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Abstract. It is conjectured that to test the K-polystability of a po-
larised variety it is enough to consider test-configurations which are equi-
variant with respect to a torus in the automorphism group. We prove
partial results towards this conjecture. We also show that it would give
a new proof of the K-polystability of constant scalar curvature polarised
manifolds.

1. Introduction

The Yau-Tian-Donaldson conjecture for Fano manifolds [26, 23, 7] pre-
dicts that a smooth Fano M admits a Kähler-Einstein metric if and only if it
is K-polystable, a purely algebro-geometric condition expressed through the
positivity of a certain limit of GIT weights (the Donaldson-Futaki weight or
invariant). There are by now several proofs, in different degrees of gener-
ality (i.e. allowing M to have mild singularities, a boundary in the MMP
sense, and/or slightly modifying the notion of K-stability), using different
methods.

For an arbitrary polarised manifold (X,L) the most natural generalisation
of a Kähler-Einstein metric is a constant scalar curvature Kähler (cscK)
metric representing the first Chern class of L. If such a metric exists, (X,L)
is called a cscK manifold.

A Kähler-Einstein metric, or more generally a cscK metric, if it exists, can
always be taken invariant under the action of a compact group of automor-
phisms of M . From the GIT point of view, when the point whose stability
we would like to investigate has a non-trivial reductive stabiliser H, the
Hilbert-Mumford Criterion can be strengthened: it is enough to consider
one-parameter subgroups which commute with H [10]. These facts suggest
the following folklore conjecture (all the notions required in the rest of this
introduction will be recalled in Section 3.)

Conjecture 1. Let (X,L) be a polarised variety and let G be a reductive
subgroup of Aut(X,L). Then (X,L) is K-polystable if and only if for every
G-equivariant test-configuration the Donaldson-Futaki invariant is greater
than or equal to zero, with equality if and only if the normalisation of the
test-configuration is a product.

An analytic proof in the case of Fano manifolds is given in [6], relying on
an alternative approach to the Yau-Tian-Donaldson conjecture. An algebro-
geometric proof in the Fano case and when G is a torus is given in [12].
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Recall that a cscK manifold has reductive automorphism group, so K-
polystable varieties are expected to have a reductive automorphism group as
well; this problem is studied in [5]. Because of this it is natural to formulate
Conjecture 1 just for reductive subgroups of Aut(X,L).

There is a general expectation that for the existence of a cscK metric
one actually needs some enhancement of the original notion of K-stability.
Quite a few different notions have been proposed. In this paper we focus on
the generalisation of K-stability based on (possibly non-finitely generated)
filtrations of the coordinate ring of (X,L) (see Definition 24). This notion
has been proposed by G. Székelyhidi in [21], building on the work of D.

Witt Nyström [25]; in [22], it is called K̂-stability. In [21], it is shown that,
given a cscK manifold (X,L), if the connected component of the identity

of Aut(X,L) is equal to C∗, then (X,L) is K̂-stable. Importantly for us

[21] also discusses a variant of K̂-stability which replaces the Donaldson-
Futaki invariant of a filtration with the asymptotic Chow weight Chow∞,
and proves that the K̂-stability result remains true for this variant (the two
notions coincide when dealing with classical test-configurations, correspond-
ing to finitely generated filtrations).

Our main result is a step towards a proof of Conjecture 1 in the general
case, or possibly of a variant of Conjecture 1 in the K̂-stability setup.

Theorem 2. Let (X,L) be a polarised variety. Fix a complex torus T ⊂
Aut(X,L) and let (X ,L) be a test-configuration with Donaldson-Futaki in-
variant DF(X ,L). Then we can associate to (X ,L) a T -equivariant filtration
χ of the coordinate ring of (X,L) whose asymptotic Chow weight satisfies
Chow∞(χ) ≤ DF(X ,L). If moreover χ is finitely generated, then it corre-
sponds to a T -equivariant test-configuration which is a flat one-parameter
limit of (X ,L), and in particular has the same Donaldson-Futaki invariant
and L2 norm.

Theorem 2 follows at once from Lemma 29, Lemma 30 and Theorem
31, proved in Section 4. Theorem 31 shows that given a generalised test-
configuration in the sense of [21], corresponding to a possibly non-finitely
generated filtration χ, we can specialise it to a T -invariant filtration χ̄ with
Chow∞(χ̄) ≤ Chow∞(χ). In the Appendix we show that non-finitely gen-
erated filtrations can actually arise in Theorem 2.

In Section 5 we show that Conjecture 1 combined with ideas from [17,
19] naturally leads to a proof that cscK manifolds are K-polystable. K-
polystability of cscK manifolds is proved in [2] using completely different
methods.
Notation. In this paper a polarised variety (X,L) is a complex projective
variety X endowed with a very ample and projectively normal line bundle
L. For the purposes of this paper one may always replace L with a positive
tensor power, so these assumptions are not restrictive.
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2. Some results on filtrations in finite dimensional GIT

In this section we discuss some preliminary notions in a finite dimensional
GIT context.

Let V be a finite dimensional complex vector space. Pick an increasing
filtration F = {FiV }i∈Z of V by complex subspaces (with index set Z) and
a C∗-action λ on V .

Definition 3. The specialisation F̄ of F via λ is the filtration given by

F̄iV = lim
τ→0

λ(τ) · FiV,

where the limit is taken in the appropriate Grassmannian.

Equivalently F̄iV is the subspace spanned by the vectors v̄ as v varies
in FiV , where v̄ denotes the lowest weight term with respect to the action
of λ. The filtration F̄ is λ-equivariant by construction, that is each F̄iV is
preserved by λ.

Let G be a reductive group acting on V , and assume that the kernel of
the action is a finite group.

