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We study the effect of many-body quantum interference on the dynamics of coupled periodically-
kicked systems whose classical dynamics is chaotic and shows an unbounded energy increase. We
specifically focus on a N coupled kicked rotors model: we find that the interplay of quantumness
and interactions dramatically modifies the system dynamics inducing a transition between energy
saturation and unbounded energy increase. We discuss this phenomenon both numerically and an-
alytically, through a mapping onto a N -dimensional Anderson model. The thermodynamic limit
N → ∞, in particular, always shows unbounded energy growth. This dynamical delocalization is
genuinely quantum and very different from the classical one: using a mean field approximation we
see that the system self-organizes so that the energy per site increases in time as a power law with
exponent smaller than one. This wealth of phenomena is a genuine effect of quantum interference:
the classical system for N ≥ 2 always behaves ergodically with an energy per site linearly increas-
ing in time. Our results show that quantum mechanics can deeply alter the regularity/ergodicity
properties of a many body driven system.

PACS numbers: Valid PACS appear here

I. INTRODUCTION

Deterministic chaos is a powerful scientific paradigm to
understand the natural world [1, 2]. Since the first works
by Lorenz [3] and May [4], it has become suddenly clear
that non-linearities in very simple maps or systems of dif-
ferential equations could give rise to a complex aperiodic
behaviour, strongly dependent on initial conditions. The
works by Feigenbaum [5, 6] and Ruelle-Takens [7] showed
that there is a universal way in which non-linear systems
undergo the transition to a chaotic regime; those theories
have found spectacular experimental demonstrations in
the context of turbulence [8, 9]. The dynamics of chaotic
dissipative systems in phase space converges towards sets
called “strange attractors” [10, 11] whose fractal struc-
ture [12] challenges traditional geometric descriptions.
Chaos is extremely pervasive and applies to fields like
meteorology [16], chemistry [11, 17], economics [13] and
medicine [14–16, 18–21], to the extent that even life could
be thought as a chemical system self-organizing at the
border between order and chaos [22].

The focus of this work is the relation between chaotic
dynamics from one side and ergodicity and thermaliza-
tion from the other in quantum many-body Hamiltonian
systems. This is a rather well studied topic in classical
physics (see Refs. [23, 24] for a review): after the first
studies by Poincaré [23], interest in these topics was re-
newed by Fermi, Pasta and Ulam [25] who numerically
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FIG. 1. The behavior of our kicked rotors system is here
sketched. For N = 1, 2 rotors the system is localized for all
the values of the kick strength K. For N > 2 but finite a
transition occurs from localized to delocalized. For N → ∞
the system is always delocalized and the mean field approach
gives that the kinetic energy of the system grows subdiffu-
sively in time (Et ∼ tα, with α ≤ 1).

simulated a chain of non-linear oscillators, finding a com-
plex non-thermalizing behaviour. The theoretical expla-
nation of this fact came from Kolmogorov, Arnold and
Moser [26, 27] who demonstrated that, for moderate non-
integrable perturbations, the phase space is partly regu-
lar and partly chaotic (KAM theorem). In this interme-
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diate situation, when there are many degrees of freedom,
slow diffusion is possible in the connected chaotic clus-
ter giving rise exponentially slow deviations from nearly-
integrable behaviour encoded in Nekhoroshev theory [28].
These studies are of huge theoretical importance, because
they put on solid mathematical foundations the concept
of ergodicity necessary for thermalization of isolated clas-
sical systems [29, 30]. If a many-body system is ergodic,
all the phase space is chaotic and there is a strong de-
pendence on initial conditions, nearby trajectories devi-
ating from each other exponentially fast in time [24, 31].
Chaotic trajectories are extremely complex fractal ob-
jects; in the ergodic case they uniformly fill all the avail-
able phase space [23] and time-averages over them equal
the microcanonical ones: in this case thermalization can
occur.

Thanks to the progress of experimental techniques,
which can nowadays study the coherent dynamics of
many-particle quantum systems for long times [32, 34,
35], it has become natural to study ergodicity and
thermalization in Hamiltonian quantum systems (see
Ref. [33] for a review), a problem dating back to Von
Neumann [36]. The natural tools to study these prob-
lems are those developed to analyze the chaotic proper-
ties of quantum systems (see Refs. [38–40] for a review).
The dynamics of states in the Hilbert space is linear and
therefore cannot be chaotic; chaos can only emerge in the
properties of the observables. For instance, the exponen-
tial deviations characteristic of chaotic trajectories can
be studied through the overlap of the time evolution of
the same initial quantum state with two slightly different
Hamiltonians (the Loschmidt echo) [37]. Systems whose
classical counterpart is chaotic show a Hamiltonian look-
ing like a random matrix and this can be probed from
the properties of the level spacing distribution, which
is Poisson like for integrable-like systems and Wigner-
Dyson for fully ergodic ones [41, 42]. This analysis has
become a probe for chaoticity also in quantum systems
without a classical counterpart [43], especially in connec-
tion with the recent developments on many body local-
ization [44, 45].

A very interesting question addressing the difference
between classical and quantum systems is whether quan-
tumness can modify the chaotic properties of a physical
system. A remarkable example is the quantum kicked
rotor [74–76]. As discussed in detail in Section II, the
quantum dynamics of this non-linear Hamiltonian model
can differ considerably from the corresponding classical
one, in terms of ergodicity and energy absorption. In the
classical case the system behaves ergodically for kicks’
amplitudes larger than a critical value: the dynamics
explores all the available phase space and the energy
steadily increases linearly in time without a bound (dy-
namical delocalization). Imposing quantization of con-
jugated variables, one sees that the energy increases
until a certain point and then fluctuates around a fi-
nite value (quantum dynamical localization). Therefore,
quantum interference makes the dynamics of the kicked

rotor more regular. This phenomenon is intimately con-
nected to Anderson localization: quantum interference
and chaotic dynamics make the system localized in mo-
mentum space (and in energy) in a way similar to one-
dimensional Anderson localization in real space [77]. The
connection between the two phenomena has be discussed
in Refs. [78, 79]. Dynamical localization in the quantum
kicked rotor and in other small chaotic quantum system
has also been experimentally observed [49–53]

The pioneering studies on the quantum kicked rotor
done in the seventies and eighties are at the roots of
the research field of periodically-driven quantum many
body systems. Indeed, the relation between quantum
chaos and ergodicity from one side and energy absorp-
tion from the other in this class of systems has recently
attracted a lot of interest. This is a very important
point for experiments, because periodically driven sys-
tems allow to simulate quantum many-body Hamiltoni-
ans of physical interest and the dynamics must be stable
and non-thermalizing for long times in order to see phe-
nomena like quantum phase transitions and topological
effects (see Ref. [54] for a review). As in the autonomous
case, integrability plays here an important role. General
many-body driven quantum systems have been found to
attain an asymptotic periodic steady regime described by
the so-called Floquet diagonal ensemble [61]. In the in-
tegrable case the steady regime is non-thermal [61, 62]
(see also [60]) and is described by a peculiar form of
generalized-Gibbs-ensemble density matrix [64, 65]. On
the other hand, non-integrable driven quantum systems
”thermalize” at T = ∞, i.e. heat up indefinitely, be-
cause of the absence of energy conservation. Consis-
tently, the eigenstates of the stroboscopic dynamics (the
Floquet states) are random delocalized states, locally
equivalent to the T = ∞ thermal ensemble [59, 66],
and the level spacing distribution of the corresponding
eigenvalues (the Floquet quasienergies) is of Wigner-
Dyson form [59]. For high values of the driving fre-
quency, driven many-body quantum systems can show
a long-lived prethermal metastable regime described by
the Magnus expansion [58], which has been shown to be
valid only for a finite time [68, 69]. In some systems
there is a crossover between thermalizing and integrable-
like behaviour for finite size, though it is believed that
the dynamics is always eventually thermalizing in the
thermodynamic limit [59], possibly after a prethermal-
ization regime [70, 73]. In other cases, a transition be-
tween a regular and an ergodic dynamics persists also
in the thermodynamic limit [57, 63, 72]. Very pecu-
liar is the case of disordered periodically driven quan-
tum systems, where the transition between a many-body
localized regime with dynamical localization and an er-
godic thermalizing behaviour is clearly seen [55, 56]. This
transition has been experimentally observed [71] and its
existence has been put in connection with the absence
of a mobility edge in the undriven many-body localized
model [67]. In the many-body localized systems, dynam-
ical localization is induced by quantum interference and
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the disorder imposed externally on the system. An ex-
tremely interesting question is how dynamical localiza-
tion in clean many-body driven systems [57, 63, 72] is
generated by the interplay between quantum mechanics
and the disorder spontaneously generated by the deter-
ministic chaotic dynamics.

In this work we address this question considering a
generalization of the quantum kicked rotor to the many
body case. Specifically, we study the dynamics of many
quantum kicked rotors non-linearly coupled through the
kicking. Until now only the case of two rotors [80–85]
and the interacting linear case [140] has been considered
in literature and a clear picture of the effect of quan-
tum mechanics on the dynamics of the general nonlin-
ear case is missing. Our goal is to to consider the case
of a generic number N of coupled rotors, considering
also the thermodynamic limit N → ∞. Our first re-
sult is to establish a connection between a chain of N
interacting rotors and a N -dimensional disordered lat-
tice exhibiting Anderson localization, extending the re-
sults found with N = 1 [78, 79] to a generic N . This
implies that although the classical system always shows
unbounded energy growth, the quantum system can un-
dergo a localization/delocalization transition: also in the
many-body case quantum mechanics deeply changes the
ergodic properties of the system. The connection is first
explored analytically and afterwards numerically in the
cases N = 2 and N = 3 using exact diagonalization and
a time-evolving-block-decimation algorithm. For N = 2,
we find that the energy initially increases in time, as it
was previously found [80, 84] eventually stopping to a
finite asymptotic value exponentially large in the kick-
ing strength, therefore exhibiting dynamical localization.
This result is in agreement with the results for the two-
dimensional Anderson model [86]. For N > 2 it is known
that a disordered lattice undergoes a transition from An-
derson localization [86]: we numerically observe this in
the case of N = 3. These results for the rotors are picto-
rially represented in FIG. 1.

Finally we move to the large N limit. We first study an
∞-dimensional Anderson model: using the scaling the-
ory of localization by Abrahams et. al. [86] we show that
this model always exhibits delocalization. Therefore we
expect, due to the mapping introduced above, that also
the many kicked rotors model is always dynamically de-
localized in the thermodynamic limit: the energy per site
always increases without a bound.

