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Abstract
We introduce and study the adiabatic dynamics of free-fermionmodels subject to a local Lindblad
bath and in the presence of a time-dependentHamiltonian. Themerit of thesemodels is that they can
be solved exactly, andwill help us to study the interplay between nonadiabatic transitions and
dissipation inmany-body quantum systems. After the adiabatic evolution, we evaluate the excess
energy (the average value of theHamiltonian) as ameasure of the deviation from reaching thefinal
target ground state.We compute the excess energy in a variety of different situations, where the nature
of the bath and theHamiltonian ismodified.We find robust evidence of the fact that an optimal
working time for the quantum annealing protocol emerges as a result of the competition between the
nonadiabatic effects and the dissipative processes.We compare these results with thematrix-product-
operator simulations of an Ising system and show that the phenomenologywe found also applies for
thismore realistic case.

1. Introduction

Recent experimental advances in thefield of quantum technologies have drastically enhanced our capability to
control the quantum coherent dynamics ofmany-body systems in a variety of physical systems, ranging from
atomic andmolecular optics, to trapped ions and cavity/circuit quantum electrodynamics. This progress has
made real the possibility of experimentally realising quantum simulators [1] aswell as implementing thefirst
quantumalgorithms [2, 3].

Together with the progress in implementing quantumgates and concatenating them, i.e. by realising
standard circuit computation [4], recently, adiabatic quantum computation (AQC) [5] and quantumannealing
[6] have received a tremendous boost thanks to the experiments performedwithD-wavemachines [7–10]. The
strategy underlying adiabatic quantum computation [5, 6] is based on the fact that any quantumalgorithm can
be formulated in terms of identifying the globalminimum (ground state) of a given function (Hamiltonian) over
a set ofmany localminima. On the experimental side, quantum effects were seen to survive in eight [11, 12],
sixteen [13] and even inmore than one hundred qubits [14].Whether thesemachines already hold the so-called
‘quantum supremacy’ or not at present is still under debate [15, 16]. However, it is clearly very important to
understand the actualmode of operation of these adiabatic computers, in order to understand the limit of their
performance and to push them forward. A key problem in this framework is to understand the role of dissipation
and decoherence on adiabatic quantum computers. This question amounts to understanding the key features
that control the adiabatic evolution of amany-body open quantum system.

Let usfirst state the general problem. Suppose that to be able to follow the quantumdynamics of an
appropriate time-dependentHamiltonian:
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f (t) being a generic function of time, with f t 0in =( ) and f t 1fin =( ) . TheHamiltonian Hin sets the initial
condition as its ground state, while the sought solution to the problem is entailed in the ground state of Hfin. If
the control time ismuch larger than the typical inverse gap between the ground state and the first excited state,
the systemwill adiabatically follow its instantaneous ground state t0y ñ∣ ( ) . Reaching the ground state of Hfin by
adiabatic evolution is thewayAQCworks [5, 6]. As long as the evolution is unitary, the only source of errors is
due to excitations generated by nonadiabatic effects in the dynamical evolution. The complexity of the adiabatic
algorithms is reflected in the scaling of theminimumgapwith the number of qubits. In general, AQC also
requires a special formof f (t) to gain a speed-up as compared to the classical algorithms, see [17] for a prominent
example of an adiabatic Grover search and [18] for a review.Moreover, optimally controlled ramps can provide
additional speed-ups [19]. An alternative protocol, which ismore general than equation (1), would incorporate
an extra (possibly nonlinear) term, such as f t f t H1 E-( )[ ( )] , withHE being a properly chosenHamiltonian.
Thismay have beneficial effects on theminimumgap of the system, and therefore greatly enhance the AQC
performance [20].

It is, however, clear that especially for long annealing times, another important source of defects is related to
the incoherent fluctuations induced by finite temperature, ormore in general by the unavoidable coupling of a
system to some external environment. In this case, the quantum state of the systemwill bemixed, described by a
densitymatrix tr ( ), satisfying a dynamical equation of the form:

t
H t

i
, . 2


r

r r
¶
¶

= - +[ ( ) ] [ ] ( )

Thefirst termon the right-hand side describes the coherent unitary time evolution, which is ruled by amany-
body time-varyingHamiltonianH(t), according to the quantum annealing protocol(1). The second termon the
right-hand side of equation (2) accounts for the coupling to the environment, and its formwill depend on the
nature of noise and dissipation aswell as the formof the coupling between themany-body system and the
external bath. The dissipator is a completely positive trace preservingmap, and, in general, it drives the system to
afixed point, which is a steady state or a steady-statemanifold (if thefixed point is not unique). As such, it
induces a decay in the system towards a steady state. Note that the differential formof equation (2) generally
requires aMarkovian bath.Understanding the effect of dissipation onAQCamounts to quantifying, in some
way, how the state of the systemdeviates from the final ground state, because of the presence of the extra term
 r[ ] in equation (2).

Does the presence of the environment facilitate the reaching of thefinal ground state or is it detrimental to
the AQC? It is clear that there cannot be a unique answer to this question: the deviations from the unitary case
may depend strongly on the formof r[ ] in relation to the type of evolution imposed byH(t). This variety of
possible answers is reflected in thewide spectrumof cases already considered in the literature.Within the
plethora of possible scenarios, it is, however, important to establish some general trends thatmay serve as
guidelines in going deeper into this formidable problem.

This type of analysis was first performed [21] in the context of theKibble–Zurek (KZ)mechanism for defect
formation [22, 23]. TheKZmechanism is related to the fact that when crossing a gapless critical point ofH(t), no
matter how slow the variation of theHamiltonian is in time, the adiabatic theorem is violated and afinite density
of defects will be produced.More than thirty years ago, Kibble put forward a scaling argument aimed at
predicting the size and number of such defects [22], while themechanism yielding the correct scalingwas found
later by Zurek [23], roughly dividing the dynamics into either adiabatic or impulsive, according to the distance
from the critical point. TheKZmechanismhas been tested in a variety of quantum toymodels at zero
temperature, including ordered and disordered systems, as well as for crossing isolated or extended critical
regions (see, e.g. [24] for a review).When the annealing velocity is progressively increased, crossover behaviour
sets in between theKZ scaling and the generation of excitations due to faster quenches, where the dynamics can
be described by the underlying classicalmodel [25]. The proliferation of defects due to Landau–Zener
transitions is intimately related to the occurrence of errors in the AQC,while in the unitary case, the number of
defects decreases upon increasing the annealing time, and the environment will be dominant for long annealing
times. In this regime, one expects the defect formation to be almost independent of the annealing protocol. This
picturewas confirmed and detailed in [21], where the scaling in the crossover between theKZ-dominated
regime and the environment-dominated regimewas also found. In the presence of spatially correlated noise,
additional intermediate regimes emerge due to a comparison of the correlation length of the noise and the
correlation length of the system [26].

