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ABSTRACT
We report a quantum Monte Carlo study, on a very simple but nevertheless very instructive model system of four hydrogen atoms,
recently proposed in Gasperich et al. [J. Chem. Phys. 147, 074106 (2017)]. We find that the Jastrow correlated Antisymmetrized
Geminal Power (JAGP) is able to recover most of the correlation energy even when the geometry is symmetric and the hydrogens
lie on the edges of a perfect square. Under such conditions, the diradical character of the molecule ground state prevents a single
determinant Ansatz to achieve an acceptable accuracy, whereas the JAGP performs very well for all geometries. Remarkably, this
is obtained with a similar computational effort. Moreover, we find that the Jastrow factor is fundamental in promoting the correct
resonances among several configurations in the JAGP, which cannot show up in the pure Antisymmetrized Geminal Power (AGP).
We also show the extremely fast convergence of this approach in the extension of the basis set. Remarkably, only the simultaneous
optimization of the Jastrow and the AGP part of our variational Ansatz is able to recover an almost perfect nodal surface, yielding
therefore state of the art energies, almost converged in the complete basis set limit, when the so called diffusion Monte Carlo is
applied.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5081933

I. INTRODUCTION

In recent years, much progress has been made in the def-
inition of variational wave functions (WFs) capable to describe
rather accurately the electron correlation. For this purpose,
two strategies have been employed: (i) the use of multi-
determinant wave functions2–4 and (ii) exploiting the large
variational freedom that can be achieved by applying a cor-
relation term, dubbed Jastrow factor (JF), to a generic pairing
function.5–7 Even if the latter approach cannot be system-
atically improved, it may open the way to deal with large
systems, thanks to the moderate scaling with the number
of electrons. Indeed, the corresponding correlated WF can
be simulated efficiently within a statistical method, based on
quantum Monte Carlo (QMC).8 Thanks to well established

advances9,10 in this field, it is possible nowadays to com-
pute the total energy of a given correlated Ansatz and to
optimize several variational parameters with a computational
effort scaling at most with the fourth power of the number of
electrons.

A good variational Ansatz allows a good description of
the ground state by energy optimization. Moreover, an even
better characterization can be obtained by applying the so
called diffusion Monte Carlo (DMC) method with the fixed
node approximation (FNA).11,12 Within this projection method,
it is possible to obtain the lowest energy state constrained to
have the same signs of a chosen trial WF, in the configura-
tion space where electron positions and spins are given. The
connected regions of space with the same sign are called nodal
pockets and the surface determining these pockets, satisfying
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WF = 0, the nodal surface. Usually, the energy optimization,
implemented here, has been shown to be very successful to
determine the nodal surface of the WF as we will also show
in the present study. In this work, we have used a particular
method for implementing the FNA which is called lattice regu-
larized diffusion Monte Carlo (LRDMC).13 While usually a short
imaginary time approximation is applied to the propagator for
its finite time evaluation, in the LRDMC, a lattice regulariza-
tion is employed in the physical space by using a finite mesh
approximation.14

A widely used Ansatz for the WF is the single Slater deter-
minant (SD). The SD can be taken directly from Hartree-Fock
(HF) or density functional theory (DFT) calculations without
further optimizations. Unfortunately, this approach can fail to
describe the exact ground state WF and its nodes, and there-
fore, a more complex procedure is often required. Depending
on the problem, it may be necessary to further optimize the
SD parameters or to change the Ansatz. Instead of the SD, it is
possible to consider more advanced WF using multidetermi-
nant Ansätze within, for instance, Full Configuration Interac-
tion (FCI) or Complete Active Space CAS (n, m), with n active
electrons in m orbitals, or a more accurate single determinant
Geminal WF antisymmetrized geminal power (AGP).5,15–19 It is
well known that it is possible to improve considerably the cor-
relation energy by multiplying a given Ansatz by a JF. The WF
built with an AGP and a JF is indicated as Jastrow correlated
antisymmetrized geminal power (JAGP), while the SD and the
JF are indicated as Jastrow Slater Determinant (JSD). Once the
Ansatz of the WF is given, it is also important to choose an
appropriate atomic basis set. Enlarging the basis set allows us
to be closer to the complete basis set (CBS) limit, but at the
same time increases the number of variational parameters. It
is therefore important to have a compact description of the
WF by using an atomic basis set as small as possible.