We perform a numerical study of this limit with a
mean-field approximation which is exact when the co-
ordination number of the system goes to infinity: we
focus on a specific case in which this fact occurs, the
one of infinite-range interactions in the thermodynamic
limit. With the mean-field approach we can use an ef-
fective single rotor Hamiltonian to infer the dynamics of
the long range interacting system. We remarkably find
that the system is not localized: the momentum distribu-
tion spreads in time and the kinetic energy grows. This
growth is described by an anomalous diffusion, namely

the energy increases like tα with α < 1. For high values
of kicking amplitude and interaction we find that subd-
iffusion tends to become diffusion: α → 1. The subdif-
fusion we observe is a genuinely quantum phenomenon:
for the same parameters the classical counterpart of the
system is ergodic and its energy grows linearly in time
(diffusive behaviour).

The peculiarity of the effective single rotor model is
that the kick amplitude evolves in time: it is modulated
by a mean field parameter which is computed at each
time step and depends from the evolution of the system
itself. The breaking of the dynamical localization in a
single quantum kicked rotor via a modulation of the kick
amplitude has already been considered. Examples are a
modulation via d − 1 incommensurate frequencies [87–
91] which induces Anderson localization/delocalization
transition and a kick with modulated amplitude which
undergoes decoherence and quantum-to-classical transi-
tion [92–94]. In all the cases, the properties of the modu-
lation are crucial in determining the response of the sys-
tem, especially if the modulation is noisy [95–99, 142].
In our case the modulation does not come from an ex-
ternal signal but is self-consistently determined. More-
over, the mean field parameter introduces a nonlinearity
in the effective Hamiltonian which plays a crucial role in
destroying the dynamical localization of the single rotor.
The non-linearity induces a self-reorganization during the
system evolution giving rise to the anomalous diffusion
of the kinetic energy. Nonlinearities have already been
considered in the kicked rotor [136, 141, 145] and related
disordered lattices [133–135, 137] and they are indeed
found to turn the dynamical or Anderson localization
into a subdiffusive spreading of the wave function.

The work is organized as follows. In Section II we in-
troduce the interacting kicked rotors model we discuss in
this work. We also briefly review the single kicked rotor,
focusing on the different behaviors that the classical and
quantum versions of this model manifest. In Section III
we discuss the analytical mapping of the N -rotors model
on an N -dimensional Anderson model and numerically
verify it in N = 2 and N = 3 rotors cases. A comparison
with the results for the classical case is reported in Ap-
pendix A. Section IV discusses the behaviour of the cou-
pled kicked rotors in the thermodynamic limit. We pre-
dict that in this case there is always dynamical delocal-
ization: we show this in Subsection IV A where we use the
mapping introduced in Section III and demonstrate the
absence of Anderson localization for an ∞-dimensional
disordered lattice. Section IV B contains the numerical
study of the N →∞ limit of the fully connected model:
we define the effective mean field model (for a demon-
stration of its exactness when N → ∞ see Appendix B)
and describe its dynamics. We study the dynamics of the
effective model by looking at the kinetic energy growth
and at the properties of the time dependent mean field
parameter. In the Conclusions we summarize the results
henceforth presented, discussing the outlook and the im-
plications coming from this work.
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II. KICKED ROTORS MODELS

The kicked rotor (KR) is a paradigmatic model both
in classical and quantum mechanics, widely studied from
the appearance of the first works [75, 78, 79, 100] . For a
review one could see Ref. [144]. Here we study a many-
body generalization of this model, whose adimensional
Hamiltonian is

Ĥ(t) =
1

2

N∑
i=1

p̂2
i + V (θ̂)

+∞∑
n=−∞

δ(t− n) ; (1)

with

V (θ̂) = K

 N∑
i=1

cos θ̂i −
1

2

∑
i 6=j

εij cos(θ̂i − θ̂j)

 . (2)

In this work we specifically address two cases: the one
with nearest neighbour interactions where εij = ε δi,j−1

and that of infinite-range interactions εij = ε
N−1 . In the

latter case the mean-field approximation is exact in the
thermodynamic limit. Notice the commutation rules

[θ̂i, p̂j ] = ik̄δi, j . (3)

where the effective Planck’s constant k̄ = ~T/I is di-
rectly proportional to ~ and to the physical kicking pe-
riod T and inversely proportional to the momentum of
inertia I of the rotors [74]. This adimensional constant is
obtained by expressing the Hamiltonian Eq. (1) in units
of I/T 2, defining the following adimensional quantities:
t′ = t/T , K ′ = T K/I, p̂′ = p̂ T/I. After this rescaling,
the kicking period is 1, as can be seen in Eq. (1). We will
henceforth be interested in the stroboscopic evolution of
the system at each period of time: we consider the state
of the system only at discrete times tn ≡ n.

The momentum operators p̂i have discrete eigenvalues
k̄mi (mi ∈ Z) as a result of the corresponding angle oper-

ator being periodic θ̂i = θ̂i+2π and the wave-function in
the angle representation being single-valued (see for in-
stance Ref. [101]). A possible basis of the Hilbert space is
therefore easily constructed from tensor products of local
momentum eigenstates {|m1, . . . ,mN 〉}m1,...,mN∈Z. We
will write this basis also in the form {|m〉}m∈ZN where
we have defined the vector m ≡ (m1, . . . ,mN ).

Before moving to the analysis of the many-rotors mod-
els, let us review what is known about the single KR
(N = 1). Classically, this model can either show en-
ergy localization or unbounded energy growth depending
on the value of K. This can be seen by studying the
stroboscopic kinetic energy of the system evaluated im-
mediately before the n-th kick which is E(n) = p 2(n)/2

(the average (·) is taken over an ensemble of randomly
chosen initial conditions). The energy will not increase in
time if K < Kc = 0.971635 (classical dynamical localiza-
tion) due to the presence of stable KAM trajectories sep-
arated by chaotic regions [102]. These stable trajectories

disappear for K & Kc and the dynamics becomes fully
chaotic; as a consequence E(n) starts growing linearly
in time with a coefficient DKR ' K2/4. In this regime
the system is ergodic: nearby trajectories separate expo-
nentially and explore the entire phase space for generic
initial conditions. As a consequence, there is diffusion in
the momentum space, as it can be seen looking at the
momentum variance σ2

p(n) ≡ p2(n) = 2E(n) [103] which
increases linearly with n. Since this object coincides with
the kinetic energy up to a factor, from a classical point
of view ergodicity implies energy delocalization.

The quantum counterpart of this model (quantum
kicked rotor – QKR) is obtained by imposing the com-
mutation rules Eq. (3) to the case N = 1. Quantum me-
chanics dramatically changes the behavior of this model
killing ergodicity and constrains the energy dynamics so
that the system behaves as an integrable one. Indeed we
pass from the unbounded steady heating of the classical
system to dynamical localization for all values of K ex-
hibited by its quantum counterpart. The kinetic energy,
after a linear growth for a time n∗ [79, 104], reaches
an asymptotic condition and fluctuates around a finite
value. [105] Dynamical localization has been experimen-
tally observed for the first time with a cloud of ultracold
atoms moving in a pulsed, one dimensional periodic op-
tical lattice [52].

The dynamical localization in the QKR can be bet-
ter understood with the mapping introduced in [78, 79],
which connects this model to the time-independent
Hamiltonian of a single particle hopping on a disordered
one dimensional lattice. This last model is known to show
Anderson localization [77]: the eigenfunctions at energy
ε are localized in space, ψε(x) ∼ exp(−x/ξ), where ξ is
the localization length. Such construction will be gen-
eralized to the many-rotors models defined in Eq. (2) in
the next section making it possible to interpret dynam-
ical localization/delocalization in these models in terms
of Anderson localization of a particle hopping over an
N -dimensional lattice.

III. FLOQUET STATES AND MAPPING TO
ANDERSON LOCALIZATION

Our first step in the analysis of the behaviour of cou-
pled quantum kicked rotors is to develop a mapping of a
model of N kicked rotors to a single particle hopping
in a N -dimensional disordered lattice model (Subsec-
tion III A). Using Floquet states in a way similar to
what Refs. [78, 79] do for a single rotor, we will show
that the hopping in the lattice model is short-ranged for
all the cases we are interested in allowing us to apply
the existing knowledge on the localization/delocalization
transition. We show that localization/delocalization in
the lattice model precisely corresponds to dynamical lo-
calization/delocalization in the rotors model (Subsec-
tion III B). We can therefore make the following predic-
tions: for N ≤ 2, the lattice model is always Anderson
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localized – and so should be the rotors dynamics in the
energy space. For N > 2 the lattice model undergoes a
transition from localization to delocalization as the hop-
ping strength is increased [86] implying a dynamical lo-
calization/delocalization transition for the rotors. For
N = 2, we expect the asymptotic energy to be exponen-
tially large in the kicking strength. In Subsection III C we
numerically verify our predictions for the kicked rotors in
the cases N = 2 and N = 3. We do this by studying the
energy dynamics, the inverse participation ratio of the
Floquet states and the level spacing distribution.

A. Localization of the Floquet states

In order to present the mapping of our model to an
Anderson one let us start by studying the properties of
the time-evolution operator over one period. We consider
the evolution from the instant immediately before the n-
th kick to the instant immediately before the n + 1-th.
The desired time evolution operator is therefore

Û = exp

(
− i

2k̄

N∑
i=1

p̂2
i

)
exp

(
− i
k̄
V (θ̂)

)
, (4)

where k̄ is the effective Planck’s constant introduced in
Section II. Let us now focus on the properties of the
eigenstates of this evolution operator, the so-called Flo-
quet states |φα〉 [106, 107]. In other words

Û |φα〉 = e−iµα |φα〉 , (5)

where µα are the Floquet quasienergies. The Floquet
states |φα〉 are eigenstates of the stroboscopic dynamics
which therefore are left invariant up to a phase factor by

the action of Û . Let us now define Ĥ0 ≡ 1
2

∑N
i=1 p̂

2
i (see

Eq. (1)) and apply the unitary transformation
∣∣∣φ̃α〉 =

eiĤ0/(2k̄) |φα〉. We can apply this transformation without
altering the localization structure of the Floquet state in
the momentum basis, because the operator Ĥ0 is diagonal
in this basis. After the transformation, we can rewrite
the eigenvalue equation as a pair of equations [110]

e∓iĤ0/(2k̄) exp

(
∓ i
k̄
V (θ̂)

)
e∓iĤ0/(2k̄)

∣∣∣φ̃α〉 = e∓iµα
∣∣∣φ̃α〉 .