The role of temperature and external noise was further considered in the context of the AQC in several
papers, showing that in some cases itmay be beneficial to reach the target ground state.Work has been done on
comparing theAQC and classical approaches using thermal hopping [27], on the use of quantumdiffusion,
showing better performance than closed-system quantumannealing [28], and on the crucial role of noise-
induced thermalisation in the AQC,which can outperform simulated annealing [29]. In addition, the relation of
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thermally assisted tunnelling to the quantumMonteCarlo has been studied in [30], and the effect of the noise of
a thermal environment [31] as well as decoherence [32] have been studied as well.

It should be kept inmind that the adiabatic dynamics of a dissipativemany-body system is linked to the
understanding of the Landau–Zener problemof a two-level system coupled to an environment, which is an
extensively studied problem inmany different areas [33–38].

The problemof describing the adiabatic dynamics of amany-body open quantum system is a formidable
problem and approximations are necessary. It is, however, of fundamental importance to have some nontrivial
examples, where the outcomes of the analysis are not hampered by any approximation. The aimof this work is to
present some simple, yet nontrivial examples where the adiabatic dynamics can be analysed in full detail.Most
importantly, the phenomenology thatwewill extract is related to the dynamics of certain spin systems that are
very close to the relevant implementations of the AQC. Thismeans that the exactly solvablemodels that we
consider heremay be used as a very useful benchmark to test important approximations inmore complex cases.

The bathwewill deal with isMarkovian. Thismeans that the dissipative term in equation (2) can bewritten
in the Lindblad form

L L L L, , 3
n

n n n n n
1

2
 år k r r= -( )[ ] { } ( )† †

where Ln are the suitable local Lindblad operators that describe the environment (to be defined later) and nk are
the corresponding couplings, which have to be positive for aMarkovian Lindbladmaster equation. The choice
of local Lindblad operators that we are going to study does not lead to a thermal state in the steady state.Wewill
dwell on this point inmore detail later.

Wewill consider quadratic fermionicmodels, whose Lindblad dynamics can beworked out analytically
[39–41] for different types of local system-bath coupling. The dynamics of this class ofmodels can be studied
exactly, and it will help us to clarify several features of the interplay between nonadiabatic effects and incoherent
transitions due to the external bath. In order to understand towhat extent the results wefind can be applied to
more realistic cases, later wewill consider a spin-1/2 one-dimensional Isingmodel. In such a case, for
incoherent spin decay/pumping, themaster equation cannot bemapped into local fermionic operators, and
therefore wewill resort to a numerical study based on amatrix product operator (MPO) representation of the
densitymatrix [42, 43]. Aswewill discuss inmore detail in the rest of the paper, the overall phenomenology
remains unchanged, thus reinforcing the fact that the exactly solvablemodels introduced here can be very useful
benchmarks.We should remember that, in general, the thermodynamic properties of low-dimensional systems
can be strongly affected by the dimensionality: for example, thermal fluctuationswash out the quantum
fluctuations offinite-temperature systems in one dimension, but not anymore in two dimensions. Furthermore,
methods that are very powerful in one dimension, such as the Jordan–Wigner transformation, are not applicable
in higher dimensions. However, in the special case of free fermions, the system’s thermodynamics is not
expected to changewith the dimensionality.

In all the situations we have addressed, we find robust evidence of the fact that an optimal working time for
the quantumannealing protocol emerges as a result of the competition between the nonadiabatic effects and the
dissipative processes. There is an optimal time forwhich the final state is closest to the true final ground state.
The scaling of such an optimal time (and that of the corresponding generated defects) can be accurately
predicted by assuming that the number of defects produced during the time evolution is a sumof two
contributions due to nonadiabaticity and dissipation/decoherence.

For longer working times, itmay happen that depending on the type of system-bath coupling, an
overshooting point sets in, where the density of the generated defects is larger than that for an infinitely slow
annealing, whichwould adiabatically drive the system through the instantaneous steady state.While this kind of
behaviour cannot appear in the unitary scenario, where defect production ismonotonically nonincreasingwith
the annealing speed, in the system-bath scenario this can emerge even for small systems, eventually being related
to the spectral structure of the Liouvillian and not necessarily to themany-body characteristics.

The paper is organised as follows. In section 2we define theHamiltonianmodels, the various dissipation
schemes, and the annealing problemunder investigation.We then study the departure from the instantaneous
ground state, in the presence of dissipative processes whichmay cause decay or dephasing, both for a
translationally invariant free-fermionmodel 3, and for an Ising spin chain (section 4).We endwith a discussion
of ourfindings andwith the concluding remarks in section 5. Technical details on the calculations for the
quadratic fermionicmodel are provided in the appendix.

2. Adiabatic dynamics with local dissipation: from Ising systems to fermion chains

One of the simplest (and exactly solvable)models exhibiting a quantumphase transition is the one-dimensional
Ising chain [44]. This is defined by theHamiltonian
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H t J t , 4
n

n
x

n
x

n
n
z

1å ås s s= - - G+( ) ( ) ( )

where x y z, ,ns a =a ( ) are the spin-1/2 Pauli operators for the nth spin of the chain, while J and tG( ) are,
respectively, the coupling strength between neighbouring spins and the transversemagnetic field.We assume
periodic boundary conditions, in such away as to preserve the translational invariance of themodel.Wewill also
work in units of 1 = and set the energy scale by fixing J=1.

It is possible to realise quantum annealing in the Isingmodel by tuning the parameter tG( ) in time according
to a linear ramping, as for example:

t t t, for , 0 , 5tG = - Î -¥( ) ( ] ( )

where τ is related to the ramping speed. The choice of (5) ensures that during the annealing procedure, the
systemwill encounter a critical point inwhich the ground-state energy gap closes and defects will start to appear.
Duality arguments [45] show that the phase transition occurs at 1cG = . The system is driven from a
paramagnetic phase, where all the spins are aligned along the field direction z (i.e. the ground state of the initial
Hamiltonian H t n n

z
in sµ -å( ) , since tinG = +¥( ) ), to a doubly degenerate ferromagnetic phase, where the

spins are all pointing along the coupling direction x (i.e. the ground state of the finalHamiltonian
H t n n

x
n
x

fin 1s s= -å +( ) , since t 0finG =( ) ).
Several papers have already addressed theKZ scaling of defects with τ in the paradigmatic Isingmodel, both

for the clean system [46, 47] and for the disordered system [48, 49]. Here we are going to add the effect of the
coupling to an external environment,modelled through amaster equation of the form in equation (2).