Definition 4. Let γ be a one-parameter subgroup of G acting on V as above.
The weight filtration of γ is the increasing filtration F = {FiV }i∈Z given by

FiV =
⊕
j≥−i

Vj

where Vj is the weight j eigenspace for the action of γ.

Let P(γ) be the parabolic subgroup of G associated to the one-parameter
subgroup γ. By definition this is the subgroup preserving the flag F .

Suppose that λ is an additional one-parameter subgroup of G. We wish to
characterise the specialisation of the weight filtration F of γ via the action of
λ. For this we recall that the intersection of parabolic subgroups P(λ)∩P(γ)
contains a maximal torus T of G (see e.g. [4] Proposition 4.7). Moreover
all maximal tori in a parabolic subgroup are conjugated by elements of the
parabolic, hence there exists a one-parameter subgroup χ of T such that
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χ is conjugate to γ via an element in P(γ), so that the weight filtration
associated to χ is still F . Let

γ̄(t) = lim
τ→0

λ(τ)χ(t)λ(τ)−1.

This limit exists because χ lies in the parabolic P(λ), see [13] section 2.2.

Lemma 5. Suppose that F is the weight filtration of γ. The specialisation
F̄ of F via λ coincides with the weight filtration of γ̄. It follows in particular
that F̄ is induced by a one-parameter subgroup of G.

Note that the filtration F̄ is uniquely defined, but γ̄ is not (for example,
it depends on the choice of T ).

Proof. The key remark is that the weight j eigenspace of λ(τ)χ(t)(λ(τ))−1

is λ(τ) · Vj . Now for every v ∈ V we have

γ̄(t)(v) = lim
τ→0

λ(τ)χ(t)(λ(τ))−1(v)

so v is a weight j eigenvector for γ̄ if and only if v belongs to

lim
τ→0

λ(τ) · Vj

where the limit is taken in the appropriate Grassmannian. �

Definition 6. The Hilbert-Mumford weight of a vector v ∈ V with respect
to the one-parameter subgroup γ is

HM(v, γ) = min
i
{v ∈ FiV }

where F is the weight filtration of γ.

This depends only on the weight filtration of γ and we will also denote it
by HM(v, F ) rather than HM(v, γ) if we wish to emphasise this fact. But
notice that a general filtration of V will not come from a one-parameter
subgroup of the fixed reductive group G.

Remark 7. With our sign convention HM(v, γ) is the weight of the induced
action of γ on the fibre OP(V )(1)[v]0 of the hyperplane line bundle on P(V )
over [v]0 = limτ→0 λ(τ) · [v]. Thus for example the Hilbert-Mumford Cri-
terion says that [v] is GIT semistable if and only if HM(v, γ) ≥ 0 for all
one-parameter subgroups γ.

Proposition 8. Let λ be a one-parameter subgroup of the stabiliser of [v] ∈
P(V ). The we have

HM(v, F̄ ) ≤ HM(v, γ)

where F̄ is the specialisation via λ of the weight filtration F of γ.

Recall that by Lemma 5 the filtration F̄ is the weight filtration of a one-
parameter subgroup of G.
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Proof. We only need to show that v ∈ FiV implies v ∈ F̄iV . This follows
from the fact that v is an eigenvector of λ, so it is equal to its lowest weight
term v̄ with respect to the action of λ. �

It is easy to produce examples where the inequality of Proposition 8 is
strict.

Example 9. We choose G = SL(2,C) with its standard action on V = C2,
and

v = e2, γ(t) =

(
tk 0
0 t−k

)
, λ(τ) =

(
τh 0

τh − τ−h τ−h

)
for fixed h, k > 0. Note that λ stabilises [v] ∈ P(V ). One checks that γ
is not contained in the parabolic P(λ). But conjugating γ with a suitable
element in P(γ) gives(

1 1
0 1

)
γ

(
1 −1
0 1

)
=

(
tk t−k − tk
0 t−k

)
= χ ∈ P(γ) ∩ P(λ).

A straightforward computation gives

lim
τ→0

λ(τ)χ(λ(τ))−1 =

(
t−k 0

t−k − tk tk

)
= γ̄,

so we have

HM(v, γ̄) = −k < HM(v, γ) = k.

It is important to realise that even if γ does not stabilise [v] ∈ P(V ) its
specialisation γ̄ with respect to a λ in the stabiliser could well lie in the sta-
biliser (so abusing the K-stability terminology which will be recalled in the
next section, in the present finite-dimensional setup and without imposing
further restrictions, we can end up with a “product test-configuration”).

Example 10. Let V, γ, λ be as in the previous example. We choose v = e1+e2.
Then [v] ∈ PV is stabilised by λ and by γ̄, but not by γ. Note that in this
case we have HM(v, γ) = HM(v, γ̄) = k.

Let F, F ′ be filtrations of V with index set Z. We say that F is included
in F ′ if FiV ⊂ F ′iV holds for all i. The following observation follows imme-
diately from the definition of the Hilbert-Mumford weight and will be useful
in later applications.

Lemma 11. Let F , F ′ be the weight filtrations of some one-parameter sub-
groups. If F is included in F ′ then we have

HM(v, F ′) ≤ HM(v, F )

for all v in V .
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3. Filtrations, test-configurations, approximations

Let (X,L) be a polarised variety. One of the main objects of study in this
paper are test-configurations of (X,L). Let us briefly recall their definition.

Definition 12. Let C∗ act in the standard way on C. A test-configuration
(X ,L) for (X,L) with exponent r is a C∗-equivariant flat morphism π : X →
C, together with a π-ample line bundle L and a linearisation of the action
of C∗ on L, such that the fibre over 1 is isomorphic to (X,L⊗r). We say
that (X ,L) is

• very ample, if L is π-very ample;
• a product, if it is isomorphic to (X × C, L⊗r �OC), where the ac-

tion of C∗ on X × C is induced by a one-parameter subgroup λ of
Aut(X,L) by λ(τ) · (x, t) = (λ(τ) · x, τt);
• trivial, if it is a product and, moreover, λ is trivial;
• normal, if the total space X is normal;
• equivariant with respect to a subgroup H ⊂ Aut(X,L), if the action

of C∗ can be extended to an action of C∗ × H such that the action
of {1} ×H is the natural action of H on (X,L⊗r);
• in the Fano case, a test-configuration is a special degeneration if X

is normal, all the fibres are klt and a positive rational multiple of L
equals −KX (this notion is due to Tian [23], see also [11] Definition
1).

