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Abstract

Reading is an activity in which humans routinely engage in on an everyday basis. It is thus not

surprising that the question of how we identify and process words has been one of the central

interests of psycholinguistic research in the past decades. Indeed, the science of reading

has progressed enormously in this time, and we have gained important insights into visual

word identification. However, our current understanding of word identification is difficult

to extend to text reading—both experiments and theories focus primarily, if not exclusively,

on out-of-context individual words. Instead, text reading has been extensively explored

through the models of eye movement control in reading. However, their focus lies primarily

on the decision of when to move the eyes to the next word and the nature of attention

allocation, while they tend to stay clear of the lexical dynamics, described in models of single

word processing. While both these fields importantly advanced our knowledge, the entire

complexity of reading process surely cannot be addressed while they are kept in isolation.

Recently, a shift towards a more integrated approach, joining the findings of both fields, has

started to emerge. At the same time, the constant development of new techniques now allows

us to address reading under more integrated and natural experimental conditions.

We make use of these in the present thesis, where we follow the path from the study of

words in isolation towards more ecologically valid study of word processing during sentence

reading. Throughout the present work, we approach the reading research in three steps. We

start from the individual word processing—in chapter 2, we introduce a masked morpholog-

ical priming study, in which we address the question of existence of stem and inflectional

suffix priming. Following, we move on towards a more integrated approach of visual word

identification and text reading—in chapter 3, we study cross-word semantic and morphologi-

cal priming within sentences in a natural reading, eye tracking experiment. Finally, we try to

apply this integrated approach to the study of neural signatures during natural reading—in

chapter 4, we use the same cross-word semantic and morphological priming paradigm as in
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the previous chapter, but we introduce it in a natural sentence reading study in which we

simultaneously record the eye movements and electroencephalogram.

Taken together, the present work presents three different approaches to the study of mor-

phological and lexical-semantic priming. Throughout these studies, no evidence in support of

(inflectional) morphological priming was observed, while solid effect of lexical-semantic prim-

ing was observed both in words in isolation, as also in a natural sentence reading. With this,

our work indicates that inflectional morphemes behave differently from stems and derivational

morphemes in complex word recognition.
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General introduction

Reading is an activity in which humans engage in on an everyday basis, without much effort

and often without giving it too much thought. It is thus not surprising that most people

(once they successfully acquire reading skills) would refer to this activity as easy. Yet, it is

in fact not easy. Rather, it is a very complex skill (Rayner and Reichle, 2010), arguably the

most complex skill in which humans routinely engage in (O’Shea and Huey, 1908; Rayner

and Pollatsek, 1989) and a demanding cognitive task, which simultaneously unfolds at several

linguistic levels (Dimigen et al., 2011).

This is revealed already when asking a seemingly simple question: What do readers really

read when they read a single word such as, e.g., ‘WRITER’? Surely, they read a sequence

of graphemes—representing the form level. Also, they read a word as a distinct and famil-

iar object—representing the lexical level. They also read two independent and meaningful

units, i.e. ‘WRITE’ and ‘ER’—representing the morphological level. And they also read a

word, providing a piece of meaning, which connects to their experience of the real world—

representing the semantic level. A successful reader’s processing system would thus have to

simultaneously address all these different levels. How does the human reading system deal

with this challenge?
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1.1 Visual word recognition in words in isolation

In the past decades, this question has been of central interest to both the theoretical and

empirical psycholinguistic research. Starting in the 1960s, early work in the field dealt with

this challenging question through the study of words in isolation (Lupker, 2005; Rastle, 2007),

which remained the central interest of the reading research until the present day.

1.1.1 Models of single word processing

The past decades of theoretical research have brought to life numerous models of single

word identification. Most of these early models (such as, e.g., Gough, 1972; Morton, 1969;

Rastle, 1974) adopted the view that the information processing reveals through different

stages, which follow each other serially. Through this system, the information only flows in

a forward direction (Lupker, 2005).

The first group of models that adopted this view was built on the assumption that each

of the processing stages must be completed before the next one could begin. Essentially, the

models assumed that a stage was ready to pass information forward only when its activa-

tion level reached a certain threshold (Lupker, 2005); these models thus became known as

‘thresholded’. One of the models that best represents this assumption is the The bin model

(Forster, 1976, 1989), which suggests that readers recognize a word by comparing a prelexical

code against a set of lexical codes, stored in lexical memory, until a match is obtained.

These early models importantly advanced the field and were able to account for a phe-

nomenon, widely observed in the empirical research of that time—the word frequency effect,

the fact that high frequency words are responded to more rapidly than low frequency ones

(e.g., Forster and Chambers, 1973). But at the same time, these models also faced a major
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drawback. They were namely not able to account for effects of the higher-level information

on the lower-level processing (Lupker, 2005). The classic example of such effects is the word

superiority effect, the fact that people are better at recognizing the letters presented within

words as compared to letters, presented either in isolation or within nonwords (e.g., Cattell,

1886; Reicher, 1969; Wheeler, 1970).

The second group of models better deals with this latter effect. These models adopted the

assumption of cascaded processing, in which the information passes between stages as soon

as the information at one stage begins to be activated (e.g., Harley, 2001; Lupker, 2005).

Among these models, the Interactive activation model (IAM) (McClelland and Rumelhart,

1981; Rumelhart and McClelland, 1982) is the most influential. This model includes different

levels of processing: feature, letter, and word level, as well as also a higher-level processing

that provides a ‘top-down’ input to the word level (McClelland and Rumelhart, 1981). During

processing, the information thus not only flows forward, ‘bottom-up’, i.e., from the feature to

the letter and word level, but also in the opposite direction, ‘top-down’, i.e., from higher-level

processing to word level to other lower-level representations. The perception is further as-

sumed to be an interactive process, in which the ‘top-down’, conceptually driven processing,

and ‘bottom-up’, data driven processing jointly contribute to the perception. Additionally,

the model also assumes inhibition between representations at the same level (e.g., Harley,

2001; Lupker, 2005). This model thus represents the first implementation of activation and

inhibition processes, which offered a solid starting point for the models to follow, and fur-

ther inspired several other models, such as e.g., the Multiple Read-Out model (Grainger and

Jacobs, 1996) and Dual Route Cascaded (DRC) model (Coltheart et al., 2001).

The latter is one of the most influential models that builds on the assumptions of the

IAM (Harley, 2001). It focuses on reading aloud and builds on the assumption that the

word’s pronunciation can be generated in two separate routes: (i) through the application of
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grapheme-to-phoneme correspondence rules that convert the individual graphemes (i.e., let-

ters of the read word) into their corresponding phonological representations (i.e., phonemes);

and (ii) through a more direct mapping of word’s spelling onto its pronunciation. Another

fundamental assumption of the model is that orthographic and phonological forms of words

are represented holistically, as discrete processing units in the lexicon, which enables known

words to be pronounced by mapping their graphemes onto the orthographic unit that pro-

vides the best match, and in turn directly activates the corresponding phonological unit.

Importantly, the assembled and direct routes operate in parallel and jointly determine the

final pronunciation of the word (Rayner and Reichle, 2010).

However, while DRC’s (as well as all the other aforementioned models’) main assump-

tion was that the basis of the word recognition is the isolation of the relevant lexical unit,

a number of models opposed this idea of lexical units. Instead, they proposed that the lex-

ical system is composed out of sets of distributed, subsymbolic codes, which represent the

attributes of the known words (Lupker, 2005). These models thus assumed that the word

identification encompasses different types of lexical information which jointly contribute to

the development of constraints on as well the pronunciations as also the meanings (Rayner

and Reichle, 2010). These models are marked as parallel distributed processing models, and

are typically represented with a triangle framework (e.g. Lupker, 2005; Rayner and Reichle,

2010)—which is why they have become known as ‘triangle models’ (such as, e.g., Harm, 1999;

Plaut et al., 1996; Seidenberg and McClelland, 1989).

Despite the fact that several models fit into this group, the first and best known one

among them is the Seidenberg and McClelland (1989) model. This model assumes that word

identification and pronunciation involve three different types of mental representations: or-

tographic, semantic, and phononological one. The units of different types are assumed to be

interconnected with feedback connections, which, crucially, contain the lexical information.
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The strength of the connection is assumed to be enhanced through the repeated experience

with the words, which offers an explanation for the observed word frequency effect (Rayner

and Reichle, 2010).

All the aforementioned models importantly advanced the field of individual word recog-

nition. However, in their goal to simulate the mechanics of lexical processing and reading

aloud, they typically didn’t devote much attention to the orthographic processing. Rather,

they adopted the most simple assumption—absolute letter position coding (e.g., Snell et al.,

2018b). With that, they assumed that a stimulus with a specific letter at a certain position

would only activate words that have that same letter at that same position (e.g., Davis and

Bowers, 2004). But several empirical phenomena speak against this assumption (e.g., Davis

and Bowers, 2004; Snell et al., 2018b). One such example is the transposed-letter (TL) effect,

the fact that words which are almost identical—apart from the transposition of the two of

their adjacent letters (e.g., TRIAL-TRAIL)—influence each other’s processing. For example,

in lexical decision tasks the responses to TL nonwords (e.g., WODNER), which are derived

from a valid word (e.g., WONDER) are slower and less accurate, compared to responses to

nonwords without the TL word pair (e.g., LODNET) (Davis and Bowers, 2004).

This empirical phenomenon was taken as evidence against absolute letter position coding,

and triggered the need for models that would allow more flexible, relative position coding.

This inspired a new generation of models, such as, e.g., the open-bigrams models (e.g.,

Grainger and Heuven, 2011; Whitney, 2001). These assume that word stimulus activates

specific nodes, which represent relative position of within-word letter pairs. According to

these models, a word stimulus such as, e.g., cake, would activate several nodes (i.e., nodes

for ca, ck, ce, ak, and ke), which would in turn activate all lexical representations to which

they belong (Grainger and Heuven, 2011; Whitney, 2001) (e.g., the node ca would not only

activate the lexical representation for cake, but also for cat and crab, among others).
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With this approach, the open-bigram models can account not only for the above men-

tioned TL effect, but also for a some more recent empirical findings, such as, e.g., the ones

obtained with flanking letters lexical decision paradigm (e.g., Dare and Shillcock, 2013). This

paradigm revealed that lexical decision about the word, presented at the position of the eye’s

fixation (e.g., cake), is faster and more accurate when the word is flanked with two related

letters on each side (e.g., ca cake ke), compared to when it is flanked by unrelated letters

(e.g., op cake ra). Importantly, the order of the flanks does not seem to matter—e.g., for the

previous example, the ca cake ke triggers the same facilitation effects as ca cake ke, providing

additional evidence in support of relative letter position coding1 (Dare and Shillcock, 2013).