To retain analytic solvability of the full open-systemproblem [39, 40], wewill, however, start from amapped
version of the Ising chain(4) into a free-fermionmodel. The latter can be achieved by employing a Jordan–
Wigner transformation (JWT), whichmaps the spin operators in terms of spinless fermions:

c c cexp i , 6n
m n

m m nås p=-

<

⎛
⎝⎜

⎞
⎠⎟ ( )†

where in n
x

n
y1

2
s s s=  ( ), while cn (cn

†) denotes the fermionic annihilation (creation) operator on site n, obeying

the anticommutation relations c c,m n m n,d={ }† , c c, 0m n ={ } . The resultingHamiltonian for an Ising chain of
length L is quadratic in such operators and reads:

H t c A t c c B c H.c. , 7
m n

m m n n m m n n
,

,
1

2 ,å= + +⎡⎣ ⎤⎦( ) ( ) ( ) ( )† † †

where A B, are respectively a symmetric and an antisymmetric L×Lmatrix whose sole nonzero elements are
A t t A A J B B J, 2, 2n n n n n n n n n n, , 1 1, , 1 1,= -G = = - = - = -+ + + +( ) ( ) . To enforce periodic boundary con-
ditions, the followingmatrix elements are nonzero as well: A A J1 2L L

N
1, ,1

F= = -( ) and
B B J1 2L L

N
,1 1,

F= - = -( ) , where 1 NF-( ) denotes the parity of the number of fermions N c cn n nF = å † , which
commutes withH. TheHamiltonian(7) can be exactly diagonalised using a Bogolibuov transformation [50, 51].

In the following, wewill completely relax the requirement on fermion-parity-dependent boundary
conditions, andwe simply assume that antiperiodic boundary conditions for the fermions are always enforced.
This assumption is perfectly justified for a purely coherent evolution, where the fermion parity is conserved and
the initial ground state has an even number of fermions. The reason for enforcing the requirement, evenwhen
considering open-system adiabatic dynamics is that, as explained below, our Lindblad operators change the
fermion parity, and it would be impossible to solve the problemby using parity-dependent boundary
conditions. Inmore detail, wewill study below the adiabatic dynamics ofH(t) under the action of three different
types ofmemoryless local environments.Wemodel them in such away that the Lindbladian(3) is a sumof
terms that acts uniformly ( n,nk k= " ) on each site n of the chain:

L ci pumping mechanism, 8n n
1 =( ) ( )( ) †

L cii decaying mechanism, 9n n
2 =( ) ( )( )

L c ciii dephasing mechanism. 10n n n
3 =( ) ( )( ) †

Note that while the fermionic dephasing environment(10) can be directlymapped into the dephasing
environment of spins, since there is direct localmapping c c 1n n n

z1

2
s +( )† , the same is not true for decay and

pumping. Indeed, whenmapping from a spin operator ns
- ( ns

+) to a fermionic operator cn (cn
†), the Jordan–

Wigner transformation(6) includes a nonlocal operator (string).We should stress that the naming of these
Lindblad operators has been chosenwith respect to their action on a systemwith a local, diagonalHamiltonian,
and notwith respect to their actual effect on the system thatwe are studying. The choice of these specific
Lindblad operators ismotivated by the possibility of studying—in an essentially exact way—the competition
between the unitary dynamics and dissipative effects, focusing on features that do not depend qualitatively on
the formof the coupling to the environment.
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In the next sections wewillfirst address the fermionicmodel analytically(7)with the dissipation provided by
Lindblad terms as in(9)–(10), withoutmaking any reference to themappingwith spins. The effect of the
nonlocal part of the JWTwill only be discussed in section 4, wherewewill study the Isingmodel numerically(4)
with a spin-decaymechanismprovided by Ln

a
n

1 s= -( ) , which generalises equation (9) to spins.We restate that
this choice of local Lindblad operators does not lead to thermalisation in the steady state, as for this purpose
nonlocal termswould be required.However, they do cover a special interest since in several experimental
implementations, such as circuitQED, cold-atom settings or trapped ions, this kind of local damping is the
relevant one.

In order to quantify the loss of adiabaticity during the annealing protocol, originating both from the closure
of theHamiltonian gap and from the dissipative processes, we are going to study the excess energy ε per site, at
the end of annealing. The excess energy at a given time t expresses the difference between the instantaneous
energy during the annealing, E t H t tTr r=( ) [ ( ) ( )], where tr ( ) is the solution of themaster equation (2) at
time t, and the ground-state energy E t H t t tTr0 0 0y y= ñá( ) [ ( )∣ ( ) ( )∣]of the instantaneousHamiltonian system
described byH(t):

t H t t t H t tTr . 11
L

1
0 0e r y y= - á ñ( ) { [ ( ) ( )] ( )∣ ( )∣ ( ) } ( )

Using the aforementioned Bogoliubov transformation, the second termof equation (11) can be computed
straightforwardly, while the first termE(t) is nontrivial (see the appendix). For the Ising spin systemwewill
resort to a fully numericalMPOapproach.We point out that a related quantity of interest is the density of
defects 1

L n n
x

n
x1

2 1 s sº å á - ñ+ , which, in the case of ordered chains and at the end of the annealing, is
equivalent to the excess energy 0e( ), apart from the trivial constants.

3. Free-fermionic system

Wefirst analyse a fermionic systemdescribed by theHamiltonian in equation (7), where antiperiodic boundary
conditions are imposed. A Fourier transformdrastically helps in the diagonalisation of the unitary problem,
since the differentmomentummodes decouple (see appendix A). Note that for the sake of simplicity, herewe
only consider one-dimensional systems, but our analysis of fermions can be easily extended to larger
dimensionalities, since a larger dimensionwill affect calculations only by changing the Brillouin zone.

Let us concentrate on the case inwhich each lattice site is coupled to some external bath through a pumping
mechanism, as in equation (8). Themaster equation (2) during the annealing protocol can be easily integrated
via a straightforward generalisation of the time-dependent Bogoliubovmethod already employed byDziarmaga
[47], as detailed in appendix B. The crucial point resides in the fact that as for theHamiltonian, the dissipative
part of the Lindbladianwith L cn n

1 =( ) † does notmix the variousmodes at differentmomenta, once a Fourier
transformhas been employed. As a consequence, the densitymatrix at time t factorises into different
contributions for the variousmodes:

t t . 12
k

kr r=( ) ⨂ ( ) ( )

The relevantHilbert space for each positivemomentum k has a dimension of 4, and thus the Liouvillian
dynamics can be easily followed inside it.We recall that for the unitary Schrödinger dynamics, a further
decomposition into independent 2×2 problemswas possible, due to the additional conservation of the
fermionic parity (which is now violated by the dissipative decaying terms). The excess energy per site ε during the
annealing protocol is thus obtained via a numerical integration of the linearised Liouville equations for each k
mode(B2). For numerical convenience, we restricted the initial point of the annealing procedure(5) to
t 5in t= - , and checked that the results were not appreciably affected by this choice [49].We studied systems up
to L 103= sites and annealing times up to 10 ,3t = and a fourth-order Runge–Kutta integration procedure
with a time step td 10 2= - was employed.