The normalisation of a test-configuration is the normalisation of X en-
dowed with the natural induced line bundle and C∗ action (or C∗ ×H ac-
tion). A test-configuration is a product if and only if the central fibre X0

is isomorphic to X: by standard theory in this case there is a trivialisation
X ∼= X × C and the C∗-action on X corresponds to a C∗-action on X × C
preserving X × {0}, which must then be induced by a C∗-action on X as
above.

The following result summarises observations of Ross-Thomas [16] and
Odaka [14].

Proposition 13. For all sufficiently large r there is a bijective correspon-
dence between increasing filtrations of H0(X,L⊗r)∨ (with index set Z) and
very ample test-configurations of exponent r. Such a test-configuration is a
product if and only if the corresponding filtration is the weight filtration of a
one-parameter subgroup of Aut(X,L), and it is equivariant with respect to a
reductive subgroup H ⊂ Aut(X,L) if and only if the corresponding filtration
is preserved by H.

Proof. An arbitrary increasing filtration of H0(X,L⊗r)∨ is induced by the
weight filtration of a one-parameter subgroup of GL(H0(X,L⊗r)∨), so we
can associate to a filtration the (very ample) test-configuration induced by
this one-parameter subgroup. If two one-parameter subgroups induce the
same filtration then the corresponding test-configurations are isomorphic,
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see [14] Theorem 2.3 and its proof. Conversely, by [16, Proposition 3.7], for
all sufficiently large r a very ample test-configuration of exponent r is always
induced by a one-parameter subgroup of GL(H0(X,L⊗r)∨), and this gives
the filtration. The other claims are straightforward. �

One can act on a test-configuration (X ,L) in two basic ways (see e.g.
[8] section 2). Firstly we can pull-back (X ,L) via a base-change t 7→ tp.
The effect on the corresponding filtration is to multiply all the indices of the
filtration by p. Equivalently the weights of the corresponding one-parameter
subgroup are multiplied by p. Secondly we can rescale the linearisation of the
action on L by a constant factor. The effect on the corresponding filtration
is to shift all indices by some integer k. Equivalently we are composing the
corresponding one-parameter subgroup with a one-parameter subgroup in
the the center of GL(H0(X,L⊗r)∨), which corresponds in turn to adding k
to all the weights.

Combining the two operations above we can modify the weights to get
a filtration with only positive indices, or alternatively to get a filtration
induced by a one-parameter subgroup of SL(H0(X,L⊗r)∨).

There is a more global correspondence between filtrations and test-configu-
rations, which avoids fixing the exponent. We introduce the homogeneous
coordinate ring

R = R(X,L) =
⊕
k≥0

Rk =
⊕
k≥0

H0(X,L⊗k).

We focus on filtrations of R of a special type.

Definition 14. We define a filtration χ of R to be sequence of vector sub-
spaces

H0(X,O) = F0R ⊂ F1R ⊂ · · ·
which is

(i) exhaustive: for every k there exists a j = j(k) such that FjRk =

H0(X,L⊗k),
(ii) multiplicative: (FiRl)(FjRm) ⊂ Fi+jRl+m,
(iii) homogeneous: if f is in FiR then each homogeneous piece of f also

lies in FiR.

We denote by χk the filtration of H0(X,L⊗k) induced by χ.

Note that when considering filtrations of R we restrict to those which only
have non-negative indices; let us also notice that describing χ is equivalent
to describe χk for every k. There are two basic algebraic objects attached
to a filtration as above.

Definition 15. Let χ be a filtration. The corresponding Rees algebra is

Rees(χ) =
⊕
i≥0

FiR t
i
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The graded modules are

gri(H
0(X,L⊗k)) = Fi(H

0(X,L⊗k))/Fi−1(H0(X,L⊗k))

The graded algebra is

gr(χ) =
⊕
k,i≥0

gri(H
0(X,Lk))

The Rees algebra is a subalgebra of R[t], and by the following elementary
result, whose proof relies on the projective normality of L, it is possible to
reconstruct χ from it.

Lemma 16. Let A be a C-subalgebra of R[t]. We define a filtration χA of
R as follows

FiR = {s ∈ R | tis ∈ A}
The filtration χA satisfies the conditions of Definition 14 if and only if A
satisfies the conditions

• A ∩R = H0(X,OX);
• for every s ∈ H0(X,L) there exists an i such that tis ∈ A;
• if tif is in A, then, for each of the homogenous component fk of f ,
tifk is also in A.

A filtration χ equals χA, where A is the Rees algebra of χ. There is an
inclusion of filtrations χ1 ⊂ χ2 (i.e. an inclusion of filtered pieces) if and
only if there is a corresponding inclusion of the Rees algebras Rees(χ1) ⊂
Rees(χ2).

The following notion is crucial for us.

Definition 17. A filtration is called finitely generated if its Rees algebra is
finitely generated.

Let us review the relation between finitely generated filtrations and test-
configurations, as developed by Witt Nyström [25] and Székelyhidi [21] (see
[3, Proposition 2.15] for a precise statement).

Let χ be a finitely generated filtration. The Rees algebra Rees(χ) is a
finitely generated flat C[t]-module; this means that the associated relative
Proj with its natural O(1) is a test-configuration (X ,L). The central fibre
is the Proj of the graded algebra gr(χ); the C∗-action on the central fibre is
given by minus the i-grading of gr(χ).