1.1.2 Priming and masked priming research

Alongside the theoretical research, empirical research of the past few decades also impor-

tantly advanced our understanding of single word processing. A very insightful approach in

addressing this issue have been various priming paradigms. In the past decades, these have

become one of the most popular techniques of the psycholinguistcs, with their popularity

being at least partially owed to their procedural simplicity (Spruyt et al., 2011).

In a typical priming language study, the participants are simply presented with a series

of trials, consisting of the presentation of two consecutive words—the prime (presented first)

and the target (presented second). Crucially, the relationship between the two words in

the mental lexicon is tackled by the manipulation of their relationship (e.g., the two words

can be semantically related (e.g., doctor-NURSE) or unrelated (e.g., dog-NURSE)) and the

1Note, however, that a recent study suggests that when longer target words and flanks are used (six
and three letters long, respectively) the order of the flanks does seem to play a role—the facilitation was
observed only when the order of the flanks was consistent with the target word (e.g., tar target get) (Snell
et al., 2018a). This could suggest that longer words bear more processing weight, bringing in play additional
processing mechanism, which might potentially allow for some knowledge of absolute letter position (Snell
et al., 2018b).
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observation of how the differently related primes influence the responses to the targets (e.g.,

Boudewyn et al., 2012; Camblin et al., 2007; Sebastiani et al., 2015). What is typically

observed is that if the two words are somehow related (e.g., semantically or morphologically

related) the response times and accuracy are improved, relative to when the two words are

not related (e.g., Spruyt et al., 2011)—which is known as the priming effect.

This effect has been observed in a number of different priming paradigms, including the

overt (in which the participants are aware of the presentation of both words, the prime and

the target; e.g., Raveh (2002)), long-lag (in which the prime and the target are not presented

one after another, but are rather separated by other intervening items; e.g., Stanners et al.

(1979); Zwitserlood et al. (2000)), cross-modal priming (in which the prime and the target

are presented in different modalities, such as e.g., auditory presentation of the prime and

written presentation of the target; Marslen-Wilson et al. (1994)), and masked priming (e.g.

Chateau et al., 2002; Crepaldi et al., 2016; Dominguez et al., 2010; Giraudo and Grainger,

2003; Rastle et al., 2000).

The latter is particularly interesting, as it permits to observe strategy-free responses

(Forster, 1998). Namely, the prime (e.g., dealer) is typically presented between a forward

pattern mask (e.g., #####) and the target stimulus (e.g., DEAL), which functions as a

backward mask. Additionally, the prime is presented with very short duration (typically <

50ms), which in combination with the two masks disables its conscious perception (i.e., the

prime is ‘masked’) (Dominguez et al., 2010)—and with this it also prevents the participants

from developing response strategies. Thus, this method is considered a more pure way to

tackle the lexical processing (e.g., Forster et al., 2003; Forster and Davis, 1984). As such,

masked priming paradigm gained a lot of popularity and has been used with different prime-

target relationships, such as, e.g., semantic (e.g., doctor-NURSE; e.g., Balota (1983); Carr

and Dagenbach (1990); Forster and Davis (1984); Marcel (1983)), repetition (nurse-NURSE;

e.g., Bodner and Masson (1997); Forster and Davis (1984)), and morphological (e.g. nursing-
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NURSE; e.g., Forster and Azuma (2000); Rastle et al. (2004).

Morphological processing

In the past four decades, morphological processing has been one of the most widely studied

topics regarding visual recognition of written words, with the pioneering work in this field

emerging as early as in the 1970s (e.g., Taft and Forster, 1976). Since then, the vast body of

literature (e.g., Crepaldi et al., 2016; Feldman, 2000; Forster et al., 1987; Grainger et al., 1991;

Neely, 1977; Rastle et al., 2000) consistently reports robust priming effects when the prime

and target share a stem (e.g. dark-DARKNESS; Amenta and Crepaldi (2012); Marslen-

Wilson (2007)).

These findings have been so consistent that they have led to what has now become a

broadly accepted consensus—words with morphological surface structure (i.e., words that

can be parsed into known morphemes, such as stems and affixes; Rastle (2007)) are during

processing divided in and analysed through their constituent morphemes (e.g., dark + ness),

which in turn play a crucial role in the word’s identification (e.g., Bradley, 1979; Rastle, 2007,

2011; Taft and Forster, 1976).

Despite the fact that stem priming effect is one of the most well-established single word

morphological processing phenomena, we cannot talk about the morphological priming effect

without giving attention also to the other types of morphemes—prefixes and suffixes.

Despite being less researched than the stem priming effect, the prefix priming effect is

also a well-explored phenomena (e.g., rebuild - REACTIVATE), with a substantial number

of studies offering convincing support for its existence (e.g. Chateau et al., 2002; Dominguez

et al., 2010; Giraudo and Grainger, 2003; Reid and Marslen-Wilson, 2000, 2003). However,

the image becomes less clear when addressing suffix priming effect.

Several studies approached the issue of suffix priming (e.g. singing-WALKING)—but
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yielded conflicting results (i.e., priming effects have been found in, e.g., Duñabeitia et al.

(2008), but not in e.g., Giraudo and Grainger (2003)). However, these studies used real

word primes, which could potentially lead to the lexical competition between the primes

and targets (e.g., Crepaldi et al., 2016; Davis and Lupker, 2006; Segui and Grainger, 1990),

leading to uncontrolled effects on the priming effect. When, instead, nonword primes were

used, the derivational suffix priming effect was more reliably observed (Crepaldi et al., 2016).

However, all these studies used derivational affixes. Inflectional affixes are much less stud-

ied, and there are several reasons to believe things may be different on this front. Linguists

draw a strong dichotomy between inflection and derivation (e.g., Haspelmath, 2010): (i) in-

flection never indicates the change of grammatical category (e.g., dog-dogs) while derivation

always does (e.g., dark-darkness), (ii) inflection is typically more semantically transparent

(relationship between dog-dogs is identical to the relationship between car-cars), while deriva-

tion is more idiosyncratic (e.g., ‘a gardener’ is a person who takes care of the garden, while

‘a juicer’ is a kitchen appliance that makes juice; e.g., Crepaldi et al. (2010)), and (iii) in-

flection never introduces a new meaning to their base morphemes, while derivation can (e.g.,

person-personal).

Despite this fact, there is a large absence of empirical evidence regarding inflectional

suffix priming effects. A possible reason for this lack of evidence could be due to the fact

that inflectional suffix priming effects, if they exist at all, might be difficult to detect. They

may namely be relatively small, compared to the other morphological priming effects, such

as e.g., lexical stem priming. There are several reasons why this could be the case. Firstly,

inflectional affixes tend to have high frequency—and identity priming effects have been shown

to be smaller for high frequency items than lower frequency ones, which is known as reverse

base frequency effect (Taft, 2004). Further, inflectional suffixes do not have an autonomous

meaning, since they are a functional rather than lexical items (cf., stems and prefixes do carry

a meaning). As such they are neutral in valence, low in arousal, and low in concreteness, all
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of which have been suggested to contribute to word recognition speed (e.g., Kuperman et al.,

2014).

Nevertheless, a few studies addressed the question of inflectional suffix priming in left-

to-right languages, indicating that it is possible to detect such effects. One of this studies

did observe (modest) inflectional suffix priming effect, but it could not reliably determine

weather it is truly inflectional in nature (Reid and Marslen-Wilson, 2000). Another study

found significant priming effects with verbal, but not with nominal inflectional suffixes, but

was not able to rule out the possibility that potential nominal priming effect was overridden

by the structural priming effect (VanWagenen and Pertsova, 2014). These few studies2 thus

do not reveal a clear image, and leave the topic of inflectional suffix priming largely under-

investigated.

This is where we have started the research path described in this thesis. The realization

that at present this topic remains largely unaddressed led us to the development of our first

study, in hope to provide further insights into processing of inflectional morphology. To this

end, we based our research on one of the most well established paradigms, which was shown

to present a solid approach to the study of morphological processing: masked priming in

words in isolation (e.g., Crepaldi et al., 2016; Dominguez et al., 2010; Duñabeitia et al., 2008;

Feldman, 2000; Giraudo and Grainger, 2003).

Through our work, however, we have started to realize that this paradigm, despite the

comforting fact that it is well-established and has importantly advanced our knowledge re-

garding inflectional morphological processing, also has its disadvantage. It namely addresses

language processing in a very limited linguistic context of two words, and in the frame of a

rather unnatural task, where participants are typically asked to decide whether the presented

2Another study in left-to-right languages was conducted, but has insofar only been published as an
abstract of a conference poster presentation. Similarly to VanWagenen and Pertsova (2014), this study also
observed priming effects with verbal, but not with nominal inflectional suffixes, but was not able to clearly
assign the source of the observed discrepancy (Smolik, 2010).
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word is real or not. As such it differs quite a lot from the actual reading experience for which

human cognitive system is trained for and into which it actively engages in on an everyday

basis. This has led us to take our research further and to ask ourselves an important new

question: would the observed morphological priming effect also emerge in natural reading?

1.2 Word processing in natural reading

With this question in mind, we have decided to shift our attention from the studies of words

in isolation towards the studies of sentence reading. Despite the fact that the first still

prevail, more and more attention is lately given also to the latter—with the emphasis on the

importance of ecologically more valid designs in studies of reading (e.g., Dimigen et al., 2011)

and on the importance of a more integrative approaches to the studies of reading, that would

bridge the gaps of addressing only one level of the complex reading system (e.g., Rayner and

Reichle, 2010; Snell et al., 2018b).

1.2.1 Eye tracking research

When it comes to addressing reading in a more natural experimental setups, eye tracking

seems to be a natural choice. This methodology allows to present complete sentences, rather

than just individual words, while participants are simply asked to read for their comprehen-

sion. This method thus enables to address reading in an environment that is as close as

possible to the actual, everyday reading experience, while it also allows to track and record

the full complexity of eye movement behaviour with a millisecond precision.

The rationale behind this method is fairly straightforward: encountering any kind of pro-

cessing difficulty during reading, such as e.g., processing of a long or less frequent word (e.g.,

Paterson et al., 2015; Rayner et al., 2011), dealing with temporary ambiguity (e.g., Binder

and Morris, 2011; Rayner and Duffy, 1986; Rayner and Morris, 1991), or even facing indi-
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vidual’s reading difficulties (such as dyslexia; e.g., Prado et al. (2007)), reflects in increase of

fixation durations, as well as also in the number and probability of refixations and regressions

to the earlier parts of the text.

