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Abstract

We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad
bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can
be solved exactly, and will help us to study the interplay between nonadiabatic transitions and
dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess
energy (the average value of the Hamiltonian) as a measure of the deviation from reaching the final
target ground state. We compute the excess energy in a variety of different situations, where the nature
of the bath and the Hamiltonian is modified. We find robust evidence of the fact that an optimal
working time for the quantum annealing protocol emerges as a result of the competition between the
nonadiabatic effects and the dissipative processes. We compare these results with the matrix-product-
operator simulations of an Ising system and show that the phenomenology we found also applies for
this more realistic case.

1. Introduction

Recent experimental advances in the field of quantum technologies have drastically enhanced our capability to
control the quantum coherent dynamics of many-body systems in a variety of physical systems, ranging from
atomic and molecular optics, to trapped ions and cavity/ circuit quantum electrodynamics. This progress has
made real the possibility of experimentally realising quantum simulators [ 1] as well as implementing the first
quantum algorithms 2, 3].

Together with the progress in implementing quantum gates and concatenating them, i.e. by realising
standard circuit computation [4], recently, adiabatic quantum computation (AQC) [5] and quantum annealing
[6] have received a tremendous boost thanks to the experiments performed with D-wave machines [7—10]. The
strategy underlying adiabatic quantum computation [5, 6] is based on the fact that any quantum algorithm can
be formulated in terms of identifying the global minimum (ground state) of a given function (Hamiltonian) over
aset of many local minima. On the experimental side, quantum effects were seen to survive in eight [11, 12],
sixteen [13] and even in more than one hundred qubits [14]. Whether these machines already hold the so-called
‘quantum supremacy’ or not at present is still under debate [ 15, 16]. However, it is clearly very important to
understand the actual mode of operation of these adiabatic computers, in order to understand the limit of their
performance and to push them forward. A key problem in this framework is to understand the role of dissipation
and decoherence on adiabatic quantum computers. This question amounts to understanding the key features
that control the adiabatic evolution of a many-body open quantum system.

Let us first state the general problem. Suppose that to be able to follow the quantum dynamics of an
appropriate time-dependent Hamiltonian:

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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H) =[1 = f(O)] Hin + f(t) Hin,  t € [ins thnl> (D

f(#) being a generic function of time, with f (#i,) = Oand f (ts,) = 1. The Hamiltonian Hj, sets the initial
condition as its ground state, while the sought solution to the problem is entailed in the ground state of Hg,. If
the control time is much larger than the typical inverse gap between the ground state and the first excited state,
the system will adiabatically follow its instantaneous ground state |t (¢)). Reaching the ground state of Hg, by
adiabatic evolution is the way AQC works [5, 6]. Aslong as the evolution is unitary, the only source of errors is
due to excitations generated by nonadiabatic effects in the dynamical evolution. The complexity of the adiabatic
algorithms is reflected in the scaling of the minimum gap with the number of qubits. In general, AQC also
requires a special form of f(#) to gain a speed-up as compared to the classical algorithms, see [17] for a prominent
example of an adiabatic Grover search and [ 18] for a review. Moreover, optimally controlled ramps can provide
additional speed-ups [19]. An alternative protocol, which is more general than equation (1), would incorporate
an extra (possibly nonlinear) term, such as f (#)[1 — f (#)] Hg, with Hg being a properly chosen Hamiltonian.
This may have beneficial effects on the minimum gap of the system, and therefore greatly enhance the AQC
performance [20].

Itis, however, clear that especially for long annealing times, another important source of defects is related to
the incoherent fluctuations induced by finite temperature, or more in general by the unavoidable coupling of a
system to some external environment. In this case, the quantum state of the system will be mixed, described by a
density matrix p(t), satisfying a dynamical equation of the form:

9p
ot

The first term on the right-hand side describes the coherent unitary time evolution, which is ruled by a many-
body time-varying Hamiltonian H(f), according to the quantum annealing protocol (1). The second term on the
right-hand side of equation (2) accounts for the coupling to the environment, and its form will depend on the
nature of noise and dissipation as well as the form of the coupling between the many-body system and the
external bath. The dissipator is a completely positive trace preserving map, and, in general, it drives the system to
afixed point, which is a steady state or a steady-state manifold (if the fixed point is not unique). As such, it
induces a decay in the system towards a steady state. Note that the differential form of equation (2) generally
requires a Markovian bath. Understanding the effect of dissipation on AQC amounts to quantifying, in some
way, how the state of the system deviates from the final ground state, because of the presence of the extra term
D[p]in equation (2).

Does the presence of the environment facilitate the reaching of the final ground state or is it detrimental to
the AQC? Itis clear that there cannot be a unique answer to this question: the deviations from the unitary case
may depend strongly on the form of D[ p] in relation to the type of evolution imposed by H(#). This variety of
possible answers is reflected in the wide spectrum of cases already considered in the literature. Within the
plethora of possible scenarios, it is, however, important to establish some general trends that may serve as
guidelines in going deeper into this formidable problem.

This type of analysis was first performed [21] in the context of the Kibble—Zurek (KZ) mechanism for defect
formation [22, 23]. The KZ mechanism is related to the fact that when crossing a gapless critical point of H(#), no
matter how slow the variation of the Hamiltonian is in time, the adiabatic theorem is violated and a finite density
of defects will be produced. More than thirty years ago, Kibble put forward a scaling argument aimed at
predicting the size and number of such defects [22], while the mechanism yielding the correct scaling was found
later by Zurek [23], roughly dividing the dynamics into either adiabatic or impulsive, according to the distance
from the critical point. The KZ mechanism has been tested in a variety of quantum toy models at zero
temperature, including ordered and disordered systems, as well as for crossing isolated or extended critical
regions (see, e.g. [24] for a review). When the annealing velocity is progressively increased, crossover behaviour
sets in between the KZ scaling and the generation of excitations due to faster quenches, where the dynamics can
be described by the underlying classical model [25]. The proliferation of defects due to Landau—Zener
transitions is intimately related to the occurrence of errors in the AQC, while in the unitary case, the number of
defects decreases upon increasing the annealing time, and the environment will be dominant for long annealing
times. In this regime, one expects the defect formation to be almost independent of the annealing protocol. This
picture was confirmed and detailed in [21], where the scaling in the crossover between the KZ-dominated
regime and the environment-dominated regime was also found. In the presence of spatially correlated noise,
additional intermediate regimes emerge due to a comparison of the correlation length of the noise and the
correlation length of the system [26].