On the other hand let (X ,L) be an exponent r test-configuration. Con-
sider the filtration F of H0(X,L⊗r) associated to it by Proposition 13. Up
to base-change and scaling of the linearisation we can assume that all the
weights are positive. Denote by N the length of this filtration. Let A be the
C-subalgebra of R[t] generated by

H0(X,L)tN ⊕
N⊕
i=1

FiH
0(X,L⊗r)ti
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Then the filtration associated to A via Lemma 16 is the filtration of R
induced by (X ,L) (the second assumption in Lemma 16 holds because L is
projectively normal, i.e. R is generated in degree 1).

Suppose that χ is a not necessarily finitely generated filtration. Following
[21] Section 3.2 we can define finitely generated approximations χ(r) as fol-
lows. Let F be the filtration induced by χ on H0(X,L⊗r), this corresponds

to an exponent r test-configuration (X ,L), then χ(r) is the finitely generated
filtration corresponding to (X ,L). Note that this construction also makes
sense when χ is finitely generated and corresponds to (X ,L), in which case

χ(r) corresponds to (X ,L⊗r).

Definition 18. We introduce two “weight functions” attached to χ, given
by

wχ(k) = w(k) =
∑
i

(−i) dim gri(H
0(X,L⊗k)),

respectively

dχ(k) = d(k) =
∑
i

i2 dim gri(H
0(X,L⊗k)).

If χ is a finitely generated filtration (corresponding to a test-configuration
(X ,L)) then by equivariant Riemann-Roch we have, for all sufficiently large
k,

h(k) = h0(X,L⊗k) = a0k
n + a1k

n−1 + · · ·
w(k) = b0k

n+1 + b1k
n + · · ·

d(k) = c0k
n+2 + c1k

n+1 + · · ·

Definition 19. Let χ be a finitely generated filtration (which thus corre-
sponds to a test-configuration). One defines the r-th Chow weight, Donaldson-
Futaki weight (or invariant) and the L2 norm as

Chowr(χ) = Chowr(X ,L) = r
b0
a0
− w(r)

d(r)
,

DF(χ) = DF(X ,L) =
a1b0 − a0b1

a2
0

,

||χ||2L2 = ||(X ,L)||L2 = c0 −
b20
a0
.

Note that a straightforward computation shows that we have

lim
r→∞

Chowr(X ,L⊗r) = DF(X ,L).

Definition 20. A polarised variety (X,L) is K-semistable if DF(X ,L) ≥ 0
for every test-configuration (X ,L).

Given a subgroup H of Aut(X,L), we say that (X,L) is H-equivariantly
K-semistable if DF(X ,L) ≥ 0 for every H-equivariant test-configuration
(X ,L).
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Definition 21. A normal polarised variety (X,L) is K-polystable if for every
test-configuration (X ,L) with normal total space we have DF(X ,L) ≥ 0,
with equality if and only if (X ,L) is a product.

Given a subgroup H of Aut(X,L), (X,L) is H-equivariantly K-polystable
if for every H-equivariant test-configuration (X ,L) with normal total space
we have DF(X ,L) ≥ 0, with equality if and only if (X ,L) is a product.

Following [21] (Definition 3 and Equation (33)) we also define the following
two invariants of a non-finitely generated filtration.

Definition 22. The Donaldson-Futaki and asymptotic Chow weights of a
filtration χ are given by

DF(χ) = lim inf
r→∞

DF(χ(r)) ,

respectively

Chow∞(χ) = lim inf
r→∞

Chowr(χ
(r)) .

Note that χ(r) is an exponent r test configuration, so it is natural to con-
sider its r-th Chow weight. Let us also emphasise that, when χ is finitely gen-
erated, both these invariants coincide with the classical Donaldson-Futaki
weight, see [21, Section 3.2]. In general these two invariants differ, see [21,
Example 4]; we do not know if there is an inequality relating them.

Definition 23. The L2 norm of a filtration χ is given by

||χ||2 = lim inf
r→∞

||χ(r)|| .

In [21, Lemma 8] it is shown that the above liminf is actually a limit.

Definition 24. A polarised variety is K̂-semistable if for any filtration χ
of R(X,L) we have

DF(χ) ≥ 0.

It is K̂-stable if the equality holds if and only if ||χ||2 = 0. One can
make parallel definitions replacing DF(χ) with the asymptotic Chow weight
Chow∞(χ).

One easily checks that K̂-semistability is equivalent to K-semistability.
On the other hand K̂-stability is (at least a priori) stronger than K-stability,
and just as K-stability it implies that the automorphism group of (X,L) has
no nontrivial one-parameter subgroups.

Székelyhidi [21] (Theorem 10 and Proposition 11) proves that if (X,L) is

cscK with trivial automorphisms then it is K̂-stable, including the variant
notion using the Chow∞ weight.

At present we do not know a good candidate for the notion of K̂-poly-
stability (i.e. allowing Aut(X,L)/C∗ to be non-finite, where by C∗ we mean
the central one parameter subgroup which acts as the identity on X and
scales L).
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4. Specialisation of a test-configuration

In the classical situation of a torus T acting on a projective variety one can
specialise a point p to a fixed point p̄ for the action of T : one picks a generic
one-parameter subgroup λ of T and the specialisation is p̄ = limτ→0 λ(t) · p.
This specialisation does depend on λ and when we need to emphasise this
dependence we will denote it by p̄λ. In this section we first generalise this
construction to test-configurations, and then prove some basic facts which
imply our main result Theorem 2.

Definition 25. Let (X ,L) be an exponent r test-configuration and F be
the corresponding filtration of H0(X,L⊗r)∨ given by Proposition 13. Let T
be a torus in Aut(X,L), and F̄ the specialisation of F via a generic one-
parameter subgroup λ of T . Then the specialisation (X̄ , L̄) of (X ,L) is the
T -equivariant exponent r test-configuration corresponding to F̄ .

