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1 Introduction

Exact quantification of how Quantum Field Theories react as we vary the coupling con-

stants or dynamical scales is a crucial issue in modern theoretical physics [1, 2]. Cases

where such deformations can be integrated exactly and in closed form are extremely rare

and often enjoy supersymmetry. In this framework, QFTs in two dimensions reveal to be

special since there exists examples of non-supersymmetric interacting theories which are

integrable and whose renormalisation group flow can be determined explicitly [3].

A generic QFT admits deformations by operators which instigate a flow as we probe

the dynamics at different scales. As one is often interested in the dynamics at low energy

scales, deformations which drive the flow at lower energies are considered relevant whilst

deformations that dominate the flow as we probe the dynamics at higher energy scales

are considered irrelevant. The latter flow is much harder to study as it generally involves

reintroducing the high energy degrees of freedom that have been integrated out. Nonethe-

less there are examples for which the flow can be determined, notably the deformation of

any local relativistic QFT in two spacetime dimensions by the irrelevant T T̄ operator first

engineered by Zamolodchikov in [4] (see also [5]).

Although the construction of the T T̄ -operator in [4] holds true for generalD = 2 QFTs,

subsequent studies mostly focused on integrable quantum field theories (IQFT) [6–9]. This

is due to the fact that the T T̄ -deformation of IQFTs preserves the integrable structure

(see for instance [10]) providing a better handle on the dynamics at high energies. This

was recently proved and generalised to an infinite class of irrelevant deformations of IQFTs

in two dimensions by Smirnov and Zamolodchikov in [11]. Their results along with [12]

sparked a renewed interest in irrelevant deformations of quantum field theories with various
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generalisations proposed in [13–15] and applications to holography studied in [16–23]. Some

implications of this irrelevant deformation for the UV theory were considered in [24–26],

and in [27] a hydrodynamical approach was considered.

The aim of this paper is to study the T T̄ -deformation of QFTs in D = 2, and its

extensions to higher dimensions, both for conformal and for massive theories. More specifi-

cally, the flow equation induced by the T T̄ -deformation can be reformulated as a functional

equation. Under certain conditions the functional equation reduces to a simple PDE and

can be solved exactly. In the following we will provide many such examples and present

their explicit solutions in closed form few of which were known.

In this extended introduction we present the framework within which the flow equation

is derived as well as our general strategy toward its solution. The remainder of the paper

consists of many examples of QFTs whose flow can be followed exactly. Section 2 is

dedicated to examples in two dimensions. Generalisation to higher dimensions is discussed

in section 3 and we close with some concluding remarks in section 4.

The T T̄ flow equation

Let M denote a two dimensional manifold equipped with a (Euclidean) metric tensor gµν
with µ, ν = 1, 2 and consider a QFT on M whose dynamics is governed by the local action

S◦ =

∫

M
d2x

√
gL◦(Φ, gµν , λ) .

Here L◦ denotes the Lagrangian for the local fields which we have collectively denoted by

Φ. The coupling constants, denoted by λ, control the strength of interactions among the

fields as well as with local sources. The partition function of this theory,

Z◦[gµν , λ] =

∫

[DΦ] e−S◦ ,

thus depends on the constants λ as well as the background metric gµν . The T T̄ -flow

equation is the first order differential equation in a real deformation parameter t,
(

∂

∂t
+∆

)

Zt = 0 , (1.1)

where the functional operator ∆ above is defined as

∆ = lim
δ→0

∫

M
d2x

2√
g
ǫµνǫρσ

δ

δgµρ(x+ δ)

δ

δgνσ(x− δ)
. (1.2)

The initial condition for (1.1) is provided by the undeformed theory Zt=0 = Z◦. Once the

initial condition is given, then the solution is uniquely determined.

For Lagrangian theories, equation (1.1) becomes the equation for the action functional

∂S

∂t
= (S, S) (1.3)

where the pairing ( · , · ) is defined via

(X,Y ) = lim
δ→0

∫

M
d2x

2√
g
ǫµνǫρσ

δX

δgµρ(x+ δ)

δY

δgνσ(x− δ)
,

– 2 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
9

for local functionals X and Y . Equation (1.3) is derived in [11], where the absence of

contact terms in the T T̄ composite operator is proven to follow from general assumptions.1

This implies that the point splitting regulator δ in the definition of the T T̄ composite

operator can be removed after the regularisation of the QFT and does not compete with

its UV regulator.

Our approach to integrating T T̄ -variations is concretely obtained by giving a class

of solutions of (1.3). The computation of the path integral for the deformed theory is a

different issue which we do not address here and we restrict our analysis to the deformation

problem of the classical action. We propose a simple integration technique for equation (1.3)

which follows from the locality of the action, the absence of space-time derivatives in ∆

and covariance under diffeomorphisms Diff(M).