This method has been proven to be extremely useful in addressing reading in more nat-

ural experimental setups. In fact, most of our understanding of how readers comprehend

presented text is owed to the eye tracking studies. These have revealed that eye movements

during reading are characterized by complex combinations of different eye movements, such

as saccades (typically with a span of 8-9 characters; Rayner et al. (2001)), fixations (typically

lasting 200-250ms; Sereno and Rayner (2003)) and refixations (typically on longer words; Pa-

terson et al. (2015)), or less frequent words; Rayner et al. (2011)), word skips (with frequent

and highly predictable words being skipped more often; Rayner et al. (2011)), and regressions

back to the earlier parts of the text (about 10-15% of the time; Rayner (1993)).

Additionally, eye tracking confirmed that many phenomena, previously reported in words

in isolation, are also observed in text reading. One such example is the fact that eye fixa-

tion durations in reading are reliably influenced by individual word’s frequency (e.g., Inhoff

and Rayner, 1986; Rayner and Duffy, 1986), such that low-frequency words result in longer

fixation durations (e.g., Inhoff and Rayner, 1986; Rayner et al., 2004; Rayner and Duffy,

1986; Rayner et al., 2011; Staub, 2011). This word frequency effect offers a nice conver-

gence between the findings in individual word identification setups and more natural reading

paradigms. However, the latter reveal also other types of reading phenomena that extend

beyond individual word identification, such as, e.g., the context-dependant predictability ef-

fect (e.g., Rayner et al., 2004, 2011), the fact that words, unpredictable in a given context,

result in longer fixation durations (e.g., Rayner et al., 2004, 2011). Another class of effects

that emerged in the eye tracking literature is related to effects that extend across consecutive

words. One example of this class is the parafoveal preview effect, whereby fixations on word

n+1 become longer when the reader is denied a preview of the word in the parafovea (e.g.,
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Veldre and Andrews, 2018). Another such effect, which goes hand-in-hand with the just de-

scribed parafoveal preview effect, is also the foveal load effect—the finding that the difficulty

of processing word n modulates the size of the parafoveal preview effect on word n + 1, such

that the greater the processing difficulty of word n, the smaller the parafoveal preview effect

on word n + 1 (e.g., Henderson, 1990; Veldre and Andrews, 2018).

These cross-word effects confirm that natural reading extends well beyond single word

identification (as studied through words in isolation) and speak up to the importance of

conducting the reading research in ecologically more valid designs.

1.2.2 Models of eye movement control in reading

This realization reflects also in the theoretical research of reading—in order to offer a more

integrative approach to the modeling of reading (Rayner and Reichle, 2010), the newer gener-

ations of models largely focused on eye movement control in reading. These models started to

appear in the 1980’s and 1990’s (such as, e.g., Just and Carpenter (1980); Reilly and O’Regan

(1998); Suppes (1990)), but the real breakthrough happened in 1998, with the introduction

of the E-Z Reader model (Reichle et al., 1998). In the years to follow, the E-Z Reader in-

spired several other models: EMMA (Salvucci, 2001), SWIFT (Engbert et al., 2005), SERIF

(McDonald et al., 2005), Glenmore (Reilly and Radach, 2006), SHARE (Feng, 2006), and

Competition-Interaction model (Yang, 2006). In contrast to some earlier, so-called ideal ob-

server models, which aimed towards simulating optimal reading performance (such as, e.g.,

Mr. Chips ; Legge et al. (1997)), these models aimed towards explaining actual performance

of human readers. In so doing, they focused largely on the decision of when to move the eyes

from one word to the next one, and the nature of attention allocation.

Out of the mentioned models, the two most prominent ones are the competitor models

(Rayner and Reichle, 2010) E-Z Reader (Reichle et al., 1998) and SWIFT (Engbert et al.,

2005). Both these models can account for several observations of the empirical eye movement
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research. For example, they successfully account for the influence of lower-level variables, such

as visual acuity—the fact that the further the letters are from the position of where the eye is

fixated, the harder they are to identify (e.g., Bouma, 1970; Nazir et al., 1991; Townsend et al.,

1971). They also account for oculomotor constraints, such as landing-site distributions—the

observation that the landing position on a word n depends on the launch distance of the

saccade from the previously fixated word (most often, word n-1 ) and of the length of that

word (e.g., Mcconkie et al., 1988). And they also account for lexical variables, such as the

aforementioned word frequency effect (e.g., Inhoff and Rayner, 1986; Rayner et al., 2004;

Rayner and Duffy, 1986; Rayner et al., 2011; Staub, 2011).

However, despite their similarities, the two models importantly differ in their assumption

of how the attention is allocated. E-Z Reader assumes that attention is allocated serially,

i.e., one word at a time. Thus, according to this model, the lexical processing of word n+1

does not begin until the meaning of word n has been accessed (e.g., Rayner and Reichle,

2010; Reichle et al., 1998, 2009). Conversely, SWIFT assumes that attention is allocated in

parallel, making it possible for several words to be identified simultaneously (e.g., Engbert

et al., 2005; Kliegl et al., 2006, 2007).

The disagreement about the nature of attention allocation is not unique to the two models.

This assumption is namely one of the most important distinguishing characteristics also of all

the aforementioned models, based on which they could be divided into three different groups.

While EMMA (Salvucci, 2001) joins in with the E-Z Reader (Reichle et al., 1998) in the

assumption that the attention is allocated serially, Glenmore (Reilly and Radach, 2006) rather

joins SWIFT (Engbert et al., 2005) in the assumption of parallel attention allocation. In

contrast, SERIF (McDonald et al., 2005), SHARE (Feng, 2006), and Competition-Interaction

model (Yang, 2006) form a third group, which builds on the assumption that attention plays

no, or at best only a small role in guiding the reader’s eye movement (Rayner and Reichle,

2010).
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Despite their differences, all the aforementioned models importantly advanced our under-

standing of the reading processes. However, they all share a rather important disadvantage—

they largely ignore the contribution of the models of single word orthographic processing.

As such they step away from an integrative approach to the study of reading which could

account for the full complexity of the reading system (e.g.. Rayner and Reichle, 2010; Snell

et al., 2018b).

Recently, however, exceptions to this trend are starting to surface. One such example is

the very recent model OB1-Reader (Snell et al., 2018b), which aims towards bridging this

previously ignored gap between the models of single word processing and the models of the

eye movement control in text reading. Very generally, the model successfully joins the main

assumptions of relative position coding for single word recognition on the one hand, and of

parallel attention allocation in text reading on the other hand (Snell et al., 2018b). With

this, the model offers a new approach to the study of text reading and speaks up to the

importance of a more integrated approach to this complex task.

1.2.3 Priming in natural reading

In our aim to shift our research from single word processing towards more natural reading

paradigms, we followed in a similar spirit, but moved our focus away from the eye move-

ments. Through semantic and morphological priming paradigm, we rather addressed more

post-orthographic processing levels in lexical identification, and how they are affected by

the engagement of the visual word identification system with multiple words in very rapid

succession.

Studying semantic priming during sentence reading is of course not a new idea. Several

eye tracking studies have previously addressed this issue, but either yielded conflicting results

(semantic priming was reported in e.g., Blank and Foss (1978); Van Petten et al. (1997), but
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not in e.g., Duffy et al. (1989); Morris (1994)), or introduced a design in which observed

semantic priming effect could not be reliably distinguished from online prediction of the

upcoming word (e.g., Camblin et al., 2007; Carroll and Slowiaczek, 1986). On the other hand,

morphological priming remains rather underinvestigated in natural sentence reading studies.

Namely, the existing literature cannot reliably establish whether the observed priming effect is

truly morphological in nature, or rather a more semantic priming effect, or even a combination

of both (e.g., marshy-MARSH; Paterson et al. (2011)). In hope to shed new light onto the

matter, we have developed a novel natural reading priming paradigm, which is virtually free

of the confounds that affect the previously available data. Additionally, our design allowed

us to address both semantic and morphological priming within the same stimuli set, which

enabled us to explore also the interaction between the two priming effects.

Since this innovative design allowed us to address issues that were previously unadressed,

we have decided to further exploit its benefits in our next research steps. We have thus

asked ourselves yet another question—would it be possible to link the effects, observed on

the behavioural eye movement level as tracked by the eye tracker, to the neural signatures

of the priming effect in natural reading?

1.2.4 Neural correlates of reading processes

When addressing neural correlates of natural reading, eye tracking comes to our aid once

again. This method alone of course does not offer any insight into neural activity, but its

high temporal resolution does offer an opportunity for a valuable expansion, which, in turn,

would allow to link the observed eye movements with the underlying neural correlates—if we

simultaneously record the eye tracking and the electroencephalogram (EEG).

EEG, another technique with an excellent temporal resolution, is one of the most com-

monly applied methods for investigation of neural correlates of language processing. Namely,
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this recording of the intrinsic electrical activity in the brain also allows for recording of small

potential changes in the continuous EEG signal, which occur as a neuronal response to the

specific sensory stimulus—the so-called events. In the case of reading, such event is typically

the presentation of a single word on the screen, while the neural correlates that align to this

event are the so-called event-related potentials (ERPs). However, if we do not only record

the EEG, but simultaneously also record the eye movements as tracked via eye tracker, these

events no longer have to be locked to a predetermined onset of a stimulus on the screen.

Instead, they can be locked to the specific eye movements, such as fixations on the individual

words of the presented text (fixation-related potentials, FRPs). These act as natural EEG

events, providing an exquisite opportunity to explore neural correlates of natural reading.

Maybe somewhat surprisingly, the coregistration of the eye movements and EEG is far

from being a new method—it was first introduced as early as 1964 by Gaarder et al. (1964),

who investigated whether there is a specific brain response following a saccadic eye move-

ment3. More than 50 years ago, they were the first to observe the brain signature of a

saccade, and suggested that its characteristics depend on the luminance of the presented

stimulus (Gaarder et al., 1964).

While linking the eye movements to the brain responses may not be a recent idea, link-

ing the eye movements during reading4 to the brain signatures of language processing only

emerged in the recent years (e.g., Dimigen et al., 2012; Henderson et al., 2013; Kretzschmar

et al., 2015; Metzner et al., 2017; Niefind and Dimigen, 2016), with only a few studies ad-

dressing this issue in natural reading paradigms (Degno et al., 2018; Dimigen et al., 2011;

Henderson et al., 2013; Kretzschmar et al., 2015; Metzner et al., 2017).

There may be several reasons why this is the case, but one of them is certainly the fact
3Note however, that they recorded the eye movements via electrooculography (EOG; electrodes, placed

below and to the left/right of the eye), to track blinks and saccadic movements, respectively.
4As recorded not only from the EOG electrodes, but rather in its full complexity, as tracked via eye

trackers.
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that simultaneous recording of EEG and eye movements presents a range of challenges, which

become even greater when natural reading task enters the stage. As mentioned above, reading

in its natural form presents a complex combination of a series of different eye movements.

