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Abstract We show that with suitable choices of parametriza-
tion, gauge fixing and cutoff, the anomalous variation of the
effective action under global rescalings of the background
metric is identical to the derivative with respect to the cut-
off, i.e. to the beta functional, as defined by the exact RG
equation. The Ward identity and the RG equation can be
combined, resulting in a modified flow equation that is man-
ifestly invariant under global background rescalings.

1 Introduction

One of the most vexing challenges facing the asymptotic
safety approach to quantum gravity has been the double
dependence of the effective action on two fields, the back-
ground metric and the fluctuation field. It is only when both
dependences are taken into account that one can write an
exact flow equation [1]. On the other hand, physical results
should be largely independent of the choice of background. In
fact, at the classical level, the action is invariant under simul-
taneous transformations of the background and fluctuation.
At the simplest level, when one uses a linear parametrization,

gμν = ḡμν + hμν, (1.1)

these are just the shift transformations

δḡμν = εμν, δhμν = −εμν. (1.2)

Ideally the effective action should also be invariant under
the same transformations. However, the background gauge-
fixing procedure and the addition of a cutoff term in the action
spoil this invariance. In much (in practice, up to 2008, all)
work on asymptotic safety this issue has been avoided by
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restricting oneself to the so-called “single-field approxima-
tion” where one sets the fluctuation field to zero. The dangers
of considering only the background dependence had been
pointed out in [2,3]. In the last few years there have been
made several efforts to address this issue.

One is to study bi-metric truncations [4–6] and impose
shift-invariance only in the IR limit [7]. If one were able to
calculate the whole bi-metric flow, then the background flow
could be obtained by setting the classical fields to zero. Thus
in practice one method to improve on single-field truncations
is to keep as much as possible of the fluctuation dependence,
by calculating the flow of the two-, three- and possibly four-
point functions of the fluctuation [8–12]. Alternatively one
can try to solve simultaneously the Ward identity and the flow
equation. This could be achieved in the conformally reduced
case [13–15]. Other related ideas have been discussed in [16–
18].

A step forward has recently been made by Morris for the
special case when εμν = 2ε ḡμν , i.e. when the background
is simply rescaled by a constant factor [19]. He derived the
modified Ward identity for this transformation and showed
that in six dimensions the anomalous terms coming from the
cutoff have the same form as the RG equation. In this way
the Ward identity and the RG equation can be combined in a
single equation that is amenable to explicit treatment by the
methods that are in current use. The drawback of the proposed
procedure is that it only seems to work in six dimensions.

We show in this paper that modifying some steps of the
procedure is sufficient to obtain the same result in any dimen-
sion. The first and most crucial step is the replacement of the
linear split (1.1) by the exponential parametrization

gμν = ḡμρ(eX)ρν, (1.3)

where

Xρ
ν = ḡρσ hσν. (1.4)
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This parametrization is widely used in two-dimensional
quantum gravity [20–22]. It has been introduced in the func-
tional RG setting in [23,24]. Its general virtues have been
further discussed in [25–31], and it has been employed in
several other explicit calculations [32–36].

The second step is to make sure that no dimensionful
parameter enters the gauge-fixing term. In the Einstein–
Hilbert truncation it is convenient and customary to have
a prefactor ZN = 1/(16πG), so that the gauge-fixing terms
combine smoothly with the Hessian, but this introduces and
unnecessary and, as we shall see, unwanted breaking of
background scale invariance. We will use a higher-derivative
gauge fixing, which amounts to introducing some power of
the Laplacian in the gauge-fixing term. This type of gauge
fixing is often used with four-derivative gravitational actions
[37–40] but normally not in the Einstein–Hilbert truncation.
There is, however, no fundamental reason for this, other than
simplicity [31].

The third step is to similarly avoid dimensionful parame-
ters in the cutoff term, except for the cutoff scale itself. We
will use a “pure” cutoff, namely one that does not contain any
running parameter [33,41]. As with the gauge-fixing term,
in the Einstein–Hilbert truncation it is convenient to have a
prefactor 1/(16πG). In the f (R) truncation the correspond-
ing prefactor is − f ′(R). This dependence of the cutoff on
running couplings is, however, the source of unnecessary
anomalies.