Let us summarise our logic. The first observation is that equation (1.3), being first

order in t, has a unique solution for any initial (undeformed) local action. Locality of the

operator ∆ therefore suggests that we should look for a solution which can be expressed as

a local functional S(t) =
∫

M d2x
√
gL(t) at finite t. We next observe that the deformation

operator ∆ does not generate terms involving derivatives of the metric unless such terms

are already present in the undeformed Lagrangian.2 Therefore, the above assumptions

enable us to recast (1.3) as a local equation for the Lagrangian density L:

∂tL = L2 − 2Lgµν ∂L
∂gµν

+ 2εµνερσ
∂L
∂gµρ

∂L
∂gνσ

. (1.4)

We will discuss the implementation of this method in the specific cases in the next

sections. The upshot is that equation (1.4) reduces to a partial differential equation in

the deformation variable t and invariants formed from the metric and the dynamical fields.

We will show that in many examples the flow equation can be recast as the (extended)

Burgers’ equation. Since the Burgers’ equation can be reduced to quadratures via the

method of characteristics, we can present the explicit solution depending on the form of

the initial condition.

We remark that the link between the Burgers’ equation and the T T̄ -deformed action

was already observed in [12], where the appearance of its characteristic curve was rebuilt

from the assumption of validity of the non-linear integral equation for the theory. Our

approach leads directly to the Burgers’ equation and in a more general setting.

In the following we will first analyze the example of a single massless scalar field to

familiarise the reader with our approach and to set up the notation. We then solve the case

of an interacting scalar field in closed form and for an arbitrary potential before considering

a general σ-model with an arbitrary target metric and B-field and the WZW model. We

1This is analogous to the absence of contact terms for the YM curvature which facilitates the derivation

of Migdal’s loop equations in Yang-Mills theories. Furthermore, the analogue of Polyakov’s loop Laplacian

for YM is ∆ above (see section 7.2 in [28]).
2In the absence of such terms therefore the deformed Lagrangian can be viewed as a function only of

certain combinations of the dynamical fields and couplings. The form of these “invariants” is dictated by

the flow equation (1.4) as well as the explicit dependence of the undeformed Lagrangian on the metric.

This, as it will be shown later, induces very strict dependences on the metric and allows the complete

integration of the T T̄ -flow equation.
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also discuss the result of a power expansion of the solution of the T T̄ -deformation equation

in the case in which a curvature coupling is turned on and show the proliferation of higher

order derivatives at higher orders in the deformation parameter. In section 2.6 we explicitly

solve the T T̄ -deformation of a massive Dirac fermion with quartic interaction, i.e. the

massive Thirring model, and show that the solution is in this case given by a finite power

series in t. We dedicate section 3 to possible higher dimensional generalisations and close

with some concluding remarks and open questions in section 4.

2 T T̄ flows in closed form

Let us first review the steps that lead from (1.3) to the local equation (1.4). Consider a

theory T◦ on a two dimensional manifold M endowed with the Euclidean metric tensor gµν
whose dynamics is captured by the local action S◦ =

∫

d2x
√
gL◦. We are interested in

finding a solution to the flow equation (1.3) in terms of a local functional

S(t) =

∫

d2x
√
gL(t) , (2.1)

with the initial condition L(t = 0) = L◦. Plugging (2.1) into the r.h.s. of (1.3) we find

(S, S) =

∫

d2xOT T̄ ,

where the (local) T T̄ -operator is given by

OT T̄ =
1

2
εµνερσTµρTνσ .

Since the theory described by S(t) is coupled to the background metric tensor gµν , the

associated energy momentum tensor can be extracted by looking at small variations of

the metric,

Tµν =
−2√
g

δS(t)

δ gµν
= gµνL(t)− 2

∂L(t)
∂gµν

,

where the second equality holds under the condition that the undeformed Lagrangian

depends algebraically on the metric tensor. The unique solution of the T T̄ -flow equation

will, as already mentioned, enjoy the same property. Using this expression for the energy

momentum tensor enables us to recast the T T̄ -operator as

OT T̄ = L2 − 2Lgµν ∂L
∂gµν

+ 2εµνερσ
∂L
∂gµρ

∂L
∂gνσ

. (2.2)

Therefore eq.(1.3) reads

∂tL = OT T̄ , (2.3)

which is precisely equation (1.4). We study this equation in a few examples below starting

with the simplest case of a free massless scalar field.