(6)
Using the resolution of the identity

1 =
∑
m

|m〉 〈m| (7)

in terms of the momentum eigenstates and performing
some simple formal manipulations, we can finally rewrite
the Floquet eigenvalue equation as∑
m′ 6=m

Wmm′ 〈m′| φ̃α〉+ε(m) 〈m| φ̃α〉 = 2 cos(µα) 〈m| φ̃α〉 ,

(8)

with

Wmm′ = (9)

2Re

[
e−i(ϕ(m′)+ϕ(m))

∫
dNθ

(2π)N
e−iV (θ)/k̄e−i(m

′−m)·θ
]
,

and

ε(m) = 2Re

[
e−2iϕ(m)

∫
dNθ

(2π)N
e−iV (θ)/k̄

]
; (10)

ϕ(m) =
k̄

4

N∑
i=1

m2
i . (11)

Equation (8) can be seen as the static Schrödinger equa-
tion of a particle hopping in an N -dimensional potential
ε(m) = Wmm. This potential behaves as a true disor-
der for localization purposes in a one-dimensional next-
nearest-neighbor tight-binding model [111]. This is true
for all values of k̄ but the integer multiples of 4π: In this
case the potential ε(m) is constant and cannot induce
any localization. The mapping we propose is different
from the one introduced in Refs. [78, 79] for the single
kicked rotor: In our case the hopping does not show un-
physical divergences which instead occur in Refs. [78, 79]
due to the small convergence radius of the Fourier series

of the tangent. Our wave-function 〈m′| φ̃α〉 is normalized
by construction and there is no risk for spurious unphys-
ical divergences in the hopping because the integrand in
Eq. (9) is always bounded in modulus. In the single-rotor
(N = 1) case, the hopping is

Wmm′ = 2Jm′−m

(
K

k̄

)
Re[im

′−mei(ϕ(m)+ϕ(m′))] (12)

(Jm′−m is the Bessel function of order m′ − m). The
modulus of this expression always decays faster than ex-
ponentially [112] with m′ −m and never shows unphys-
ical divergences. We have therefore a one-dimensional
Anderson model which is always localized [77].

Now we go through the analysis of the hopping co-
efficients Wmm′ for N > 1. We observe that, although
they depend on m and m′ separately, they are symmetric
under the parity transformation (m,m′) → (−m,−m′)
and permutations of the Cartesian components of m−m′
(namely, m and m′ undergo the same permutation of the
components). Also, the Wmm′ depend on the direction
given by the vector m−m′.

In order to apply existing results on the Anderson
model to the case N > 1 we need to verify that the
hopping is short ranged, as it is for N = 1. The exact
analytical expression for Wmm′ cannot be established,
nevertheless we can infer information on how this hop-
ping coefficient decays with |m −m′| by observing that
Wmm′ is the linear combination of real and imaginary
part of the Fourier transform of f(θ) = e−iV(θ)/k̄. Since
the function f(θ) is C(∞) and it is 2π-periodic in all the

θj , its Fourier components f̂(m′−m) decay exponentially
fast with |m′ −m|. It means that the hopping Wmm′
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is short ranged and therefore the results concerning the
Anderson model can always be applied to the effective
hopping model Eq. (8). In the following we numerically
show the decaying properties of the hopping coefficients
for N = 2 and N = 3. In FIG. 2 we set m′ = 0 and plot
the behavior of the hopping coefficients |Wm0| as a func-
tion of the distance |m| for K/k̄ = 0.1 and K/k̄ = 1.5;
m are taken along two orthogonal directions (dashed and
continuous lines in FIG. 2). We find that the exponential
decay is clearly seen and is smaller for increasing values
of K/k̄. This behavior is the same along the two direc-
tions even if the values of |Wm0| are different due to the
space anisotropy.

In order to quantify the strength of the hopping we
define two quantities: the first is the hopping integral Σ

Σ =
∑

m∈ZN
|Wm 0|. (13)

For a short ranged lattice we expect this quantity to be
finite at fixed K/k̄, while it diverges if the hopping is long
ranged. The second is the hopping range, defined as

ρ =

∑
m∈ZN |Wm 0| |m|

Σ
. (14)

We say that the hopping strength of the lattice model in-
creases when the hopping integral and the hopping range
are increased. We first verify that the hopping in the lat-
tice Eq. (8) is short ranged and therefore well defined.
In addition the hopping strength, estimated through the
hopping integral and range (see Equations (16) and (14))
is found to be monotonously increasing as a function of
K/k̄.

Let us discuss the numerical computation leading to
these results (in the rest of the discussion k̄ = 400 and
ε = −2 for definiteness).

The exponential decay of the hopping strength makes
the hopping integral defined in Eq. (16) finite: we com-
pute it by taking the asymptotic value Σ∞ ≡ Σ of the
series

ΣM =
∑

m∈C(M)

|Wm0| , M ∈ N (15)

where C(M) is the N−dimensional cube with edge length
2M centered in 0. The hopping integral is plotted in FIG.
3 as a function of K for N = 2 and N = 3. The inset
shows some examples of convergence of ΣM for increas-
ing values of M , for some values of K/k̄ and N = 3. In
the case N = 2 the behavior is the same, except that
higher values of M have to be considered to achieve the
convergence (the limitation on the value of M has com-
putational reasons due to the possibility to compute Wm

up to a certain m with a maximum error ∼ 10%). In
a similar way we compute the hopping range defined in
Eq. (14) to find that it is finite: we consider the series

ρM =

∑
m∈C(M) |Wm0| |m|

ΣM
, M ∈ N (16)

FIG. 2. The modulus of Wm0 is plotted as a function of |m|
for K/k̄ = 0.1 (blue squares) and K/k̄ = 1.5 (red circles) for
N = 3. The continuous and dashed lines correspond to two
orthogonal directions in m space. We see the slope of the
exponential decaying which decreases as K/k̄ is increased; an
analogous behavior is found with N = 2.

and check its convergence as M is increased. In FIG. 4
ρ is plotted as a function of K/k̄ for N = 2 and N = 3.
The inset shows also in this case the convergence of ρ as
a function of M for some values of K/k̄.

In conclusion, we have provided an analytical argu-
ment to state that the lattice model is short ranged.
Moreover, we have numerically checked this property in
the interval of K/k̄ we have access to, finding also that
the hopping strength (i.e. both Σ and ρ) increases with
K/k̄. Therefore we can apply the general theory on An-
derson localization [77, 86] and we predict that for N = 2
our model will display localization with a localization
length exponentially large in K/k̄, while it will undergo
a localization/delocalization transition at some value of
(K/k̄)c(N) when N ≥ 3. In the next subsection we are
going to show how the localization properties of the Flo-
quet states in the momentum space do indeed reflect on
the dynamical localization of the energy.

B. Dynamical localization and Floquet states

In order to understand the connection between local-
ization in momentum space and dynamical localization
let us express the energy in terms of the Floquet states.
We start the dynamics from the ground state of the ki-
netic energy operator, the state with all vanishing lo-
cal momenta |Ψ0〉 ≡ |0〉; we can therefore expand the
time-evolved state immediately before the n-th kick –
|Ψ(n)〉 ≡ Ûn |Ψ0〉 –in the basis of the Floquet states
as [108]

|Ψ(n)〉 =

∞∑
α=−∞

e−iµαn |φα〉 〈φα| 0〉 (17)
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FIG. 3. The hopping integral Σ vs. K/k̄ is plotted for N = 2 (green squares) and N = 3 (yellow circles). At fixed N it exists a
maximum value of M for which the convergence of the integrals Wm can be numerically achieved: this imposes a limit to the
maximum value of K/k̄ for which Σ can be computed. This is shown in the inset for N = 3; since for N = 3 the maximum
value is M = 7, then the convergence of ρM can be observed only up to K/k̄ = 2.0. For the N = 2 case the maximum value is
M = 20. The resulting hopping integral Σ is a monotonically increasing function of K/k̄ as shown in the main figure.

FIG. 4. The hopping range ρ vs. K/k̄ for N = 2 (green squares) and N = 3 (yellow circles): it grows as K/k̄ is increased.
As for the computation of Σ, in the the numerical computation of Wm we have a maximum M = 7 for N = 3 implying that
the convergence of ρ is observed only for K/k̄ ≤ 2.0 (see inset). For the case N = 2 the interaction range is plotted up to
K/k̄ = 3.0 where convergence is observed with M = 18. Notice that also in this case ρ is an increasing function of K/k̄.

Using this expansion, we can express the energy per
site immediately before the n-th kick – E(n) ≡
〈Ψ(n)| Ĥ0 |Ψ(n)〉 /N – in the form

E(n) =
1

N

∞∑
α,β=−∞

〈0 |φα〉 〈φβ | 0〉 〈φα|H0 |φβ〉 ei(µα−µβ)n .

(18)
The system is dynamically localized if, after a transient,
this object fluctuates around a finite value given by the

infinite-time average

Eav(∞) = lim
T→∞

Eav(T ) = lim
T→∞

1

T

T∑
n=0

E(n). (19)

Using Eq. (18) for E(n), the resolution of the identity
Eq. (7) and assuming no degeneracies in the Floquet
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spectrum, we can evaluate this average as

Eav(∞) =
k̄2

2N

∑
α

| 〈0 |φα〉 |2
∑
m

| 〈m |φα〉 |2
N∑
j=1

m2
j .

(20)
If the Floquet states are localized in the momentum ba-
sis then the wave-function in this basis will behave as
〈m |φα〉 ' N e−|m−mα|/λ for some λ and mα (N is some
normalization factor). Assuming that the localization
centres mα are uniformly distributed with density σ in
the N -dimensional space, we can give an estimate of the
time-averaged energy [109]

Eav(∞) ∼ k̄2σ(N + 1)

4
λ2 (21)

which is finite if the momentum localization length of
the Floquet states λ is finite. Therefore localization of
Floquet states in the momentum basis implies dynamical
localization of energy. Therefore the mapping of Subsec-
tion III A makes us predict the existence of a dynami-
cal localization/delocalization transition at some Kc(N)
when N ≥ 3, while the system is always dynamically lo-
calized for N ≤ 2: in the next subsection we are going to
numerically verify these predictions for the cases N = 2
and N = 3.

C. Numerical results

1. Energy dynamics

For the study of the dynamics of the model Eq. (2)
we use two numerical methods: exact diagonalization
for N = 2 and time-evolving block decimation (TEBD)
on matrix product states (MPS) [114, 115] for N = 3.
In both cases we need to truncate the Hilbert space,
whose dimension is a countable infinity. We truncate
it in the momentum basis: selecting a cutoff M (called
”local truncation dimension”) we impose that the time-
evolving state is a superposition of momentum states
|m1, . . . ,mN 〉 with −M ≤ mj ≤ M . We evolve with the
Hamiltonian restricted to this subspace. If the system is
dynamically localized, high momentum will never be in-
volved in the dynamics: provided that M is big enough
our numerics will correctly describe the dynamics even
for long times. On the opposite, if there is dynamical
delocalization, our simulations will be meaningful up to
a certain time.