The specialisation depends on the choice of r and λ, but we will mostly
suppress this in the notation.

We make a brief digression in order to discuss Definition 25. Recall that
by Proposition 13 an exponent r test-configuration for (X,L) is obtained by
embedding ι : X ↪→ PH0(X,L⊗r)∨ with the complete linear system |rL| and
by taking the flat closure of ι(X) under the action of a one-parameter sub-
group γ of GL(H0(X,L⊗r)∨). The corresponding test-configuration (X ,L)
is a closed subscheme of PH0(X,L⊗r)∨ × C (in fact it can be canonically
completed to a closed subscheme of PH0(X,L⊗r)∨ × P1 by gluing with the
trivial family at infinity). If λ is a one-parameter subgroup of Aut(X,L) one
could attempt to define the λ-specialisation of (X ,L) by taking its flat clo-
sure as a closed subscheme of PH0(X,L⊗r)∨×C under the action of λ. We
give a simple example showing that such a flat closure is not preserved by
γ in general, so it is not a λ-equivariant test-configuration in a natural way.
In fact we also show that in general the total space of the flat closure cannot
support a test-configuration, and compute the corresponding specialisation
(X̄ , L̄) in the sense of Definition 25 in the example.

Example 26. Embed ι : P1 ↪→ P2 via Veronese [s0 : s1] 7→ [s2
0 : s0s1 : s2

1] and
act with the one-parameter subgroup γ of SL(3,C) given by diag(t−1, t2, t−1).
This gives a test-configuration (X ,L) of exponent 2 for (P1,OP1(1)) with to-
tal space X ⊂ P2 × C which is the variety V (xz − t6y2). Now choose

λ =

(
1 1
0 1

)(
τh 0
0 τ−h

)(
1 −1
0 1

)
∈ SL(2,C) = Aut(P1,OP1(1)).

The induced one-parameter subgroup in SL(3,C), which we still denote by
λ, is given by

λ =

τ2h 1− τ2h (τ−h − τh)2

0 1 −2(1− τ−2h)
0 0 τ−2h

 .
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One computes

λ(τ)·X = V (τ2hx((τ−h−τh)2x−2(1−τ−2h)y+τ−2hz)−t6((1−τ2h)x+y)2).

Since λ(τ) · X ⊂ P2 × C is a familiy of divisors it is straightforward to take
the flat limit at τ → 0. For h > 0 one finds

lim
τ→0

λ(τ) · X = V (x(x+ 2y + z)− t6(x+ y)2) =: X̄ . (4.1)

The central fibre V (x(x + 2y + z)) is not preserved by γ, so the flat limit
X̄ is not the total space of a test-configuration in a natural way. In this
specific case, we can still find a non-canonical C∗-action on X̄ which turns
it into a λ-equivariant test-configuration. On the other hand, for h < 0, we
find that the flat limit X̄ is given by the divisor

lim
τ→0

λ(τ) · X = V (x2(t6 − 1)).

This may be thought of as the product, thickened test-configuration V (x2)
glued to six copies of P2, and clearly it cannot be the total space of a test-
configuration for P1.

We can also consider the specialisation (X̄ , L̄) of (X ,L) in the sense of
Definition 25. The conjugate one-parameter subgroup λ(τ)γ(t)(λ(τ))−1 is
given byt−1 −t−1(−1 + τ2h)(−1 + t3) −2t−1(−1 + τ2h)2(−1 + t3)

0 t2 2t−1(−1 + τ2h)(−1 + t3)
0 0 t−1

 ,

so γ lies in the parabolic P(λ) if and only if h > 0. In this case (X̄ , L̄)
is obtained by acting on V (xz − y2) with γ̄ = limτ→0 λ(τ)γ(t)(λ(τ))−1.
The resulting test-configuration is precisely (4.1). The central fibre X̄0 =
V (x(2(x + y) + z)) is preserved by γ̄ and λ and we obtain a λ-equivariant
test-configuration in a canonical way.

For h < 0 we have γ /∈ P(λ) and we must first conjugate γ by some
element g ∈ P(γ) to obtain χ ∈ P(λ). A direct computation shows that one
can choose

g =

1 0 −1
1 1 0
0 0 1

 , χ =

 t−1 0 0
t−1 − t2 t2 t−1 − t2

0 0 t−1


yielding

γ̄ = lim
τ→0

λ(τ)χ(t)(λ(τ))−1 =

t2 t−1 − t2 −t−1 + t2

0 t−1 0
0 0 t−1

 .

The corresponding test-configuration (X̄ , L̄) is given by

V (t3x(x+ 2y + z)− (x+ y)2)

endowed with the action of γ̄, which commutes with λ. Diagonalising γ̄
(which is of course compatible with diagonalising λ) we see that (X̄ , L̄) is
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isomorphic to the test-configuration induced by diag(t−1, t−1, t2) given by
V (t3xz − y2).

Finally note that the test-configuration (X ′,L′) (isomorphic to (X ,L))
defined by χ is

V ((x+ y)(y + z)− t3y(x+ 2y + z)).

Taking the flat closure of (X ′,L′) under the action of λ gives the one-
parameter family of divisors of P1 × C parametrised by τ

(x+ y)2 − t3x(x+ 2y + z) + τ−2h(1− t3)(x+ y)(x+ 2y + z).

This is a flat one-parameter family taking (X ′,L′) to (X̄ , L̄).

We explain next an alternative approach to specialising test-configurations
which is more global, i.e. independent of the exponent, and is based on fil-
trations of the homogeneous coordinate ring. Let χ be the filtration of
R = R(X,L) corresponding to (X ,L), and T a torus in Aut(X,L).