– 4 –
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2.1 Free massless scalar field

As our first example we would like to find the unique solution to equation (1.4) with the

initial condition provided by the action for a free real scalar field

S◦ =
1

2

∫

d2x
√
g gµν∂µφ∂νφ . (2.4)

In the following we find it convenient to define the symmetric — and metric independent

— tensor

Xµν := ∂µφ∂νφ

whose trace we denote by X = gµνXµν . Since the initial Lagrangian is simply

L◦ =
1

2
X ,

we expect the deformed Lagrangian to depend on the fields only through Xµν . Moreover,

since any diffeomorphism invariant function of Xµν and the metric is only a function of

the scalar X we conclude that the deformed Lagrangian is only a function of two scalar

variables t and X, i.e. L = L(t,X). Consequently the deformation operator (2.2) takes the

simple form

OT T̄ = L2 − 2LX∂XL ,

yielding the flow equation

∂tL+ (X∂X − 1)L2 = 0 . (2.5)

As alluded to in the introduction, this equation is simply the Burgers’ equation

∂tf(t, y) + f(t, y) ∂yf(t, y) = 0 , (2.6)

with the identification

f(t, y) =
L(t,X)√

X
and y =

−1√
X

.

The Burgers’ equation, supplemented with the boundary condition

f(0, y) = − 1

2y
,

has a unique solution which can easily be determined via the method of characteristic

curves.3 The unique solution for the deformed Lagrangian is given by

L(t,X) = − 1

2t
+

1

2t

√
1 + 2tX , (2.7)

which satisfies the boundary condition

L(0, X) =
1

2
X .

Note that the solution (2.7) is smooth for t ≥ 0 but can become imaginary for t < 0. This

is closely related to the fact that the spectrum of the deformed theory on a circle exhibits

Hagedorn behavior for t < 0. The analysis above extends to more general boundary

conditions which we discuss below.
3The Burgers’ equation ∂tf(t, y) + f(t, y) ∂yf(t, y) = 0 with boundary condition f(0, y) = F (y) is

equivalent to the implicit equation f(t, y) = F (y − tf(t, y)).
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2.2 Interacting scalar field

An immediate generalisation of the above result follows from the altered boundary condition

L(0, X) =
1

2
X + V

where V = V (φ) is an arbitrary potential so long as it is independent of the background

metric. With this boundary condition corresponding to an interacting scalar the solution

to (2.5) is

L(t,X) = − 1

2t

1− 2tV

1− tV
+

1

2t

√

(1− 2tV )2

(1− tV )2
+ 2t

X + 2V

1− tV
(2.8)

This agrees with the expression obtained in [12] (see also [29])4 whose first few terms were

first presented in [30].

2.3 Curvature couplings

Another generalisation of (2.7) is obtained by imposing as the boundary condition a La-

grangian with curvature couplings. As an example, consider the undeformed Lagrangian

L(t = 0) =
1

2
X + α◦φR (2.9)

where R denotes the Ricci scalar associated with the background metric gµν . This

Lagrangian describes a theory with central charge c = 1 + 6Q2, where α◦ =
√
2πQ. We

may think of (2.9) as a deformation of the free theory and thus expand the solution to the

flow equation in powers of α◦,

L =
N
∑

n=0

αn
◦
L(n) and Tµν =

N
∑

n=0

αn
◦
T (n)
µν ,

where

T (n)
µν = − 2√

g

δ

δgµν

∫

d2x
√
gL(n) .

Using this expansion we can solve the flow equation,

∂tL =
1

2
εµρευσTµνTρσ ,

order by order in α◦. At order α
0
◦
we recover (2.7), while the flow equation at order α◦ reads

∂tL(1) = εµρευσT (0)
µν T

(1)
ρσ .

This equation can in turn be solved order by order in t with the first few terms given by

L(1) = φR− 2tX�φ+ 2t2X2
�φ− 8

3
t3X3

�φ+O
(

t3
)

.

4After the submission of the present manuscript we became aware that the above result was presented

by R. Tateo at IGST2017.
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This leads us to consider the following ansatz

L(1) = φR+ f (tX)�φ .

Plugging this ansatz in the flow equation yields

2
√

1 + 2y + f ′ (y) y
√

1 + 2y + 2q (y)− 2 = 0 ,

where y = tX, and

q (y) = 1 +

∫

dy
yf ′(y)

2
√
1 + 2y

.

Solving for f (y) we obtain the deformed Lagrangian

L(t) = − 1

2t
+

1

2t

√
1 + 2tX + α◦ [φR− log (1 + 2tX)�φ] +O

(

α2
◦

)

. (2.10)

As one might have expected, upon deformation, the Ricci scalar term induces higher

derivative corrections with the second order derivative term �φ = ∇µ∂µφ appearing at

order α◦. The α◦-expansion of the deformed Lagrangian therefore takes the form of an

expansion in higher derivative terms which have proved too cumbersome to determine.

2.4 Non-linear σ-model

Now that the logic is clear lets see if we can generalise the above analysis to multiple scalar

fields described by the σ-model action

S◦ =
1

2

∫

d2x
√
g
[

gµν∂µφ
i∂νφ

jGij(φ) + εµν∂µφ
i∂νφ

jBij(φ)
]

.