In FIG. 5 we report exact diagonalization results for
N = 2. In panel (a) we show some examples of energy
evolution: we always observe localization (we take M
big enough so that the energy time-trace is converged).
In order to estimate the infinite-time-averaged energy
Eq. (19), in panel (b) we plot the time-averaged en-
ergy Eav(T ) over a time T � 1 versus K/k̄. Since for
large T this function tends to converge choosing a large
enough T we can extract a good estimate of Eav(∞).
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FIG. 5. (a) Energy dynamics for N = 2 and different values
of K obtained with exact diagonalization. For the consid-
ered values of K/k̄ we always see dynamical localization. (b)
Time-average Eav(∞) versus K/k̄: we see that it increases
exponentially. In all the cases we take M ≤ 24, big enough
so that the time traces have converged in M . Numerical pa-
rameters: k̄ = 400, ε = −2.

We see that Eav(∞) exponentially increases with K giv-
ing rise to a localization length λ exponentially large in K
(see Eq. (21)); this confirms our predictions in the case
N = 2. This constitutes a step forward the preceding
results concerning these models [80, 84], where the expo-
nential growth of the asymptotic energy was not found.

In FIG. 6 we show results for N = 3 obtained with
the TEBD algorithm [116]: we see that for K/k̄ < 0.6
the energy tends to an asymptote and the system is dy-
namically localized; on the other side, for K/k̄ > 0.6
the energy increases up to the bound imposed by the
truncation dimension and the system is thus delocalized.
While these results suggest the presence of a localiza-
tion/delocalization transition, conclusive evidence may
come only from an analysis of the localization proper-
ties of the Floquet states and the Floquet level spacing
distribution which are the focus of the next subsections.
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FIG. 6. Energy dynamics for N = 3 and different values of K
obtained with TEBD algorithm. For the considered values of
K/k̄ we see a dynamical localization transition at K/k̄ = 0.6.
In all the cases we take M ≤ 8, big enough so that the time
traces have converged in d. k̄ = 400, ε = −2.

2. Inverse participation ratio of the Floquet states

Let us start by using the inverse participation ra-
tio [117] (IPR) in the momentum basis: for a single Flo-
quet state |φα〉 this object is defined as

Iα ≡
∑
m

| 〈m |φα〉 |4 (22)

We will consider its average over the Floquet states in
the truncated Hilbert space

IM =
1

MN

∑
α

Iα . (23)

If the Floquet states are localized in the momentum ba-
sis, this object does not scale with the local truncation
dimension and tends to a limit I∞ which is finite for
M → ∞: each Floquet state has nonvanishing overlap
only with a finite number of momentum eigenstates. In
turn, if the Floquet states are delocalized in the momen-
tum basis, we expect that the averaged IPR scales to 0
when the local dimension d tends to ∞.

We show numerical results in FIG. 7: in panels (a), (b),
(c) we plot IM versus 1/M in the cases N = 1, N = 2
and N = 3 respectively. We report curves obtained for
increasing values of K = 0.1, 0.2, . . . , 1.0: the values of
K/k̄ range from 0.1 to 1 spaced by intervals of 0.1 and
the curves are always in a monotonously decreasing or-
der in K (see the color legend in the lower left panel).
In the case N = 1 (a) the averaged IPR is almost con-
stant in 1/M and tends to a finite I∞ for 1/M → 0:

the Floquet states are localized in the momentum basis.
For N = 2 (b) the (approximately linear) dependence on
1/M is more marked, but also in this case extrapolating
to 1/d → 0 the limit is finite. In panel (d) we show the
dependence of the limit I∞ on K, for N = 1 and N = 2.
They are both obtained through linear interpolation of
the data in the left and central upper panels. We see that
they are both different from 0 but appear to decrease to-
wards zero as K increases: for N = 1 the dependence is

∼ e−αK and for N = 2 it is ∼ e−βK
2

(see the inset). For
N = 3, see panel (c), we cannot clearly see the localiza-
tion/delocalization transition point, due to the limits on
the values of M which we can numerically consider. Nev-
ertheless, for large K we see delocalization: IM smoothly
depends on 1/M and is consistent with a vanishing limit
for 1/M → 0. In order to further explore the transition
let us now turn to level spacings.

3. Level spacing statistics

Another tool we use to investigate the local-
ized/delocalized behaviors of the system is the level spac-
ing statistics. The distribution of the Floquet level spac-
ings µα+1−µα (the µα are in increasing order) normalized
by the average density of states gives information on the
integrability/ergodicity properties of the system [39, 41–
43, 118, 119]: if the distribution is Poisson the system is
integrable, if it is Wigner-Dyson the system is ergodic.
The level spacing distribution is therefore a probe for
the system dynamics being integrable-like (regular) or
ergodic.

This object is important to consider because there is
a strict connection between ergodicity/regularity on one
side and energy absorption/energy localization on the
other, both in the classical and the quantum perspec-
tive. Classically a system is ergodic if all the trajecto-
ries uniformly explore the accessible part of the phase
space. If energy is conserved, this part is the energy
shell: as a consequence the system thermalizes (time av-
erages equal microcanonical averages). If energy is not
conserved (as in a periodically driven system), ergodicity
implies uniform exploration of all the phase space and
then thermalization at T = ∞. Therefore, if the energy
spectrum is unbounded, ergodicity is strictly connected
with infinite energy absorption [120]. In ergodic quantum
systems the same phenomena result from the eigenstates
of the dynamics being locally equivalent to the micro-
canonical ensemble: this is a consequence of them be-
having as the eigenstates of a random matrix (eigenstate
thermalization – see for instance [41, 121–123]). In the
kicked case the Floquet states are locally equivalent to
the completely mixed density matrix and this fact gives
rise to T = ∞ thermalization [56, 59, 63, 66, 124]. As a
consequence, they are extended in any basis of “simple”
states: the IPR evaluated in that basis will vanish with
the dimension of the Hilbert space, as observed in the
subsection above for the case of the momentum basis.
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FIG. 7. Plot of IM versus 1/M for K/k̄ = 0.1, 0.2, . . . , 1.0 (see the legend in the lower left panel) in the three cases: N = 1 (a),
N = 2 (b) and N = 3 (c). Numerical parameters: ε = −2 and k̄ = 400. (d) Behavior of 〈I〉∞ vs K/k̄ for N = 1 and N = 2;
notice that its non-vanishing value is consistent with localization and that 〈I〉∞ decays exponentially fast in K.

On the opposite, in the case of classical dynamical lo-
calization, there are constraints for the dynamics which
forbid the system to uniformly explore the phase space
and thermalize. This is the case of integrable systems
which have an extensive amount of integrals of motion
with vanishing Poisson brackets [23, 125]. For instance,
in the case of a classical kicked rotor with small am-
plitude kicking, a significant portion of the phase space
behaves regularly, giving rise to dynamical localization.
From the quantum point of view, the trajectories being
constrained in a small portion of the phase space reflect
in the eigenstates of the dynamics not being random su-
perpositions of elements of some local basis, but being
localized in this basis. Therefore, we expect to see signa-
tures of integrable behavior also in the case of quantum
dynamical localization, especially in the properties of the
level spacing distribution which should be Poisson like.

In order to probe the integrability/ergodicity prop-
erties through the level spacing distribution, we con-

sider the so-called level spacing ratio rα. If we define
δα = µα+1 − µα, we have

0 ≤ rα ≡
min {δα, δα+1}
max {δα, δα+1}

≤ 1 . (24)

The different level spacing distributions are character-
ized by a different value of the average r ≡ 〈rα〉 over
the distribution. From the results of Ref. [45], we expect
r = 0.386 if the system behaves integrably and the distri-
bution is Poisson; on the other side, if the distribution is
Wigner-Dyson and the system behaves ergodically, then
r = 0.5295. Being the Hamiltonian Eq. (1) symmetric

under on-site inversion (p̂j → −p̂j , θ̂j → −θ̂j) and un-

der global reflection (p̂j → p̂L−j+1, θ̂j → θ̂L−j+1) we
need to evaluate the level spacing distribution and the
corresponding r only over Floquet states in one of the
symmetry sectors of the Hamiltonian [118]. We show nu-
merical results obtained through exact diagonalization in
FIG. 8. We see that, for N = 1, r is always near to the
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Poisson value: this is consistent with the system being
always dynamically localized. For N = 2, r is close to
the Poisson value in the interval where we are able to
see dynamical localization in FIG. 5: also in this case
our hypothesis of connection between the integrable be-
havior of the system and the energy localization is con-
firmed. Around K/k̄ = 1.5, r deviates from the Poisson
value: the momentum localization length increases expo-
nentially with K and at a certain point it is larger than
the truncation dimension M . When N = 3, although we
can only numerically consider a quite small value of M ,
we see that r increases with K and eventually sets to the
Wigner-Dyson value. There is indeed a crossover between
Poisson and Wigner-Dyson; we see that K∗/k̄ ' 0.6, the
localization/delocalization transition point seen through
the energy dynamics in FIG. 6, falls in the intermediate
region, at a value where r is near to Poisson. In the limit
M →∞, most probably r tends to the Poisson value for
K < K∗, but we do not know if the crossover develops
into a clear-cut transition. If some intermediate region
persisted in this limit, localized and delocalized Floquet
states would appear in different parts of the spectrum
(though not coexisting at the same quasienergy). Some-
thing similar happens in classical chaotic systems, where
regular and chaotic trajectories exist together when the
system is in the transition region between integrability
to ergodicity. Nevertheless, when N > 1, the system
eventually thermalizes also in the transition region [126]
(this is a manifestation of the Nekhoroshev theorem and
the Arnold diffusion [26]). Of course further research is
needed to clarify this point.

IV. ABSENCE OF LOCALIZATION FOR N →∞

In this section we discuss the behavior of the coupled
rotors model in the thermodynamic limit N → ∞ and
show that the mapping introduced for finite N in the pre-
vious section is valid also in this limit. Applying the scal-
ing theory of localization [86] we find in Subsection IV A
that the localization/delocalization transition of a disor-
dered N−dimensional lattice disappears for N →∞: the
system is always delocalized in this limit.