Even relatively simple systems can hide pitfalls that can
be very difficult to solve. The case of the (H2)2, a system
of two diatomic molecules of hydrogen at equilibrium dis-
tance, first introduced in QMC literature by Anderson,20,21
is emblematic from this point of view: as recently shown by
Gasperich et al.,1 a single SD can only give a very poor descrip-
tion of this system when it approaches the square geometry.
This is due to the degeneracy of the frontier orbitals in the
square limit that a single SD is not able to reproduce. In this
paper, we show that a single AGP determinant enriched with
the JF correlator allows a perfect description of the ground
state.

The simplicity of this model system allows us to study
the role of the optimization in determining an accurate nodal
surface because, by repeating several times the optimiza-
tion, we can be safely confident that the absolute minimum
energy WF is obtained. On the other hand, we can also ver-
ify that our stochastic optimization22 works also when we
remove the Jastrow from our Ansatz, providing the lowest
energy AGP, clearly with much larger computational effort
compared to deterministic methods that, to our knowledge,
are not available for the AGP. This tool has been proved to
be very useful in this work because we are able to show that
the use of a pure AGP determinant (without any JF) can give

rise not only to a poor description of the electronic corre-
lation but also a qualitatively wrong picture of the chemical
bond.

Moreover, similarly to what found in the benchmark
study of the hydrogen chain,23 the fulfillment of the electron-
electron and electron-ion cusp conditions, obtained with a
suitably chosen JF, makes the convergence to the CBS par-
ticularly fast and efficient, requiring only a double zeta gaus-
sian basis set (cc-pVDZ) for the accurate description of the
corresponding nodal surface. Remarkably, the DMC energies
obtained with the double zeta JAGP trial WF are better than
the ones obtained with the CAS(2,2) and CAS(4,4) and also
with the full configuration interaction (FCI) calculated with a
quadruple zeta basis.1

II. WAVE FUNCTIONS AND PROCEDURE
For this study, we used WFs given by the product of a

determinant, SD or AGP, and a JF, optimized with standard
stochastic techniques.13 For all the calculations, we used the
TurboRVB package.24

The value of the WF for an electronic configuration X is
given as

〈x |Ψ〉 = Ψ(X) = J(X) × Ψdet(X). (1)

We will first describe the determinant part of the WF, moving
then to the description of the JF used.

In TurboRVB, we use an atom-centered basis set of Norb
orbitals

{
φI,ν (r)

}
, where I and ν indicate the νth orbital cen-

tered on the Ith atom at the position RI. For this study, stan-
dard gaussian basis sets are chosen for the determinant, with
orbital types

φI,ν (r) = e−
|r−RI |

2

Zν Yνl,m, (2)

where Zν is a numerical coefficient that describes how diffuse
the atomic orbital is around the atom, while Yνl,m is the spheri-
cal harmonic function relative to the orbital type of ν. For the
sake of compactness, one can enumerate the basis as

{
φµ (r)

}

combining the indices ν and I in a single index µ for a lighter
notation. The use of a double zeta basis indicates that for the
description of the 1s orbital of the hydrogen, we are using the
s-wave and the p-wave orbitals, while for the triple zeta, we
are also using d-wave orbitals.

In order to introduce the AGP WF, we first define a singlet
wavefunction of an electron pair

ψ2(r1σ1, r2σ2) =
1
√

2
( | ↑↓〉 − | ↓↑〉)f(r1, r2), (3)

where f is the so called geminal function, which is assumed to
be symmetric, namely, f(r1, r2) = f(r2, r1), for a perfect singlet.
The geminal function f is expanded as

f(r1, r2) =
∑
k,l

λk,lφk(r1)φl(r2). (4)

The generalization to a many electron WF requires an
antisymmetrization of N/2 electron pairs of the form given in
Eq. (3). The value of the WF for a given electronic configuration
is given by the determinant of the matrix F
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〈x |AGP〉 = det F, (5)

where the N/2 × N/2 matrix F is defined as Fi ,j = f(ri, rj),
with the row index i corresponding to the up electrons and
the column index j to the down ones. In the case in which
N↑ , N↓, we assume without loss of generality that N↑ > N↓. If it
is then necessary, we add N↑ − N↓ columns to the matrix, cor-
responding to the unpaired orbitals written in the same basis
set. Thus, the matrix is a N↑ ×N↑ square matrix and its determi-
nant can be evaluated, yielding also in this case the value of the
AGP.

For our calculations, we often initialize the AGP or the
SD WFs starting from a DFT calculation,22 within the LDA
approximation. Thus, it is important to translate without loss
of information the SD into an AGP.