As before we define a set of metric independent tensors

Xij
µν = ∂µφ

i∂νφ
j ,

and the (density) scalars

Xij = gµνXij
µν and X̃ij =

√
gεµν∂µφ

i∂νφ
j .

Note that the scalar densities X̃ij are independent of the background metric. In fact the

entire B-term is metric independent and therefore topological. Furthermore, topological

terms are not affected by continuous, non-geometric, parameter deformations of the theory.

The upshot is that the topological B-term is unaffected by the deformation and does not

enter the analysis below.

The deformed Lagrangian depends on the metric only through the worldsheet scalars

Xij and X̃ij/
√
g. Moreover, the latter only depends on the metric through the factor

Ω =
√
g. Therefore the deformed Lagrangian is expected to be a function of the deformation

parameter t, the variables Xij and of Ω, i.e.

L = L(t,Xij ,Ω) .

– 7 –
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This allows us to considerably simplify the expression for the deformation operator (2.2)

OT T̄ =
2X̃ikX̃jl

Ω2

∂L
∂Xij

∂L
∂Xkl

−2Ω
∂L
∂Ω

Xij ∂L
∂Xij

+Ω2

(

∂L
∂Ω

)2

+

(

1−Xij ∂

∂Xij
+Ω

∂

∂Ω

)

L2 .

Note that factors of X̃ij in this equation should be treated as constant coefficients as they

do not depend on the metric.

So far we have only insisted on invariance under worldsheet diffeomorphisms. However,

we expect the deformed Lagrangian to also be invariant under target space diffeomorphisms.

This further constrains the form of the deformed Lagrangian such that it can only depend

on the scalar X = GijX
ij , and the above equation simplifies to

∂tL=
2X̃ijX̃ij

Ω2

(

∂L
∂X

)2

−2Ω
∂L
∂Ω

X
∂L
∂X

+Ω2

(

∂L
∂Ω

)2

+

(

1−X
∂

∂X
+Ω

∂

∂Ω

)

L2 . (2.11)

The solution to the above equation is given by

L = − 1

2t
+

1

2t

√

1 + 2tX + 2t2X̃ijX̃ijΩ−2 , (2.12)

satisfying the boundary condition L(t = 0) = X/2. The solution (2.12) is valid for arbitrary

target space metric, generalising the case of a flat metric which already appeared in [12].

As was explained the B-term does not enter the analysis and is only introduced through

LB(t = 0) = X/2 +BijX̃
ijΩ−1 resulting in the deformed action

L = − 1

2t
+

1

2t

√

1 + 2tX + 2t2X̃ijX̃ijΩ−2 +BijX̃
ijΩ−1 . (2.13)

2.5 WZW model

The analysis of σ-models in section 2.4 can readily be applied to Wess-Zumino-Witten

(WZW) models. For simplicity we limit the discussion to the case of SU(N) WZW theory

described by the action

S◦ =
k

8π

∫

M
d2x

√
ggµν Tr

(

γ−1∂µγγ
−1∂νγ

)

+
ik

16π2

∫

B3

[

Tr γ−1dγ
]3

(2.14)

where B3 is any three manifold whose boundary is the worldsheet M . The second term in

the WZW action above is topological and thus, as explained in section 2.4, does not enter

the flow equation and can be treated as a shift in the initial conditions.

In order to use the results of the previous section we first have to express the WZW

action in the σ-model variables. To this end we define the su(N)-valued vector field

Aa
µt

a = γ−1∂µγ

where ta denote the generators of the su(N). In analogy with the σ-model analysis of the

previous section we define the scalars

Xab =
k

4π
gµνAa

µA
b
ν ,

– 8 –
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and the scalar densities

X̃ab =
k
√
g

4π
εµνAa

µA
b
ν .

The deformed Lagrangian satisfies the same equation (2.11) as any σ-model. The resulting

deformed action is therefore given by

S =

∫

M
d2x

√
g

[

− 1

2t
+

1

2t

√

1 + 2tX + 2t2X̃ijX̃ijΩ−2

]

+
ik

16π2

∫

B3

[

Tr γ−1dγ
]3

, (2.15)

where the terms under the square-root are expressed in terms of the original fields γ as

X =
k

4π
gµν Tr

(

γ−1∂µγγ
−1∂νγ

)

,

and
X̃ijX̃ij

Ω2
=

(

k

4π

)2

εµνερσ Tr
(

γ−1∂µγγ
−1∂ργ

)

Tr
(

γ−1∂νγγ
−1∂σγ

)

.

2.6 Massive Thirring model

We now turn our attention to theories with fermionic fields. Consider a single Dirac fermion

with the undeformed action

S◦ =

∫

d2x
√
g

[

i

2

(

ψ̄γµ∇µψ −∇µψ̄γ
µψ

)

+ V

]

, (2.16)

where the potential is given by

V = −mψ̄ψ +
λ

4
ψ̄γaψ ψ̄γaψ .