In Subsection IV B we study numerically the behavior
of the kicked rotors for N → ∞ using a time-dependent
mean field approach. This approach is exact when the
coordination number is infinite; this can happen, for in-
stance, when the interactions in the model of Eq. (1) are
infinite-range and we are in the thermodynamic limit. By
changing the kick amplitude and the interaction coupling
we find two regions in the parameter space, one in which
the dynamics is diffusive and one in which it is subdif-
fusive. Focusing on the time evolution of the mean field
parameter, which in the MF approximation is controlling
the effective kicking strength, we study the relation be-
tween its behavior and the subdiffusive/diffusive growth
of the kinetic energy. Considering the average over an
ensemble of different initial conditions, we see that the
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FIG. 8. Level spacing ratio averaged over the whole Floquet
spectrum vs. K/k̄: dynamical localization corresponds to
Poisson-like behavior. The lower dashed line is the Poisson
value r = 0.386 - corresponding to integrability - while the
upper one the Wigner-Dyson one r = 0.5295, corresponding
to ergodicity. Numerical parameters k̄ = 400, ε = −2.

mean field parameter behaves as a non stationary signal,
with a variance decreasing as a power law. We also con-
sider the spectral properties of the mean field parameter:
the parameter itself and its time correlator exhibit power
law behaviors at small frequencies when the dynamics is
subdiffusive. The exponents of the power laws decrease
as the kicking strength is increased and completely dis-
appear when the dynamics is diffusive: in this case the
power spectra are completely flat.

A. Delocalization in the infinite-dimensional
Anderson model

We start our discussion showing that there is no Ander-
son localization in a N -dimensional disordered lattice like
the one in Eq. (8) when the dimension N tends to infinity.
To that purpose we use the scaling theory of localization
introduced in Ref. [86] which we briefly summarize to fix
the notation. Consider a system with conductivity σ and
focus on the properties of the dimensionless conductance
g = ~

e2L
N−2σ. We make the assumption that g only de-

pends on the scale L at which the system is probed and
on the dimensionality N and we start at some scale L0

where the dimensionless conductivity is g0: we see how
g flows as L is increased. For that purpose it is crucial
to focus on the properties of the logarithmic derivative
β(g) ≡ d log g

d logL and in particular on its dependence on g:

knowing the form of β(g) and integrating this flow equa-
tion, the bulk behavior for L → ∞ is obtained. It is
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possible to find the behavior of β(g) in the limits g � 1
and g � 1. When g � 1 there is Anderson localization,
and the conductance obeys the law g(L) ∼ Ae−L/ξ for
some localization length ξ: this relation implies

β(g) = log g + const . (25)

In this limit, β(g) versus log g is a line whose slope is
independent of the localization length and equals 1. In
the opposite limit of g � 1 there is Ohmic conductivity,
σ does not depend on L and β(g) = N − 2. The ques-
tion is how to interpolate between these two limits. One
can show [86, 127, 128] that, because of the quantum
corrections to the Ohm’s law, in the limit of large g it is

β(g) ' N − 2− C(N)

g
, (26)

for some C(N) depending on the dimension. Connecting
this large-g behavior with the small-g linear one Eq. (25)
in a continuous and derivable way, one gets a β(g) which
is always monotonously increasing. (The physical as-
sumption behind this connection is that at some point
the “weak localization” due to the quantum corrections
to the Ohm’s law becomes the strong Anderson localiza-

tion). Therefore, we always have dβ(g)
d log g > 0. This gives

rise to interesting consequences. For N ≤ 2 we find as a
consequence that β(g) = d log g

d logL < 0 for all g: when larger

and larger values of L are considered, whichever are the
initial values L0 and g0, they always flow towards small
values of g, the ones corresponding to Anderson localiza-
tion. If instead N > 2, there is some value g∗N where
β(g∗N ) = 0. For g > g∗N we have β(g) > 0 and g < g∗N
implies β(g) < 0. Therefore, if g0 < g∗N the system flows
towards small values of g for L→∞ and there is Ander-
son localization in the bulk; if instead g0 > g∗N the flow
moves towards large values of g and there is an Ohmic
behavior. Therefore for N > 2, the bulk of the system
undergoes a localization/delocalization transition. We
have observed exactly this phenomenon in Section III for
the model with three rotors mapped over the N = 3-
dimensional disordered lattice Eq. (8): in this case K
played the role of g0. Now we would like to explore the
behavior of g∗N in the limit N → ∞. To that purpose,
we study the behavior of the conductivity: its quantum
corrections to the Ohmic behavior are [127, 128]

δσ(L) = − e
2

π~

∫ 1/l

1/L

dNQ

(2π)N
1

Q2

= − 2e2

π~(2π)N
SN−1

N − 2

(
1

lN−2
− 1

LN−2

)
, (27)

where

SN−1 =
2(π/2)N/2

Γ(N/2)
(28)

is the measure of the N − 1-dimensional unit sphere and
l is the classical mean-free-path in the disordered poten-
tial (its precise value is not important because it will

disappear in the next formulae). Using that g(L) =
~
e2L

N−2(σ(∞) + δσ(L)), we easily find that β(g) has the
form given in Eq. (26) with

C(N) =
(π/2)N/2

(2π)NΓ(N/2)
. (29)

Connecting Eq. (26) in a continuous and derivable way
with the Anderson-localized behavior Eq. (25) valid at
small g, we find that the critical value g∗N is given by

log g∗N = −N + 3 + log

(
2

π

1

(2
√

2π)N
1

Γ(N/2)

)
, (30)

for N large enough. For N � 1, using the Stirling ap-
proximation for the Gamma function, we find

log g∗N = −N + 3 + log(2/π)−N log(2
√

2π)

−
(
N

2
+ 1

)[
log

(
N

2
+ 1

)
− 1

]
. (31)

We see therefore that limN→∞ g∗N = −∞: for N → ∞
the critical value of g is zero and therefore the system is
always delocalized.

B. Mean field approach

To study directly the large N limit we apply the mean
field approximation which is exact for infinite coordina-
tion number or infinite range interactions. We will focus
on the latter case. Henceforth throughout this subsection
we will consider the Hamiltonian Eq. (2) with εij = ε

N−1 .
We then perform a mean field Ansatz: starting from a fac-
torized state, we assume that the system remains factor-
ized during the whole time evolution. Corrections to this
behavior turn out to be negligible in the limit N → ∞.
The many body initial state we are considering is there-
fore of the form

|ΨMF(0)〉 =
∏
i

|ψi(0)〉 . (32)

We assume translation invariance, therefore all the initial
|ψi(0)〉 are equal to some |ψ(0)〉, and all of them evolve to
the same single-site state. We define this single-site state
just before the n-th kick as |ψ(n)〉: the corresponding
many-body state is the tensor product of N copies of
this state. In this way, we can describe the dynamics of
the system via an effective single particle Hamiltonian
containing a time modulation of the kick:

ĤMF =
1

2
p̂2 +K

+∞∑
n=−∞

δ(t− n)

[
cos θ̂− (33)

ε

2

(
ψMF (n) e−iθ̂ + h.c.

)]
,

where we have defined the complex mean-field parameter

ψMF (n) ≡ 〈ψ(n) |eiθ̂ |ψ(n)〉 , (34)
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This description is exact for infinite range interactions
in the thermodynamic limit. To see this rewrite the in-
teraction term in Eq. (2) as

V (θ̂) = − ε

2(N − 1)

∑
i 6=j

[〈
eiθ̂i
〉
n

e−iθ̂j + h.c.

]
(35)

+
ε

2

∑
i

∣∣∣〈eiθ̂i
〉
n

∣∣∣2 − ε

2(N − 1)

∑
i 6=j

[
δ̂j δ̂i + χ̂jχ̂i

]
,

where δ̂i ≡ cos θ̂i −
〈

cos θ̂i

〉
n

and χ̂i ≡ sin θ̂i −
〈

sin θ̂i

〉
n

and 〈〉n is the expectation value over the exact solution
of the Schrödinger equation. Imposing translation invari-
ance, the first sum gives the single particle mean-field
potential of Eq. (33). The second sum is in turn a time
dependent c-number term that can be neglected. The

third sum contains terms in the form δ̂j δ̂i and χ̂jχ̂i with

i 6= j: their expectation value 〈δ̂j δ̂i〉 at time n is a spatial
connected correlator for the cosine (〈χ̂jχ̂i〉 is the same
for the sine). These connected correlators vanish in the
thermodynamic limit for each i and j (see Appendix B):

more precisely, we explicitly compute
〈

cos θ̂i cos θ̂j

〉
n

and show that it can be factorized up to corrections which
vanish at the leading order as O(n/N), if the state at time
n = 0 is separable. Therefore the expectation value of

the sum of δ̂j δ̂i grows in a non extensive way (∼
√
N)

and therefore is negligible in the limit N → ∞. We see
therefore that spatial correlations vanish for N → ∞:
the Ansatz that we made above is valid and therefore
the separability of the initial state is preserved during
the evolution. This definitively allows us to study our
system via the effective mean-field single particle model
described by the Hamiltonian in Eq. (33).

It is convenient at this point to express the initial wave
function in the momentum basis: in the angle represen-
tation we have

〈θ|ψ(0)〉 =

+∞∑
m=−∞

ameimθ , (36)

and average over many random initial conditions with
a fixed kinetic energy (the average symbol is (·)). The
initial conditions are obtained by applying one kick to the
zero-momentum state and then randomizing the phases
of the amplitudes in the momentum basis. We consider
initial states such that am = a−m: it follows that ψMF (n)
is real and that the evolution operator over one period
at time n can be written as [129]

ÛMF (n) = e−
i
k̄
p̂2

2 e−i
K
k̄ [1−ε ψMF (n)] cos θ̂ . (37)

ÛMF (n) depends on the state at time n through the mean
field parameter ψMF (n), which is evaluated according to
the prescription given in Eq. (34). By iterating this pro-
cedure we generate the dynamics of the system starting
from the initial state Eq. (36).

As a result of the mean field approach, the many-rotors
model is effectively described by a single rotor with a time
dependent kicking strength given by

K(n) = K[1− εψMF (n)] . (38)

Below we focus on the analysis of the dynamics of the
following quantities:

1. the kinetic energy E(n) = 〈p̂2〉n/2 averaged over
the initial conditions (for each evolution we define
〈p̂2〉n ≡ 〈ψ(n)| p̂2 |ψ(n)〉);

2. the power spectrum P (ω) = |ψ̃ω|2, where ψ̃ω are

the Fourier coefficients of ψMF (n);

3. the power spectrum Pac(ω;n0) = |c̃MF (ω;n0)|2,
where we define the correlator

cMF (k;n0) = (39)

ψMF (n0)ψMF (n0 + k)− ψMF (n0)ψMF (n0 + k);

4. the variance of the mean field parameter, defined
as

σMF (n) = ψMF (n)2 −
(
ψMF (n)

)2

. (40)

The first quantities characterizes the energy dynamics of
the system and its ergodicity properties, while the others
analyze the mean field parameter. As discussed in the
previous section, also in this case the local Hilbert space
is infinite dimensional (see Eq. (36)) and a truncation is
therefore necessary. The truncation dimension M varies
according to the parameters K and ε and to the length of
the simulation; it is chosen such that higher momentum
states are not involved in the evolution. The evolution
operator defined in Eq. (37) is factorized in two parts:
one is diagonal in the momentum basis and the other
in angle representation. We generate the time evolution
over one period by applying separately the kinetic and
the kick part to the wave-function. We work in the former
case in the momentum basis, in the latter in the angle
one.