A SD is characterized by its set of MOs

Φ
mol
α (r) =

Norb∑
i=1

Pµ,αφµ (r), (6)

which uniquely define it.
We can recast the SD into an AGP whose matrix F is diag-

onal in the basis of the MOs. The obtained geminal function
can be written as

f(r, r′) =
∑
α

λ̄α,αΦ
mol
α (r)Φmol

α (r′), (7)

where the diagonal form of the matrix λ̄ is ensured by the
orthogonality of the MOs. If we substitute the expression (6)
into (7), we can have the description of the pairing function in
the originally chosen basis set

λ = P↑λ̄PT
↓

. (8)

In this way, the SD is translated into an AGP of the same form
given in Eq. (5), where the geminal functions have the same
expression of Eq. (4) once the matrix (8) is substituted into
Eq. (7). The SD written in this way appears as an AGP, but for
each configuration x, the WF value is unchanged.

When we initialize the WF from a set of MOs, we have
the same value for the AGP and the SD and the differences
between the Ansätze can be seen only after the energy opti-
mization. The AGP always provides an energy lower than the
SD one, due to the larger variational freedom. Indeed, in the
case of the SD, the matrix λ is constrained to have only N/2
orthogonal MOs,25 corresponding therefore to a number of
variational parameters much smaller than the one required for
the AGP.

The two different WFs that we have introduced do not
describe well the correlation between the electrons. Within
QMC, it is easy to improve the quality of the WF, by multiplying
the SD and the AGP with an exponential JF. This factor has also
another important effect, as it speeds up the convergence to
the CBS by improving the description of the atomic core, and
thus not requiring large Zν values in the basis set. In particular,
our JF is in the form

J(X) = eUei+Uee , (9)

where Uei is a single body term dealing explicitly with the
electron-ion interaction and Uee is a many-body term to take

into account the electronic correlation. The JF is particu-
larly useful because, with an appropriate choice, it is possi-
ble to satisfy exactly the electron-electron and electron-ion
cusp conditions of the many-body WF, a consequence of the
Coulomb 1/r singularity at a short distance. The single body
term is indeed written in the form

Uei =

#el∑
i=1

uei(ri), (10)

with uei being

uei(ri) = −
#ions∑
I=1

ZI
1 − exp(bei |ri − RI |)

bei
, (11)

where ZI is the atomic number of the atom I and bei is a
variational parameter. The electron-electron term is written
as

Uee =
∑
i<j

uee(ri, rj), (12)

where the sum is extended over the pairs of different electrons
and where

uee(ri, rj) =
|ri − rj |

2(1 + bee |ri − rj |)
+
∑
k,l

gk,lφ̄k(ri)φ̄l(rj). (13)

The first term in Eq. (13) deals explicitly with the cusp condi-
tions of the electron-electron potential with bee as variational
parameter, and the second term instead takes explicitly into
account the correlation via a pairing function in the same form
of Eq. (4) with the matrix g as variational parameters. Here, the
sum over k and l is extended over a basis set similar to the one
used for the determinant, namely, determined by atomic-like
wave functions of the form

φ̄J,µ (r) = e−
|r−RJ |
Zµ Yµl,m, (14)

with µ denoting the orbital type and RJ denoting the nuclear
positions of the atoms considered; as already done in Eq. (13),
we combine µ and J in a single index.

The geometry of the system studied has a fixed bond dis-
tance along the y direction ry = 2.4 a.u. This value gives the
lowest energy result for the square geometry.26 As sketched
in Fig. 1, we study the system as a function of the distance rx
between the two vertical molecules.

For the optimization of the JAGP and JSD WFs, we used
the same procedure. We consider two types of initializations
that we denote in the following by OPT rx > ry or OPTrx
< ry, to indicate that the tetragonal symmetry is broken. In
the first (second) case, we take rx = 4 a.u. (rx = 1.8 a.u.) and
perform a DFT calculation for the initial Slater determinant,
while the Jastrow is all zero but the initial one and two body
parameters are set to a non-vanishing value bee = 1/2 and
bei = 1.3. We initially optimize only the JF and we proceed
with the full optimization of the AGP or SD with the JF. Then
we move the atoms to a new position close to the original
one maintaining the values of the variational parameters. If
the new solution is reasonably close to the previous one, the
stochastic optimization drives the WF to its new minimum. We
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FIG. 1. Stylized picture of the system. While ry is kept constant for all the calcula-
tions at a distance equal to 2.4 a.u., the distance rx is varied for different system
shapes.

iterated this procedure to obtain the WFs at all the rx distances
for the JAGP and JSD. As we will discuss more extensively later,
the JAGP optimization does not depend much on the starting
WF, which is instead crucial for the JSD. In this latter case,
the optimization procedure determines completely different
results depending on the initial geometry, when we get close
to the symmetric square case.