The covariant derivative acts on the fermions via

∇µψ = ∂µψ +
i

2
ωµγ

3ψ, ∇µψ̄ = ∂µψ̄ − i

2
ωµψ̄γ

3, γµ = eµaγ
a , (2.17)

and the spin connection (in two dimensions) satisfies

ωab
µ = ǫab

(

1

2
ǫcdω

cd
µ

)

= ǫabωµ ,

with ǫ12 = −ǫ21 = 1. To study the T T̄ -flow of this theory we first define the 2× 2 matrix

X as follows

Xab =
i

2

(

ψ̄γa∇bψ −∇bψ̄γaψ
)

.

Here a and b are flat indices which are raised, lowered and contracted with the flat

(Euclidean) metric δab. Using (2.17) one can show that

Xaµ = ebµXab =
i

2

(

ψ̄γa∇µψ −∇µψ̄γaψ
)

=
i

2

(

ψ̄γa∂µψ − ∂µψ̄γaψ
)

,

which is manifestly independent of the metric. Since the undeformed Lagrangian (2.16) is

simply L◦ = TrX + V = eaµXaµ + V , we can work out the energy momentum tensor of

the undeformed theory

T
(0)
ab =

2√
g
eµae

ν
b

δS(0)

δgµν
= 2eµae

ν
b

∂eλc
∂gµν

Xcλ − δabL(0) = X(ab) − δab (TrX + V ) . (2.18)

– 9 –



J
H
E
P
0
6
(
2
0
1
8
)
1
4
9

It is clear that the deformed Lagrangian is constructed solely from X and V and since

these only contain the fermionic fields ψ, ψ̄ and their first derivatives we conclude that the

deformed Lagrangian can only contain products of up to orderX4,X2V and V 2 as all higher

powers vanish identically. We therefore expect the t-expansion of the deformed Lagrangian

to terminate. Consequently we expand the Lagrangian and the energy momentum tensor

of the deformed theory as

L =
N
∑

n=0

tnL(n) and Tµν =
N
∑

n=0

tnT (n)
µν , (2.19)

where

T (n)
µν = − 2√

g

δ

δgµν

∫

d2x
√
gL(n) .

Employing this expansion we can solve the flow equation5

∂tL =
1

2
εµρενσTµνTρσ =

1

2
(gµνTµν)

2 − 1

2
TµνTµν , (2.20)

order by order. Using (2.19), our flow equation (2.20) at order tn−1 reads

L(n) =
1

2n
(gµνgρσ − gµσgρν)

∑

i+j=n−1

(2− δij)T
(i)
µν T

(j)
ρσ .

Since L(n) only depends on the metric through X we can apply the chain rule to obtain

2eµae
ν
b

∂L
∂gµν

= Xc(aδb)d
∂L
∂Xcd

.

Furthermore, as we will see below L(n) only depends on the symmetric part of X which

we will denote by X̃ab = X(ab). We can now solve (2.20) order by order starting from the

undeformed energy momentum tensor (2.18). At order t0 we have

L(1) =
1

2
(TrX)2 − 1

2
Tr(X̃2) + V 2 + V TrX ,

from which we can evaluate T
(1)
ab as follows

T
(1)
ab = Tr X̃X̃ab −

(

X̃X
)

(ab)
+ V X̃ab − 2δabL(1) .

Next we analyze the flow equation (2.20) at order t1 which, after dividing by 2t, reads

L(2) =
1

4
Tr X̃3 − 3

8
Tr X̃ Tr X̃2 +

1

8

(

Tr X̃
)3

+
V

4

(

(Tr X̃)2 − Tr X̃2
)

.

The corresponding contribution to the energy momentum tensor is

T
(2)
ab =

3

4
(X̃2X)(ab) −

3

4
(Tr X̃)(X̃X)(ab) −

3

8

(

Tr X̃2 − (Tr X̃)2
)

X̃ab

+
V

2

(

(X̃X)(ab) − Tr X̃ X̃ab

)

− δabL(2) .

5Here we have used the identity gµνgρσ − gρνgµσ = εµρενσ which holds true in two dimensions.
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The final term in the t-expansion of the Lagrangian is determined by equating the terms

at order t2 in (2.20). At this order we find

L(3) = −1

6
Tr X̃4 +

1

12
(Tr X̃2)2 +

1

4
Tr X̃ Tr X̃3 − 5

24
(Tr X̃)2Tr X̃2 +

1

24
(Tr X̃)4 .

Note that the higher order terms in the t-expansion of the flow equation (2.20) vanish

identically thanks to the Grassmann nature of the fermionic fields from which X is built.