1. Kinetic energy E(n)

From the simulations we find that E(n) grows in time
according to a power law nα, with α depending on K
and ε: this dependence is shown in FIG. 9 in which the
exponent α is plotted in the (K, ε) plane.

We can distinguish two regions (see FIG. 9): the red,
dark one (color online) in which E(n) grows subdiffu-
sively and the yellow, light one in which diffusion is ob-
served. Subdiffusion is an effect purely due to the quan-
tum nature of the system since the classical counterpart
always exhibits normal diffusion in all the (K, ε) plane
(see Appendix A). The exponent α is almost uniform in
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FIG. 9. The power law exponent for E(n) growth is plotted against the kick strength K and coupling amplitude ε. The
subdiffusive region (red, dark one) and the diffusive one (yellow, light one) can be distinguished (color online). The region in
the left-bottom corner is not plotted since a stable growth regime does not start within the simulation time length. We put
k̄ = 2.89 since this value was used in an experimental realization of a kicked rotor with ultracold atoms [91].

FIG. 10. Time evolution of E(n) is plotted together with the

curve n2/3 as a guide to the eye: the power law growth of E(n)
starts at different times but is characterized by an exponent α
with a value in the interval [0.6, 0.7]. For K = 4.0 the energy
starts growing at t ∼ 106. Numerical parameters: k̄ = 2.89.

all the subdiffusive (red) region in the parameter space
with values between 0.6 and 0.7. The transition from the
subdiffusive behavior to the diffusive one is characterized
by a variation of the power law exponent. Some energy
time-traces corresponding to different values of K and ε
are shown in FIG. 10. The subdiffusive regime starts at
a time t which increases by lowering the values of K and
ε: during the transient the energy first keeps constant,
then it starts growing until it reaches the nα regime. For

certain value of (K, ε) (e.g. K = 4 and ε = −0.1) we do
not see the start of either diffusion or subdiffusion within
our simulation time (' 106): the trend appears however
to rule out localization but rather suggest that t ≥ 106.

2. Power spectrum P (ω)

In the study of P (ω) we distinguish its behavior at low
and high frequencies: at low frequency we observe either
a power law decay in ω or a constant power spectrum
depending on whether (K, ε) are in the subdiffusive or
diffusive region.

The low frequencies behavior is shown in panel (a) of
FIG. 11: we plot P (ω) for two cases, one corresponding
to subdiffusion, with a small value of ε, and one to dif-
fusion of momentum. In the first case (continuous line)
a power-law behavior is observed, while in the second
(dashed line) the power spectrum is flat in ω. The de-
pendence of the power law exponent of P (ω) on K and
ε is shown in FIG. 12, where we consider K = 4.0, panel
(a), and K = 11.0, panel (b). The dynamics is described
by the full green squares which represent the power law
exponent of the kinetic energy growth. The exponent of
P (ω) vanishes (empty blue squares) when the dynamics
is diffusive and it is negative when it is subdiffusive.

The high frequency behavior of P (ω) is characterized
by a series of peaks whose positions depend on K; by
increasing ε they spread and become smoother until they
disappear when the system enters the diffusive region of
the (K, ε) plane. In panel (b) of FIG. 11 this property is
shown plotting the power spectrum for increasing values
of ε at fixed K: we chose ε ≤ 1 it clearly appears that
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FIG. 11. (a) The low frequencies behavior of P (ω) is plotted for a case in which the dynamics is diffusive (dashed line) and
another in which it is subdiffusive manifests (continuous line). T = 65536 is the length of the time interval which has been used
to compute the Fourier transform; it coincides with the number of frequencies which has been considered. (b) High frequencies
behavior of P (ω) for a fixed value of K and different values of ε: the positions of the peaks almost coincide. The norm of
the power spectrum has been normalized to unity in order to enhance the visibility of the peaks within the same order of
magnitude. In the simulations k̄ = 2.89.

FIG. 12. The power-law exponents for E(n) and σMF (n) in the time domain and for P (ω) and Pac(ω) in frequency domain are
plotted. (a) K = 4.0: the exponents relative to E(n) and σMF (n) (green square and orange triangles respectively) are uniform
in ε; the power laws exponents of the power spectra (red circles for P (ω) and empty blue ones for Pac(ω)) increase with ε. (b)
K = 11.0: the dynamics of the system passes from subdiffusive to diffusive when ε is increased. The exponents of the power
laws of P (ω) and Pac(ω) vanish when the dynamics is diffusive. In the simulations k̄ = 2.89.

the peaks coincide in the three cases.

3. Power spectrum Pac(ω)

Let us now discuss the power spectrum of the time-
correlator Pac(ω;n0) at different n0: if the process
ψMF (n) is stationary, the time-correlator c(k;n0) and
its power spectrum are independent on n0. The small
frequency results for our case are shown in panel (a)
of FIG. 13 where we plot Pac(ω;n0) corresponding to

n0 = 103 and n0 = 104: the two curves show a power-law
behavior at low ω with the same exponent. The larger
is n0, however, the smaller the amplitude of Pac(ω). It
follows that cMF (k;n0) scales to 0 as n0 is increased: this
result leads us to conclude that ψMF (n) is not a station-
ary signal.

As already mentioned, Pac(ω;n0) decays like a power
law in the subdiffusive region of the (K, ε) plane. This
behavior is smoothed by increasing ε or K until it disap-
pears when diffusion starts: the exponent of the power
law reduces and a uniform region at low ω appears. In
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FIG. 13. (a) Pac(ω;n0) is plotted for two values of n0: in the low frequencies region the slope of the curves is the same while the
initial amplitude changes. This scaling is related to the power-law time dependence of σMF . Numerical parameters: K = 6.0
and ε = 0.52. (b) A power-law behavior can be observed in the curve corresponding to K = 3.00, ε = 2.00 (first curve from
above) and it flattens as K and ε are increased. The bottom line has been shifted down by an order of magnitude for a better
visibility. In the simulations k̄ = 2.89.

the diffusive region of the (K, ε) plane Pac(ω) is flat.

In panel (b) of FIG. 13 we qualitatively show how
Pac(ω;n0) changes as ε is increased. We consider K =
3.0, for which the system is always in the subdiffusive
region (see FIG. 10), and K = 10.0, for which the sys-
tem passes from subdiffusive to diffusive as ε is increased.
In the first case Pac(ω) exhibits a power-law behavior at
low frequencies for ε = 2.0: this behavior is smoothed
out when ε = 8.0. In the second case the power-law be-
havior is much less evident when ε = 1.0; it completely
disappears when ε = 7.9 and the system is diffusive. In
FIG. 12 the power law exponents relative to Pac(ω) are
plotted (red circles): for K = 4.0, see panel (a), the ex-
ponent approaches the value of −0.5 without vanishing.
On the other side in panel (b) we set K = 11.0 and it
vanishes for ε > 4.0: indeed for higher values of ε the
system is diffusive.

At high frequencies Pac(ω;n0) is characterized by some
peaks whose positions depend on K, similarly to what
has been found for P (ω).

4. Variance of the mean field parameter σMF (n)

Let us now turn to σMF (n) which is found to show
a power law behavior, much clearer and robust than the
one exhibited by Pac(ω;n0) and P (ω). In the subdiffusive
region σMF (n) decreases as n−β , with β slightly varying
between to 0.3÷ 0.4 while in the diffusive one σMF (n) ∼
n−β with β ' 0.5. In FIG. 14 σMF (n) is plotted in two
particular cases, one in the subdiffusive region and the
other in the diffusive one.

In panel (a) of FIG. 12 we set K = 4.0: the system is
always subdiffsive and the power law exponent of σMF

(orange triangles) is constant as ε is varied. In panel (b)
we set K = 11.0: the system passes from subdiffusive

FIG. 14. Two cases of dynamics are considered, a diffusive
one with K = 30.0, ε = 4.90 (blue, dark line, color online)
and a subdiffusive one with K = 6.0, ε = 0.52 (orange, light
one). (a) The growth of the kinetic energy is plotted for
the two cases; the dotted lines stresses the relative slopes.
(b) The evolution of σMF is plotted for the two cases so the
corresponding power law behaviors are enhanced.

to diffusive for ε = 4.0 as it can be seen in FIG. 10.
Accordingly, the exponent of σMF tends to −0.5; this
transition is also enhanced by the exponent of the time-
correlator (red circles) which vanishes at ε = 4.0.

Of course, the behavior of σMF (n) clearly shows that
cMF (k = 0;n0) is not stationary. In order to better un-
derstand how the features we are analyzing are relevant
for the dynamics of our system we generate two artificial
signals, φ(n) and f(n), with some of the spectral proper-
ties we have found in ψMF (n) and study the dynamics of
a system perturbed by them instead of ψMF (n). The first
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signal φ(n) has a power spectrum like the one in FIG. 11
(power law behavior in panel (a)) and random phases as-
signed to the Fourier coefficients: the corresponding evo-
lution operator, according to the definition in Eq.(37),
contains the kicking modulation K ′(n) = K(1 − εφ(n)).
The dynamics of this system is found to be subdiffu-
sive up to a finite time, after which E(n) grows linearly
in time, analogously to what was found in the classi-
cal system in Ref. [132]: this means that the features
of P (ω) are not a sufficient ingredient to reproduce the
power law growth of E(n). On the other side, if we take
K ′′(n) = K(1− εf(n)), where f(n) is a stationary white
noise process, the power law is uniform in ω and the
energy grows linearly in time. Therefore, while some fea-
tures of the dynamics obtained can be associated to the
properties of the time series the robust subdiffusion ob-
served cannot be reproduced by a simple Gaussian pro-
cess.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion we have studied the ergodicity and en-
ergy absorption of a quantum chain of coupled kicked ro-
tors. We have found a mapping of the N -body kicked
rotor to a N -dimensional Anderson model in momen-
tum space. This mapping has given us the possibil-
ity to make predictions on the energy dynamics of the
kicked rotors: when N > 2 there is a dynamical localiza-
tion/delocalization transition which we have numerically
observed in the energy dynamics and in the localization
properties of the Floquet states in the momentum basis.