For the optimization of the AGP without the JF, we fol-
lowed two different procedures yielding the same results. In
one case, we started for every geometry from the correspond-
ing optimized JAGP WF: we set the JF to 1 and we optimized
the AGP from there. In the second case, we have used the
same procedure adopted for the JAGP and JSD cases and
obtained consistent energy values, validating the optimiza-
tion procedure even in this difficult case without the Jastrow
factor.

III. RESULTS AND DISCUSSION
The variational energies for the considered WFs are vis-

ible in Fig. 2 and reported in Table I. As shown in Fig. 2,
the JSD values are reasonably accurate when the system is
far from the square geometry, but very poor when rx ≈ ry.
We notice that for the JSD, the starting point is fundamental
and the optimization result can significantly differ depend-
ing on the two different initializations. A particularly evi-
dent effect is the crossing of the JSD energy dispersions in
Fig. 2. As expected, this problem does not affect the JAGP
WF that shows the correct profile because close to the
square geometry contains implicitly the two important Slater
determinants with strong bonds either in the x or in the y
direction. The optimizations of the JAGP both from OPTrx > ry
and OPTrx < ry lead exactly to the same result. The quali-
tative difference between the two Ansätze is clearly shown
in Fig. 3. The MOs try to localize the charge between two
pairs of atoms to form two H2 molecules. In particular, the
JSD binds the atoms that are at smaller distances in the ini-
tial geometry: if we consider the OPTrx > ry case, we obtain a
higher charge density along the y direction, while if we start
from the OPTrx < ry case, a higher charge along the x direc-
tion shows up. The JAGP, instead, can resonate between these
two configurations and catch the resonance valence bond

FIG. 2. Comparison between the variational energies of the different WFs. In
orange, the energies of the JSD starting from the calculation at large rx , in red,
the ones starting from the small rx , while in green, the JAGP variational energies
are reported.

(RVB)27 behaviour expected for the ground state of the square
geometry.

The JAGP result is not only good at the variational level,
but it provides also particularly accurate nodal surfaces for
the DMC calculations. Indeed, as we can notice from Fig. 4 and
from Table II, the DMC energies calculated using the nodes of
the JAGP (cc-pVDZ) are lower than the ones calculated with
the multi-determinant WF CAS(4,4), and FCI with the quadru-
ple zeta basis.1 This shows that even with a small basis set, the
JAGP leads, in this controlled case, to almost optimal nodes
and, by consequence, very accurate DMC energies. This is
indeed remarkable, considering also that other more standard
methods suffer not only for poor accuracy but also for the too
large extension of the basis set. It also worth noticing that we
obtain a higher gain in the region rx ≈ ry where the RVB picture
is more relevant.

Thanks to the simplicity of the H4 molecule, and the lim-
ited number of variational parameters involved in our WFs,
we can use this model to study the genuine AGP without any
JF. This case is particularly difficult with our stochastic opti-
mization method because the statistical fluctuations of the
energy are much larger. In principle, the AGP should be able
to describe the static correlation of this molecule also without
JF, with the two main contributions in the WF shown pictori-
ally in Fig. 3(a). At the variational level, a much worse energy

TABLE I. Variational energies for different optimized WFs. The basis set used for
the AGP and SD is indicated within parentheses. We show one point for each case:
rx = ry , rx < ry , and rx > ry . All the energies are expressed in Hartree.

rx JSD (cc-pVDZ) JAGP (cc-pVDZ) JAGP (cc-pVTZ)

1.80 −2.1909 ± 0.0003 −2.1957 ± 0.0004 −2.1953 ± 0.0003
2.40 −2.0694 ± 0.0004 −2.1075 ± 0.0004 −2.1084 ± 0.0003
3.00 −2.1435 ± 0.0003 −2.1491 ± 0.0003 −2.1504 ± 0.0003
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FIG. 3. Density plot on the xy plane of
the systems for the square geometry for
the JAGP and JS WFs. In panel (a), the
density obtained with the JAGP WF, in
panel (b), the density of the JSD opti-
mized from rx > ry , while in panel (c),
the one of the JSD from rx < ry .

for the AGP WF is expected because the correlation described
by the JF is very important. However, it is very interesting to
observe that the DMC results are significantly different with

FIG. 4. Comparison between the DMC energy calculated using the node of the
JAGP (cc-pVDZ) and the FCI (cc-pVQZ) calculation. On this scale, the error bars
of the DMC calculation are not visible.