The most obvious challenge a natural reading paradigm has to face is thus the contamination

of the EEG signal by eye movements (particularly saccades), resulting in noisy EEG data.

In typical EEG (ERP) studies, the problem of contamination of the EEG signal through

oculomotor artifacts is avoided by adopting the rapid serial visual presentation (RSVP)

paradigms (e.g., Duffy et al., 1989; Morris and Folk, 1998). Here, words of a larger linguistic

unit (typically a sentence) are presented one at a time, with a fixed and predetermined

presentation duration which prevents the readers to take as long as needed to freely explore

the word—and thus preventing excessive saccadic eye movements. Additionally, individual

words typically appear in the middle of the screen, while participants are not only instructed

to fixate their gaze to the position where the word will appear, but also to avoid blinking

while the word is presented.

Needless to say, these paradigms substantially differ from human’s natural, everyday

experience of reading, in which we are given the opportunity to fixate each word for as long

as we want and need to, to skip some words, to regress back to the text and to reread any

parts of the text that we might need to in order to properly comprehend the presented reading

material. However, is it possible to accomplish both, presenting a paradigm that would allow

natural reading, while also obtaining EEG signal that is relatively free of the oculomotor

artifacts?

The early coregistration studies dealt with this issue by limiting the data analysis to

the less contaminated electrodes (e.g., Kretzschmar et al., 2009)5. But while this approach

successfully avoids the problem of oculomotor artifacts in the neural data, it also leads to

substantial data loss. In the recent years, however, several other methods for overcoming

5Note, however, that while this study includes word recognition, the used paradigm does not include
natural reading.
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the problem of ocular artifacts in a free-viewing experimental setups have been developed

(Dimigen et al., 2011). One such method is an eye tracker-supported Independent Compo-

nent Analysis (ICA) (Plöchl et al., 2012). By itself, ICA is a blind source decomposition

algorithm which enables a separation of statistically independent sources from multichannel

data (e.g., Plöchl et al., 2012). It is widely accepted as an effective method for separating

ocular artifacts from the EEG signal originating from neuronal sources (e.g., Hoffmann and

Falkenstein, 2008; Jung et al., 2000; Plöchl et al., 2012), and frequently applied in many ERP

studies. In eye tracker-supported ICA, however, the eye-artifact related ICA components are

identified via the information, provided by the eye tracker, leading to a more reliable, objec-

tive and automated manner of component identification. After these artifacts are successfully

identified, they can be either completely removed or substantially reduced, without affecting

the remaining EEG signal (Plöchl et al., 2012).

But ocular artifacts are not the only challenge of the simultaneous recording of the EEG

and eye tracking during normal reading. Another issue namely arises from the overlapping

neural responses from subsequent events, such as, e.g., the overlap between the potentials

elicited by successive fixations (Dimigen et al., 2011), which are an inevitable part of natural

reading. Here again, RSVP paradigms avoid this problem (though not completely), as they

introduce fixed and predetermined stimulus presentation duration, which is typically long

enough to avoid the possible neural overlaps. In natural reading, however, words are typically

fixated in a very rapid succession, with the interfixation intervals around 250ms (Dimigen

et al., 2011)—which is substantially faster than the stimulus-onset asynchrony (SOA) in a

typical RSVP paradigm. Thus, late components from the previous fixation n-1 overlap with

the early components from the current fixation n. This problem has been largely ignored

by early FRP studies, as well as also by most of the ERP/RSVP studies, which might,

despite the ability to control the SOA, still experience overlapping activity, e.g., from the

button presses and stimulus onsets (Dimigen et al., 2011). However, the increased interest

19



in shifting towards more natural reading paradigms, resulted also in increased interest in

shifting the EEG analysis away from the simple averaging techniques, which cannot deal

with this issue, towards the approaches that more successfully address this problem (Ehinger

and Dimigen, 2018).

In the past years, several regression-based approaches have been introduced (e.g., Amsel,

2011; Frömer et al., 2018; Smith and Kutas, 2015a,b), which can successfully separate the

overlapping potentials. These so-called deconvolution techniques handle the obtained EEG

signal as a linear mixture of neuronal responses to different experimental events, which occur

at different latencies. The latter are then used in order to isolate the neural response by

tracing it back to its respective event (Ehinger and Dimigen, 2018). Applying these tech-

niques to the actual EEG data is of course far from trivial. However, a very-recently released

MATLAB toolbox unfold (Ehinger and Dimigen, 2018) integrates several different methods

which are necessary for a successful deconvolution. As such it greatly facilitates the usage of

the advanced deconvolution models, and opens up new possibilities for studying the neural

responses in natural reading paradigms.

ERP signatures of language processing

Despite the existence of methods which overcoming difficulties of studying neural correlates

during natural reading, EEG studies with natural reading paradigms are scarce at this point.

Most of our current understanding of neural correlates of reading and, more general, of

language processing is thus based on ERP/RSVP studies. These have importantly advanced

our knowledge of language processing, particularly regarding semantic and morphological

processing (e.g., Friederici et al., 1993; Kutas and Hillyard, 1980, 1984).

The rationale behind this approach is that the brain response to the target stimulus,

compared to the control stimulus, reflects processes which are related to the semantic ex-
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pectation and/or syntactic rule in question. This is most commonly established through the

usage of the violations (e.g., Balconi and Pozzoli, 2005; Hagoort, 2003; Schacht et al., 2014;

Van Petten et al., 1997)—the presented sentences violate either the morphological rule (e.g.,

The old man eats an apples*.) or semantic expectation (e.g., The old man eats a sock*.).

The brain signatures of the processing in question are than extracted from the sentence with

the violation, in comparison to the sentence without such violation (e.g., The old man eats

an apple.), which serves as a baseline.

The ERP signatures, typically reported in respect to language processing are: (1) the

early left anterior negativity (ELAN), which peaks at around 200ms, with left-anterior

distribution, in response to automatic early syntactic processes (e.g., Friederici, 1995, 2002;

Friederici et al., 1993; Friederici and Weissenborn, 2007; Hahne and Friederici, 1999; Stein-

hauer and Drury, 2012); (2) the left anterior negativity (LAN), which peaks at around

400ms, with left-anterior distribution, in response to morphosyntactic violations such as

grammatical agreement violations, tense- and case-marking violations (e.g., Barber and Car-

reiras, 2005; Friederici, 1995, 2002; Molinaro et al., 2011); (3) the N400, a negative-going

deflection, which peaks at around 400ms, with centro-posterior distribution, in response to

lexical-semantic violations and anomalies (e.g., Federmeier, 2007; Hagoort, 2003; Kutas and

Federmeier, 2000, 2011; Traxler and Gernsbacher, 2011); and (4) the P600, a positive-going

deflection, which peaks around 600ms, with posterior distribution, in response to various vio-

lations of syntactic and morphosyntactic features, thematic-rule structure violations, tempo-

rary ambiguities, semantic anomalies, and long-distance dependencies (e.g., Carreiras, 2004;

Friederici et al., 1993; Molinaro et al., 2011).

At this point, these well described ERP signatures are the starting point for the existing

coregistration studies, which describe the observed FRPs in comparison to the specific ERPs.

Typically, these studies report FRPs, whose topographies and characteristics resemble the

ERPs (Dimigen et al., 2011; Kretzschmar et al., 2015)—indicating that currently available
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methodology can successfully overcome the aforementioned problems. However, coregistra-

tion studies of natural reading suggest that in certain aspects the observed brain signatures

importantly differ from the ones, observed in ERP/RSVP studies. Such difference is, e.g.,

their onset latency—in natural reading, the specific brain signatures seem to have an earlier

onset (Dimigen et al., 2011; Kretzschmar et al., 2015; Metzner et al., 2017). These findings

indicate that we cannot blindly assume that the ERP/RSVP findings would smoothly trans-

fer to the actual, natural reading process, and speak up to the importance of conducting

more EEG studies with natural reading paradigms, which would offer a fresh view on the

phenomena observed in RSVP studies.

With our last study, presented in this thesis, we are hoping to contribute to this slowly

growing body of literature and to shed new light onto the neural correlates of semantic and

morphological priming in natural reading.

1.3 Slovenian language

So far, we have introduced the rationale that had led us to ask ourselves different research

questions addressed in three largely independent studies. Yet, all three studies share a very

important aspect, which enabled us to present novel paradigms and to address previously

unaddressed questions—they are all designed on peculiarities of the Slovenian language.

The Slovenian language belongs to the family of Slavic languages, which are known for

richness of their morphological systems (e.g., Reid and Marslen-Wilson, 2000). In Slovenian,

almost every word is subject to inflection, which can be either conjugation (for verbs) or de-

clension (for nouns, adjectives, pronouns, and numerals). As anyone who learned Slovenian

as a foreign language would surely confirm, this results in a very complex inflectional system.

Thus, we will avoid diving into all its details, and will rather focus solely on the properties
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we based our research on. Here, we offer a basic and slightly simplified description of the

Slovenian noun declension.

Nouns in Slovenian exist within the inflectional system, consisting out of six different

cases. In addition, noun’s affixes do not only depend on their case, but also on their gender

(i.e., feminine, masculine, and neutral) and number (i.e., singular, dual, and plural), resulting

in specific affixes for the different combinations of the three. A single noun (e.g., banka, ‘a

bank’), can thus appear with a range of different affixes (e.g., feminine noun banka, ‘a bank’,

in dative singular, dual, and plural, respectively: bank-i, bank-ama, bank-am). Despite the

fact that not all affixes are distinct (e.g., genitive affixes are the same regardless of whether

the noun is in dual or plural (e.g., bank-∅; but this declension still varies across genders),

this kind of declension system results in very rich range of affixes, which we made use of in

all three studies, presented in this work.

Another important property of nouns in Slovenian language is the fact that since the

affixes carry all necessary information about the gender, number, and case, there are no

determiners that would precede the noun (such as in, e.g., English). We made use of this

property in our second and third experiment, in which we address the question of semantic

and morphological priming in natural sentence reading—which could not have been done in

other languages, where the determiner would cue the reader on the case and number before

the noun itself would be processed (e.g., in an English sentence such as The old man eats an

apple, the determiner ‘an’ cues the reader on the upcoming singular noun).