Definition 27. Let λ : C∗ → T be a one-parameter subgroup. The speciali-
sation χ̄ of χ with respect to λ is given by χ̄k = limτ→0 λ(τ) · χk, where the
limit is taken in the appropriate Grassmannian; the specialization depends
on λ, but we suppress it from the notation. If the image of λ is generic in T
(i.e. it avoids finitely many hyperplanes in the lattice of 1PS’s of T ), then
χ̄ is T equivariant, and we call it a speicalization of χ with repsect to T .

It is straightforward to check that χ̄ is still a filtration of R in the sense
of Definition 14. The limit filtration χ̄ can also be described as follows. Let
Rees(χ) ⊂ R be the Rees algebra of the finitely generated filtration χ. A
one-parameter subgroup λ : C∗ → Aut(X,L) acts on R and on R[t] (trivially
on t) and we may define a C[t]-subalgebra Reesλ(χ) ⊂ R by

Reesλ(χ) = { lim
τ→0

λ(τ)(s) : s ∈ Rees(χ)}.

Then χ̄ is precisely the filtration of R whose Rees algebra is Reesλ(χ), i.e.

F̄iRk = {s ∈ Rk : tis ∈ Reesλ(χ)}.

The crucial difficulty with this more global approach lies in the fact that
the Rees algebra of χ̄ is not finitely generated in general. This is a well-
known phenomenon in commutative algebra and an explicit example is given
in the Appendix.

Let (X ,L) be a very ample test-configuration of exponent r. Given a
generic one-parameter subgroup of T ⊂ Aut(X,L) we can perform two ba-
sic constructions. On the one hand we can specialise (X ,L) to (X̄ , L̄) in the
sense of Definition 25. This specialisation corresponds to a finitely gener-
ated filtration η. The Veronese filtration η(j) corresponds to the Veronese
test-configuration (X̄ , L̄⊗j) with exponent jr. On the other hand (X ,L)
corresponds to a finitely generated filtration χ of R via the construction
described at the end of the previous section. We may specialise χ to χ̄ and
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consider a finitely generated approximation χ̄(j), corresponding to a test-

configuration of exponent jr: by definition this is in fact (X̄ ,L⊗j). Since

χ̄ is not finitely generated (in general), the filtrations η(j), χ̄(j) will differ

for infinitely many j, that is the test-configurations (X̄ , L̄⊗j) and (X̄ ,L⊗j)
differ for infinitely many j. However we can establish a simple comparison.

Proposition 28. The filtration of H0(X,L⊗jr) induced by χ̄ (or equiva-

lently by χ̄(j) or (X̄ ,L⊗j)) is included in the filtration of the same vector

space induced by η(j), i.e. by the filtration corresponding to (X̄ , L̄⊗j).

Proof. The result follows at once from the fact that the Rees algebra of χ̄
contains all the generators of the Rees algebra of η, by construction. �

Let us show that when χ̄ is finitely generated then (X̄ , L̄) is in fact a flat

limit of (X ,L) under a C∗-action, and in particular the filtrations χ̄(j), η(j)

coincide for all j, that is (X̄ , L̄⊗j) and (X̄ ,L⊗j) coincide. In order to simplify
the notation (without loss of generality) we assume in the following result
that (X̄ , L̄) has exponent 1 and χ is the corresponding finitely generated
filtration.

Lemma 29. Suppose that Rees(χ̄) = Reesλ(χ) is a finitely generated C[t]-
subalgebra of R[t]. Then there exist an embedding ι : X → PN × C and a

1-parameter subgroup λ̂ : C∗ → GL(N + 1,C) such that

• ι∗OPN (1) = L⊗r for some r ≥ 1,

• λ̂ acting on PN preserves ι(X1) ∼= X and restricts to the induced
action of λ on it,

• the 1-parameter flat family of subschemes of PN × C induced by λ̂
(acting trivially on the second factor) has central fibre isomorphic
to X̄ := Proj(Rees(χ̄)) endowed with its natural Serre line bundle
O(r).

In particular it follows that the central fibre (X̄0,L′⊗r0 ) is a flat 1-parameter
degeneration of the central fibre (X0,L⊗r0 ) (as closed subschemes of PN ).

Proof. If Rees(χ̄) = Reesλ(χ) ⊂ R[t] is a finitely generated C[t]-subalgebra
there exists a finite set of elements σi of Rees(χ) such that the limits
limτ→0 λ(τ) · σi generate Rees(χ̄). Since λ(τ) is C[t]-linear and we have
λ(τ) · (s1 + s2) = λ(τ) · s1 + λ(τ) · s2 and λ(τ) · (s1s2) = (λ(τ) · s1)(λ(τ) · s2)

for all s1, s2 ∈ R, we can then choose our σi of the special form σi = tp(i)si
where the si are homogeneous elements of R. Moreover, enlarging the col-
lection of σi’s, we can assume that the elements tp(i)si, i = 0, . . . , N generate
Rees(χ). For a suitable r ≥ 1 the monomials s̃j in our elements si of homoge-

nous degree r generate the Veronese algebra R̃ =
⊕

k>0Rkr (which is thus

generated in degree 1) and so the corresponding elements tp(j)s̃j generate

the Veronese algebra
⊕

k>0(FkrR̃)tkr and their limits tp(j) limτ→0 λ(τ) · s̃j
generate the Veronese algebra

⊕
k>0(F̄krR̃)tkr.
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With these assumptions we define a surjective morphism of C[t]-algebras

φ : C[ξ0, . . . , ξN ][t]→
⊕
k>0

(FkrR̃)tkr

by φ(t) = t, φ(ξi) = tp(i)s̃i. Suppose that the action of λ is given by

λ(τ) · s̃i =
∑

j aij(τ)s̃j . We define a one-parameter subgroup λ̂ : C∗ →
GL(C1[ξ0, . . . , ξN ]), acting on degree 1 elements by λ̂(τ) · ξi =