The role of temperature and external noise was further considered in the context of the AQC in several
papers, showing that in some cases it may be beneficial to reach the target ground state. Work has been done on
comparing the AQC and classical approaches using thermal hopping [27], on the use of quantum diffusion,
showing better performance than closed-system quantum annealing [28], and on the crucial role of noise-
induced thermalisation in the AQC, which can outperform simulated annealing [29]. In addition, the relation of
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thermally assisted tunnelling to the quantum Monte Carlo has been studied in [30], and the effect of the noise of
athermal environment [31] as well as decoherence [32] have been studied as well.

It should be kept in mind that the adiabatic dynamics of a dissipative many-body system is linked to the
understanding of the Landau—Zener problem of a two-level system coupled to an environment, which is an
extensively studied problem in many different areas [33—38].

The problem of describing the adiabatic dynamics of a many-body open quantum system is a formidable
problem and approximations are necessary. It is, however, of fundamental importance to have some nontrivial
examples, where the outcomes of the analysis are not hampered by any approximation. The aim of this work is to
present some simple, yet nontrivial examples where the adiabatic dynamics can be analysed in full detail. Most
importantly, the phenomenology that we will extract is related to the dynamics of certain spin systems that are
very close to the relevant implementations of the AQC. This means that the exactly solvable models that we
consider here may be used as a very useful benchmark to test important approximations in more complex cases.

The bath we will deal with is Markovian. This means that the dissipative term in equation (2) can be written
in the Lindblad form

Dlp] = 3 a(LopLy = 3o LiLa}), 3

where L, are the suitable local Lindblad operators that describe the environment (to be defined later) and &, are
the corresponding couplings, which have to be positive for a Markovian Lindblad master equation. The choice
oflocal Lindblad operators that we are going to study does not lead to a thermal state in the steady state. We will
dwell on this point in more detail later.

We will consider quadratic fermionic models, whose Lindblad dynamics can be worked out analytically
[39-41] for different types of local system-bath coupling. The dynamics of this class of models can be studied
exactly, and it will help us to clarify several features of the interplay between nonadiabatic effects and incoherent
transitions due to the external bath. In order to understand to what extent the results we find can be applied to
more realistic cases, later we will consider a spin-1/2 one-dimensional Ising model. In such a case, for
incoherent spin decay/pumping, the master equation cannot be mapped into local fermionic operators, and
therefore we will resort to a numerical study based on a matrix product operator (MPO) representation of the
density matrix [42, 43]. As we will discuss in more detail in the rest of the paper, the overall phenomenology
remains unchanged, thus reinforcing the fact that the exactly solvable models introduced here can be very useful
benchmarks. We should remember that, in general, the thermodynamic properties of low-dimensional systems
can be strongly affected by the dimensionality: for example, thermal fluctuations wash out the quantum
fluctuations of finite-temperature systems in one dimension, but not anymore in two dimensions. Furthermore,
methods that are very powerful in one dimension, such as the Jordan—Wigner transformation, are not applicable
in higher dimensions. However, in the special case of free fermions, the system’s thermodynamics is not
expected to change with the dimensionality.

In all the situations we have addressed, we find robust evidence of the fact that an optimal working time for
the quantum annealing protocol emerges as a result of the competition between the nonadiabatic effects and the
dissipative processes. There is an optimal time for which the final state is closest to the true final ground state.
The scaling of such an optimal time (and that of the corresponding generated defects) can be accurately
predicted by assuming that the number of defects produced during the time evolution is a sum of two
contributions due to nonadiabaticity and dissipation/decoherence.

For longer working times, it may happen that depending on the type of system-bath coupling, an
overshooting point sets in, where the density of the generated defects is larger than that for an infinitely slow
annealing, which would adiabatically drive the system through the instantaneous steady state. While this kind of
behaviour cannot appear in the unitary scenario, where defect production is monotonically nonincreasing with
the annealing speed, in the system-bath scenario this can emerge even for small systems, eventually being related
to the spectral structure of the Liouvillian and not necessarily to the many-body characteristics.

The paper is organised as follows. In section 2 we define the Hamiltonian models, the various dissipation
schemes, and the annealing problem under investigation. We then study the departure from the instantaneous
ground state, in the presence of dissipative processes which may cause decay or dephasing, both for a
translationally invariant free-fermion model 3, and for an Ising spin chain (section 4). We end with a discussion
of our findings and with the concluding remarks in section 5. Technical details on the calculations for the
quadratic fermionic model are provided in the appendix.

2. Adiabatic dynamics with local dissipation: from Ising systems to fermion chains

One of the simplest (and exactly solvable) models exhibiting a quantum phase transition is the one-dimensional
Ising chain [44]. This is defined by the Hamiltonian

3
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H(t) = -] olot, — T(OY ok, @)

where o} (o« = x, y, z) are the spin-1/2 Pauli operators for the nth spin of the chain, while Jand I'(¢) are,
respectively, the coupling strength between neighbouring spins and the transverse magnetic field. We assume
periodic boundary conditions, in such a way as to preserve the translational invariance of the model. We will also
work in units of Z = 1and set the energy scale by fixing ] = 1.

It is possible to realise quantum annealing in the Ising model by tuning the parameter I'(¢) in time according
to alinear ramping, as for example:

I't)=—t/7, for te€ (—,0], (5)

where 7is related to the ramping speed. The choice of (5) ensures that during the annealing procedure, the
system will encounter a critical point in which the ground-state energy gap closes and defects will start to appear.
Duality arguments [45] show that the phase transition occurs at I = 1. The system is driven from a
paramagnetic phase, where all the spins are aligned along the field direction z (i.e. the ground state of the initial
Hamiltonian H (t;,) o< =Y, 0%, since I'(t;) = +00), to a doubly degenerate ferromagnetic phase, where the
spins are all pointing along the coupling direction x (i.e. the ground state of the final Hamiltonian

H(tgn) = =X, 05051, since I'(tg,) = 0).

Several papers have already addressed the KZ scaling of defects with 7in the paradigmatic Ising model, both
for the clean system [46, 47] and for the disordered system [48, 49]. Here we are going to add the effect of the
coupling to an external environment, modelled through a master equation of the form in equation (2).