Additionally, the usage of the largely underinvestigated language allowed us to address

another important issue—language diversity (e.g., Frost, 2012). Namely, with work presented

here, we also hope to speak up to the importance of addressing research questions in a variety

of the world’s many languages, rather than focusing solely on the most well-established
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languages. In order to make assumptions about word identification and reading processes, one

should namely consider the question of whether the previously observed and reported effects

are a results of language processing in general, or rather result from idiosyncratic properties

of specific language (Reid and Marslen-Wilson, 2000). In order to do so, more studies,

conducted in different languages are needed—slowly, these kind of studies are emerging, and

there is already a fair amount of research conducted in several ‘less popular’ languages, such

as e.g., Czech (e.g., Smolik, 2010), Russian (e.g., VanWagenen and Pertsova, 2014), Arabic

(e.g., Boudelaa and Marslen-Wilson, 2004).
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2

Morphological priming of inflectional suffixes
1

2.1 Introduction

It is now widely accepted that morphologically complex words (words that are made up

of smaller meaning–bearing units, such as kind-ness, move-ment or basket-ball) are pro-

cessed through their constituent morphemes during visual word recognition (e.g., Amenta

and Crepaldi, 2012; Bradley, 1979; Rastle, 2011; Rastle et al., 2000; Taft and Forster, 1976).

This was primarily established through the priming paradigm, in which the relationship be-

tween two words in the mental lexicon is assessed by measuring how the presentation of

one (the prime) influences the response to the other (the target) (e.g., Boudewyn et al.,

2012; Camblin et al., 2007; Sebastiani et al., 2015). There is now substantial evidence show-

ing that facilitation emerges when primes and targets are morphologically related, over and

above their orthographic and semantic similarity (e.g., Feldman, 2000; Longtin et al., 2003;

Rastle et al., 2004).

The vast majority of this priming literature has focused on stem priming, showing that

1All materials, data and analysis scripts for this study are available to the reader here.
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stem words, e.g., kind, are identified more quickly when preceded by a morphological relative,

e.g., kindness, compared to an unrelated word, e.g., boldness. The key in this paradigm is

that primes and targets share their stem, hence the name.

What happens when primes and targets share an affix instead has been somewhat more

controversial, particularly when suffixes are considered (e.g., kindness–vagueness). In a

masked priming study in Spanish, Duñabeitia et al. (2008) observed clear effects of suf-

fix priming, regardless of whether the primes were: (i) suffixes in isolation (e.g., dad–

IGUALDAD); (ii) suffixes inserted into symbol strings (e.g., %%%%dad–IGUALDAD); or

(iii) real words (e.g., brevedad–IGUALDAD). Facilitation was consistently larger than that

observed when the prime–target pairs shared non-morphological letter endings (e.g., men–

CERTAMEN ), thus suggesting a genuine morphological nature for this effect.

Results from a masked priming study carried out in French are less encouraging, though.

Giraudo and Grainger (2003) presented their participants with prime words that shared with

their targets either a valid suffix (e.g., veston, little jacket, and CHATON, little cat) or a

pseudosuffix (e.g., béret, beret, and MURET, little wall). These conditions were tested with

an unrelated baseline (e.g., crabe–MURET ), and gave rise to no consistent facilitation—out

of four experiments, some (statistically weak) priming only emerged for transparent suffixed

words that were also orthographically similar to the targets, and for which the morphological

boundary overlapped with the syllabic one.

The use of word primes in these experiments has likely triggered lexical competition (e.g.,

Davis and Lupker, 2006), which may have interacted with the morphological dynamics mak-

ing it difficult to assess suffix priming per se. This issue does not affect the experiments

in Crepaldi et al. (2016), where nonword primes were used. These authors observed clear

effects of suffix priming when targets were preceded by nonword primes with a shared suffix

(eg., sheeter–TEACHER), compared to when they were preceded by a nonword (i) with a

different suffix (shetal-TEACHER), or (ii) with an unrelated non-morphological ending (e.g.,
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sheetub–TEACHER). Additionally, no effect was observed in a fully non-morphological set of

conditions with the same degree of orthographic overlap—apparel was identified as quickly

after colourel, colouric or colourut, ruling out the possibility that the observed effect could be

assigned to similarity in form. Overall, these data provide strong support for the existence

of suffix priming.

Note that establishing suffix priming is of some theoretical importance, given that theories

of visual word identification place different emphasis on the relative role of stems and affixes

(Grainger and Beyersmann, 2017). If the two types of morphemes yield priming similarly,

then it is likely that they are similarly represented in the lexical identification system. This

would also be notable from an information theory point of view; the distribution of stems and

affixes in the language is in fact very different. While affixes are few, and tend to be highly

frequent, lexical stems are many, and generally of lower frequency. Thus, stems are more

informative on word identity—knowing that a word contains, e.g., -ment leaves the reader

with lots of viable options (that is, with high uncertainty), while knowing that it contains,

e.g., flavour constrains the cohort of possible candidates down to a handful of alternatives.

That the visual word identification system is insensitive to this informational asymmetry

would be very interesting, and possibly revealing on its computational architecture. On the

other hand, suffixes’ higher frequency may make them easier to identify quickly, which may

give an important headstart to the visual identification process.

The studies described above all assess derivational suffixes, which leaves open another

interesting question: what happens with inflectional suffixes? There are several reasons to

believe that these latter may have a very different role in the lexical system. Linguists draw

a strong dichotomy between inflection and derivation (e.g., Haspelmath, 2010): (i) inflection

never indicates the change of grammatical category (e.g., dog-dogs) while derivation always
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does (e.g., dark-darkness), (ii) inflection is typically more semantically transparent (relation-

ship between dog-dogs is identical to the relationship between car-cars), while derivation

is more idiosyncratic (e.g., ‘gardener’ is a person who takes care of the garden, while ‘a

juicer’ is a kitchen appliance that makes juice; e.g., Crepaldi et al. (2010)), and (iii) inflec-

tion never introduces a new meaning to their base morphemes, while derivation can (e.g.,

person-personal).

Some information about inflectional priming comes from a group of studies based on Slavic

languages, which are aptly inflectionally rich. Reid and Marslen-Wilson (2000) report on a

cross-modal priming experiment carried out in Polish. They considered four affix conditions,

in which all the primes were existing words: (i) verbs with shared aspectual prefix (skorzystać,

‘to benefit’, perfective–stracily, ‘they lost’, perfective), (ii) verbs with shared derivational

prefix (nagrzać, ‘to heat up’, perfective–nakroila, ‘to cut’, perfective), (iii) nouns with shared

diminutive suffix (kotek, ‘a little cat’–(ogrodek, ‘a little garden’), and (iv) nouns with shared

derivational suffix (kucharz, ‘a cook’–(pillkarz, ‘a footballer’). Priming was only significant

when the data for all affixal conditions were considered together as a group; inflectional

suffixes alone did not yield any facilitation.

A more recent study was carried out in Russian (VanWagenen and Pertsova, 2014). Primes

were all existing words in this language, either nouns or verbs, which either shared their inflec-

tional suffix with the target (e.g., vjIrnjot (return-3p.sg.pres.)–trj@sjot (shake-3.p.sg.pres), or

only overlapped with it orthographically and phonologically (e.g., pat:çot (count (n)–trj@sjot

(shake-3.p.sg.pres). However, only verb primes were presented in isolation, and are thus in-

formative to our purposes. These stimuli did yield significant facilitation, contrary to the

nominal primes, which were presented together with a determiner—whether this represents

a genuine grammatical class effect, or is rather a by–product of the different contexts where

the primes were presented, it is difficult to establish.

Another group of studies that addressed inflectional priming were carried out on Semitic
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languages (e.g., Arabic, Boudelaa and Marslen-Wilson (2004), and Hebrew, Deutsch et al.

(1998); Frost et al. (1997)), where inflections take the form of word patterns that are in-

tertwined to lexical stems (e.g., a morpheme -drx (conveying the meaning of ‘stepping’) is

inserted in a nominal pattern mi_ _ a_a (where the dashed lines indicate the places where

the morpheme’s consonants are to be inserted), resulting in a noun midraxa, ‘pavement’

(Deutsch et al., 1998)). These studies also yielded mixed results. The Arabic data revealed

priming with one type of inflectional morpheme (i.e., consonant–vowel pattern), but not with

another (i.e., vocalic melody), despite the fact that they both encode inflectional information

(Boudelaa and Marslen-Wilson, 2004). On the other hand, evidence from Hebrew suggested

root priming in nouns and verbs, while word–pattern priming only emerged with the latter

grammatical class (Deutsch et al., 1998; Frost et al., 1997). This would be in line with the

data provided in Russian by VanWagenen and Pertsova (2014).

Overall, the existing evidence is clearly inconclusive; there are reports of inflectional suffix

priming, but this effect seems to be far from consistent. As illustrated above, however, the

experiments carried out so far are very diverse—to mention just a few factors, scholars pre-

sented primes in different contexts, investigated languages with very different morphologies,

and used different prime presentation times and modalities. Although diversity is clearly

important in psycholinguistics, on this specific instance it makes it difficult (impossible?) to

establish whether inflectional priming is truly weak or nonexistent, or rather the inconsistent

pattern of results emerges right from this diversity. We thus felt that a novel, more systematic

investigation of inflectional suffix priming was in order.

The two experiments we present here have a few key features. First, primes were kept

outside of the participants’ awareness, thus making them blind to our experimental manipu-

lation; this grants us protection from any effect of meta–cognitive strategy that participants

may put in place. Second, inflectional priming is compared directly with stem priming in
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a within–target design; this would speak to the potential stem–suffix asymmetry that we

discussed above. Third, we used nonwords as primes, thus allowing a better control of the

experimental material and excluding lexical competition dynamics that may interfere with

the morphological effects we’re most interested in2.

The experiments were carried out in Slovenian, taking advantage of its very rich inflec-

tional system. Slovenian nouns have six cases, three genders and three grammatical num-

bers, all of which are combined into one inflectional suffix (e.g., brata, brother, singular,

accusative; bratoma, brother, dual, dative). This granted us a considerable amount of flex-

ibility in the construction of our stimuli, which we exploited to guarantee a well–controlled,

within–target design. In Experiment 1, we focused on assessing stem and suffix priming,

each against their ideal control conditions, i.e., haljov–HALJAM vs. jahtov–HALJAM,

and mestam–HALJAM vs. mestov–HALJAM. In Experiment 2, we varied the sharing of

stem and suffix parametrically—the same target HALJAM was primed by haljam itself,

stem+suffix+, haljov, stem+suffix−, mestam, stem−suffix+, and jahtov, stem−suffix−. This

generated a fully crossed, 2×2 design that allowed us to: (i) assess the contribution of a

shared stem and a shared suffix independently, within the same model; and (ii) gauge the

possible interaction between the sharing of the two morphemes.

2There is one exception in Experiment 2, where we did use existing words as primes in one condition.
However, these word primes are actually repetition primes, which still avoids triggering lexical competition
dynamics. We take up this issue more fully below.
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2.2 Experiment 1

2.2.1 Methods

Participants

Sixty native Slovenian speakers (F=41) took part in the study. Their mean age and education

was 30.8 (range=20-60) and 15.18 years (range=12-18), respectively. They all grew up in a

monolingual environment and had normal or corrected-to-normal vision. They all signed an

informed consent form to take part into the study, and received 2 Euros in compensation.