The final form of the T T̄ -deformed Lagrangian is therefore

L = Tr X̃ + V +
t

2

(

(Tr X̃)2 − Tr X̃2 + 2V (V +Tr X̃)
)

+
t2

2

(

Tr X̃3 − 3

2
Tr X̃ Tr X̃2 +

1

2
(Tr X̃)3 + V (Tr X̃)2 − V Tr X̃2

)

− t3

3

(

2Tr X̃4 − (Tr X̃2)2 − 3Tr X̃ Tr X̃3 +
5

2
(Tr X̃)2Tr X̃2 − 1

2
(Tr X̃)4

)

,

(2.21)

where X̃ is given by

X̃ab =
i

2

(

ψ̄γ(a∇b)ψ −∇(aψ̄γb)ψ
)

.

By expanding (2.21) and using Fierz identities one can in fact show that the expression for

the Lagrangian drastically simplifies to

L = L(0) +
t

4

(

(Tr X̃)2 − Tr X̃2 + 2m2(ψ̄ψ)2 − 2mψ̄ψTr X̃
)

− t2

8
mψ̄ψ

(

(Tr X̃)2 − Tr X̃2
)

.

The explicit form of the T T̄ -deformed Lagrangian in (flat) complex coordinates is

L(t) = i
(

ψ̄−

←→
∂z ψ− − ψ̄+

←→
∂z̄ ψ+

)

−m
(

ψ̄−ψ+ − ψ̄+ψ−

)

+ (λ−m2t)ψ̄+ψ̄−ψ+ψ−

− imt

2

[

ψ̄+ψ̄− (ψ−∂zψ− − ψ+∂z̄ψ+) + ψ+ψ−

(

ψ̄−∂zψ̄− − ψ̄+∂z̄ψ̄+

)]

+
t

4

[(

ψ̄+
←→
∂z̄ ψ+

)(

ψ̄−

←→
∂z ψ−

)

+ ψ̄−∂zψ̄−ψ−∂zψ− + ψ̄+∂z̄ψ̄+ψ+∂z̄ψ+

− 2
(

ψ̄+
←→
∂z ψ+

)(

ψ̄−

←→
∂z̄ ψ−

)]

− mt2

8
ψ̄+ψ̄−ψ+ψ−

(

∂zψ̄−∂z̄ψ+ − ∂z̄ψ̄+∂zψ− − 2∂z̄ψ̄−∂zψ+ + 2∂zψ̄+∂z̄ψ−

)

.

(2.22)

We stress that the expansion in the deformation parameter terminates. This is akin

to the observation made in [13] for a Lorentz-breaking irrelevant deformation analogous to

T T̄ . Consequently we anticipate that for the deformed theory to receive an infinite series

of corrections, as is the case for the Goldstino [31], we need to turn on an infinite tower of

irrelevant deformations.
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3 Generalisation to higher dimensions

Let us consider higher dimensional generalisations of the T T̄ -deformations. Such a gener-

alisation was recently proposed by J. Cardy [14] in the form of | detT |1/α with α = D−1 in

D dimensions. We will treat this generalisation, for more general values of the parameter

α, in some detail later in the section.

Let us remark in passing that there is another possible generalisation of the T T̄ -

deformation which remains quadratic in the energy momentum tensor. Starting in two

dimensions we first use the identity ǫµνǫρσ = gµρgνσ − gνρgµσ. This suggests the following

D-dimensional generalisation of the flow equation

∂tS =
1

2

∫

dDx
√
g

[

(gµρgνσ − gνρgµσ)

(−2√
g

δS

δgµρ

)(−2√
g

δS

δgνσ

)]

.

For a single scalar field — without conformal couplings — the flow equation for the La-

grangian takes the form

∂tL = (D − 1)
[

(D/2)L2 − 2X∂XLL
]

,

where X = ∂µφg
µν∂νφ, which reduces to the Burgers’ equation. Although we do not treat

this case further in this work, let us note that this could have a more natural AdS dual

interpretation compared to the (detT )1/α. Whether either of these generalisations can

be defined at the quantum level remains an open question. We remark that the scaling

solution, i.e. with Lt=0 = 1
2X, of this equation is given by solving the algebraic equation

(

1 + D(D−1)
2 tL

)4−D
LD = (X/2)D. Therefore, the free massless scalar in four dimensions

is a fixed point of the flow and one needs to turn on a potential (or a conformal coupling)

to have a nontrivial evolution.

We now turn our attention to the flow instigated by an operator of the form (−detT )1/α

in D-dimensions resulting in the flow equation

∂tS =
1

α−D

∫

dDx
√
g

[−1

D!
ǫµ1...µDǫν1...νD

(−2√
g

δS

δgµ1ν1

)

. . .

(−2√
g

δS

δgµDνD

)]1/α

(3.1)

where α is a real parameter.6 For this to be an irrelevant deformation for CFTs we take

0 < α < D and we further assume α to be an integer. Let us integrate the above equation

in the case of a scalar field φ by reducing it to a partial differential equation. Once more

we define X = ∂µφg
µν∂νφ and write the solution as

S =

∫

dDx
√
gL(X, t)

with the initial condition

L(X, 0) =
1

2
X + V

6The case of [14] is α = D − 1, but we keep this parameter free to different examples.
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for a generic local potential V = V (φ). Since the deformed Lagrangian only depends on the

background metric through X the expression for the associated energy momentum tensor

simplifies to
−2√
g

δS

δgµν
= gµνL − 2∂XL∂µφ∂νφ .