To retain analytic solvability of the full open-system problem [39, 40], we will, however, start from a mapped
version of the Ising chain (4) into a free-fermion model. The latter can be achieved by employing a Jordan—
Wigner transformation (JWT), which maps the spin operators in terms of spinless fermions:

o, = exp (iﬂ' > c;cm]cn, (6)

m<n

+

where o;; = %(0’2 + io?), while ¢, () denotes the fermionic annihilation (creation) operator on site 1, obeying

the anticommutation relations {c,, c,} = Omyms {€m» €n} = 0. The resulting Hamiltonian for an Ising chain of
length L is quadratic in such operators and reads:

H(t) = Y[ e Amn(®) €0 + 3¢ Bun ¢ + Hee) |, )
m,n
where A, B arerespectively asymmetric and an antisymmetric L x L matrix whose sole nonzero elements are
Aun() = =T®), Apns1 = Aut1n = —J/2, Byunt1 = —Bui1,n = —J /2. To enforce periodic boundary con-
ditions, the following matrix elements are nonzero as well: A; ; = A;; = (—1)™]/2and
B = —By; = (—1)™] /2, where (—1)™ denotes the parity of the number of fermions Ny = 3°, ¢, ¢, which
commutes with H. The Hamiltonian (7) can be exactly diagonalised using a Bogolibuov transformation [50, 51].
In the following, we will completely relax the requirement on fermion-parity-dependent boundary

conditions, and we simply assume that antiperiodic boundary conditions for the fermions are always enforced.
This assumption is perfectly justified for a purely coherent evolution, where the fermion parity is conserved and
the initial ground state has an even number of fermions. The reason for enforcing the requirement, even when
considering open-system adiabatic dynamics is that, as explained below, our Lindblad operators change the
fermion parity, and it would be impossible to solve the problem by using parity-dependent boundary
conditions. In more detail, we will study below the adiabatic dynamics of H(f) under the action of three different
types of memoryless local environments. We model them in such a way that the Lindbladian (3)is a sum of
terms that acts uniformly (k, = x, V1) oneach site n of the chain:

(1) L,(ll) = C,I pumping mechanism, (8)
(ii) L,§2> =, decaying mechanism, )
(iii) Lf) = C,I ¢,  dephasing mechanism. (10)

Note that while the fermionic dephasing environment (10) can be directly mapped into the dephasing
environment of spins, since there is direct local mapping ¢,/ ¢, — %(Uﬁ + 1), the same is not true for decay and

pumping. Indeed, when mapping from a spin operator o, (¢}) to a fermionic operator ¢, (c,)), the Jordan—
Wigner transformation (6) includes a nonlocal operator (string). We should stress that the naming of these
Lindblad operators has been chosen with respect to their action on a system with alocal, diagonal Hamiltonian,
and not with respect to their actual effect on the system that we are studying. The choice of these specific
Lindblad operators is motivated by the possibility of studying—in an essentially exact way—the competition
between the unitary dynamics and dissipative effects, focusing on features that do not depend qualitatively on
the form of the coupling to the environment.
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In the next sections we will first address the fermionic model analytically (7) with the dissipation provided by
Lindblad terms as in (9)—(10), without making any reference to the mapping with spins. The effect of the
nonlocal part of the JWT will only be discussed in section 4, where we will study the Ising model numerically (4)
with a spin-decay mechanism provided by L{!” = ¢, which generalises equation (9) to spins. We restate that
this choice of local Lindblad operators does not lead to thermalisation in the steady state, as for this purpose
nonlocal terms would be required. However, they do cover a special interest since in several experimental
implementations, such as circuit QED, cold-atom settings or trapped ions, this kind of local damping is the
relevant one.

In order to quantify the loss of adiabaticity during the annealing protocol, originating both from the closure
of the Hamiltonian gap and from the dissipative processes, we are going to study the excess energy ¢ per site, at
the end of annealing. The excess energy at a given time t expresses the difference between the instantaneous
energy during the annealing, E(t) = Tr [H (¢) p(t)], where p(t) is the solution of the master equation (2) at
time £, and the ground-state energy Eo(t) = Tr[H (¢)|1o(¢)) (0o (¢)|] of the instantaneous Hamiltonian system
described by H(z):

e(®) = %{TI[H(I‘) p(O] = (Po(OH (1) [1o(D)) }. an

Using the aforementioned Bogoliubov transformation, the second term of equation (11) can be computed
straightforwardly, while the first term E(f) is nontrivial (see the appendix). For the Ising spin system we will
resort to a fully numerical MPO approach. We point out that a related quantity of interest is the density of
defects V' = izn (1 — o}y o5, 1), which, in the case of ordered chains and at the end of the annealing, is
equivalent to the excess energy ¢ (0), apart from the trivial constants.

3. Free-fermionic system

We first analyse a fermionic system described by the Hamiltonian in equation (7), where antiperiodic boundary
conditions are imposed. A Fourier transform drastically helps in the diagonalisation of the unitary problem,
since the different momentum modes decouple (see appendix A). Note that for the sake of simplicity, here we
only consider one-dimensional systems, but our analysis of fermions can be easily extended to larger
dimensionalities, since a larger dimension will affect calculations only by changing the Brillouin zone.

Let us concentrate on the case in which each lattice site is coupled to some external bath through a pumping
mechanism, as in equation (8). The master equation (2) during the annealing protocol can be easily integrated
via a straightforward generalisation of the time-dependent Bogoliubov method already employed by Dziarmaga
[47], as detailed in appendix B. The crucial point resides in the fact that as for the Hamiltonian, the dissipative
part of the Lindbladian with L{" = ¢, does not mix the various modes at different momenta, once a Fourier
transform has been employed. As a consequence, the density matrix at time ¢ factorises into different
contributions for the various modes:

p(t) = Qpi (D). (12)
k

The relevant Hilbert space for each positive momentum k has a dimension of 4, and thus the Liouvillian
dynamics can be easily followed inside it. We recall that for the unitary Schrédinger dynamics, a further
decomposition into independent 2 x 2 problems was possible, due to the additional conservation of the
fermionic parity (which is now violated by the dissipative decaying terms). The excess energy per site € during the
annealing protocol is thus obtained via a numerical integration of the linearised Liouville equations for each k
mode (B2). For numerical convenience, we restricted the initial point of the annealing procedure (5) to
tin = —57, and checked that the results were not appreciably affected by this choice [49]. We studied systems up
to L = 107 sites and annealing times up to 7 = 103, and a fourth-order Runge—Kutta integration procedure
with a time step dt = 1072 was employed.