We will see that, with these choices, the gauge fixing
becomes invariant and the anomalous terms in the Ward iden-
tity coming from the cutoff have the same form as the RG
equation. Then the Ward identity expresses the invariance
of the effective action under the transformation of the back-
ground, fluctuation and a simultaneous rescaling of the cut-
off scale. This identity can be solved and results simply in
the definition of new variables that are invariant under back-
ground scale transformations. The RG equation, written in
these variables, no longer depends on the scale of the back-
ground metric and has the same form as the flow equation
that is commonly used. Although for the time being limited
to simple scalings, this points toward a practical solution of
the background-field dependence.

In Sect. 2 we discuss the transformation of the fields and of
the gauge-fixing and cutoff actions. In Sect. 3 we derive the
Ward identity and combine it with the RG equation. Section
4 contains a short discussion.

2 Variations

2.1 Fields

In this section we will often suppress indices and treat two-
index tensors as matrices. Thus (1.3) and (1.4) will be written

g = ḡeX, X = ḡ−1h.

(Normally one would denote also X by the symbol h, but this
would give rise to ambiguities when indices are suppressed.)
Note that X is a linear map of the tangent space to itself, so
powers of X and the trace of X do not require use the metric
and are basis-independent.

Our first task is the following: given an infinitesimal trans-
formation δḡ of the background metric, find a transformation
δh of the fluctuation field such that the full metric g is invari-
ant. We must have

0 = δg = δḡeX + ḡδeX. (2.1)

We use in (2.1) the relation

δeXe−X = eadX − 1

adX
δX (2.2)

where adXY = [X,Y], and the relation eXYe−X = eadXY,
to obtain

δX = − adX
eadX − 1

ḡ−1δḡ. (2.3)

Then, using Eq. (1.4), we derive the variation of h:

δh = δḡX + ḡδX . (2.4)

Expanding

adX
eadX − 1

= 1 − adX
2

+ ad2
X

12
− ad4

X

720
+ ad6

X

30240
− · · · (2.5)

one could treat in this way general variations. Things, how-
ever, simplify drastically when we consider Weyl transfor-
mations

δḡμν = 2ε ḡμν, (2.6)

where ε is an infinitesimal transformation parameter (a scalar
function). In this case ḡ−1δḡ = 2ε1 is a multiple of the unit
matrix, so δX = −2ε1, and thus using (2.4)

δhμν = 2ε(hμν − ḡμν) . (2.7)

It is convenient to decompose the fluctuation field into its
tracefree and trace parts:

hμν = hTμν + 1

d
ḡμνh (2.8)

where ḡμνhTμν = 0. We could further decompose the trace-
free part into spin-two, spin-one and spin-zero parts, as in the
York decomposition, but this is not necessary. The following

123



Eur. Phys. J. C (2017) 77 :52 Page 3 of 8 52

considerations hold whether one uses the York decomposi-
tion or not.

We have

δhμν = δhTμν + 1

d
2ε ḡμνh + 1

d
ḡμνδh. (2.9)

On the other hand inserting (2.8) in the r.h.s. of (2.7) and
comparing the trace and tracefree parts we find

δhTμν = 2εhTμν,

δh = −2dε. (2.10)

Note that the tracefree fluctuation transforms in the same
way as the metric whereas the trace transforms purely by a
shift. This is distinctly different from the behavior in the lin-
ear decomposition (1.1) and lies at the root of the subsequent
simplifications. In the special case when the manifold is com-
pact and ε is constant, we can be even more specific. If we
decompose the trace into the constant part and its orthogonal
complement

h = h + h⊥, (2.11)

which is defined by the condition that its integral over the
whole manifold is zero, the whole variation of h is due to the
constant component, while h⊥ is invariant:

δh = −2dε ; δh⊥ = 0 . (2.12)

We observe that if we restrict ourselves from the beginning
to Weyl transformations of the background metric, there is a
more direct derivation of (2.10). Raising one index in (2.8)
one can writeX = XT +1h/d, whereXT is traceless. There-
fore

g = ḡ eh/deX
T
. (2.13)

If the background metric undergoes the finite transformation
ḡ → ḡe2ε , invariance of the full metric can be maintained by
the compensating transformation h → h − 2dε, while XT

is left invariant. Then δhT = δ(ḡXT ) = 2εḡXT = 2εhT ,
which is just (2.10). In the following we restrict ourselves to
constant Weyl transformations of the background metric.