Figure 1 shows the behaviour of the excess energy at the end of the annealing protocol, 0e( ), for various
values of the dissipation strengthκ, as a function of the annealing time τ. In the absence of dissipation ( 0k = ),
we recover theKibble–Zurek (KZ) scaling [46, 47]

1 with 1 2, 13e t t g~ =g( ) ( )

which can be obtained via knowledge of the critical Ising exponents associatedwith the phase transition at
1cG = across which the system is driven. Afinite dissipation 0k > induces competition between theKZ

mechanismof defect generation due to the crossing of a gapless point (which is progressively reduced, with the
increasing annealing time τ), and the production of defects generated by incoherent driving itself. Such
competition clearly emerges infigure 1 as nonmonotonic behaviour, which generates an optimal working point
for the annealing procedure in the presence of dissipation.
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Let us nowhave a closer look at the nonmonotonicity, and focus on the optimal (minimal) value opte reached
by the excess energy, as well as on the corresponding annealing time optt . Figure 2 displays how such quantities
depend onκ. Our numerical data nicely agrees with the power-law behaviour overmore than two decades ofκ
values, such that opt

1 3e k~ and opt
2 3t k~ - . Belowwe show that this behaviour can be easily predicted by

assuming that theKZproduction of defects is totally independent of that generated by the dissipation. The
above-mentioned competition is thus explained in terms of an incoherent summation of the two (independent)
contributions.

3.1. Scaling of the optimal point
We start from the observation that after the annealing procedure, the final state of the closed system can be easily
written as a Bogoliubov statewhere excitations are provided by pairs of quasiparticles with equal and opposite
momenta [47]:

t 0 . 14
k

k k k kfin
0

y a b g gñ = + ñ
>

-∣ ( ) ( )∣ ( )† †

Figure 1.The final excess energy as a function of the annealing time, for the free-fermionmodel(7) coupled to an environment which
induces a pumpingmechanism, as in equation (8): L cn n

1 =( ) †. The various data sets denote different values of the dissipative coupling
κ, as listed in the legend.Herewe simulated the annealing protocol of equation (5) for the chains of L 103= sites. The black squares
denote the data for 0k = , which obeys the power-law behaviour for 1t > with theKZ scaling exponent 0.5g = (dashed line).

Figure 2.The optimal excess energy opte (orange squares) and corresponding annealing time optt (violet diamonds), as a function of
the dissipation strengthκ. Numerical data (symbols) is obtained using the same parameters as infigure 1, and nicely follows power-
law behaviour (dashed lines)with slopes of 1/3 and 2 3- , respectively.
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Here 0ñ∣ indicates the Bogoliubov vacuum corresponding to the final ground state ofH(0), ka and kb are
complex amplitudes, while themomentum k can take L 2 positive values from0 toπ (see appendix A for
details).

In the dissipative case, wewill not only have those doubly excited states 1 , 1 0k k k kg gñ = ñ- -∣ ∣† † , but also singly

excited states such as 1 0k kgñ = ñ∣ ∣† and 1 0k kgñ = ñ- -∣ ∣† , which represent further sources of defects. Indeed, by
using the Bogoliubov transformation, we can rotate themaster equation in this frame. This allows us towrite
down the dynamical equation for 1 1k k krá ñ∣ ∣ .Wefind

f k1 1 0 0 , , 15
t k k k k

d

d
r k rá ñ = á ñ G∣ ∣ ∣ ∣ ( ) ( )

with

f k
k k

k
, 1

cos 1 2 cos

sin
161

2

2

2

G = +
G - + +G - G-

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟[ ( )] ( )

for the specific choice of L cn n= †. In the adiabatic regime, where theKZ scaling argument holds, and for small
dissipation, the density of defects ismuch smaller than 1, so that 0 0krá ñ∣ ∣ can be approximated by its initial value
1.Note that since the density of defects  is written as k k k g g= å † in the Bogoliubov basis, excitations of the
form 1kñ∣ only contribute to the positive values of k, while excitations due to coherent dynamics 1 1k kñ-∣
contribute to both k and k- . Following this, the incoherent part of the density of defects can be estimated
according to

L
t f t kd ,

1

2
, 17

k
inc

0

0
 òåk

k t= G =
> -¥

[ ( ) ] ( )

where the last equality has been obtained after a change of variables from t to t t tG = -( ) , and observing that
the summation over k 0> after the integral overΓ yields a constant factor L 2.

Assuming now that themechanisms of defect generation due toKZ and due to dissipation are unrelated [52],
we have:

1

2 2

1

2
. 18KZ inc

1 2  
p

t k t~ + = +- ( )

From this expression for the total density of defects, the optimal annealing timeminimising defect production
can be thus estimated by the condition 0

opt
 t¶ =t t( )∣ . A direct calculation gives

1

2 2
, 19opt

2 3
2 3t

p
k= -

⎛
⎝⎜

⎞
⎠⎟ ( )

with the corresponding density of defects

3

2

1

2 2
. 20opt opt

2 3
1 3  t

p
k= =

⎛
⎝⎜

⎞
⎠⎟( ) ( )

The predictions given by these equations are in nice agreementwith our numerical data shown infigure 2,
keeping inmind that 2e = .

To further highlight the role of dissipation during the annealing procedure, we also analysed the excess
energy at the end of the annealing, after subtracting the corresponding excess energy in the absence of
dissipation:

, 0, . 21t e k t e k tD = - =( ) ( ) ( ) ( )

Note that in order to properly define the quantityΔ, we havemanifested theκ-dependence of ε in equation (21).
After rescaling such a quantity as t t kD  D( ) ( ) , we observe a fairly good data collapse with τ, as plotted in
figure 3. In addition, our data obeys linear scaling as a function of the annealing time, except for deviations
induced by bigger values ofκ (rather than by longer annealing times τ) in the regimewhere the excess energy is
nearly saturated to itsmaximal value (see alsofigure 1).We checked that the behaviour of e t e- +¥( ) ( )
towards saturation decays with a power law as 1t~ - , which is in accordancewith [53].

The observationsmade above point toward the substantial independence of the role played by dissipation,
with respect to theKZmechanism. The incoherent coupling to the external bath acts uniformly and irrespective
of the adiabaticity condition ruled by the ground-state energy gap.

3.2. Interplay between pumping and decay
Here, we study the interplay between the pumping and decayingmechanism, and the question of whether the
steady state of a system subject to bothmechanisms is thermal or not. For this,first we focus on the annealing
protocol in the presence of a uniform incoherent decaymechanismonly, induced by the Lindblad operators
L cn n

2 =( ) . The behaviour of thefinal excess energy e t( ) as a function of the annealing time is shown infigure 4
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for different values of the dissipation strengthκ. As one can see from thefigure, at relatively small annealing
times the trend is qualitatively analogous to that obtained for incoherent pumping (see figure 1). The
nonmonotonic behaviour of e t( ) reveals the presence of an optimal working point, where the number of defects
isminimal. However, for larger times τwe also recognise the appearance of an overshooting point, where the
energy defects become larger than those reached for infinitely slow annealing.Here as well, we checked that the
behaviour of e t e- +¥( ) ( ), after such an overshooting point, decays with a power law as 1t~ - , and again a
linear scalingwithκ [53].

To better highlight the overshooting behaviour, let us recall that contrary to the incoherent pumping
mechanism, the incoherent decaywill drastically affect the completely filled ground state of the initial
Hamiltonian at tinG = +¥( ) , since it would tend to empty the system and thereby increase the energy there.
Consequently, in the limit t  ¥, wherewe can assume that the systemwill always be in the instantaneous
steady state, its energywill be E t t2 0= G >( ) ( ) , so it will approach itsfinal value E t 0fin =( ) from above. Since
for1 t < ¥ we know that the dynamics approximately follows this open adiabatic dynamics, it is reasonable
to expect that its instantaneous energywill follow a similar trend. In particular, it will approach itsfinal value
fromabove aswell, and the corrections due to afinite τwill result in the observed overshooting.