Figure 1 shows the behaviour of the excess energy at the end of the annealing protocol, £ (0), for various
values of the dissipation strength &, as a function of the annealing time 7. In the absence of dissipation (x = 0),
we recover the Kibble—Zurek (KZ) scaling [46, 47]

e(r)y ~1/7 with ~v=1/2, (13)

which can be obtained via knowledge of the critical Ising exponents associated with the phase transition at

I, = lacross which the system is driven. A finite dissipation £ > 0 induces competition between the KZ
mechanism of defect generation due to the crossing of a gapless point (which is progressively reduced, with the
increasing annealing time 7), and the production of defects generated by incoherent driving itself. Such
competition clearly emerges in figure 1 as nonmonotonic behaviour, which generates an optimal working point
for the annealing procedure in the presence of dissipation.
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Figure 1. The final excess energy as a function of the annealing time, for the free-fermion model (7) coupled to an environment which
induces a pumping mechanism, as in equation (8): LY = ¢, The various data sets denote different values of the dissipative coupling
K, aslisted in the legend. Here we simulated the annealing protocol of equation (5) for the chains of L = 107 sites. The black squares
denote the data for & = 0, which obeys the power-law behaviour for 7 > 1 with the KZ scaling exponent v = 0.5 (dashed line).
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Figure 2. The optimal excess energy &, (orange squares) and corresponding annealing time 7, (violet diamonds), as a function of
the dissipation strength x. Numerical data (symbols) is obtained using the same parameters as in figure 1, and nicely follows power-
law behaviour (dashed lines) with slopes of 1/3 and —2/3, respectively.

Let us now have a closer look at the nonmonotonicity, and focus on the optimal (minimal) value &, reached
by the excess energy, as well as on the corresponding annealing time 7. Figure 2 displays how such quantities
depend on k. Our numerical data nicely agrees with the power-law behaviour over more than two decades of k
values, such that e, ~ #!/?and 7o ~ £ 72/3. Below we show that this behaviour can be easily predicted by
assuming that the KZ production of defects is totally independent of that generated by the dissipation. The
above-mentioned competition is thus explained in terms of an incoherent summation of the two (independent)

contributions.

3.1. Scaling of the optimal point

We start from the observation that after the annealing procedure, the final state of the closed system can be easily
written as a Bogoliubov state where excitations are provided by pairs of quasiparticles with equal and opposite
momenta [47]:

[V(tan) = [ (o + By 10). (14)

k>0
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Here |0) indicates the Bogoliubov vacuum corresponding to the final ground state of H(0), oy and Gy are
complex amplitudes, while the momentum k can take L/2 positive values from 0 to 7 (see appendix A for
details).

In the dissipative case, we will not only have those doubly excited states |1, 1_;) = 'yl ol ,10), but also singly
excited states such as | 1) = 'y}‘;|0> and|1_;) = 4" .10), which represent further sources of defects. Indeed, by
using the Bogoliubov transformation, we can rotate the master equation in this frame. This allows us to write
down the dynamical equation for (1| p;|1x). We find

S (Wlpdle) = K (0lpyl0) £ (T, k), (15)
with

I — cosk + \1+T2—2Tcosk :

sin® k

[f(T, B! = 1+( (16)
for the specific choice of L,, = ¢,. In the adiabatic regime, where the KZ scaling argument holds, and for small
dissipation, the density of defects is much smaller than 1, so that (0| p;|0) can be approximated by its initial value
1. Note that since the density of defects A/ is writtenas N = >, 'yl 7, in the Bogoliubov basis, excitations of the
form |1 ) only contribute to the positive values of k, while excitations due to coherent dynamics |1, 1_¢)
contribute to both kand —k. Following this, the incoherent part of the density of defects can be estimated
according to

0
Noe =25 [ atfire, k= Znm, (7)
L ;=Y 2
where the last equality has been obtained after a change of variables from tto I'(+) = —¢/7, and observing that

the summation over k > 0 after the integral over I yields a constant factor L/2.
Assuming now that the mechanisms of defect generation due to KZ and due to dissipation are unrelated [52],
we have:

1
N~ Nz + Nipe = -172 4 En T. (18)

1
’
272
From this expression for the total density of defects, the optimal annealing time minimising defect production
can be thus estimated by the condition 8, V(1) |7y = 0. Adirect calculation gives

2/3
Topt = ; 572/3: (19)
22

with the corresponding density of defects

3( 1 Y7,
Nopt = Mrop) = =| —=| +'°. (20)
opt opt 2\ or \/5

The predictions given by these equations are in nice agreement with our numerical data shown in figure 2,
keeping in mind that ¢ = 2.

To further highlight the role of dissipation during the annealing procedure, we also analysed the excess
energy at the end of the annealing, after subtracting the corresponding excess energy in the absence of
dissipation:

A(T) =¢e(k, T) — e(k =0, 7). 21)

Note that in order to properly define the quantity A, we have manifested the x-dependence of € in equation (21).
After rescaling such a quantity as A(7) — A(7)/k, we observe a fairly good data collapse with 7, as plotted in
figure 3. In addition, our data obeys linear scaling as a function of the annealing time, except for deviations
induced by bigger values of  (rather than by longer annealing times 7) in the regime where the excess energy is
nearly saturated to its maximal value (see also figure 1). We checked that the behaviour of e (7) — &(400)
towards saturation decays with a power law as ~7~!, which is in accordance with [53].

The observations made above point toward the substantial independence of the role played by dissipation,
with respect to the KZ mechanism. The incoherent coupling to the external bath acts uniformly and irrespective
of the adiabaticity condition ruled by the ground-state energy gap.