Going to the thermodynamic limit N → ∞ we find
that the system is always dynamically delocalized. We
have studied delocalization in this limit both in the cor-
responding Anderson model and directly in the coupled
rotors model. In the first case, we have shown that the
delocalization threshold vanishes; in the second we have
used a mean field approach and found that the energy
increases in a subdiffusive way in time. This is a genuine
quantum phenomenon, since in the corresponding clas-
sical case the energy increases diffusively in time. This
subdiffusion occurs together with some peculiar power-
law behaviours of the mean-field order parameter, its
Fourier transform and its time-correlator. The effective
mean field model suggests a comparison with other re-
lated models where there is a breaking of localization
which can lead to subdiffusive processes. Examples of
that are kicked rotors with a non-linear Hamiltonian or
a modulated kicking and disordered lattice models with
a nonlinearity in the Hamiltonian.

Our findings provide a clear example of many body
driven dynamics where quantum mechanics qualitatively
changes the regularity/ergodicity properties of the sys-
tem with important consequences on energy absorption.
This can be an important issue in the designing and work-
ing of quantum computers, as it already emerges from
studies about quantum simulation of a single KR [143].

One perspective of future work is the application of our
mapping on an Anderson model to other periodically
driven models. A more ambitious one is the research of
a driven system which can be mapped on a many body
localized lattice model in momentum space.

From the experimental point of view, the long-time
coherent dynamics of Hamiltonians similar to ours can
be realized in the framework of ultracold atoms in op-
tical lattices [34, 35, 54] and superconducting quantum
circuits [32]. Although a pulsed field can be realized in
single-particle models [52], pulsed interactions are not
easy to engineer. Nevertheless, in the single rotor case
the localization physics does not change when a sinu-
soidal driving is applied [130] and we expect the same re-
sult in the many coupled rotor case. Driven short range
interactions can be engineered by means of Feschbach res-
onances in the ultracold atoms framework, and through
SQUIDS in a time-dependent magnetic field in the case of
superconducting circuits. Concerning driven long-range
interactions, in principle they could be engineered using
superconducting circuits of appropriate topology.
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Appendix A: Classical interacting model

In this Appendix we discuss the behavior of the clas-
sical counterparts of the models defined in Eq. (2). We
indicate the angle and momentum variables relative to
the i rotor at time n as {θni , pni }.

A useful frame for understanding the dynamics of our
models is provided by the seminal work of Nehkhoroshev
(see Ref. [28]) and other works (see Refs. [126, 132]) about
the classical dynamics of our system. For reader’s conve-
nience we review some known results and apply them to
our models.

The kicked rotor model Hamiltonian can be written as

H = H0(θ, p) +KHI(θ, p; t) (A1)

where H0 is an integrable Hamiltonian and HI breaks the
integrability of the system with a strength given by K.
It is relevant that both H0 and HI are periodic in θ. For
a system with two degrees of freedom, like the single ro-
tor, we have seen in Section II that for K < Kc there are
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regions in the phase space in which the trajectories keep
being closed (this result is in agreement with the KAM
theory, as discussed in Section II). The phase space is
therefore divided in several regions by these trajectories
and the dynamics of the system is not ergodic. The sys-
tem exhibits, as already discussed, classical dynamical
localization.

Nekhoroshev’s theorem deals with the dynamics of a
system with an Hamiltonian like the one defined in Eq.
(A1) but with more than two degrees of freedom. It
states that, given an initial condition for the momentum
variables {p0

i }1≤i≤N , one finds [126]

||pn − p0|| < Kα (A2)

for n < n∗. We have n∗ ∼ 1/K exp{1/Kβ}, β ∼
1/(polynomial function of N) and α > 0. This is the
same mechanism which allows the orbits of planets to
remain stable in very long times: this should emphasize
that if K � 1 the time during which condition in Eq.
(A2) is satisfied can be very long. After this time the
trajectories of the system become unstable: their local-
ization in the phase space is broken and the dynamics
becomes ergodic [138].

For time independent Hamiltonians this means that
the trajectories span the whole energy shell: averages
can be computed using the micro-canonical ensemble.

For a time dependent Hamiltonian, the energy is not
conserved and thus the trajectories will spread in all the
phase space. This means that the system heats without a
bound and thermalizes at T =∞: this is indeed the case
of our system, in which the kick breaks the integrability
of the Hamiltonian.

Now we numerically check this delocalization process
for the two cases we are studying, the long range and the
short range interacting ones. Since we are interested in
the dynamics at long times we choose amplitudes of the
kick (namely the parameters K and ε in Hamiltonian of
Eq.(1)) for which the time n∗ is negligible.

We focus on the classical dynamics of Eq. (1) in the
case of infinite-range interactions. It is possible to inte-
grate exactly the Hamilton equations for each rotor over
a period, and obtain a map for the stroboscopic evolu-
tion of the system: restricting to discrete times tn = n
we have

pn+1
i = pni +K

[
sin θni −

ε

(N − 1)

∑
j 6=i

sin(θni − θnj )

]
,

(A3)

θn+1
i = θni + pn+1

i . (A4)

We consider many realizations of the dynamics of the sys-
tem sampling different initial conditions; they are chosen
giving a uniformly random angle to each rotor and set-
ting p0

i = 0 ∀i = 1...N . We focus on the time-evolution of
the kinetic energy per rotor averaged over the ensemble
of the initial conditions

E(n) =
1

2N

N∑
i=1

(pni )2 . (A5)

This quantity is proportional to the variance of the mo-
menta distribution in time and then gives information on
the spreading in time of this distribution.

In the numerical simulations that follow we set N =
100: this number of rotors is sufficient to avoid bound-
ary effects and simulate the N →∞ limit. In the ergodic
regime the time and space correlations between the an-
gles of the rotors rapidly decay to zero (as it always occurs
in chaos [2, 31]): this implies in particular that

〈cos(θni − θnj ) cos(θmi′ − θmj′ )〉 (A6)

=
1

2
δnm(δi i′δj′ j + δi j′δi′ j),

where the average is taken over the ensemble of the initial
conditions. Now we consider the following expression for
the momentum at time n

pni = K

n−1∑
τ=0

[
sin θτi −

ε

(N − 1)

∑
j 6=i

sin(θτi − θτj )

]
. (A7)

By squaring it and using Eq. (A6) we obtain the follow-
ing coefficient describing the linear increase of the kinetic
energy for the long-range interacting model:

Dlr =
1

4
K2

(
1 +

ε2

N − 1

)
. (A8)

Note that for N � 1 the diffusion coefficient coincides
with the single-rotor one for K > Kc. In FIG. 15 this
property is clearly shown: E(n), computed at fixed K =
5.0 but different values of ε = 0, 0.5, 1.0, always shows the
same behaviour, growing linearly in time with the same
angular coefficient.

A remarkable difference emerges for K < Kc: in this
case the single rotor manifests dynamical localization,
while the presence of an interaction induces a growth of
the kinetic energy which starts being only subdiffusive
and becomes diffusive after a transient (see Ref. [132]
for the same phenomenon in a different model). This
behaviour is perfectly consistent with the Nekhoroshev
theorem [126] and we show it in FIG. 16 by plotting the
evolution of E(n) for different values of K.

The classical behavior of the short-ranged model is
very similar. With analogous calculations we find that
the diffusion coefficient for the kinetic energy, in absence
of correlations and with N →∞, is

Dsr =
1

4
K2

(
1 +

ε2

2

)
. (A9)

With small N (like the cases N = 2, 3 we consider in
the text for the quantum model) finite size effects [126]
reduce the diffusion coefficient as it is shown in FIG. 17.
Moreover, some corrections due to correlations modify
the diffusion coefficient, as it has been seen in Ref. [80]
for two rotors; they disappear for Kε & 2.

To conclude, we have shown that a classical interact-
ing rotors model exhibits an ergodic behavior and, at
long times, a linear growth of the kinetic energy: this
characteristic is manifested for all the values of K and ε,
independently from the number of rotors.
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FIG. 15. The time evolution of E(n) is plotted together with
the curve n as a guide to the eye to show the diffusive growth
of the kinetic energy of the system. The diffusion coefficient is
Dclass ∼ K2/4 = 6.25: this is the expected value for the single
kicked rotor and it is the same for all the values of ε, since
the curves are superposed. Nrotors = 100 in the simulations.

FIG. 16. The time evolution of E(n) is plotted; the two
regimes, the subdiffusive and diffusive one, are clearly dis-
tinguishable in the log-log scale. Nrotors = 100 in the simu-
lations.

Appendix B: Exactness of the mean field
approximation for N →∞

In this Appendix we demonstrate that 〈δ̂r δ̂s〉 → 0 in
the limit N → ∞ if we start from a separable state at

time n = 0. We first observe that 〈δ̂r δ̂s〉 = c(r, s;n),
where

c(r, s;n) =

〈cos θ̂r(n) cos θ̂s(n)〉 − 〈cos θ̂r(n)〉〈cos θ̂s(n)〉. (B1)
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FIG. 17. In this figure the time evolution of E(n) is plot-
ted with K = 0.5 and ε = −2.0. As the number of rotors
is increased the diffusion coefficient grows approaching the
asymptotic value (N = 100 rotors). Nevertheless the exact
value of the diffusion coefficient in Eq. A9 is reached for
K & 2.

is the time dependent, spatial connected correlator be-

tween different rotors. Therefore the relation 〈δ̂r δ̂s〉 → 0
for N → ∞ means that the system does not develop
spatial correlation during the evolution in the thermody-
namic limit.

We set k̄ = 1; for simplicity we define α = εK/(N − 1)
and then we set K = 0: without losing generality we are
considering only the interacting part in the kick.

The scheme of the demonstration is the following: we

expand the term 〈cos θ̂r(n) cos θ̂s(n)〉 keeping the ones
which are O(1/N). Some of the resulting terms are can-

celed out by 〈cos θ̂r(n)〉〈cos θ̂s(n)〉: we show that only a
finite number of terms O(1/N) remains: therefore, they
vanish in the thermodynamic limit.

Once we have demonstrated the absence of spatial
correlations we define the operator ∆̂N = 1/(N −
1)
∑
r 6=s δ̂r δ̂s: it is the sum of fluctuation terms which

appears in Eq. (35). By applying the central limit the-
orem we show that it increases in a non extensive way.
Therefore, it brings negligible contributions to the Hamil-
tonian in the thermodynamic limit.