2.2 Gauge fixing

Let us consider a gauge-fixing term

SGF = 1

2α

∫
dd x

√
ḡ FμY

μνFν, (2.14)

where Yμν is in general a differential operator,

Fμ = ∇̄ρh
ρ

μ − β + 1

d
∇̄μh = ∇̄ρh

Tρ
μ − β

d
∇̄μh , (2.15)

and ∇̄ is the covariant derivative of ḡμν . Since the background
Christoffel symbols are invariant under background rescal-
ings, taking into account also the variation of the inverse
metric that is hidden in Fμ, one finds

δFμ = 0 . (2.16)

Let 
̄ be a second-order Laplace-type operator constructed
with the background metric. It transforms under background
rescalings as

δ
̄ = −2ε
̄. (2.17)

The gauge-fixing term will be invariant under background
rescalings if we choose

Yμν = 
̄
d−2

2 ḡμν. (2.18)

In order to derive the Faddeev–Popov operator, we start from
the transformation of the full metric under an infinitesimal
diffeomorphism η, which is given by the Lie derivative

δηgμν = Lηgμν ≡ ∇μην + ∇νημ. (2.19)

(Note that there are no bars on the ∇s here.) As usual, we have
to define transformations of ḡ and h that, used in (1.3), yield
(2.19). The simplest one is the background transformation.
We use again matrix notation as in the preceding section. If
we treat ḡ and X as tensors under δη, i.e.

δ(B)
η ḡ = Lηḡ; δ(B)

η X = LηX, (2.20)

then also δ
(B)
η eX = LηeX and (2.19) follows. By definition,

the “quantum” gauge transformation of X is such as to repro-
duce (2.19) when ḡ is held fixed:

δ(Q)
η ḡ = 0; ḡδ(Q)

η eX = Lηg = LηḡeX + ḡLηe
X. (2.21)

From the latter relation we find

e−Xδ(Q)
η eX = e−X(ḡ−1Lηḡ)eX + e−XLηe

X. (2.22)

Then using (2.2) one finds

δ(Q)
η X = adX

eadX − 1

(
ḡ−1Lηḡ + Lηe

Xe−X
)

. (2.23)

The Fadeev–Popov operator, acting on a ghost field Cμ, is
defined by


FPμ
νCν = ∇̄ρ

(
(δ

(Q)
C X)ρμ + 1 + β

d
δρ

μtr(δ(Q)
C X)

)

(2.24)
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where the infinitesimal transformation parameter η has been
replaced by the ghost. The full ghost action then has the form
[31]

Sgh(C
∗
μ,Cμ; ḡμν) =

∫
dd x

√
ḡ C∗

μY
μν
FPν

ρCρ. (2.25)

Note that this action contains infinitely many interaction
terms. Expanding (2.24) to first order in X we find1:

δ
(Q)
C X = ḡ−1LC ḡ + LCX + 1

2
[ḡ−1LC ḡ,X] + O(CX2) .

(2.26)

In the single-metric truncation, where one puts X = 0 from
the start, the Faddeev–Popov operator is determined by the
first term in this expansion. It is a (generally non-minimal)
Laplace-type operator constructed with the background met-
ric, and therefore transforms as in (2.17). Invariance under
global Weyl rescalings can be achieved simply demanding

δC∗
μ = 0, δCμ = 2ε Cμ. (2.27)

Then one can check that also the interaction terms are
invariant. An infinitesimal background rescaling acting on

FPμ

νCν , as written in (2.24), only affects on the terms

δ
(Q)
C X. Since X transforms by a constant shift, δ(adX) = 0.

Then, because everything is linear in C ,

δ
(
ḡ−1LC ḡ + LCe

Xe−X
)

= −ε
(
ḡ−1LC ḡ + (LCe

X)e−X
)

and the remaining transformations involving X cancel.
Notice the minus sign: this is due to the fact that the Lie
derivatives involve the contravariant field Cμ = ḡμνCν ,
whose transformation is δCμ = −εCμ. So, finally

δ
FPμ
νCν = −ε
FPμ

νCν . (2.28)

This, together with δYμν = −dεYμν implies that the full
ghost action is invariant.