Using the above expression, equation (3.1) simplifies to

∂tL =
1

α−D

[

−LD + 2LD−1(X∂X)L
]1/α

.

This can be further simplified by considering the redefinition

Y = (−1)αX
α−D

2 and L =
√
Xf

1

D−α ,

yielding

(∂tf)
α + fα∂Y f = 0 , (3.2)

which reduces to the Burgers’ equation for α = 1. The relevant initial condition is obtained

by inverting the above redefinitions in f =
(

X−1/2L
)D−α

and X = [(−1)αY ]
2

α−D . The

initial condition therefore takes the form

f(0, Y ) = (−1)αY

{

1

2
[(−1)αY ]

2

α−D + V

}D−α

.

Below we solve (3.2) with this initial condition in a few cases.

The solution of the Burgers’ equation, that is (3.2) with α = 1, is given by solving the

implicit equation,

f(t, Y ) = f (0, Y − tf(t, Y )) ,

which for our initial condition reads

f

tf − Y
=

[

1

2
(tf − Y )

2

1−D + V

]D−1

. (3.3)

Exact solutions of equation (3.3) can be obtained explicitly for low values of the di-

mension D and for a generic potential. The solution drastically simplifies in the case of

the massless free scalar, i.e. V = 0, and reads as

f(t, Y ) =
1

2t

(

Y +

√

Y 2 +
t

2D−3

)

. (3.4)

This results in the deformed Lagrangian

LD,1(t,X) =

{

1

2t

[

√

1 + 4t(X/2)D−1 − 1

]}1/(D−1)

. (3.5)

Another interesting case which can be simplified is the scaling solution for the free

massless scalar field and arbitrary value of α. In this case the differential equation,

(∂tf)
α + fα∂Y f = 0 , (3.6)

– 13 –
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is accompanied by the simple boundary condition f(0, Y ) = (−1)α

2D−α
1
Y . We can further reduce

eq. (3.6) by using scaling symmetry. This enables us to set

f(t, Y ) = (−α/2)αt−
α
2 K

(

Y t−
α
2

)

,

and reduces the PDE above to an ODE in the variable Z = Y t−
α
2 :

0 =

(

1 + Z
K ′

K

)α

+K ′ .

This equation should have a solution such that K ∼ 1
kZ for large positive Z and with

k = 2D−2α(α)α. After some thought one can see that such a solution indeed exists. Of

course, the case α = 1 reproduces the solution (3.4) for the Burgers’ equation. The

explicit solution for the first few small integer values of α can be computed by reducing to

quadratures. For example, at α = 2 we find

K =
1

c2Z + c
with c2 = 2D−2,

where the two possible signs of c are related by the t → −t symmetry of the equation. The

corresponding Lagrangian (with c = 2(D−2)/2) is

LD,2 =
X

2

1
[

1 + t(X/2)
D−2

2

]
1

D−2

. (3.7)

In particular, for D = 3, the above Lagrangian is the result of integrating the (detT )
1

D−1

deformation proposed in [14] for a free scalar field theory in three dimensions which takes

the simple form

L3,2 =
X

2

1

1 + t
√

X/2
.

4 Conclusions and open questions

In this paper we have presented a general approach to T T̄ -deformations of quantum field

theories in two dimensions, as well as some generalisations to higher dimensions, and

demonstrated its effectiveness in a number of cases, notably non-linear σ-models and the

massive Thirring model.

There are many other theories of interest in two dimensions to which our approach

can be applied, notably Yang-Mills theories and gauged linear σ-models as well as their

supersymmetric counterparts. Moreover, the method presented here can be extended to

flows instigated by analogs of the T T̄ -operator involving higher spin currents proposed

in [11] or symmetry breaking currents such as the one discussed in [13].

One of the most pressing questions left unanswered is the issue of extending the exact

integration method to theories whose undeformed action includes curvature couplings, such

as the conformal coupling term for scalars in higher dimensions. As was demonstrated in a

simple example in two dimensions, curvature couplings can be treated order by order but

a closed form solution eludes us.
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Another crucial issue yet to be addressed with regards to the higher dimensional gen-

eralisations of the T T̄ operator is to analyze the existence or absence of contact terms,

along the lines of [4], for the composite operator (detT )1/α in D > 2 and for different

values of α. It is reasonable to expect that the quantum corrected operator has additional

terms, especially in the light of the expected form of the deformation equation for the par-

tition function proposed in [14]. Needless to say the holographic interpretation of T T̄ -like

deformations in higher dimensions is also of great interest and needs to be addressed.
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[12] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, T T̄ -deformed 2D Quantum Field

Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

[13] M. Guica, An integrable Lorentz-breaking deformation of two-dimensional CFTs,

arXiv:1710.08415 [INSPIRE].