Figure 3.The final excess-energy differenceΔ as a function of τ, once rescaled byκ. The various data sets stand for different values of
κ, and correspond to those offigure 1, where the same colour code has been used. A straight line indicating the linear scaling at the
annealing time τ is shown in black.

Figure 4.The same plot as infigure 1, but for a free-fermionmodel coupled to an environmentwhich induces a decaymechanism, as
in equation (9): L cn n

2 =( ) .We observe the same initial trend as for the pumpingmechanism; however, for longer annealing timeswe
observe overshooting before the saturation sets in.
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Infigure 5 (upper panel)we analysed theminimumexcess energy that is reached at the optimal working
point, and the corresponding annealing time. Their behaviourwithκ again follows a power lawwhich is similar
to the pumping case, as discussed in section 3.1.Note that the argument leading to the scaling predictions for a
pumping environment holds as well for a decaying environment, only the function in equation (16) changes.
However, this does not influence the scaling behaviour discussed here, but only the pre-factors.We also stress
that in the decay case, the integral involved in this calculation strongly depends on the value 5t- used to replace
the initial value of thefield by-¥, which is reasonable sincewe have seen that this environment creates defects
long before the quantum critical region is reached. As a consequence, the scaling behaviour of opte and the
corresponding τ behaves in accordance with equations (19)–(20).

In the lower panel offigure 5we have repeated a similar analysis for themaximumexcess energy at the
overshooting point and the corresponding annealing time, as a function of the dissipation strength.We observe
that the annealing time maxt scales linearly withκ, while the change of themaximumexcess energy maxe is
relatively small, since it varies by less than 10% over almost two orders ofmagnitude.

For a better understanding of the overshooting, infigure 6we show the instantaneous excess energies for
different annealing times during the protocol. For very small annealing timeswe see that the instantaneous
steady-state energy is a longway from the actual dynamics and no overshooting takes place. For long annealing
times, the excess energy increases hugely at the beginning and then follows (open) adiabatic dynamics, while the
behaviour is similar for intermediate annealing times, but not as drastic. As a consequence, there is an
intermediate regimewhere the annealing time τ is big enough such that overshooting can take place, and the
final excess energy e t( )will be bigger than in the infinite-time limit e ¥( ).

To underline the difference between the two kinds of dissipation (pumping/decay), infigure 7we plotted the
instantaneous excess energy for the same parameters ( 103t = , 10 1k = - ), but with a different type of
dissipation.We observe that as stated above, in the pumping case the excess energymostly increases in the last
fifth of the protocol, which is close to the quantum critical point. The decaying scenario shows completely
different behaviour, rather following adiabatically the instantaneous steady state of the system.

Now,we turn our attention to the interplay between the pumping and decay and how the overshooting
observed for pure decay is influenced. For this we study thefinal excess energy as a function of the ratio between
pumping and decaying, pump decayh k k= . Infigure 8we show the results for values of η ranging from0 (no
pumping), wherewe observe the biggest overshooting, to 1, where the overshooting completely disappears. Note
that the optimal working point does not changemuchwith a varying η since, for the given parameters, the
contribution by the pumpingmechanism in this regime is far smaller than the one by the decay. The scaling of
themaximumvalue of the overshooting as a function of η is shown infigure 9. An explanation for the
diminishing overshooting can be givenwhen looking at the dependence of the instantaneous steady-state energy
during the protocol: if η is smaller than 1, it decreases from an initially positive value to 0 linearly, such that an
overshooting is possible. For 1h = , the instantaneous steady-state energy is constant equal to 0 such that an
overshooting due to adiabatic dynamics is prevented. For 1h > , the instantaneous steady-state energy
approaches 0 linearly frombelow, again preventing an overshooting.

Figure 5.The excess energy (orange squares) and corresponding annealing time (violet diamonds) as a function of the dissipation
strengthκ, in the presence of an incoherent decaymechanism, both for the optimal working point (upper panel) and for the
overshooting point (lower panel). Numerical data (symbols) is obtained using the same parameters as infigure 4, and agrees with the
power-law behaviour (dashed lines)with slopes 1/3 and 0.2 3- (upper), and a constant value as well as a slope of−1 (lower).
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Finally, we comment on the issue of thermalisation: a single qubit subjected both to incoherent pumping
(L c1 =( ) †) and decay (L c2 =( ) )processes would relax to a thermal state whose inverse temperatureβ is related
to the ratio of the strengths of the two Lindblad operators. Since in our case the translational invariant quadratic
HamiltonianH(t) factorises intomanyHamiltonians (each one describing amode of pseudo-momentum k)
whoseHilbert spaces are, each of them, essentially two-dimensional, thismight raise the question of whether our
system shows thermalisation aswell. Indeed, the steady state of each of thesemodes can be approximated by a
thermal state with very high fidelity ( 98%> ) for the complete range of physical relevant coupling strengths.
However, the corresponding inverse temperatureβ (k 1B = ) of eachmode depends on k, and therefore the
complete steady state is not well approximated by a thermal state of a single parameterβ.

3.3.Dephasing
Up to now, all the discussion has been based on a system-bath coupling schemewhich induces a decay/pumping
mechanism. There is, however, a complementary effect of decoherence, where the dissipation can generate pure
dephasing. This can be easily obtained through diagonal Lindblad terms L c cn n n

3 =( ) † (which are proportional to

Figure 6. Instantaneous excess energy as a function of the external field tG( ), for various annealing times τ and afixed dissipation
strength 0.1k = of the decaying environment. One observes that for long annealing times ( 1000t = ) the system follows an
instantaneous steady state, which has an energy t2G( ), and at the end saturates toward 1e ¥ =( ) . Intermediate times show the same
trend but do not follow the open adiabatic dynamics as closely, thus resulting in a higherfinal excess energy e t e> ¥( ) ( ). For very
short annealing times ( 1t = ), the influence of the dissipation ismuch smaller and the final excess energy is smaller than e ¥( ).

Figure 7. Instantaneous excess energy during the annealing protocol as a function of the externalfield tG( ) for the two different types
of dissipation. 1cG = locates the critical pointwhere the Ising-like quantumphase transition occurs at zero temperature; here wefix

0.1k = .
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the onsite fermionic number operator), as in equation (10). As detailed in appendix C, despite the translational
invariance, in such cases the solution to themaster equation (2) cannot be trivially written in a tensor structure as
that in equation (12). As amatter of fact, the Lindbladian r[ ]now transforms into a nonlocal object, where the
differentmomentummodes are now coupled together. Therefore, it ismore suitable to solve a close set of L4
differential linear equations for the relevant two-point correlators [40], see equation (C15). By employing a
fourth-order Runge–Kutta integration procedure for these equations, with a time step td 10 2= - , wewere able
to reach annealing times up to 103t = .