∑
j aij(τ)ξj ,

and extend its action trivially on t. The morphism φ induces the required
embedding

ι : X = ProjC[t]

⊕
k>0

(FkrR̃)tkr → ProjC[t] C[ξ0, . . . , ξN ][t],

which intertwines the actions of λ and λ̂. By construction the limit as τ → 0
of the flat family of closed subschemes of PN × C given by

λ̂(τ) · ι
(

ProjC[t]

⊕
k>0

(FkrR̃)tkr
)

is isomorphic to ProjC[t]

⊕
k>0(F̄krR̃)tkr and so it gives a copy of X̄ embed-

ded in PN × C as a flat 1-parameter degeneration of X .
To prove the statement on central fibres we look at the family of closed

subschemes of PN given by

λ̂(τ) · ι(X0) = λ̂(τ) · ι
(

ProjC[t] gr
⊕
k>0

(FkrR̃)tkr
)
.

Taking the flat closure of this 1-parameter family we obtain a closed sub-
scheme Y0 ⊂ PN whose underlying reduced subscheme Yred

0 is contained
in X̄0 ⊂ PN . By flatness the Hilbert function of Y0 is the same as that
of the central fibre (X0,L⊗r0 ) and so the same as that of the general fibre
(X,L⊗r). Similarly the Hilbert function of X̄0 ⊂ PN is the same as that of
(X̄0, L̄⊗r0 ) and so the same as that of the general fibre (X,L⊗r). As we have
Yred

0 ⊂ X̄0 ⊂ PN and X̄0,Y0 ⊂ PN have the same Hilbert functions we must
actually have Y0 = X̄0 as required. �

The following observation follows immediately from the definitions of the
weight functions (Definitions 18, 19) and of the specialisation χ̄ (Definition
27).

Lemma 30. In the situation of Lemma 29 we have

w(X̄ ,L̄)(k) = w(X ,L)(k), d(X̄ ,L̄)(k) = d(X ,L)(k).

for all k. In particular we have

DF(X̄ , L̄) = DF(X ,L), ||(X̄ , L̄)||L2 = ||(X ,L)||L2 .

Let us now consider the general case.
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Theorem 31. Let χ be a possibly non-finitely generated filtration, and let
χ̄ be its specialisation with respect to a torus T ⊂ Aut(X,L) in the sense of
Definition 27. Then we have

Chow∞(χ̄) ≤ Chow∞(χ).

Proof. We claim that the inequality Chowr(χ̄
(r)) ≤ Chowr(χ

(r)) holds for
every r. By Definition 22 this will imply the Theorem.

Before proving the claim, let us recall the relation between the Chow
weight and classical GIT, following [16, Section 3], [9, Section 7] and [21,
Section 2]. Let Vr = H0(X,L⊗r)∨, and denote by γ a 1PS of GL(Vr)

which induces the test configuration associated to χ(r). The group GL(Vr)
acts on the appropriate Chow variety Zr, and X ⊂ P(H0(X,L⊗r)∨) gives
a point [X] ∈ Zr. On Zr we have the classical, ample Chow line bundle,
giving a linearisation for the action of GL(Vr). The r-th Chow weight of

χ(r) introduced in Definition 19 is the Hilbert-Mumford weight of the point
[X] ∈ Zr under γ, computed with respect to a convenient rational rescaling
of the ample Chow line bundle (with this normalisation the Chow line bundle
becomes an ample Q-line bundle, but this causes no difficulties).

The claim now follows from Proposition 8, i.e. the fact that Hilbert-
Mumford weights decrease under specialisation. �

5. Application to cscK polarised manifolds

In this Section we show that Conjecture 1 combined with ideas from
[17, 19] implies a new proof that cscK manifolds are K-polystable.

Theorem 32. Let (X,L) be a cscK manifold and let T be a maximal torus
in Aut(X,L). Then (X,L) is T -equivariantly K-polystable.

More explicitly, Theorem 32 states that, given a normal T -equivariant
test configuration (X ,L), we have

DF(X ,L) ≥ 0

with equality if and only if (X ,L) is a product.

Proof. Let (X ,L) be a normal T -equivariant test configuration. By a result
of Donaldson [8] (X,L) is K-semistable, so it is enough to assume that (X ,L)
is not a product and to show that we cannot have DF(X ,L) = 0. We argue
by contradiction assuming DF(X ,L) = 0.

Denote by α the C∗ action on (X ,L). Let βi be an orthogonal basis
of 1-parameter subgroups βi of Aut(X,L) (see [20] for a discussion of the
formal inner product on C∗-actions). As (X ,L) is T -equivariant, there are

C∗-actions β̃i on (X ,L), preserving the fibres, commuting with each other
and with α, and extending the action of βi. Fixing i, the total space (X ,L)

endowed with the C∗-action α ± β̃i is a test-configuration for (X,L), with
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Donaldson-Futaki invariant

DF(α± β̃i) = DF(α)±DF(β̃i)

= ±DF(β̃i)

(the first equality follows since α, β̃i are commuting C∗-actions on the same
polarised scheme). Since we are assuming that (X,L) is cscK we know it is

K-semistable and so we must have DF(β̃i) = 0 for all i. Let (X ,L)⊥T denote
the L2-orthogonal in the sense of [20], i.e. the test-configuration with total
space (X ,L) endowed with C∗-action

α−
∑
i

〈α, β̃i〉
||β̃i||2

β̃i.