[14] J. Cardy, The T T̄ deformation of quantum field theory as a stochastic process,

arXiv:1801.06895 [INSPIRE].

[15] M. Baggio and A. Sfondrini, Strings on NS-NS Backgrounds as Integrable Deformations,

arXiv:1804.01998 [INSPIRE].

[16] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with T T̄ ,

JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].

[17] M. Asrat, A. Giveon, N. Itzhaki and D. Kutasov, Holography Beyond AdS,

arXiv:1711.02690 [INSPIRE].

[18] A. Giveon, N. Itzhaki and D. Kutasov, T T̄ and LST, JHEP 07 (2017) 122

[arXiv:1701.05576] [INSPIRE].

[19] A. Giveon, N. Itzhaki and D. Kutasov, A solvable irrelevant deformation of AdS3/CFT2,

JHEP 12 (2017) 155 [arXiv:1707.05800] [INSPIRE].

[20] S. van Leuven, E. Verlinde and M. Visser, Towards non-AdS Holography via the Long String

Phenomenon, arXiv:1801.02589 [INSPIRE].

[21] V. Shyam, Background independent holographic dual to T T̄ deformed CFT with large central

charge in 2 dimensions, JHEP 10 (2017) 108 [arXiv:1707.08118] [INSPIRE].

[22] G. Giribet, T T̄ -deformations, AdS/CFT and correlation functions, JHEP 02 (2018) 114

[arXiv:1711.02716] [INSPIRE].

[23] A. Bzowski and M. Guica, The holographic interpretation of JT̄ -deformed CFTs,

arXiv:1803.09753 [INSPIRE].

[24] W. Cottrell and A. Hashimoto, Comments on T T̄ double trace deformations and boundary

conditions, arXiv:1801.09708 [INSPIRE].

[25] O. Aharony and T. Vaknin, The TT* deformation at large central charge,

arXiv:1803.00100 [INSPIRE].

[26] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography

and T T̄ , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

[27] D. Bernard and B. Doyon, A hydrodynamic approach to non-equilibrium conformal field

theories, J. Stat. Mech. 1603 (2016) 033104 [arXiv:1507.07474] [INSPIRE].

[28] A.M. Polyakov, Gauge Fields and Strings, Contemp. Concepts Phys. 3 (1987) 1 [INSPIRE].

[29] R. Tateo, CDD ambiguity and irrelevant deformations of 2D QFT, Igst2017,

https://www.phys.ens.fr/∼igst17/slides/Tateo.pdf.

[30] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Natural Tuning: Towards A Proof of Concept,

JHEP 09 (2013) 045 [arXiv:1305.6939] [INSPIRE].

[31] A.B. Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz,

Nucl. Phys. B 358 (1991) 524 [INSPIRE].

– 16 –

https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://arxiv.org/abs/1608.05499
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05499
https://doi.org/10.1007/JHEP10(2016)112
https://arxiv.org/abs/1608.05534
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05534
https://arxiv.org/abs/1710.08415
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.08415
https://arxiv.org/abs/1801.06895
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.06895
https://arxiv.org/abs/1804.01998
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01998
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03470
https://arxiv.org/abs/1711.02690
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02690
https://doi.org/10.1007/JHEP07(2017)122
https://arxiv.org/abs/1701.05576
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05576
https://doi.org/10.1007/JHEP12(2017)155
https://arxiv.org/abs/1707.05800
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.05800
https://arxiv.org/abs/1801.02589
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.02589
https://doi.org/10.1007/JHEP10(2017)108
https://arxiv.org/abs/1707.08118
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08118
https://doi.org/10.1007/JHEP02(2018)114
https://arxiv.org/abs/1711.02716
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.02716
https://arxiv.org/abs/1803.09753
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.09753
https://arxiv.org/abs/1801.09708
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.09708
https://arxiv.org/abs/1803.00100
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.00100
https://doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.06604
https://doi.org/10.1088/1742-5468/2016/03/033104
https://arxiv.org/abs/1507.07474
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07474
https://inspirehep.net/search?p=find+IRN+1850164
https://www.phys.ens.fr/~igst17/slides/Tateo.pdf
https://doi.org/10.1007/JHEP09(2013)045
https://arxiv.org/abs/1305.6939
https://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6939
https://doi.org/10.1016/0550-3213(91)90423-U
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B358,524%22

	Introduction
	T barT flows in closed form
	Free massless scalar field
	Interacting scalar field
	Curvature couplings
	Non-linear sigma-model
	WZW model
	Massive Thirring model

	Generalisation to higher dimensions
	Conclusions and open questions