3.2. Interplay between pumping and decay

Here, we study the interplay between the pumping and decaying mechanism, and the question of whether the
steady state of a system subject to both mechanisms is thermal or not. For this, first we focus on the annealing
protocol in the presence of a uniform incoherent decay mechanism only, induced by the Lindblad operators
L{? = c,. The behaviour of the final excess energy & (7) as a function of the annealing time is shown in figure 4

7
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Figure 3. The final excess-energy difference A as a function of 7, once rescaled by . The various data sets stand for different values of
k,and correspond to those of figure 1, where the same colour code has been used. A straight line indicating the linear scaling at the
annealing time 7 is shown in black.
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Figure 4. The same plot as in figure 1, but for a free-fermion model coupled to an environment which induces a decay mechanism, as
in equation (9): L?) = c,. We observe the same initial trend as for the pumping mechanism; however, for longer annealing times we
observe overshooting before the saturation sets in.

for different values of the dissipation strength «. As one can see from the figure, at relatively small annealing
times the trend is qualitatively analogous to that obtained for incoherent pumping (see figure 1). The
nonmonotonic behaviour of ¢ (7) reveals the presence of an optimal working point, where the number of defects
is minimal. However, for larger times 7 we also recognise the appearance of an overshooting point, where the
energy defects become larger than those reached for infinitely slow annealing. Here as well, we checked that the
behaviour of (1) — €(+400), after such an overshooting point, decays with a power law as ~7~!, and again a
linear scaling with  [53].

To better highlight the overshooting behaviour, let us recall that contrary to the incoherent pumping
mechanism, the incoherent decay will drastically affect the completely filled ground state of the initial
Hamiltonian at I'(t;,) = 400, since it would tend to empty the system and thereby increase the energy there.
Consequently, in the limit 7 — 00, where we can assume that the system will always be in the instantaneous
steady state, its energy willbe E(t) = 2I'(t) > 0, soitwill approach its final value E(tg,) = 0 from above. Since
for1 < 7 < oo we know that the dynamics approximately follows this open adiabatic dynamics, it is reasonable
to expect that its instantaneous energy will follow a similar trend. In particular, it will approach its final value
from above as well, and the corrections due to a finite 7 will result in the observed overshooting.

8
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Figure 5. The excess energy (orange squares) and corresponding annealing time (violet diamonds) as a function of the dissipation
strength x, in the presence of an incoherent decay mechanism, both for the optimal working point (upper panel) and for the
overshooting point (lower panel). Numerical data (symbols) is obtained using the same parameters as in figure 4, and agrees with the
power-law behaviour (dashed lines) with slopes 1/3 and —0.2/3 (upper), and a constant value as well as a slope of — 1 (lower).

In figure 5 (upper panel) we analysed the minimum excess energy that is reached at the optimal working
point, and the corresponding annealing time. Their behaviour with  again follows a power law which is similar
to the pumping case, as discussed in section 3.1. Note that the argument leading to the scaling predictions for a
pumping environment holds as well for a decaying environment, only the function in equation (16) changes.
However, this does not influence the scaling behaviour discussed here, but only the pre-factors. We also stress
thatin the decay case, the integral involved in this calculation strongly depends on the value —57 used to replace
the initial value of the field by — oo, which is reasonable since we have seen that this environment creates defects
longbefore the quantum critical region is reached. As a consequence, the scaling behaviour of &, and the
corresponding 7 behaves in accordance with equations (19)—(20).

In the lower panel of figure 5 we have repeated a similar analysis for the maximum excess energy at the
overshooting point and the corresponding annealing time, as a function of the dissipation strength. We observe
that the annealing time 7, scales linearly with x, while the change of the maximum excess energy €may is
relatively small, since it varies by less than 10% over almost two orders of magnitude.

For a better understanding of the overshooting, in figure 6 we show the instantaneous excess energies for
different annealing times during the protocol. For very small annealing times we see that the instantaneous
steady-state energy is along way from the actual dynamics and no overshooting takes place. For long annealing
times, the excess energy increases hugely at the beginning and then follows (open) adiabatic dynamics, while the
behaviour is similar for intermediate annealing times, but not as drastic. As a consequence, there is an
intermediate regime where the annealing time 7 is big enough such that overshooting can take place, and the
final excess energy ¢ (7) will be bigger than in the infinite-time limit £ (co).

To underline the difference between the two kinds of dissipation (pumping/decay), in figure 7 we plotted the
instantaneous excess energy for the same parameters (7 = 10°, k = 10~!), but with a different type of
dissipation. We observe that as stated above, in the pumping case the excess energy mostly increases in the last
fifth of the protocol, which is close to the quantum critical point. The decaying scenario shows completely
different behaviour, rather following adiabatically the instantaneous steady state of the system.

Now, we turn our attention to the interplay between the pumping and decay and how the overshooting
observed for pure decay is influenced. For this we study the final excess energy as a function of the ratio between
pumping and decaying, 7 = Kpump/ Kdecay- In figure 8 we show the results for values of ) ranging from 0 (no
pumping), where we observe the biggest overshooting, to 1, where the overshooting completely disappears. Note
that the optimal working point does not change much with a varying n since, for the given parameters, the
contribution by the pumping mechanism in this regime is far smaller than the one by the decay. The scaling of
the maximum value of the overshooting as a function of 7 is shown in figure 9. An explanation for the
diminishing overshooting can be given when looking at the dependence of the instantaneous steady-state energy
during the protocol: if nis smaller than 1, it decreases from an initially positive value to 0 linearly, such that an
overshootingis possible. For 7 = 1, the instantaneous steady-state energy is constant equal to 0 such thatan
overshooting due to adiabatic dynamics is prevented. For 17 > 1, the instantaneous steady-state energy
approaches 0 linearly from below, again preventing an overshooting.

9
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Figure 7. Instantaneous excess energy during the annealing protocol as a function of the external field T'(¢) for the two different types
of dissipation. I. = 1locates the critical point where the Ising-like quantum phase transition occurs at zero temperature; here we fix
K =0.1.

Finally, we comment on the issue of thermalisation: a single qubit subjected both to incoherent pumping
(LY = cyand decay (L® = c) processes would relax to a thermal state whose inverse temperature 3is related
to the ratio of the strengths of the two Lindblad operators. Since in our case the translational invariant quadratic
Hamiltonian H(#) factorises into many Hamiltonians (each one describing a mode of pseudo-momentum k)
whose Hilbert spaces are, each of them, essentially two-dimensional, this might raise the question of whether our
system shows thermalisation as well. Indeed, the steady state of each of these modes can be approximated by a
thermal state with very high fidelity (>98%) for the complete range of physical relevant coupling strengths.
However, the corresponding inverse temperature 3 (kg = 1) of each mode depends on k, and therefore the
complete steady state is not well approximated by a thermal state of a single parameter (3.