The gauge-fixed action must also contain a term

Saux =
∫

dx
√
ḡBμY

μνBν , (2.29)

where Bμ is an auxiliary bosonic field [31]. This Gaussian
integral has the effect of removing the determinants ofY from
the effective action. Scale invariance is achieved provided the
auxiliary field is inert: δBμ = 0.

We note that the procedure proposed here is by no means
unique. If one is interested mainly in the application of the
formalism to f (R) theories [39,42–49], where one normally

1 A factor 1/2 is missing in Eq. (III.18) in [24].

considers a spherical background, then one could define

Yμν = R̄
d−2

2 ḡμν . This achieves scale invariance without hav-
ing to introduce an auxiliary field, but it would not work on
a flat background. One could also have a mix of 
̄ and R̄,
provided the overall power is d−2

2 . Yet another choice would
be the “physical gauge” advocated in [24]. In this case one
would just set h⊥ = 0 and ξμ = 0, where ξμ is the spin-
one degree of freedom of hμν . Since h⊥ is invariant and ξμ

trasforms homogeneously under scaling, these conditions are
scale invariant. They produce Faddeev–Popov determinants
that can be taken care of by introducing suitable auxiliary
fields.

2.3 Cutoff term

Next we consider the cutoff term, which lies at the root of
the issue. It has the general structure


Sk(hμν; ḡμν) = 1

2

∫
dd x

√
ḡ hμνRμνρσ

k hρσ , (2.30)

where Rμνρσ
k (
̄), in coordinate space, is a two-point kernel.

It is typically chosen to have the form

Rμνρσ
k (
̄)

= 1

2

(
ḡμρ ḡνσ + ḡμσ ḡνρ + aḡμν ḡρσ

)
c kd−2Rk(
̄)

(2.31)

where a and c are dimensionless constants and Rk(0) = k2,
with k the IR cutoff scale which controls the coarse-graining
procedure. Usually one defines the RG “time” as t ∼ ln k.
By dimensional analysis

Rk(
̄) = k2r(y), y = 
̄/k2, (2.32)

where r is a dimensionless function that goes rapidly to zero
for y > 1 and r(0) = 1.

In the Einstein–Hilbert truncation and in de Donder gauge
it is very convenient to choose a = −1, so that the ten-
sor structure matches the one of the Hessian (including the
gauge-fixing term). Furthermore, it is almost always assumed
that c kd−2 = 1/(16πG). Then the cutoff combines seam-
lessly with the Hessian resulting simply in the substitution of

̄ → 
̄+ Rk(
̄), where in this specific case 
̄ = −∇̄2. We
are not committed to using any specific form of the action
here, so we leave the constants a and c unspecified. Such
a cutoff is then called “pure” to emphasize that it does not
contain any running coupling.
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Similarly one introduces the cutoff operator for the ghosts.
Using the decomposition (2.8) we can write


Sk(h
T
μν, h; ḡμν) = 1

2

∫
dd x

√
ḡ

[
hTμν ḡ

μρ ḡνσRT
k (
̄)hTρσ

+ hRk(
̄)h
]

, (2.33)


Sgh
k (C∗

μ,Cμ; ḡμν) =
∫

dd x
√
ḡ C∗

μḡ
μνRgh

k (
̄)Cν,

(2.34)


Saux
k (Bμ; ḡμν) =

∫
dd x

√
ḡ B∗

μḡ
μνRaux

k (
̄)Bν,

(2.35)

where RT
k = c kd−2Rk = c kdr(y), Rk = c0kd−2Rk =

c0kdr(y) with c0 = c 2+ad
2d , Rgh

k (
̄) = cghkd−2Rk(
̄) =
cghkdr(y) andRaux

k (
̄) = cauxkd−4Rk(
̄) = cauxkd−2r(y).
The Laplacian transforms under background rescalings as

in (2.17). Since k does not change under a variation of the
background metric, we find from (2.32) δRk = −2εkd yr ′.
On the other hand ∂tRk = dkdr − 2kd yr ′, so

δRk = ε(−dRk + ∂tRk) . (2.36)