Themain results of our analysis are summarised infigure 10, wherewe plot (upper panel) the excess energy
e t( ) at the end of the annealing, as a function of the annealing time τ. Comparing this data with that offigure 1,
we immediately recognise a qualitatively analogous trend as for the pumpingmechanism. In particular, the
nonmonotonic behaviour again reveals a competing effect between theKZmechanism and the incoherent
dephasing. Quantitative differences are barely visible on the scale of the twofigures.We observed a slight
worsening of the annealing protocol, for the same value of τ, the excess energy being slightly larger than that of
the previous case. Aswe did previously, we also analysed the excess-energy difference tD( ) rescaled byκ
(bottompanel). Its scaling with τ is completely analogous to that infigure 3, with the data growing linearly with
the annealing time, and eventually deviating for sufficiently large values ofκ and τ.

Figure 8.The final excess energy as a function of the annealing time coupled to an environment which induces both a pumping aswell
as a decayingmechanism. The various data sets denote different values of the ratio between the two η as listed in the legend.Herewe
simulated the annealing protocol of equation (5) for chains of L 103= sites.

Figure 9.Themaximumvalue of the excess energy at the overshooting point during the annealing protocol, as obtained from the data
in figure 8, as a function of the ratio η.
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Finally, we recall that the argument of section 3.1 for determining the scaling of the optimal working point
for the annealing protocol as a function ofκ also holds in this case. Indeed the corresponding data (with the same
power-laws), shown infigure 11, is closely similar to those offigure 2.

Summarising the results of our analysis on the quantumannealing in a translationally invariant free-fermion
model interactingwith a local environment, the emerging scenario for the different types of dissipation is the
following. For all three incoherentmechanismswe observe a competitionwhich leads to the onset of an optimal
working point for the annealing procedure at a given optt rate. On the other side, for larger values of τ an
overshooting point only appears in the presence of a decaymechanism, due to the fact that the instantaneous
energy approaches the steady-state value 1e t =( ) frombelow (while the opposite happens for the pumping and
for the dephasing). Finally, we analysed how thefinal excess energy approaches the t  ¥ limit, while for
pumping and decaywe observed the behaviour 1e t e t- ¥ ~ -∣ ( ) ( )∣ ; for dephasingwe
found expe t e t- ¥ ~ -∣ ( ) ( )∣ ( ).

4. Ising chain

Let us now go back to the spin-1/2 language and discuss the effects of the coupling to an external bath on the
quantumannealing of the Ising chain, equation (4).Wefirst notice that dephasing can be induced by a Lindblad
term Ln

a
n
z3 s=( ) , which is readilymapped into the local fermionic operator c c2 1n n -( )† , through the JWTof

equation (6). In such a case, onewould thus recover the dephasingmechanism for free fermions (we refer to
section 3.3 for details). On the other hand, incoherent pumping/decaywould be induced by Ln

a
n

1 s= +( ) and

Figure 10.The final excess energy e t( ) (upper panel) and rescaled difference t kD( ) (lower panel) as a function of the annealing
time τ, in the free-fermionmodel(7) coupled to a dephasing environment L c cn n n

3 =( ) † . Here we simulated the annealing protocol of
equation (5) for chains of L=501 sites. The other parameters are set as infigure 1.
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Ln
a

n
2 s= -( ) , respectively; in this case, whenmapping into fermions, the appearance of the JW string operator

forbids analytic treatment, such as the one discussed previously. Let us thus concentrate on the latter scenario.
We employ a numericalmethod based on an efficient approximation of themany-body densitymatrix in

terms of anMPO [42, 43].We expect this to be validwhenever the amount of correlations in the system is
sufficiently small to satisfy area-law scaling for the bipartite entanglement in the operator space. The time
evolution is performed bymeans of the time-evolving block decimation (TEBD) algorithm, after a Trotter
decomposition of the Liouvillian superoperator on the right-hand side of equation (2). In our simulations of the
annealing protocol(1), for the Isingmodel we considered systems up to L=20 sites, usingMPOswith a bond
link m 250» and adopting a typical Trotter step td 10 2= - .We adopted the same time dependence of the field

tG( ) as in equation (5), where for practical convenience we started from t 3in t= - , and verified that (on the
scales of thefigures shown below) the results are not affected by this choice. As detailed below, we found an
emerging physical scenario which is consistent with that previously discussed in section 3, already for small
sizes L 10 .

Our numerical results for annealing in the presence of incoherent decay, showing the final excess energy as a
function of τ and for various dissipation strengthsκ, are summarised infigure 12.Despite not being able to see
theKZpower-law scaling for limited system sizes (not even in the absence of dissipation), the nonmonotonicity
of the various curves for 0k ¹ clearly emerges as a result of the open-systemdynamics.We ascribe this
behaviour to the emerging picture described in section 3, wherewe discussedmuch longer systems of free
fermions. Indeed, in figure 13we repeated the same analysis for the scaling of the optimal working time optt and
of the corresponding optimal excess energy opte with the dissipation strength, finding similar power-law
behaviour. The exponents agreewithin 20%of the relative difference.We point out that wewere not able to fully
resolve the overshooting behaviour in this case, since it would have required longer annealing times.However,
this is already visible infigure 12, for the curve corresponding to 0.1k = .Moreover, we checked that the scaling
with τ of the final excess-energy difference tD( )was again linear for sufficiently small values ofκ and τ, as for
the fermionicmodel.

5. Conclusions

Wehave presented an extensive study of the adiabatic dynamics of free-fermionmodels, being driven across
their quantum critical point, within an open-system approach using local Lindblad operators. Using the excess
energy, we quantified the deviations from the adiabatic dynamics of the ground state, showing competition
between the unitary dynamics following aKZmechanism and incoherent defect generation due to dissipation.
While being local, the studied environment covers awide range of possible sources of dissipation—varying from
decay and pumping, separately or simultaneously, to dephasing— and at the same time showing consistent
behaviour for all of them,with the competition between the two processes leading to an optimal working point.
This can bemodelled by the ansatz of the independent processes, which comes to a scaling behaviour that
predicts the observed optimal working point in a fairly accurate way. For larger annealing times, we highlighted

Figure 11.Optimal excess energy (orange squares) and corresponding annealing time (violet diamonds) as a function of the
dissipation strength. Dashed lines denote power-lawswith slopes 1/3 and 2 3- , respectively for opte and for optt . The data is taken
from figure 10, and refers to the free-fermionmodel with a dephasing environment.
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the possibility of observing an overshooting point, where defects become larger than those reached for infinitely
slow annealing. This effect is intrinsically due to the couplingwith an external bath, which drives the system
toward the steady state according to the Liouvillian dynamics of themaster equation.