Materials

The stimulus set was based on 40 Slovenian nouns to be used as targets. These were all fem-

inine nouns inflected in the dative plural case3 (e.g., sestram, (to the) sisters). Each target

word was paired with four different nonword primes, which were all built as non–existing

combinations of an existing stem and an existing affix (corresponding examples in English

would be builded, or drawed). There were no phonological/orthographic modifications in

either the stem or the suffix in all primes. In the suffix–related condition, the prime and

the target shared the same suffix (e.g., oknam–MAMAM, windows–MOTHERS). In suffix–

control, the prime was made up of the same stem, now paired with a different suffix (e.g.,

oknov–MAMAM ). The stem priming conditions were built similarly; related primes shared

their stem with the target word (mamov–MAMAM ), whereas their controls featured a dif-

ferent stem, attached to the same suffix c̆ajov–MAMAM, teas–MOTHERS. An overview of

the four experimental conditions is offered in Table 2.1).

3This particular inflection was chosen, as it results in a two-letter suffix, which is unambiguously assigned
to this gender-case combination. Other combinations result either in one-letter suffix, or are ambiguous when
a noun is presented in isolation (ie., the same suffix belongs to more than one nominal inflection).
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Table 2.1: Prime–target pairs across the four
experimental conditions in Experiment 1.

Condition Prime Target word

Suffix related oknam MAMAM
Suffix control oknov MAMAM
Stem related mamov MAMAM
Stem control c̆ajov MAMAM

The within–target design guarantees perfect matching across conditions on this front;

further care was taken to also ensure prime comparability. Overall, stem and suffix length

were matched pairwise between related and control primes; stem frequency was also nicely

matched (Table 2.2). Prime–target orthographic overlap was calculated through the com-

puter program MatchCalculator (Davis, 2006), based on orthographic spatial coding (Davis,

2010). Because stems are generally longer, stem primes were unavoidably more similar to

their targets than suffix primes; therefore, we adjusted orthographic overlap in the control

conditions so that the difference between related and control primes was the same for stems

(.62 − .27 = .35) and suffixes (.42 − .13 = .29).

Table 2.2: Stimuli characteristics across conditions. Stem-, and suffix-length, reported with medians and IQRs;
log frequency, and orthographic overlap, reported with means and SDs.

Target word Suffix prime Suffix control Stem prime Stem control

Stem length 4.0 (2) 4.0 (2) 4.0 (1.25) 4.0 (2) 4.0 (2)
Suffix length 2.0 (0) 2.0 (0) 2.0 (0) 2.0 (0) 2.0 (0)

Stem frequency 1.46 (.65) 1.29 (.81) 1.29 (.81) 1.46 (.65) .97 (.82)
Orthographic overlap 0.42 (0.09) 0.13 (0.08) 0.62 (0.04) 0.27 (0.12)

Our stimulus set also included 40 nonword–target trials, which required a NO response

from the participants. Targets in these trials were built in four groups of 10 items: ex-

istent stem+existent suffix (e.g., knjigta), existent stem+non-existent suffix (e.g., vodla),

non-existing stem+existing suffix (e.g., rohom), and non-existing stem+non-existing suffix
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(e.g., gamdem). The last three groups guarantee that not all target stimuli were combina-

tions of existent morphemes, which was critical to prevent participants from engaging in a

mere morphological check, rather than a lexical decision task. Each nonword target was

paired with a nonword prime based on the same design described above for the word–target,

experimental trials; this guarantees that the prime structure was non-informative as to the

lexicality of the target.

Procedure

Participants were presented with a lexical decision task, in which they were instructed to

press one of two buttons as quickly as possible according to whether the presented letter

string was an existent Slovenian word. They were informed that the letter string would

be preceded by a string of hash marks, but they were not informed about the presence of

the prime words. They sat around 56 cm from the computer screen where the stimuli were

displayed. A Cedrus response box was used to collect their responses, on which the YES

response button was always controlled by the participant’s dominant hand. At the beginning

of the experiment, participants underwent a short practice session with 10 trials, to properly

familiarize themselves with the task before the onset of the actual experiment.

The trial timeline was as follows. A fixation cross appeared in the middle of the screen

for 400ms, followed by a visual mask (######) for 500ms. Afterwards, the prime was

presented in lowercase for 36ms, followed by the uppercase target word, which remained on

the screen for 2s. Participants had up to 2s to give their response, before the new trial began.

In order to avoid repetition effects, each participant was presented with each target in

only one out of the four experimental conditions, with a Latin Square design rotation.
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Data Analysis

Response times (RT) in correct trials were analyzed through linear mixed models (LMMs)

using R (R Development Core Team, 2008), Rstudio (RStudioTeam, 2016), and its pack-

ages lmerTest (Kuznetsova et al., 2017) and Effects (Fox and Hong, 2009). RT were were

inverse-transformed in order to achieve symmetrically distributed residuals, and were mod-

elled as a function of prime relatedness (related vs. control) and priming morpheme (suffix

vs. stem), with subjects and target words as crossed random intercepts. Parameters were

checked for their dependence on outliers following Baayen (2008)—models were re–run af-

ter excluding data points whose standardised residuals were larger than 2.5 in absolute value.

2.2.2 Results

We excluded from the analysis one participant who performed at chance level on nonword

trials, and one target word that elicited an overall accuracy below 70%. The mean overall

response time and accuracy are 715ms and 94%, respectively. The descriptive statistics by

condition are offered in Table 2.3.

Table 2.3: Mean (SD) and median (IQR) reaction time, reported in ms,
and accuracy (SD), reported in %, across the four conditions. Statistics
are based on unaggregated data.

Mean RT Median RT Accuracy

Stem control 709.84 (209.80) 662 (229.00) 95 (0.21)
Stem priming 687.94 (205.76) 639 (211.50) 95 (0.21)
Suffix control 738.17 (227.80) 690 (265.50) 94 (0.23)
Suffix priming 724.37 (217.38) 672 (253.75) 93 (0.25)

The analysis suggests a main effect of primes relatedness, F (1, 2110.6) = 12.28, p < .001, a
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main effect of priming morpheme, F (1, 2111.0) = 32.11, p < .001, and no interaction between

the two factors, F (1, 2110.2) = 2.22, p = .14. The model parameters show that sharing a stem

yields solid priming, t(2110.8) = −3.55, p < .001, and that suffix priming doesn’t differ from

stem facilitation, t(2111.2) = 1.49, p = .14. Importantly, though, when the reference level

for priming morpheme was set to suffix, so that the model parameters inform directly on

suffix priming, this effect was barely significant in the outliers–free model, t(2070.2) = −2.03,

p = .04, and not significant in the full model, t(2111.0) = −1.41, p = .16. Based on these

models, stem priming is estimated to be 24ms, while suffix priming amounts to 11ms. Figure

2.1 presents the estimated effects based on these models.
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Fig. 2.1: Estimated RT(ms), plotted per priming type (stem and suffix), for control and
prime condition. The error bars represent the CI of 95%. Note: ●/▲, control condi-
tion/priming condition.
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2.2.3 Discussion

The results of Experiment 1 suggest solid morphological priming when inflected nouns (e.g.,

MAMAM, (to the) mothers) are primed by morphologically complex nonwords sharing the

same stem (e.g., mamov), compared to when they are primed with an unrelated nonword

(e.g., c̆ajov).

Data are less clear on inflectional suffix priming. On the one hand, there is no significant

interaction between prime relatedness and priming morpheme; this would suggest that suffix

priming isn’t different from stem priming. On the other hand though, the model estimates

reveal a numerically smaller effect for suffixes than for stems (11ms vs. 24ms); and, perhaps

more importantly, when the reference level for priming morpheme is set to assess suffix prim-

ing directly, statistics are rather weak—the effect is only significant (and barely so) when the

model is clean of outliers.

Experiment 1 was designed to contrast each related prime with its closest possible con-

trol (e.g., haljov–HALJAM vs. jahtov–HALJAM ). Essentially, everything remained the

same in related and control primes, except that the priming morpheme was changed with

a matched, target–unrelated one. Experiment 2 is another attempt at assessing stem and

suffix priming, this time using a fully factorial design where each target word (e.g., LISAM )

is preceded by a prime with: (i) the same stem and the same suffix, making up a repetition

prime; (ii) the same stem and a different suffix, e.g., lisov ; (iii) a different stem and the

same suffix, e.g., gibam ; and (iv) a different stem and a different suffix, e.g., berov. This

fully factorial design allows us to assess the contribution of a shared stem and a shared suffix

independently; this may be particularly useful to shed light on the somewhat unclear re-

sults on suffix priming that emerged in Experiment 1. Moreover, it permits us to check for

an interaction—would stem/suffix priming be stronger/weaker when targets and primes also
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share their other morpheme? Of course, such a design forced us into using word primes in one

of the four conditions; these word primes, however, would be the target words themselves,

which keeps us clean of effects of lexical competition and/or complex lexical dynamics that

may obscure the purely morphological effects.

2.3 Experiment 2

2.3.1 Methods

Participants

Sixty-two native Slovenian speakers (F=46) participated in the Experiment 2, none of whom

took part in the Experiment 1. Their mean age and education was 24.6 (range=19–42) and

14.9 years (range=12-20), respectively. They all grew up in a monolingual environment and

had normal or corrected-to-normal vision. They all granted their informed consent to take

part into the study before the beginning of the experiment, and received 2 Euros in exchange

for their time.

Materials, procedure and data analysis

Identically to Experiment 1, the stimulus set was based on 40 Slovenian word targets, which

were also used in the previous study. Each target (e.g., MOC̆EM) was paired with four

different primes, following a crossed, 2 × 2 design: (i) same stem and same suffix, making

up a repetition prime (e.g., moc̆em); (ii) same stem and different suffix (e.g., moc̆ov); (iii)

different stem and same suffix (e.g., domem); and (iv) different stem and different suffix

(e.g., z̆upov).

The statistics of this stimulus set are reported in Table 2.4. The presence of repetition

primes, the fully factorial design and, again, the fact that stems are generally longer than
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suffixes create an imbalance in prime–target orthographic overlap—if one averages stem–

related vs. non–stem–related primes, and suffix–related vs. non–suffix–related primes, the

former comparison displays a larger difference in orthographic overlap than the latter (.81 −

.31 = .50 and .71 − .41 = .30, respectively). This means that stem priming might be unduly

inflated by prime–target form similarity as compared to suffix priming. We will take care of

this confound statistically (see below).

Table 2.4: Stimuli characteristics across conditions. Stem-, and suffix-length, reported with medians and IQRs; log
frequency, and orthographic overlap, reported with means and SDs.