(JAGP) or without (AGP) JF, even considering that the JF > 0
cannot change the signs of the WF, and only the optimization
of the AGP in the presence of the JF leads to a very accurate
nodal surface. In Fig. 5(a), we can see that the variational ener-
gies of the AGP WF are indeed considerably higher compared
to the JAGP ones. The smoothness of the curve and the repro-
ducibility of the results indicate that the optimization is not
stuck in spurious local minima. Instead the DMC results shown
in Fig. 5(b) indicate an unphysical jump of the energy between
two different phases. When rx ≥ ry, the AGP is able to give very
good energies that differ only few mH from the JAGP ones.
Instead, when rx < ry, we can see a clear jump in the energy
indicating that the nodal surface of the WF is not correctly
described by the AGP. However, also in this regime, the nodes
are still better than the ones provided by the JSD WF, with
the energy values between the ones of the JSD and the JAGP.

TABLE II. Difference between the energies calculated with the DMC performed using
the nodes of the JAGP, the ones of the CAS(4,4) and the FCI.1 All the energies are
expressed in Hartree.

rx JAGP CAS(4,4) FCI

2.188 −2.1307 ± 0.0001 −2.130 33 ± 0.000 10 −2.1297
2.400 −2.1125 ± 0.0002 −2.111 93 ± 0.000 05 −2.1114
2.646 −2.1257 ± 0.0001 −2.125 58 ± 0.000 03 −2.1248
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FIG. 5. AGP and JAGP energies. In panel (a), we compare the values at the VMC level, while in panel (b), the corresponding DMC energies, within FNA, are shown.

In order to check that this transition was not due to some
optimization error, we have calculated the WFs for rx < ry
starting from rx = ry, obtaining exactly the same Variational
Monte Carlo (VMC) and DMC results. Qualitatively speaking,
when the AGP is optimized in the presence of the JF, it can
resonate between the correct configurations by avoiding dou-
ble occupancies of singlet electron pairs,27,28 which are ener-
getically unfavorable. In some sense, the Jastrow correlation
drives the optimization of the AGP toward the correct ground
state energy and nodal surface.

Finally, as we can see from Table I, the JAGP is almost con-
verged to the CBS limit with only the double zeta cc-pVDZ
basis. The differences in energy with the cc-pVTZ are much
below 1 mH/atom. This fast convergence is due to the term
in Eq. (10) that fulfills the electron-ion cusp conditions and
allows us to use a very small basis set to describe the sys-
tem. In the AGP, the number of variational parameters scales
with the square of the number of elements of the basis. It is
therefore very important to reach a very accurate description
with the smallest possible basis set. This can have a very dra-
matic impact for large systems where the dimension of the
basis set is one of the most important bottlenecks of our JAGP
calculations.

IV. CONCLUSION
In this work, we have applied state of the art QMC

techniques to a very simple system that has been used for
benchmarking their accuracy in describing the strong elec-
tron correlations. We have shown that the use of the JAGP
wave function is not only qualitatively correct but allows an
almost exact description of the ground state with a compu-
tational effort similar to the widely used JSD, which miser-
ably fails in this system, even within the more accurate DMC
approach. We have also shown that the full optimization of our
JAGP Ansatz guarantees a very fast convergence in the basis
set so that no kind of extrapolation is necessary for almost

converged results in the CBS limit. Considering the above
remarkable properties of our JAGP Ansatz, the extension to
larger systems has been already employed in several cases,
but its accuracy has not been deeply investigated. Thanks
to the simplicity of this model system, we were also able to
prove that the AGP alone, without the use of a JF, miserably
fails, leading not only to inaccurate DMC energies but quali-
tatively wrong, as a discontinuity of the energy landscape as
a function of the atomic positions was reported. In this case,
the wrong nodal surface determined by the AGP for small rx
was not detectable at the VMC level because the optimized
VMC energy was indeed a smooth and continuous function
of rx, as it should be from general grounds. This example
leads us to conclude that the AGP optimization, in princi-
ple, possible with a very cheap and deterministic algorithm
similar to the HF self-consistent method, is completely use-
less, as it can lead to spurious and qualitatively wrong results,
in this sense much worse than simpler HF or DFT calcula-
tions. This work clearly indicates that instead the JAGP Ansatz
opens the way to tackle even more complicated systems,
when standard quantum chemistry methods are too much
expensive and the single determinant approach does not work
well.
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