3.3.Dephasing

Up to now, all the discussion has been based on a system-bath coupling scheme which induces a decay/pumping
mechanism. There is, however, a complementary effect of decoherence, where the dissipation can generate pure

dephasing. This can be easily obtained through diagonal Lindblad terms L{> = ¢, ¢, (which are proportional to

10



10P Publishing

NewJ. Phys. 19 (2017) 113029 M Kecketal

=

©

@10‘]—

[«5]

=]

5}

n

@

g —— =0 ——

€3 ¥ p=1/8 —e— y=3/4
—A— n=1/4 —< pn=7/8
—e— 7 =3/8 —— 5=

n=1/2
107! 10° 10! 102

Annealing time 7

Figure 8. The final excess energy as a function of the annealing time coupled to an environment which induces both a pumping as well
as a decaying mechanism. The various data sets denote different values of the ratio between the two 7 as listed in the legend. Here we
simulated the annealing protocol of equation (5) for chains of L = 107 sites.

L5} ‘ ‘ ‘ ‘ ]

1.3} 1

€ max

1.1p 1

1.0} ‘ ‘ ‘ ‘ 1
0.0 0.2 0.4 0.6 0.8 1.0
Ratio of pumping and decay n

Figure 9. The maximum value of the excess energy at the overshooting point during the annealing protocol, as obtained from the data
in figure 8, as a function of the ratio 7).

the onsite fermionic number operator), as in equation (10). As detailed in appendix C, despite the translational
invariance, in such cases the solution to the master equation (2) cannot be trivially written in a tensor structure as
thatin equation (12). As a matter of fact, the Lindbladian D[ p] now transforms into a nonlocal object, where the
different momentum modes are now coupled together. Therefore, it is more suitable to solve a close set of 4L
differential linear equations for the relevant two-point correlators [40], see equation (C15). By employing a
fourth-order Runge—Kutta integration procedure for these equations, with a time step dt = 1072, we were able
to reach annealing times up to 7 = 10°.

The main results of our analysis are summarised in figure 10, where we plot (upper panel) the excess energy
¢(7) atthe end of the annealing, as a function of the annealing time 7. Comparing this data with that of figure 1,
we immediately recognise a qualitatively analogous trend as for the pumping mechanism. In particular, the
nonmonotonic behaviour again reveals a competing effect between the KZ mechanism and the incoherent
dephasing. Quantitative differences are barely visible on the scale of the two figures. We observed a slight
worsening of the annealing protocol, for the same value of 7, the excess energy being slightly larger than that of
the previous case. As we did previously, we also analysed the excess-energy difference A(7) rescaled by &
(bottom panel). Its scaling with 7is completely analogous to that in figure 3, with the data growing linearly with
the annealing time, and eventually deviating for sufficiently large values of  and 7.
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Finally, we recall that the argument of section 3.1 for determining the scaling of the optimal working point
for the annealing protocol as a function of x also holds in this case. Indeed the corresponding data (with the same
power-laws), shown in figure 11, is closely similar to those of figure 2.

Summarising the results of our analysis on the quantum annealing in a translationally invariant free-fermion
model interacting with a local environment, the emerging scenario for the different types of dissipation is the
following. For all three incoherent mechanisms we observe a competition which leads to the onset of an optimal
working point for the annealing procedure at a given 7, rate. On the other side, for larger values of 7an
overshooting point only appears in the presence of a decay mechanism, due to the fact that the instantaneous
energy approaches the steady-state value € (7) = 1from below (while the opposite happens for the pumping and
for the dephasing). Finally, we analysed how the final excess energy approaches the 7 — o0 limit, while for
pumping and decay we observed the behaviour |e (1) — £(00)| ~ 7~!; for dephasing we
found e (1) — £(c0)| ~ exp(—T).

4.Ising chain

Let us now go back to the spin-1/2 language and discuss the effects of the coupling to an external bath on the
quantum annealing of the Ising chain, equation (4). We first notice that dephasing can be induced by a Lindblad
term LY = 0%, which is readily mapped into the local fermionic operator (2¢, ¢, — 1), through the JWT of
equation (6). In such a case, one would thus recover the dephasing mechanism for free fermions (we refer to
section 3.3 for details). On the other hand, incoherent pumping/decay would be induced by L{'” = o and
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Figure 11. Optimal excess energy (orange squares) and corresponding annealing time (violet diamonds) as a function of the
dissipation strength. Dashed lines denote power-laws with slopes 1/3 and —2/3, respectively for €, and for 7. The data is taken
from figure 10, and refers to the free-fermion model with a dephasing environment.

L{* = ¢, respectively; in this case, when mapping into fermions, the appearance of the JW string operator
forbids analytic treatment, such as the one discussed previously. Let us thus concentrate on the latter scenario.

We employ a numerical method based on an efficient approximation of the many-body density matrix in
terms of an MPO [42, 43]. We expect this to be valid whenever the amount of correlations in the system is
sufficiently small to satisfy area-law scaling for the bipartite entanglement in the operator space. The time
evolution is performed by means of the time-evolving block decimation (TEBD) algorithm, after a Trotter
decomposition of the Liouvillian superoperator on the right-hand side of equation (2). In our simulations of the
annealing protocol (1), for the Ising model we considered systems up to L = 20 sites, using MPOs with abond
link m ~ 250 and adopting a typical Trotter step dt = 1072, We adopted the same time dependence of the field
T'(t) asin equation (5), where for practical convenience we started from t;, = —37, and verified that (on the
scales of the figures shown below) the results are not affected by this choice. As detailed below, we found an
emerging physical scenario which is consistent with that previously discussed in section 3, already for small
sizes L 2 10.

Our numerical results for annealing in the presence of incoherent decay, showing the final excess energy as a
function of 7and for various dissipation strengths &, are summarised in figure 12. Despite not being able to see
the KZ power-law scaling for limited system sizes (not even in the absence of dissipation), the nonmonotonicity
of the various curves for k = 0 clearly emerges as a result of the open-system dynamics. We ascribe this
behaviour to the emerging picture described in section 3, where we discussed much longer systems of free
fermions. Indeed, in figure 13 we repeated the same analysis for the scaling of the optimal working time 7,,; and
of the corresponding optimal excess energy &, with the dissipation strength, finding similar power-law
behaviour. The exponents agree within 20% of the relative difference. We point out that we were not able to fully
resolve the overshooting behaviour in this case, since it would have required longer annealing times. However,
this is already visible in figure 12, for the curve corresponding to £ = 0.1. Moreover, we checked that the scaling
with 7 of the final excess-energy difference A (7) was again linear for sufficiently small values of x and 7, as for
the fermionic model.