Furthermore, we studied the one dimensional Ising chain, which is closely related to the free-fermion
models, bymeans of amatrix product operator technique, wherewe found the same behaviour for small system
sizes aswell, suggesting the generic nature of the observed phenomena.Within the framework of free-fermion
models, a generalisation to higher dimensions is straightforward.
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Figure 12.The final excess energy as a function of the annealing time, for the Ising chain(4) coupled to an environment through
Lindblad operators inducing a decaymechanism Ln

a
n

2 s= -( ) . The various data sets denote different values of the dissipative coupling
κ, as listed in the legend. Filled symbols and continuous lines refer to chainswith L=20 sites, while empty symbolswith dashed lines
are for L=10.

Figure 13.Optimal excess energy (orange squares) and corresponding annealing time (violet diamonds) as a function of the
dissipation strength. Numerical data (symbols) is obtained using the same parameters as infigure 12, for L=10, and agree fairly well
with the power laws (dashed lines) of slopes 1/3 and 2 3- , respectively.
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AppendixA.Unitary dynamics

Herewe provide the technical details concerning the dynamics of the free-fermionmodel in equation (7), where
periodic boundary conditions are imposed, namely,

H t c c c c t c cH.c. 2 , A1
n

L

n n n n n n
1

1 1å= - + + + G
=

+ +( ) {( ) ( ) } ( )† † † †

with c cL 1 1= -+ for the positive parity sector, while c cL 1 1=+ for the negative parity sector. Herewe have
implicitly set the coupling strength to one.

The annealing procedure of equation (5) in this context has already been studied in [47]. The approach
consists of employing a Fourier transformof the type

c
L

c
e

e , A2n

i

k
k

kn
4

iå=
p-

( )
/

where the operators ck
(†) satisfy the canonical anticommutation relations for fermions as well, and the index k

takes values (assuming L to be even, without loss of generality) k L1 , 3 , ..., 1
L L L

=    -p p p( ) . The resulting
Hamiltonian in Fourier space takes the form

H c c t k k c c c c2 cos sin . A3
k

k k k k k kå= -G - + +- -{ [ ( ) ] ( )} ( )† † †

SinceH conserves the fermionic parity, the globalHilbert space can bewritten as a direct sumover different k
subspaces: k k0 = Å > , and indeed H Hk k0= å > as in equation (A3). Each subspace at afixed k 0> is built
from the two states 0 , 1 , 1k kñ ñ-{∣ ∣ }or 1 , 1k kñ ñ-{∣ ∣ }, depending on the parity number (even or odd, respectively).
The ground state is found in the even parity sector, as one can see from the diagonalisation ofHk.

TheHamiltonianHk at a givenfixed time t, as extrapolated from equation (A3), can be readily diagonalised
bymeans of a Bogoliubov transformation [50, 51]

c u t v t , A4k k k k k
*g g= + - -( ) ( ) ( )†

so that the ground state is annihilated by all the quasiparticle operators kg . Once the parameter tG( ) is varied, the
systemdynamics can thus be found by employing the time-dependent Bogoliubovmethod [54], whichmakes
the ansatz inwhich the instantaneous systemwave function ty ñ∣ ( ) is annihilated by a set of quasiparticle
operators k Hg̃ ( ), in theHeisenberg representation, defined though the transformation

c u t v tk H k k H k k H
*g g= + - -( ) ˜ ( ) ˜( ) ( ) ( )

† . This ansatz satisfies theHeisenberg equation

c H t ci , , A5
t k H k H

d

d
= [ ( ) ] ( )( ) ( )

with the constraint t 0k Hg y ñ =˜ ∣ ( )( ) , provided the coefficients uk(t) and vk(t) obey the time-dependent
Bogoliubov–deGennes equations

u u t k v k

v v t k u k

i 2 cos 2 sin ,

i 2 cos 2 sin . A6

t k k k

t k k k

d

d

d

d

=- G + +

=+ G + +

[ ( ) ]

[ ( ) ] ( )

These equations can be integrated starting from the initial condition G -¥ = +¥( ) , thusmapping them into a
Landau–Zener problem [47].

Appendix B. Fermionic decay bath

Let us nowdescribe the superimposed action of an environment that induces decay in the system, so the
Lindblad operator on each site n is given by L cn n= . It is important to stress that when applying the Fourier
transform(A2) to the dissipative part of themaster equation (3), this does notmix differentmodes:

c c c c, . B1
k

k
k

k k k k
1

2
 å år r k r rº = -

⎛
⎝⎜

⎞
⎠⎟[ ] [ ] { } ( )† †

The reason resides in the fact that each term contains two fermionic operators cn
(†), such as

c c c c en n n n L k k k k
k k n1

,
ir rå  å å ¢ ¢

- - ¢† † ( ) for example, and thus the exponential factor, once summed over n,
gives a Kronecker delta k k,d ¢.

As a consequence, the densitymatrix factorises into t tk k0r r= Ä >( ) ( ), andwe can decouple the problem
into the same kmodes as for the nondissipative case. Notice, however, that the dissipation part violates the parity
conservation of fermions; therefore here the different subspaces for a given k 0> are built up from the four
states 0 , 1 , 1 , 1 , 1k k k kñ ñ ñ ñ- -{∣ ∣ ∣ ∣ }, and not simply from two. TheHamiltonian in this basis can be explicitly
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written as H Hk k0= å > , where

H

k
k

k

k k

0 0 0 2 sin
0 2 cos 0 0

0 0 2 cos 0

2 sin 0 0 4 cos

,k =
- G +

- G +
- G +

⎡
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⎤

⎦
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( )
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with

c c

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

and

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
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⎡

⎣
⎢⎢⎢

⎤

⎦
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⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

As amatter of fact, solving the full quantumdynamics of tr ( ) translates into solving the L 2 Lindblad
equations of dimension 4 for tkr ( ). In the vectorised form, they can bewritten as the following linear differential
equationswith dimension 16 (k 0> ):

H H

c c c c c c c c

c c c c

i

. B2

t k k k

k k k k k k k k

k k k k k

d

d

2

 

 

r

k r

ññ = Ä - Ä

- Ä + + + Ä

+ Ä + Ä ññ

k
- - - -

- -

∣ { ( )

[ ( ) ( ) ]

( )}∣ ( )

† † † †

In practice, for every linear operatorW W m nm n mn,= å ñá∣ ∣acting on the four-dimensional Hilbert space k
which is spanned by the basis m m 1, ,4ñ = ¼{∣ } , we associate a vector in the 16-dimensional superoperator space

k k Ä , which is spanned by the basis m n m n, 1, ,4ñ Ä ñ = ¼{∣ ∣ } , using the convention

W W m n L, 1 , B3m n, f ññ = + -f∣ ( ) ( )

with W W m nm n mn,ññ º å ñ ñ∣ ∣ ∣ . In this way, we have that W W W W W W1 2 3 1 3
T

2= Ä ññ∣ ⟫ ( )∣ , where T denotes the
transpose operation.With the vectorisation of themaster equation for tkr ( ) using this rule, the fact that
H H Hk k k

T= = †, and that c ck k
T=† , wefinally arrive at equation (B2). The excess energy(11) is then readily

obtained, since t tk k0r r= Ä >( ) ( ).

