results m1 = 105M�

m1 = 105 M� % Mergers
qin/qout m1-m2 m1-m3 m2-m3 Total

0.0316/0.0316 1.9 1.9 0.0 3.8(2.6)
0.0316/ 0.1 19.2 1.3 0.0 20.5(0.0)

0.0316/0.3162 34.6 0.0 0.0 34.6(1.3)
0.0316/ 1 23.1 0.0 1.3 24.4(3.8)

0.1/0.0316 0.6 0.0 0.0 0.6(1.3)

0.1/ 0.1 8.3 0.6 0.6 9.6(3.2)
0.1/0.3162 35.3 0.6 0.0 35.9(1.3)

0.1/ 1 40.4 0.0 0.0 40.4(0.0)

0.3162/0.0316 1.9 0.0 0.0 1.9(0.0)
0.3162/ 0.1 2.6 0.6 0.0 3.2(3.8)

0.3162/0.3162 28.2 0.6 0.6 29.5(3.2)

0.3162/ 1 30.8 0.6 3.8 35.3(0.0)
1/0.0316 0.0 0.0 0.0 0.0(0.6)

1/ 0.1 5.8 0.0 0.0 5.8(1.3)

1/0.3162 19.2 3.8 5.1 28.2(2.6)
1/ 1 16.7 4.5 1.9 23.1(1.3)

Average 16.8 0.9 0.8 18.5(1.6)

m1 = 105 M� % Mergers
ein/eout m1-m2 m1-m3 m2-m3 Total

0.2/0.3 17.3 0.5 1.4 19.2(1.0)
0.2/0.6 10.1 0.5 0.5 11.1(0.5)

0.2/0.9 2.9 1.9 1.0 5.8 (1.4)

0.4/0.3 17.8 0.0 1.9 19.7(0.5)
0.4/0.6 12.5 1.4 1.0 14.9(1.4)

0.4/0.9 6.7 1.0 0.5 8.2 (1.4)

0.6/0.3 26.4 1.4 1.0 28.8(0.5)
0.6/0.6 18.8 0.5 0.5 19.7(1.0)

0.6/0.9 10.1 0.5 0.5 11.1(2.4)

0.8/0.3 38.5 0.0 0.5 38.9(1.0)
0.8/0.6 26.0 1.0 1.0 27.9(1.4)

0.8/0.9 14.4 2.4 0.5 17.3(2.4)

Average 16.8 0.9 0.8 18.5(1.6)

m1 = 105 M� % Mergers

ι m1-m2 m1-m3 m2-m3 Total

10 16.7 0.0 1.6 18.2(3.1)

34.9323 15.6 1.6 0.5 17.7(2.6)
49.0917 18.2 0.0 1.6 19.8(1.6)
60.6678 15.1 0.5 2.6 18.2(1.6)
71.0409 12.5 0.5 0.5 13.5(2.6)

80.7981 16.1 0.0 0.5 16.7(1.0)
90.2902 31.8 0.5 0.5 32.8(1.6)

99.7903 30.7 0.5 0.0 31.2(1.0)
109.574 21.4 1.6 2.1 25.0(1.0)
120 17.7 0.5 0.0 18.2(1.0)
131.681 9.9 1.6 0.5 12.0(0.5)
146.094 5.2 1.6 0.0 6.8(2.1)

174.231 7.3 3.1 0.5 10.9(1.6)

Average 16.8 0.9 0.8 18.5(1.6)
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