5. Conclusions

We have presented an extensive study of the adiabatic dynamics of free-fermion models, being driven across
their quantum critical point, within an open-system approach using local Lindblad operators. Using the excess
energy, we quantified the deviations from the adiabatic dynamics of the ground state, showing competition
between the unitary dynamics following a KZ mechanism and incoherent defect generation due to dissipation.
While being local, the studied environment covers a wide range of possible sources of dissipation—varying from
decay and pumping, separately or simultaneously, to dephasing— and at the same time showing consistent
behaviour for all of them, with the competition between the two processes leading to an optimal working point.
This can be modelled by the ansatz of the independent processes, which comes to a scaling behaviour that
predicts the observed optimal working point in a fairly accurate way. For larger annealing times, we highlighted
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Figure 13. Optimal excess energy (orange squares) and corresponding annealing time (violet diamonds) as a function of the
dissipation strength. Numerical data (symbols) is obtained using the same parameters as in figure 12, for L = 10, and agree fairly well
with the power laws (dashed lines) of slopes 1/3 and —2/3, respectively.

the possibility of observing an overshooting point, where defects become larger than those reached for infinitely
slow annealing. This effect is intrinsically due to the coupling with an external bath, which drives the system
toward the steady state according to the Liouvillian dynamics of the master equation.

Furthermore, we studied the one dimensional Ising chain, which is closely related to the free-fermion
models, by means of a matrix product operator technique, where we found the same behaviour for small system
sizes as well, suggesting the generic nature of the observed phenomena. Within the framework of free-fermion
models, a generalisation to higher dimensions is straightforward.
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Appendix A. Unitary dynamics

Here we provide the technical details concerning the dynamics of the free-fermion model in equation (7), where
periodic boundary conditions are imposed, namely,

L
H(t) = =Y {(ccns1 + cp ey + Hee) + 2T (e, ca} (A1)
n=1
with ¢, 11 = —q for the positive parity sector, while ¢, = ¢ for the negative parity sector. Here we have

implicitly set the coupling strength to one.
The annealing procedure of equation (5) in this context has already been studied in [47]. The approach
consists of employing a Fourier transform of the type

efiﬁ /4 o
Ch = cxe™, (A2)
"= Zk:
where the operators c,f) satisfy the canonical anticommutation relations for fermions as well, and the index k
takes values (assuming L to be even, without loss of generality) k = +1 %, i3%, wo (L — 1)%. The resulting
Hamiltonian in Fourier space takes the form
H= Z{ 2c,j c[—I'(t) — cosk] + sin k(ckT cjk + c_icr)}- (A3)
k

Since H conserves the fermionic parity, the global Hilbert space H can be written as a direct sum over different k
subspaces: H = @y~ oHy, andindeed H = ), . , Hy as in equation (A3). Each subspace ata fixed k > 0 is built
from the two states {|0), |1x, 1_¢) }or {|1x), |1_¢) }, depending on the parity number (even or odd, respectively).
The ground state is found in the even parity sector, as one can see from the diagonalisation of H.

The Hamiltonian Hy at a given fixed time ¢, as extrapolated from equation (A3), can be readily diagonalised
by means of a Bogoliubov transformation [50, 51]

a = up () + VO (A4)

so that the ground state is annihilated by all the quasiparticle operators +,. Once the parameter I'(¢) is varied, the
system dynamics can thus be found by employing the time-dependent Bogoliubov method [54], which makes
the ansatz in which the instantaneous system wave function ¢ (#)) is annihilated by a set of quasiparticle
operators % ), in the Heisenberg representation, defined though the transformation

ke = wk(®) Yy + vfk(t)’yjk @ This ansatz satisfies the Heisenberg equation
d .
3k = 1H (0), cramls (A5)

with the constraint 4, ) [ (£)) = 0, provided the coefficients u(¢) and vi(¢) obey the time-dependent
Bogoliubov—de Gennes equations

i%uk = —2ui[T'(¥) + cosk] + 2visink,
i%vk = 4+2v[I'(¢) + cosk] + 2uy sink. (A6)
These equations can be integrated starting from the initial condition I'(—oc) = + 00, thus mapping them into a
Landau—Zener problem [47].

Appendix B. Fermionic decay bath

Let us now describe the superimposed action of an environment that induces decay in the system, so the
Lindblad operator on each site nis given by L,, = c,,. [tisimportant to stress that when applying the Fourier
transform (A2) to the dissipative part of the master equation (3), this does not mix different modes:

Dpl = Y Delpl = n(z & p e = ip c,Z‘ck}]. (B1)
k k
The reason resides in the fact that each term contains two fermionic operators ¢{”, such as
S pe =Y, %Zk, w & p Gre k=K for example, and thus the exponential factor, once summed over 7,
gives a Kronecker delta oy .

As a consequence, the density matrix factorises into p(t) = ®y- 0 (¢), and we can decouple the problem
into the same k modes as for the nondissipative case. Notice, however, that the dissipation part violates the parity
conservation of fermions; therefore here the different subspaces for a given k > 0 are built up from the four
states {|0), |1x), |1-x), |1k, 1)}, and not simply from two. The Hamiltonian in this basis can be explicitly
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writtenas H = >, , Hy, where

0 0 0 2sink
o 0 —2(I' + cosk) 0 0
=1 oo 0 —2(T + cosk) 0 ’
2sink 0 0 —4(I" + cosk)
with
0100 0010
aol000o0] o _fooo01
1o o o1 *=loo o of
0000 0000

As a matter of fact, solving the full quantum dynamics of p(¢) translates into solving the L/2 Lindblad
equations of dimension 4 for p, (t). In the vectorised form, they can be written as the following linear differential
equations with dimension 16 (k > 0):

;‘_t|pk>> ={il ® Hy — Hy® )
— S @ (o + o) + (ot ey @1
+ 1k ® ck + -k @ o) }Hpe)- (B2)

In practice, for every linear operator W = 3= W,,,|m) (1| acting on the four-dimensional Hilbert space
which is spanned by the basis {|m) } ,,—1,... 4> we associate a vector in the 16-dimensional superoperator space
Hi ® Hy, which is spanned by the basis {|m) ® [1)},,,=1,... 4> using the convention

Win — IW))y, d=m+ (n—1)L, (B3)

with|[W)) = 3=, Wyulm) |n). In this way, we have that [W; W, W5 )) = (W, ® W) |W,)), where T denotes the
transpose operation. With the vectorisation of the master equation for p, (t) using this rule, the fact that

Hi, = H = H/,andthat ¢ = ¢, we finally arrive at equation (B2). The excess energy (11) is then readily
obtained, since p(t) = ®g=0p;(t).