AppendixC. Fermionic dephasing bath

In the case of the dephasing Lindblad operators L c cn n n= † on each site, the Fourier transform applied to r[ ]
turns out to yield a nonlocal object, since each termnow contains four fermionic operators, and thus it is not
possible to decouple the different kmodes. Therefore, this kind of dissipation scheme cannot be directly
embedded into theDziarmaga formalism [47]described above.

In the following, it ismore convenient to reduce our study to two-point correlators, since all the relevant
quantities for our purposes (such as the excess energy (11), can be expressed in terms of those correlators. This
drastically simplifies the analysis into a closed set of differential equationswhich scale linearly (or atmost
quadratically, for the nonhomogeneous case)with L [40].We define

F c c G c c

I c c K c c

, ,

, . C1

m n m n m n m n

m n m n m n m n

, ,

, ,

ºá ñ º á ñ

º á ñ º á ñ ( )

† †

† †

Using anticommutation relations for fermions and the fact that c c c cm n n m=( )† † † , we have G Fm n m n n m, , ,d= -
and also K Im n n m, ,* = .

Here we adopt theHeisenberg representation, where the dynamics is described bymeans of an adjoint
Lindbladmaster equation for a given observableO:

t
O H O O

d

d
i , , where C2= +[ ] ˜ [ ] ( )

O L O L O L L
1

2
, , . C3

n

L

n n n n n
1

 å k= -
=

˜ [ ] ( [ ] [ ] ) ( )† †

Since in this appendix we deal with the homogeneous cases, we set nk k= .
Wefirst note that

c H A c B c, 2 , C4m
n

L

m n n m n n
1

, ,å= +
=

[ ] ( )†

where thematricesA andBhave been defined in equation (7), with J h 1n n= = .Moreover, specialising to the
dephasing bath L c cn n n= † with uniform couplings nk k= , we have
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c c c c

c c c c

c c c c

c c c c

1 ,

1 ,

1 ,

1 . C5

m n m n m n

m n m n m n

m n m n m n

m n m n m n

,

,

,

,






k d

k d

k d

k d

=- -

=- -

=- +

=- +

˜ [ ] ( )
˜ [ ] ( )
˜ [ ] ( )
˜ [ ] ( ) ( )

† †

† †

† † † †

The adjoint Lindbladmaster equation (C2) for theHamiltonian(A1) and the dephasing bath, referring to the
operator c cm n

† , reads:

t
c c H c c c H c c c

A c c B c c

A c c B c c c c

d

d
i , i ,

2i

1 C6

m n m n m n m n

j
m j j n m j j n

n j m j n j m j m n m n

, ,

, , ,



å

k d

= + +

= +

- - - -

[ ] [ ] ˜ [ ]

(

) ( ) ( )

† † † †

†

† † † †

and correspondingly, for the other two-point operators,

t
c c A c c B c c

A c c B c c c c

d

d
2i

1 , C7

m n
j

m j j n m j j n

n j m j n j m j m n m n

, ,

, , ,

å

k d

= - -

+ + - -

(

) ( ) ( )

† † † †

† †

t
c c A c c B c c

A c c B c c c c

d

d
2i

1 , C8

m n
j

m j j n m j j n

n j m j n j m j m n m n

, ,

, , ,

å

k d

= +

+ + - +

(

) ( ) ( )

† † † † †

† † † † †

t
c c A c c B c c

A c c B c c c c

d

d
2i

1 . C9

m n
j

m j j n m j j n

n j m j n j m j m n m n

, ,

, , ,

å

k d

= - -

- - - +

(

) ( ) ( )

†

†

If we now set l n m l L, 0, 1= - Î -[ ], for a translational invariant systemwe can define 

such that

Fl n m m n, º= - (and analogously for 

, 

, 

), in such away that equation (C6) can be rewritten as

t
A B

A B P

d

d
2i

, C10

l
j

m j l m j m j l m j

m l j j m l m j j m l l

, ,

, ,

  

  

å

k

= +

- - -

+ - + -

+ - + -

(

) ( )

where P 1l l,1d= - (l L1,= ¼ ) are the L components of the vector P

. Thefirst term on the right-hand side

can bemanipulated as

A A A A

A A A

A A , C11

j
m j l m j m m l m m l m m l

l l l l l l l l l

j
l j j l

, , , 1 1 , 1 1

, , 1 1 , 1 1

,

   

  

 

å

å

= + +

= + +

= =

+ - + - - +

- - + +


( · ) ( )

where in the second linewe used the fact that A A;T = moreover, due to the translational invariance of the
model, it is possible to shift both indices ofA together. Proceeding in an analogousway, for the other terms
of(C10)wefind

B B , C12
j

m j l m j l,  å = -+ -


( · ) ( )

A A , C13
j

l m j j m l,  å =+ -


( · ) ( )

B B . C14
j

l m j j m l,  å =+ -


( · ) ( )

It is possible to follow the same type of calculations for the other two-point correlators, equations (C7)–(C9),
such that the dynamics of all the two-point correlators defined above can bewritten in a compact way as a set of
time-dependent linear equations
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t
M t P P Q Q

d

d
diag , , , , C15











k= -






   






⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
[ ( ) ( )] ( )

where the L L4 4´ matrixM is given by

M t

B B
B B

B B A t
B B A t

2i

0 0
0 0

2 0
0 2

C16=

- -

-
- -

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥( ) ( )
( )

( )

and the vector P

has been defined above, while the L components of the vector Q


are given by Q 1l l,1d= +

(with l L1,= ¼ ).
Eventually, the instantaneous energy E t H tº á ñ( ) ( ) can be calculated from the quadratic

Hamiltonian(A1):

E F G K I F

L L

2

2 , C17
n

L

n n n n n n n n n n
1

, 1 , 1 , 1 , 1 ,

1 1 1 1 0    

å=- - - + - G

=- - - + - G
=

+ + + +( )

( ) ( )

wherewe used anti-commutation relations to express all terms such that the resulting index of the translational
invariant correlators is non-negative. Tomatch boundary conditions and parity considerations, we use L odd
and are therefore in the negative parity sector.

The initial conditions, for a givenHamiltonianH(t) (that is a certain value ofΓ) can be immediately found by
a Bogoliubov transformation that generalises equation (A4) to nonhomogeneous quadratic systems [48]:

c U V . C18i

L

i i
1

, ,*å g g= +
m

m m m m
=

( ) ( )†

The transformation satisfies the properties 0 ,g g dá ñ =m n m n
† and 00 0 0g g g g g gá ñ = á ñ = á ñ =m n m n m n

† † † , where ... 0á ñ
indicates the expectation value over the ground state of H tin( ), that is with G = +¥. This yields

F t c c VV

G t c c UU

I t c c VU

K t c c UV

,

,

,

. C19

m n m n m n

m n m n m n

m n m n m n

m n m n m n

, 0 ,

, 0 ,

, 0 ,

, 0 ,

= á ñ =

= á ñ =

= á ñ =

= á ñ =

-¥

-¥

-¥

-¥

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

† †

† †

† † †

†

From these equations, exploiting the translational invariance of the system, we can choose the initial conditions
of the system(C15) by selecting the first columnof each of these fourmatrices.
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