As a first step we introduce some notation useful
for the demonstration: we write the one-period prop-
agator as Û = K̂ T̂ , with K̂ containing the kick part
of the propagator and T̂ the kinetic one. We define

K̂r = eiα
∑
s 6=r cos(θ̂r−θ̂s) and T̂r = ei

p̂2
r
2 . We have

[T̂r, T̂s] = [K̂r, K̂s] = 0 ∀ r, s; also,

C1,2(θ̂r, θ̂s, p̂r) = ±[e∓iα cos(θ̂r−θ̂s), e∓i
p̂2
r
2 ] . (B2)

These commutators are bounded operators, since they
come from unitary operators. Moreover, one can eas-

ily deduce that ||C1,2(θ̂r, θ̂s, p̂r)|| ∼ 1/(N − 1) from

a first order expansion of e∓iα cos(θ̂r−θ̂s). In the next
subsection we go through the expansion of the term

〈cos θ̂r(n) cos θ̂s(n)〉.
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1. Expansion of 〈cos θ̂r(n) cos θ̂s(n)〉

Given the initial factorized state |Ψ0〉 the expectation
value of the product at time n = 2 is given by

〈Ψ0|
[
(U†)2 cos θ̂r U

2
] [

(U†)2 cos θ̂s U
2
]
|Ψ0〉 . (B3)

The choice of n = 2 is motivated by the fact that at
this time correlations start to develop. We focus on the
content of the left squared brackets. First, we write Û
and Û† by using the definition given above. Then we
simplify all the terms which freely commute and what
remains is the following:

T̂ † K̂†r T̂
†
r cos θ̂r T̂r K̂r T̂ (B4)

The kinetic operator T̂ † on the right automatically sim-
plifies with the relative term T̂ in the right squared brack-
ets so we neglect it. Also, we define |Ψ̃0〉 = T̂ |Ψ0〉 so we

can restrict our study to the term K̂†r T̂
†
r cos θ̂r T̂r K̂r. In

order to expand this term we need to invert the operators
K†r T̂

†
r and T̂r K̂r respectively, so we need to compute the

two commutators [K̂†r , T̂
†
r ] and [T̂r, K̂r].

For the first commutator we have (we consider r = N
for simplicity but the generalization is straightforward):

[K̂†N , T̂
†
N ] = C1(θ̂N , θ̂n, p̂N )

N−2∏
ν=1

e−iα cos(θ̂N−θ̂ν)+ (B5)

N−2∑
n=1

[( n∏
ν=1

e−iα cos(θ̂N−θ̂ν)

)
C1(θ̂N , θ̂n, p̂N )(

N−2∏
µ=n+1

e−iα cos(θ̂N−θ̂µ)

)]
.

Also, for each term in the sum labeled by n we have:(
n∏
ν=1

e−iα cos(θ̂N−θ̂ν)

)
C1(θ̂N , θ̂n, p̂N ) = (B6)(

n−1∏
ν=1

e−iα cos(θ̂N−θ̂ν)

)(
C1(θ̂N , θ̂n, p̂N )e−iα cos(θ̂N−θ̂n)+

ξ1(θ̂N , θ̂n, p̂N ) = . . .

= C1(θ̂N , θ̂n, p̂N )

(
n∏
ν=1

e−iα cos(θ̂N−θ̂ν)

)
+

n∑
ν=1

ξ1(θ̂N , θ̂ν , p̂N )

n∏
µ6=ν

e−iα cos(θ̂N−θ̂µ)


+O(1/N2),

where

ξ1,2(θ̂r, θ̂s, p̂r) = ±[e∓iα cos(θ̂r−θ̂s), C1,2] . (B7)

Note that ξ1,2 is an operator whose norm is O(1/N2).
The O(1/N2) terms in the last equation come from

higher order commutators and we henceforth neglect
them. Therefore Eq. (B5) can be rewritten as follows:

[K̂†N , T̂
†
N ] ' (B8)

N−1∑
n=1

[
C1(θ̂N , θ̂n, p̂N ) +

n∑
ν=1

ξ1(θ̂N , θ̂ν , p̂N )

]
K̂†N ,

An analogous result can be obtained for the commutator
[T̂N , K̂N ]:

[T̂N , K̂N ] ' (B9)

K̂N

N−1∑
n=1

[
C2(θ̂N , θ̂n, p̂N ) +

n∑
ν=1

ξ2(θ̂N , θ̂ν , p̂N )

]
.

The important point of Equations (B8) and (B9) is that
the commutators can be written as the sum ofN−1 terms
of order 1/(N) and (N − 1)2/2 terms of order O(1/N2),
up to higher order terms.

Now we can factorize the term K̂†r T̂
†
r cos θ̂r T̂r K̂r by

using Equations (B8) and (B9):

K̂†r T̂
†
r cos θ̂r T̂r K̂r (B10)

=

T̂ †r +
∑
n 6=r

C1(θ̂r, θ̂n, p̂r) +

n∑
n 6=r ,ν=1

ξ1(θ̂r, θ̂ν , p̂r)

 K̂†r


cos θ̂rK̂r

T̂ †r +
∑
m6=r

C2(θ̂r, θ̂m, p̂r) +

n∑
n6=r ,ν=1

ξ2(θ̂r, θ̂ν , p̂r)


= T̂ †r cos θ̂r T̂r +

∑
n 6=r

C1(θ̂r, θ̂n, p̂r) cos θ̂r

+ cos θ̂r
∑
m6=r

C2(θ̂r, θ̂m, p̂r) +

n∑
n6=r ,ν=1

ξ1(θ̂r, θ̂ν , p̂r) cos θ̂r

+ cos θ̂r

n∑
n 6=r ,ν=1

ξ2(θ̂r, θ̂ν , p̂r).

Analogously the right squared brackets term in Eq. (B3)
returns:

K̂†s T̂
†
s cos θ̂s T̂s K̂s (B11)

= T̂ †s cos θ̂s T̂s +
∑
n6=s

C1(θ̂s, θ̂n, p̂s) cos θ̂s+

cos θ̂s
∑
m 6=s

C2(θ̂s, θ̂m, p̂s) +

n∑
n 6=s ,ν=1

ξ1(θ̂s, θ̂ν , p̂s) cos θ̂s

+ cos θ̂s

n∑
n 6=s ,ν=1

ξ2(θ̂s, θ̂ν , p̂s).

Now we multiply the results in Equations (B10)
and (B11) keeping explicit only first order terms and take
the expectation values. At the zeroth order we have

〈Ψ̃0|T̂ †r cos θ̂r T̂rT̂
†
s cos θ̂s T̂s|Ψ̃0〉 , (B12)
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which represents the evolution without kick and can be
factorized. At the first order we have two sums which
provide respectively

Σr = 〈Ψ̃0|T̂ †r cos θ̂r T̂r (B13)∑
n 6=s

[
C1(θ̂s, θ̂n, p̂s) cos θ̂s + cos θ̂sC2(θ̂s, θ̂n, p̂s)

]
|Ψ̃0〉

and an analogous term Σs is defined. In an analogous
way the sums of the second order terms Π1,2 containing
ξ1,2 must be considered.

2. O(1/N) terms in c(r, s;n)

We henceforth explain how the extensive sums Σr,s and
Π1,2 reduce to a non extensive amount of contributions
in c(r, s;n). We explain the mechanism for Σr,s but it
equally apply for the Π1,2.

We indeed focus on c(r, s;n) and check which terms
does not cancel out when we take the difference
〈cos θ̂r(n) cos θ̂s(n)〉 − 〈cos θ̂r(n)〉〈cos θ̂s(n)〉. Almost all
the terms in Σr,s can be factorized and therefore cancel
out with equal contributions coming from the product

〈cos θ̂r(n)〉〈cos θ̂s(n)〉: the only exceptions are two terms
with n = r in Σr and two with n = s in Σs. Indeed we
obtain four differences which do not cancel, one of those
is

〈Ψ̃0|T̂ †r cos θ̂r T̂r C1(θ̂s, θ̂r, p̂s) cos θ̂s|Ψ̃0〉 − (B14)

〈Ψ̃0|T̂ †r cos θ̂r T̂r|Ψ̃0〉 〈Ψ̃0|C1(θ̂s, θ̂r, p̂s) cos θ̂s|Ψ̃0〉 .

The three others terms have the same structure.

Therefore c(r, s;n = 2) does not vanish because of a
finite number of O(1/N) corrections (now we neglect the
O(1/N2) terms coming from ξ1,2): we have found the
first contributions in Equations (B10) and (B11). Also,
we have found the contributions O(1/N) coming from Σr
and Σs. At a time n > 2 the number of these contribu-
tions linearly increases, although it is always finite. Since,
anyway, the limit N → ∞ is taken before the evolution
starts, the correlations are always going to zero like 1/N :

the final result we obtain is that 〈δ̂r δ̂s〉 → 〈δ̂r〉〈δ̂s〉 in the
thermodynamic limit.

3. Central limit theorem and conclusion

According to the previous result, we concentrate on

the operator ∆̂N defined above. Since 〈δ̂r δ̂s〉 = 〈δ̂r〉〈δ̂s〉
its expectation value over the state |φ(n)〉 is:

〈φ(n)|∆̂N |φ(n)〉 = (B15)

1

(N − 1)

∑
i 6=j

[
(〈cos θ̂i〉 − χ)(〈cos θ̂j〉 − χ))

]
Each of the two sums represents the fluctuations of
a set of independent, random variables: we can ap-
ply the central limit theorem and state that 1/(N −
1)
∑
i 6=j(〈cos θ̂i〉 − χ) ∼ 1/

√
N . It follows that

〈φ(n)|∆̂N |φ(n)〉 ∼
√
N : since the fluctuation term in

the Hamiltonian grows less than extensively it can be
neglected in the thermodynamic limit. We conclude that
the mean field approach is therefore exact.
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[139] H. P. Lüschen, et al., Signatures of Many-Body Local-
ization in a Controlled Open Quantum System, Phys.
Rev. X 7, 011034 (2017).

[140] A. C. Keser, S. Ganeshan, G. Refael, and V. Galit-
ski, Dynamical many-body localization in an integrable
model, Phys. Rev. B 94, 085120 (2016).

[141] L. Ermann and D. L. Shepelyansky, Destruction of An-
derson localization by nonlinearity in kicked rotator at
different effective dimensions, Journal of Physics A:
Mathematical and Theoretical 47, 335101 (2014).

[142] T. Bhattacharya, S. Habib, K. Jacobs, and K. Shizume,
δ-function-kicked rotor: Momentum diffusion and the
quantum-classical boundary, Phys. Rev. A 65, 032115
(2002).
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