Target word Suffix prime Stem prime Repetition prime Control

Stem length 4.0 (2) 4.0 (2) 4.0 (2) 4.0 (2) 4.0 (2)
Suffix length 2.0 (0) 2.0 (0) 2.0 (0) 2.0 (0) 2.0 (0)

Stem frequency 1.46 (.65) 1.30 (.81) 1.46 (.65) 1.46 (.65) 1.25 (.73)
Orthographic overlap 0.42 (.09) .62 (.05) 1.0 (0) .19 (.10)

All other aspects of the Experiment 2 were kept identical to Experiment 1, including

the number and structure of nonword trials, the procedure, the trial timeline and the data

analysis approach.

2.3.2 Results

No participant or target word met the exclusion criteria; thus, all datapoints were retained

into the analyses. The mean overall response time and accuracy in this experiment were

714ms and 94%, respectively; quite nicely, these figures are very similar to those observed in

Experiment 1. The descriptive statistics by condition are offered in Table 2.5.

The model suggests solid stem priming, F (1, 2222.6) = 48.44, p < .001, but no suffix

priming, F (1, 2223.6) = .20, p = .65, nor any interaction between the two, F (1, 2224.0) = 2.01,

p = .16. The estimated effect size is 33ms for sharing a stem, and 3ms for sharing an

inflectional suffix. Figure 2.2 presents the model–based estimates for each design cell.
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Table 2.5: Mean (SD) and median (IQR) reaction time, reported in ms,
and accuracy (SD), reported in %, across the four conditions of experiment
2. Statistics are based on unaggregated data.

Mean RT Median RT Accuracy

Stem priming 699.95 (223.88) 647 (238) 96 (.19)
Suffix priming 732.29 (217.56) 680 (233) 95 (.20)

Repetition priming 693.66 (221.40) 645 (238) 95 (.21)
Control 730.80 (243.23) 672 (239) 93 (.25)

Shared suffix

E
st

im
at

ed
 R

T
 (

m
s)

no yes

60
0

62
0

64
0

66
0

68
0

70
0

72
0

Fig. 2.2: Estimated RT(ms), plotted per shared suffix (no/yes), for shared stem and un-
shared stem. The error bars represent the CI of 95%. Note: ●/▲, stem not shared / stem
shared condition.

As we discussed above, the difference in prime–target overlap between related and control

primes is larger for stem than for suffix priming in this experiment (see Table 2.4). It is

logically possible, then, that stem priming has emerged as a side effect of form similarity;
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perhaps primes and targets were just similar enough orthographically when they shared a

stem, but not when they shared a suffix. In order to exclude this possibility, we checked

that stem priming remains significant in a model that also includes orthographic similarity

as a covariate; this was indeed the case, F (1, 2233.1) = 9.47, p = .002. We also checked that

sharing a stem still brings significant time savings on the residuals of a model that accounts for

orthographic overlap, that is, on that part of the response times that orthographic similarity

can’t account for; and again, this was indeed the case, t(61) = −1.68, p = .054. So, it really

seems that the nature of the stem priming effect is morphological in nature.

2.3.3 Discussion

In line with much of the previous literature (e.g. Forster and Azuma, 2000; Marslen-Wilson

et al., 1994; Rastle et al., 2000, 2004), Experiment 2 fully confirms the solid stem priming

effect observed in Experiment 1. It also shows that this effect is morphological in nature,

and not entirely accountable in terms of prime–target orthographic overlap.

Experiment 2 brings no evidence, instead, for savings related to primes and targets sharing

their inflectional affix. This may elucidate the somewhat unclear results that emerged in Ex-

periment 1, where suffix priming was on the verge of statistical significance, and nearly signifi-

cantly different from stem priming. Statistics are fully unambiguous in this new experiment—

while stem priming is very solid, there is virtually no evidence for any suffix priming.

Quite interestingly, there is no evidence for any interaction between stem and suffix prim-

ing. Namely, a shared suffix did not add any further facilitation when the stem was also shared

between the prime and the target; and vice versa, a shared stem did not enhance suffix prim-

ing. This result also confirms that the lexical status of the primes in the repetition priming

condition (stem+suffix+) did not influence the facilitation pattern, or otherwise we would

4We carried out a simple t test here because the crossed random effects of participants and targets were
already accounted for in the orthographic overlap model, which made unnecessary to use mixed models a
second time.
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registered a difference between repetition primes (which were real words) and stem+suffix-

primes (which were not real words). Instead, the two types of primes yield very similar time

savings.

2.4 General discussion

Building on one of the most well-established paradigms in single word visual identification,

that is, masked priming, we investigated inflectional priming in Slovene, and compared it

to stem priming. This latter effect emerged clearly, whereas, overall, our data do not seem

to support inflectional suffix priming. We also observe that there is no interaction between

sharing a stem and sharing an inflectional suffix; the overall priming effect seems to be best

descried as the mere sum of an existent and solid stem priming, and a nonexistent (or at

best, very weak) suffix priming.

Stem priming is already a very well established phenomenon (e.g., Amenta and Crepaldi,

2012; Feldman, 2000; Marslen-Wilson et al., 1994; Marslen-Wilson, 2007; Rastle et al., 2000;

Stanners et al., 1979). However, we report it in a language that was previously unaddressed

in this respect, and that differs in many aspects from the languages where most of the ev-

idence on morphological priming was obtained, such as English, German or Spanish. Most

notably, the Slovene noun inflectional system is way richer than any of these languages;

stem priming does seem to hold smoothly irrespective of this factor. Slavic languages are

in general understudied in the psycholinguistic literature (but see e.g., Filipovic Durdevic

et al., 2009; Kostić, 1991; Milin et al., 2009, for notable exceptions); so these experiments

also provide an important contribution towards a psycholinguistic knowledge that is more

appropriately based on a diversity of languages (Frost, 2012; Reid and Marslen-Wilson, 2000).
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Overall, our data seem to suggest no inflectional suffix priming—there is no reliable facil-

itation in the recognition of a complex word that is preceded by a morphologically structured

nonword with the same inflectional suffix (prstam–HALJAM ). Importantly, these results

come from a paradigm and a language that arguably set the ideal stage for inflectional suffix

priming to emerge. As mentioned above, nominal inflection is ubiquitous in Slovene, and also

the result of a very complex system where three different numbers (singular, dual and plural),

three different genders (masculine, feminine and neuter) and six different cases (nominative,

genitive, dative, accusative, locative and instrumental) get blended in one inflectional suffix.

Moreover, our target words were all suffixed—despite masked priming kept our experimen-

tal manipulation out of our participants’ awareness, this feature should have, if anything,

directed even more attention to inflections. Yet, no solid inflectional priming emerged.

This absence of inflectional suffix priming is particularly interesting. Previous research

suggests that derivational suffixes do play an active role in the visual identification of complex

words (e.g. Crepaldi et al., 2016; Duñabeitia et al., 2008). In the presence of further evidence

that assigns a similar role to prefixes (e.g., Chateau et al., 2002; Dominguez et al., 2010;

Giraudo and Grainger, 2003; Reid and Marslen-Wilson, 2000, 2003), one could assume that

these findings can be just generalized to any kind of affix (Crepaldi et al., 2016). Here,

however, we show that this might not be the case—inflectional suffixes do not seem to play

a big role in complex word identification.

Of course, more research is in order here before holding this claim strong. The compar-

ison between inflectional and derivational priming, for example, can only be made cross–

linguistically at the moment. While linguistic diversity is of course fundamental, one can

never exclude that some peculiarity of one language makes it more prone to derivational

(rather than stem, or inflectional) priming, with no real general information that we can

draw on the human visual word identification system in general. In this specific case, per-

haps suffix priming—no matter whether inflectional or derivational—is generally more diffi-
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cult to obtain in Slovene, and thus what we’re seeing here is not really a derivation–inflection

asymmetry, but a cross–linguistic difference between, e.g., English and Slovene. Some direct,

within–language comparison between inflectional and derivational priming would be a nice

complement to the present study. Also, we excluded that the pattern of results is entirely

due to orthographic overlap via statistical analyses. We obviously believe that this is surely

informative; and also, this was the only viable option in this study, because all Slovene nouns

must be inflected, and it was thus impossible to test monomorphemic stimuli. However,

some direct comparison between these latter and inflected words (something similar to the

English examples catket–BUCKET vs. cating–EATING) would further confirm the gen-

uinely morphological nature of these effects.

While it may seem surprising that derivational suffixes would contribute to complex word

processing, while inflectional suffixes would not, it is possible that the reason for this discrep-

ancy lies in the nature of the information they carry. While inflectional suffixes only provide

morpho–syntactic information, derivational suffixes typically carry lexical knowledge. For ex-

ample, derivational suffixes determine grammatical class (kindness, bitterness and illness

are all nouns), while inflectional suffixes never do (a noun is a noun by virtue of its stem, no

matter which inflectional affix that stem takes on each specific instance). From this perspec-

tive, derivational suffixes are more similar to stem morphemes, whose role in complex word

processing is undisputed.

A different interpretation would point on the informational structure of stems and (partic-

ularly inflectional) suffixes frequency distribution. As anticipated in the Introduction, stems

are more informative on lexical identity. Nearly all English nouns take an -s to form a plural,

thus knowing that the word we’re trying to identify contains that morpheme is virtually

useless to constrain our lexical search—we’d be left with thousands of candidates. Knowing

which stem we’re looking at, instead, would typically leave us with a handful of candidate
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words. Perhaps the visual word identification system captures this informational asymmetry,

and consequently focus on stems way more than on suffixes. Admittedly, derivational suffixes

would be somewhat puzzling on this account. They generally carry more lexical information

than inflectional suffixes (e.g., there are less words containing -ness than words containing

-ing in English). Yet, they are also less informative than stems; therefore, it is not obvious

that they should yield solid priming, which is what data seem to indicate. More generally,

morpheme types as they are defined in theoretical linguistics would lose importance on this

informational account; arguably, the lexical system would develop sensitivity to each individ-

ual morpheme informational value, making a general distinction between stem, inflectional

and derivational morphemes rather irrelevant.
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3

Semantic and morphological priming in natural sentence

reading
1

3.1 Introduction

Over the last decades, we have learned a great deal about visual word identification (e.g.,

Adelman et al., 2010; Forster and Veres, 1998; Marelli et al., 2015; Rastle et al., 2000; Xu

and Taft, 2014). Our knowledge is so rich and articulated that it fostered the construction

of fully–fledged computational models—our theories of visual word processing have reached

a mechanistic level (e.g., Adelman, 2011; Coltheart et al., 2001; Davis, 2010; Perry et al.,

2010). This knowledge, however, is very much focused on individual word identification, while

our everyday life experience is dominated by text reading instead. This requires the visual

identification system to deal with several words in a very short amount of time (∼300 words

per minute; Pelli et al., 2007)—the very detailed models described above remain agnostic as

to this fundamental aspect of human reading.