Appendix C. Fermionic dephasing bath

In the case of the dephasing Lindblad operators L, = ¢, ¢, on each site, the Fourier transform applied to D[ p]
turns out to yield a nonlocal object, since each term now contains four fermionic operators, and thus it is not
possible to decouple the different k modes. Therefore, this kind of dissipation scheme cannot be directly
embedded into the Dziarmaga formalism [47] described above.

In the following, it is more convenient to reduce our study to two-point correlators, since all the relevant
quantities for our purposes (such as the excess energy (11), can be expressed in terms of those correlators. This
drastically simplifies the analysis into a closed set of differential equations which scale linearly (or at most
quadratically, for the nonhomogeneous case) with L [40]. We define

Fm,?’l = <C:}:1Cﬂ>’ Gm,n = <CmC;>’
Lw = (e, Kn = (CmC)- (C)

Using anticommutation relations for fermions and the fact that (c,,c,)’ = CJ C,L, wehave G,y = 6 — Bum

andalso K%, = I, ..
Here we adopt the Heisenberg representation, where the dynamics is described by means of an adjoint
Lindblad master equation for a given observable O:

dio =i[H, O] + D[O], where (C2)
t
N 1 & .
DO = =3 #n(Ly [0, Ll = [0, L1 L. (C3)
n=1
Since in this appendix we deal with the homogeneous cases, we set k,, = k.
We first note that
L
[Crn) H] =2 Z Am,ncn + Bm,ncia (C4)
n=1

where the matrices A and B have been defined in equation (7), with J, = h, = 1. Moreover, specialising to the
dephasingbath L,, = ¢, ¢, with uniform couplings x,, = , we have
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Dlc)cpl = —k ¢} cu(l = ),
Dlcme 1= —K cme, (1 — Spn)s
Dlcyenl =~k 66 (1 + b,
Dl = =K cmen(l 4 S p). (C5)

The adjoint Lindblad master equation (C2) for the Hamiltonian (A1) and the dephasing bath, referring to the
operator ;) c,, reads:

d . . L
aclcn =i[H, C,L]cn + 1C,L[H, ca] + Dlc,, ¢l
= ZiZ(Am,jc]Tcn + Bon,jcjCn
j

— An,]-c;;cj — Bn,,-c;ic;r) — ke, Cp(1 = Bp) (Co)

and correspondingly, for the other two-point operators,

d .
Ecmc,j =2i) (—Anjcjc, — Bm)jc;fc;[
j

+ An,,-cmc]T + By jcmc) — ncmc;(l — Omn)> (C7)

d . . . N
d—c:nc,j = 212(Am,jc;rc,1 + Bm,jcjcnI
t j
+ Aujehcl + Bujehe)) — el (14 S, (C8)

d . .
acmcn = 212(—Am,jcjcn — Bm,jcj' Cy
j

— ApjCmCi— Bn,jcmch) — KCmCp(1 =+ ). (C9)

Ifwenowset! = n — m, | € [0, L — 1], for atranslational invariant system we can define F such that
Fi=n—m = E,., (and analogously for G, Z, K), in such a way that equation (C6) can be rewritten as

d .
af.l = ZIZ(Am,j -7:l+m7j + Bm,j ]Cl+m7j
j
- Am+l,j ‘7:jfm - Bl+m,j -Z-]fm) — kP F, (C10)

where P, =1 — ¢;; I = 1, ...L)are the L components of the vector P.The first term on the right-hand side
can be manipulated as

Z Am,j]:H»rnfj = Am,m]:l +Am,m+l~7:lfl +Am,m71‘7:l+l
j
= ApFr+ Ay Fi-1 + Apa Fia

=>"AF = @A Fy, (C11)
j

where in the second line we used the fact that AT = A; moreover, due to the translational invariance of the
model, it is possible to shift both indices of A together. Proceeding in an analogous way, for the other terms
of (C10) we find

> BuiKigm—j = —(B - K, (C12)
j
S AvimjFiom= (A F, (C13)
j
> BiymjZi-m= (B - . (C14)
j

Itis possible to follow the same type of calculations for the other two-point correlators, equations (C7)—(C9),
such that the dynamics of all the two-point correlators defined above can be written in a compact way as a set of
time-dependent linear equations
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7 7
alg IR
—| - | =[M@) — k diag(P, P, Q, = | Cl15
ol 7 [M (1) — r diag( Q, Q)] 7 (C15)
K K
where the 4L x 4L matrix M is given by
0 0 -B —B
Jo 0 B B
M@ =2fp p 2A(H) 0 (C16)

B —-B 0 —2A()

and the vector P has been defined above, while the L components of the vector Qare givenby Q=1+ 4,
(withl =1, ...L).

Eventually, the instantaneous energy E () = (H (¢)) can be calculated from the quadratic
Hamiltonian (Al):

L
E= _Z (E1,n+1 - Gn,n+l - Kn,n+1 +In,n+l) —2r E’l,?’l
n=1

=LA -G-Ki+1)—-2LT F, (C17)

where we used anti-commutation relations to express all terms such that the resulting index of the translational
invariant correlators is non-negative. To match boundary conditions and parity considerations, we use L odd
and are therefore in the negative parity sector.

The initial conditions, for a given Hamiltonian H(¢) (that is a certain value of ") can be immediately found by
a Bogoliubov transformation that generalises equation (A4) to nonhomogeneous quadratic systems [48]:

L
G = Z Uiy + V;,ku'YL)~ (C18)
pn=1

The transformation satisfies the properties (v, 'YDO = Oupand (y, 7)o = <fyL fy})o = (’yj{ Y00 = 0, where (...)o
indicates the expectation value over the ground state of H (#;,), thatis with I' = 4o0. This yields

Epn(t—o) = (chicndo = (VV ),
G (t—o0) = (cmc, Yo = (UU s
Lu(t—o0) = (cheDo = (VU
Kn(t—o0) = (€mno = (UV ). (C19)

From these equations, exploiting the translational invariance of the system, we can choose the initial conditions
of the system (C15) by selecting the first column of each of these four matrices.
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