Then we see that DF(X ,L)⊥T = 0.
Since X is normal and not isomorphic to X × C, by [19] section 3 there

exists a point p ∈ (X1,L1) which is fixed by the maximal torus T , and such
that denoting by α · p the closure of the orbit of p in (X ,L) we have

DF(Blα·pX ,L − εE)⊥T = DF(X ,L)⊥T − Cεn−1 +O(εn)

= −Cεn−1 +O(εn) (5.1)

for some constant C > 0. Here (Blα·pX ,L− εE) is the test-configuration for
(BlpX,L− εE) (E, E denoting the exceptional divisors) induced by blowing
up the orbit α · p in X with sufficiently small rational parameter ε > 0.
Since p is fixed by T there is a natural inclusion T ⊂ Aut(BlpX,L − εE)

and then (Blα·pX ,L − εE)⊥T denotes the L2 orthogonal to T in the sense of
[20].

As explained in [19] Theorem 2.4 a well-known result of Arezzo, Pacard
and Singer [1] implies that the polarised manifold (BlpX,L − εE) admits
an extremal metric in the sense of Calabi. The semistability result of [20]
shows that we must have DF(Blα·pX ,L − εE)⊥T ≥ 0. But this contradicts
(5.1), so we must have in fact DF(X ,L) > 0 as claimed. �

Corollary 33. If Conjecture 1 holds, then cscK manifolds are K-polystable.

Proof. Let (X,L) be a cscK manifold, and T a maximal torus in Aut(X,L).
Theorem 32 implies that (X,L) is T -equivariantly K-polystable. Conjecture
1 then implies that (X,L) is K-polystable. �

Remark 34. The proof of the main result of [19] (Theorem 1.4) shows that
if (X,L) is extremal and T ⊂ Aut(X,L) is a maximal torus then we have
DF(X ,L)⊥T > 0 for all T -equivariant test-configurations whose normalisation
is not induced by a holomorphic vector field in T (or equivalently, which are
not isomorphic to such a product outside a closed subscheme of codimension
at least 2). If the assumption is dropped there are counterexamples. Note
that Theorem 1.4 in [19] is mistakenly stated without this assumption. See
[11] Remark 4 and the note [18] for further discussion.
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Appendix

In this appendix we present an example of a test-configuration (X ,L)
with a 1-parameter subgroup λ : C∗ → Aut(X,L) such that the λ-equivariant
filtration χ̄ of Definition 25 is not finitely generated. This is done by adapting
a well-known example in the literature on canonical bases of subalgebras,
due to Robbiano and Sweedler ([15] Example 1.20).

Consider the polynomial algebra C[t][x, y] over the ring C[t] and let A
denote the C[t]-subalgebra generated by

t(x+ y), txy, txy2, t2y.

Then A ⊂ R[t] is the Rees algebra of a homogeneous, multiplicative, point-
wise left bounded finitely generated filtration χ of the homogeneous coor-
dinate ring R = C[x, y] of the projective line (P1,OP1(1)). So ProjC[t]A

endowed with its natural Serre bundle O(1) is a test-configuration for P1.
Consider the 1-parameter subgroup λ : C∗ → SL(H0(P1,OP1(1))) acting by

λ(τ) · x = τ−1x, λ(τ) · y = τy.

We let χ̄ be the limit of χ under the action of λ as in the proof of Proposition
27.

Proposition 35. The limit filtration χ̄ is not finitely generated.

Proof. The 1-parameter subgroup λ induces a term ordering > on the C[t]-
algebra C[t][x, y] which is compatible with the graded C[t]-algebra structure
and for which we have x > y. Let us denote the initial term of an element
σ ∈ C[t][x, y] by in> σ. The Rees algebra Rees(χ̄) coincides with the initial
algebra of A defined by

in>A = {in> σ : σ ∈ A }.
We show that in>A is not finitely generated. The proof follows closely the
original argument in [15] Example 1.20.

Claim 1. The algebra A contains all the monomials of the form tn−1xyn

for n ≥ 3, and does not contain elements which have a homogeneous compo-
nent of the form tkxyn for k < n−1. In particular no element of A can have
initial term of the form tkxyn for k < n − 1. To check the first statement
we observe that we have for n ≥ 3

tn−1xyn = t(x+ y)tn−2xyn−1 − t(xy)t(tn−3xyn−2)

and then argue by induction starting from the fact that A contains the
monomials t(x + y), txy, txy2. For the second statement it is enough to
check that A does not contain tkxyn for k < n − 1 (since A is a graded
subalgebra). This is a simple check.

Claim 2. The algebra A does not contain elements which have a homoge-
neous component of the form tkyj for k ≤ j. In particular no element of A
can have initial term of the form tkyj for k ≤ j. Since A is a graded sub-
algebra it is enough to show that tkyj cannot belong to A if k ≤ j. All the
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elements of A are of the form f(t(x+y), txy, txy2, t2y) where f(x1, x2, x3, x4)
is a polynomial with coefficients in C[t]. Assuming

f(t(x+ y), txy, txy2, t2y) = tkyj

and setting y = 0 gives f(tx, 0, 0, 0) = 0. Similarly setting x = 0 gives
f(ty, 0, 0, t2y) = tkyj . If k ≤ j it follows that necessarily k = j and
f(x1, 0, 0, x2) = x1. Comparing with f(tx, 0, 0, 0) we find tx = 0, a con-
tradiction.

Claim 3. in>A is not finitely generated. Assuming in>A is finitely gen-
erated we can find a finite set σi of elements of A such that in> σi generate
in>A. By finiteness we can choose m � 1 such that for all i we have
in> σi 6= tm−1xym. On the other hand by Claim 1 we know that for all m
we have tm−1xym ∈ in>A. By the definition of a term ordering we know
thus that tm−1xym must be a product of powers of initial terms of the ele-
ments σi. As x appears linearly it follows that there must be two generators
σi, σj with in> σi = tpxyr, respectively in> σj = tqys with p + q = m − 1,
r + s = m. By Claim 1 we must have p ≥ r − 1 and by Claim 2 we must
have q > s. Hence p+ q > r + s− 1 = m− 1 so p+ q ≥ m, a contradiction.

�
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