The kernel RT
k transforms in the same way. The remarkable

fact is that the first term on the r.h.s. exactly cancels the vari-
ation of the volume element. Since the tracefree fluctuation
transforms homogeneously, in the same way as the covariant
metric, the variations of the inverse metric and those of the
fields hTμν also cancel. Thus the variation of (2.33) is

δ
Sk(h
T
μν, h; ḡμν) = 1

2
ε

∫
dd x

√
ḡ

[
hTμν ḡ

μρ ḡνσ ∂tRT
k h

T
ρσ

+h∂tRkh] − 2dε

∫
dd x

√
ḡRkh ,

(2.37)

where the last term comes from the variation of the trace
fluctuation h.

The ghost cutoff kernel Rgh
k also transforms as in (2.36)

so that

δ
Sgh
k (C∗

μ,Cμ; ḡμν) = ε

∫
dd x

√
ḡ C∗

μḡ
μν∂tRgh

k Cν .

(2.38)

Finally, the variation of the auxiliary term works a bit differ-
ently. Instead of (2.36) one has

δRaux
k = ε(−(d − 2)Raux

k + ∂tRaux
k ) . (2.39)

The first term exactly cancels the transformation due to the
measure and inverse metric, so that again

δ
Saux
k (Bμ; ḡμν) = ε

∫
dd x

√
ḡ Bμḡ

μν∂tRaux
k Bν . (2.40)

We note that in comparison with [19] all the terms pro-
portional to 
Sk itself, which came with a factor d − 6, are
absent here.

3 The Ward identity

We now have all the ingredients that are needed to derive the
Ward identity. The effective average action (EAA) is defined
by

�k(h̄
T
μν, h̄, C̄∗

μ, C̄μ, B̄μ; ḡμν)

= −Wk( j
μν
T , j, Jμ∗ , Jμ, Kμ; ḡμν)

+
∫

dd x
(
jμν
T h̄Tμν + j h̄ + Jμ∗ C̄∗

μ + JμC̄μ + Kμ B̄μ

)

−
Sk(h̄
T
μν, h̄; ḡμν)

−
Sgh
k (C̄∗

μ, C̄μ; ḡμν) − 
Saux
k (B̄μ; ḡμν) ,

where Wk is the generating functional of connected Green
functions, h̄Tμν , h̄ etc. denote here the classical VEVs of the
corresponding quantum fields, the sources jμν

T , j , Jμ∗ , Jμ

and Kμ have to be interpreted as usual as functionals of these
classical fields and the last three term subtracts the cutoff that
had been added in the beginning to the bare action.

The modified Ward identity for �k can be obtained as in
[19] by first varying Wk and then using the Legendre trans-
form. Alternatively, we can start from the integro-differential
functional equation

e−�k (h̄Tμν,h̄,C̄∗
μ,C̄μ,B̄μ;ḡμν)

=
∫
DhT DhDC∗DCDB Exp[−S − SGF − Sgh − Saux]

× Exp
∫ [

δ�k

δh̄T
(hT−h̄T )+δ�k

δh̄
(h−h̄)+δ�k

δC
(C−C̄)

+ δ�k

δC̄∗ (C∗ − C̄∗) + δ�k

δB
(B − B̄)

]

× Exp
[
−
Sk(h

T − h̄T , h − h̄; ḡ)
−
Sgh

k (C∗ − C̄∗,C − C̄; ḡ)
−
Saux

k (B − B̄; ḡ)
]

(3.1)

where a bar over a field denotes its vacuum expectation value
and we have suppressed all indices for typographical clarity.
Varying both sides, we have

δ�k = −
∫

δ�k

δh̄T
〈δhT − δh̄T 〉 −

∫
δ�k

δh̄
〈δh − δh̄〉

−
∫

δ�k

δC̄
〈δC − δC̄〉 −

∫
δ�k

δC̄∗ 〈δC∗ − δC̄∗〉

−
∫

δ�k

δ B̄
〈δB − δ B̄〉

+〈δ
Sk(h
T − h̄T , h − h̄; ḡ)〉 + 〈δ
Sgh

k (C − C̄; ḡ)〉
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+〈
Saux
k (B − B̄; ḡ)〉. (3.2)

The variations (2.10) and those of the ghost and auxiliary
fields are at most linear in the fields. Thus 〈δφ〉 = δφ̄ for all
fields. All the terms in the first two lines are therefore zero
and the only anomalous contribution comes from the cutoff
terms. Using the variation in Eqs. (2.37), (2.38), and (2.40)
one finds

δ�k = 〈δ
Sk(h
T − h̄T , h − h̄; ḡ)〉 + 〈δ
Sgh

k (C − C̄; ḡ)〉
+〈δ
Saux

k (B − B̄; ḡ)〉

= ε

[
1

2
Tr

(
δ2�k

δh̄T δh̄T
+ RT

k

)−1

∂tRT
k

+1

2
Tr

(
δ2�k

δh̄δh̄
+ Rk

)−1

∂tRk

−Tr

(
δ2�k

δC̄∗δC̄
+ Rgh

k

)−1

∂tRgh
k

+1

2
Tr

(
δ2�k

δ B̄δ B̄
+ Raux

k

)−1

∂tRaux
k + · · ·

]
. (3.3)

Apart from the factor ε, the r.h.s. is identical to the r.h.s. of
the exact RG equation. (The ellipses stand for terms involv-
ing mixed functional derivatives that are present in the exact
equation but are neglected in common approximations.) The
l.h.s. of the identity is the total variation of �k , with k held
fixed, which can be expressed as

δ�k = ε

∫
dd x

[
2ḡμν

δ�k

δḡμν

+ 2hTμν

δ�k

δhTμν

− 2d
δ�k

δh
+ 2Cμ

δ�k

δCμ

]
.

(3.4)

Here and in the following we omit the bars over hTμν and h,
since the argument of �k are always the classical expectation
values and no confusion can arise.

4 The Ward identity and the flow equation

We have arrived at a remarkably simple result: the anomalous
variation in the background scale Ward identity is exactly
the “beta functional” of the theory induced by the coarse-
graining procedure, as expressed by the r.h.s. of the RG equa-
tion:

δε�k = ε ∂t�k , (4.1)

where we recall that the variation on the l.h.s. involves only
the functional arguments of �k and leaves k fixed. Bringing
the r.h.s. to the l.h.s. we obtain

∫
dd x

[
2ḡμν

δ�k

δḡμν

+ 2hTμν

δ�k

δhTμν

− 2d
δ�k

δh
+ 2Cμ

δ�k

δCμ

]

−k
d�k

dk
= 0. (4.2)

This is just the statement that the EAA is invariant under
scalings of the background metric, accompanied by suitable
transformations of the other fields and by a rescaling of the
cutoff k:

δk = −εk. (4.3)

As discussed in [19], (4.2) can be solved using the method
of characteristics. One must have

dḡμν

dλ
= 2ḡμν;

dhTμν

dλ
= 2hTμν ;

dh

dλ
= −2d; dCμ

dλ
= 2Cμ; dk

dλ
= −k, (4.4)

whose solutions are simply

ḡμν(λ) = e2λḡμν(0); hTμν(λ) = e2λhTμν(0);
h(λ) = h(0) − 2d λ ;

Cμ(λ) = e2λCμ(0); k(λ) = e−λk(0), (4.5)

while h⊥, C∗
μ and Bμ are constant. The last relation implies

that λ = −t . Thus the scaling parameter can be identified
with the RG time. The combinations

k̂ = e−h/2dk; ĝμν = eh/d ḡμν; ĥTμν = eh/dhTμν;
h⊥; Ĉμ = eh/dCμ (4.6)

are invariant.2 The solution of the Ward identity is therefore
a functional

�k(h
T
μν, h

⊥, h,C∗
μ,Cμ, Bμ; ḡμν)

= �̂k̂(ĥ
T
μν, h

⊥,C∗
μ, Ĉμ, Bμ; ĝμν). (4.7)

As expected the Ward identity eliminates the dependence of
the EAA on the variable h and on the total volume of the
background metric, replacing it by the dependence on the
total volume of the metric ĝμν . The solution can be written
entirely in terms of quantities that are invariant under con-
stant Weyl rescaling of the background. In particular, if one
specializes to the case when h⊥ = 0, hTμν = 0, C∗

μ = 0,
Cμ = 0, Bμ = 0 one has

�k(h; ḡμν) = �̂k̂(ĝμν). (4.8)

Note that if we set hTμν = 0 and h⊥ = 0, then ĝμν is the
classical value of the full quantum metric; see (2.13).

2 Alternatively one could also define k̂ = V̄ 1/dk, where V̄ is the volume
in the metric ḡμν .
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If we were able to solve the full Ward identities related to
arbitrary deformations of the background, we would obtain
a functional �̂k̂(ĝμν) that would satisfy a flow equation con-
taining its second derivatives with respect to ĝμν . Having
only partly transferred the field dependence from the fluctu-
ation field to ĝμν , we will have a flow equation containing
second derivatives with respect to the remaining fluctuation
fields and second derivatives with respect to those deforma-
tions of ĝμν that have become dynamical as a result of solving
the Ward identity. (In the present case, this is just the overall
scale of ĝμν .) This distinction obviously gets blurred when
one uses the single-metric approximation.

5 Discussion

The main outcome of this paper is the generalization of the
results of [19] for the background scale Ward identity in quan-
tum gravity. Morris was able to show that in six dimensions
the violation of background scale invariance is given exactly
by the r.h.s. of the RG equation. This is reminiscent of the
statement that in a classically scale-invariant quantum field
theory in flat space, such as massless QCD, the violation of
scale invariance is proportional to the beta functions. The
physical meaning of the identity is different in the two cases:
in QCD it is a genuine anomaly, whereas in quantum gravity
the anomalous variation under a change of background can
be absorbed by a change of the fluctuation field h and of the
cutoff k, as we have seen in the preceding section. Neverthe-
less, the two statements are formally the same, and one would
expect such general statements to be true in any dimension.
Indeed we have shown here that this is the case.

To get this result, however, one has to make certain choices
that minimize the breaking of scale invariance. The main dif-
ference with [19] is the use of the exponential parametriza-
tion for the metric (1.3). When the linear split (1.1) is used,
invariance of the full metric requires that the fluctuation field
has a transformation opposite to the one of the background
field, with the exception of the trace that has a mixed transfor-
mation consisting of a homogeneous and an inhomogeneous
term. With the exponential parametrization, the fluctuation
field transforms in the same way as the background met-
ric, with the exception of the trace that transforms purely
by a shift, in much the same way as a dilaton. These trans-
formation rules merely reflect the dimensions of the fields
(when the coordinates are dimensionless and a metric has
given dimension of area) and the remaining choices also
follow the dimensions of each field. The other differences
are in the gauge-fixing and cutoff terms: one has to make
sure that these do not contain dimensionful couplings that
would introduce additional unwanted scale-breaking terms.
Of course, it is unavoidable to break background scale invari-
ance by introducing the cutoff scale k, but the main point

of the present exercise has been to show that if this is the
only source of scale-breaking, its effect is entirely contained
in the RG flow of the couplings. To this effect, in d > 2
we have used a higher-derivative cutoff, such as is used in
higher-derivative gravity, and a “pure” cutoff, which does
not contain any Lagrangian parameter. We stress that with
this gauge fixing we are able to prove invariance of the ghost
action including all ghost interactions. There may be other
procedures that also work well, but these three choices are
sufficient to ensure that the Ward identity does not contain
additional, unnecessary anomalous terms.

The Ward identity can be used to reduce the number of
variables that the effective average action depends upon.
Ultimately one would like to reduce the flow equation for
�k(hμν; ḡμν) to a flow equation for a functional of a sin-
gle field �̂k̂(ĝμν). Reference [19] and the present work are
first steps towards background independence: we have shown
how to eliminate from the RG flow the dependence on a single
real degree of freedom: the overall scale of the background.
This may look like a rather small step, but without it the beta
functions are likely to contain spurious terms. We plan to
investigate this in concrete calculations. The main value of
the present work may lie in restricting the freedom of choice
of parametrization, gauge and cutoff scheme. Equation (4.1)
is an important statement, even if restricted to constant Weyl
transformations: it is expected of any quantum field theory
that is invariant under rescalings of the background metric at
the classical level. One should be wary of using parametriza-
tions and/or cutoff schemes that violate it.
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