From this perspective, models of eye movement are a particularly interesting case (Engbert
1This chapter is also an independent paper (in submission). Paper preprint, all data and analysis scripts

are available to the reader here.
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et al., 2005; Reichle et al., 2006). By design, they have to deal with the identification of

several individual words during sentence reading; that is, they face the problem of having

the visual word identification system engaged with several words in very rapid succession (in

serial models, such as in E–Z Reader), or even simultaneously (in parallel models, such as in

SWIFT). How a unique visual word identification system would deal with this issue is not

obvious. More generally, these models stay clear of the lexical dynamics described in models

of single word identification; they typically treat this latter process as an unarticulated whole,

of which they only estimate the duration/difficulty based on proxies such as word frequency

or word predictability in a given sentence context.

Of course, there are exceptions to this general trend. In their Glenmore model, Reilly and

Radach (2006) include letter–level dynamics, which may allow some contact between visual

word identification theories and text reading. However, the authors themselves acknowledge

that they were more interested into modelling target words for saccades rather than imple-

menting realistic lexical dynamics. The very recently released OB1–Reader, instead, makes

exactly this step, and aims at integrating what we know about individual word identification

into a general account of text reading (Snell et al., 2018b). Here we follow very much in the

same spirit, moving the focus from eye movements, which is the main target in OB1–Reader,

to post–orthographic processing levels in lexical identification, and how these are affected by

the engagement of the visual word identification system with multiple words in very rapid

succession.

Our starting point is one of the most established phenomena in the individual word iden-

tification literature, namely, priming. It is extremely well demonstrated now that seeing a

semantically (e.g., ‘sell’) or morphologically (e.g., ‘dealer’) related word makes it easier to

then identify a given target (e.g., ‘deal’; Feldman (2000); Forster et al. (1987); Grainger et al.

(1991); Neely (1977); Rastle et al. (2000)). Exactly because the lexical system is bombarded
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with words in very rapid succession during sentence reading, lexical identification should be

dominated by this kind of cross—word effects. Just as well as seeing ‘nice’ in the middle

of a black screen would make it quicker to identify the word ‘kind’ in isolation, reading the

former word should make it easier to then recognize the latter when they lie close within

the same sentence. In other words, there should be extensive cross—word priming during

sentence reading. This is the phenomenon we investigate in this paper, to start filling the

gap between individual word identification and sentence reading.

Although from a rather different perspective, lexical dynamics during sentence reading

were of course investigated in previous work. For example, a number of studies have ad-

dressed semantic priming in sentences, and yielded mixed results—while some have reported

facilitation (e.g., Blank and Foss, 1978; Van Petten et al., 1997), others have found that

lexical priming is easily overridden by message-level factors, such as discourse context and

predictability (e.g., Duffy et al., 1989; Morris, 1994; Morris and Folk, 1998; Traxler et al.,

2000). For example, Morris (1994) reported savings in the identification of a target word

(e.g., ‘moustache’) from a related verb prime (‘trimmed’) in sentences like ‘the gardener

talked as the barber trimmed the moustache’, but not in sentences with manipulated seman-

tic relationship between the subject and the verb, like ‘the gardener talked to the barber

and trimmed the moustache’, suggesting that the facilitation of target word identification

depends on discourse context.

Morphological effects were also heavily studied in sentence reading (e.g., Barber and

Carreiras, 2005; Kos et al., 2010; Kutas and Hillyard, 1980, 1984; Weber and Lavric, 2008).

Most of this work, however, is rather difficult to interpret in terms of cross–word priming,

given that it is based on morpho–syntactic violation paradigms (e.g., ‘the old man eats an

apples ’).
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Some morphological congruity effects in naturalistic material were indeed observed, which

can be interpreted in terms of cross–word morphological priming. However, these experiments

typically involved rather minimalistic environments such as word pairs (e.g., Goodman et al.,

1981; Samar and Berent, 1986; West and Stanovich, 1988). For example, they report how the

(dis)agreement between an adjective and its following noun (e.g., ‘brutta casa’ vs. *‘brutto

casa’) influences the processing of the latter, where the introduced disagreement results in

e.g., longer response time in word repetition tasks, compared to when noun agreement is not

violated (Bates et al., 1996). It is far from clear whether this kind of effects would generalise

to content word priming, similar to what is typically investigated in the individual word lit-

erature (e.g., dealer–deal, kindness–softness). Also, it is not established whether they would

emerge in naturalistic, everyday life sentence reading—without this, we miss the bridge be-

tween single word identification and text reading that we are aiming at.

Eye tracking can help us out of the unnaturalistic paradigms that were adopted in pre-

vious studies, thus allowing us to assess cross–word priming under more natural reading

conditions. In fact, priming may emerge as shorter fixations on words that were preceded by

semantically or morphologically congruent words, while participants are simply asked to read

sentences for comprehension. At the same time, eye tracking allows us to use the material

that is typically adopted in the single word literature. For example, content words that are

semantically and/or morphologically congruent are located close to each other in a sentence

(e.g., ‘...forks and spoons...’), so that if the relevant information persists in the lexical system,

we should observe savings in the identification time (that is, fixation durations) of the latter

word. Quite conveniently, eye tracking would also allow us to estimate the time course of the

eventual effects, through a comparison between earlier fixation measures (e.g., first–of–many

fixation duration) and later eye movement metrics (e.g., gaze duration). Finally, eye tracking

would also allow us to inspect target word skipping, which potentially provides insight into
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the information that is extracted from parafoveal words.

As far as semantics goes, we are aware of only two studies that adopted a similar paradigm.

Carroll and Slowiaczek (1986) focused on how the structure of the sentence would affect lex-

ical processing. They found that priming is influenced by the syntactic structure of the

sentence, so that it is observed only when the semantically related prime and target appear

in the same clause (e.g., ‘The guard saluted the king and the queen in the carriage, but they

didn’t notice’). One issue with this experiment, however, is the lack of control over target

word predictability. As observed in, e.g., Otten and Van Berkum (2008), there is widespread

prediction of the upcoming word during sentence reading, which makes it difficult to un-

ambiguously attribute Carroll’s and Slowiaczek’s results to cross–word priming. Facilitation

may actually come from the on-line prediction of the target, to which the prime surely con-

tributes as part of the sentence, but which it doesn’t determine per se. The interaction

between lexical representations in the mental lexicon may not be the driving force behind

these results.

A similar issue affects the study of Camblin et al. (2007). These authors did gather data

on target word predictability, but mean cloze probability in their semantically congruent

condition was very high (averaging .36). Thus, on–line prediction based on sentence context

may have played a major role in this experiment too, making unclear the contribution of

lexical dynamics.

Things are not entirely clear on the morphological side either. For example, Paterson et al.

(2011) investigated how the prior exposure to morphologically related words may influence

target word processing. Their prime–target pairs were either semantically transparent (e.g.,

marshy-marsh), had only an apparent morphological relationship (e.g., secretary-secret), or

were morphologically unrelated but as orthographically similar as in the previous conditions
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(e.g., extract-extra). Priming effects were observed in the semantically transparent pairs, but

were absent in the remaining two conditions. This study clearly shows that the observed

morphological priming effect is not driven by the prime–target (morpho-)orthographic rela-

tionship (e.g., Rastle et al., 2004). However, as the authors themselves acknowledge, it is

impossible to establish whether the observed effect is morphological in nature or is rather

a more general semantic effect, of the sort we would find with words like ‘cat’ and ‘dog’—

without such a pure semantic condition, this question cannot be addressed.

In the current study, we build on this previous work and devise a design that unambigu-

ously assesses semantic and morphological cross–word priming during sentence reading. The

core idea is quite simple. Primes and targets are embedded into sentences and put close

together in a coordinating phrase (e.g., ‘Paul entered a room with a table and a chair, which

didn’t really look like a kitchen’). Their semantic (S) and morphological (M) relationship is

then independently manipulated, e.g., ‘a table and a chair’ (S+M+) vs. ‘a dog and a chair’

(S-M+) vs. ‘some tables and a chair’ (S+M-) vs. ‘some dogs and a chair’ (S-M-). Priming is

taken to occur if fixations on the target word (‘chair’) are shorter after semantically and/or

morphologically congruent primes.

This paradigm, as illustrated above based on English, has two main problems though.

First, as already pointed out by Paterson et al. (2011), morphological relationship brings

about orthographic relationship (plural words share a final –s), which makes it difficult to

disentangle these two effects, in particular for shorter words. Second, the presence of de-

terminers in the critical bit of the sentence is not ideal, for at least two reasons. Although

articles are typically skipped during reading (e.g., Angele and Rayner, 2013), they could

potentially attract at least some fixations, which would be difficult to handle—should they

count as fixations on the target word? Or perhaps they would determine quite some more

skipping of the target word itself? Also, and probably more relevant, articles contain mor-
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phological information, which would be extracted by the readers (foveally or parafoveally),

thus blurring the whole picture—would morphological priming come from the content words

or the determiners, or some cross–talk between the two? How does this affect the pattern of

results, if it does at all? How would then results be comparable to those emerging from the

individual word literature?

Here is where Slovenian, the language that we used for this experiment, turns out to be

handy. Slovenian does not use determiners, so that primes and targets would sit alone in

the critical coordinating phrase (e.g., ‘miza in stol’, ‘a table and a chair’). Also, Slovenian is

inflectionally very reach—it has 6 different cases, 3 different genders, and 3 different gram-

matical numbers, with noun declension introducing distinct suffixes for different combinations

of the three.

Nouns can thus be inflected in the same way (i.e., in number and case), but still have ortho-

graphically different suffixes (e.g,. ‘avtomobil-i’, ‘cars’, plural, nominative; and ‘učiteljic-e’,

‘teachers’, plural, nominative,). This peculiarity of the Slovenian language thus enables us

to rule out any orthographic contribution to morphological priming.

So, to sum up, we investigate here morphological and semantic cross–word priming dur-

ing sentence reading. We do this in a natural reading, eye tracking paradigm that, taking

advantage of the features of Slovenian, allows us to test these effects with a very ecological

paradigm, virtually free of the confounds that affect the data available to date. This, we

hope, will start bridging the current gap between the precise and mechanistic theories that

we have for single word identification, and how the information extracted from single words

is then used to build a complete linguistic message.
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3.2 Methods

Participants

44 native Slovenian speakers (F=28) took part in the study. Their mean age and educa-

tion was 34.2 (range=20–60) and 15.5 years (range=12–18), respectively. They all grew up

in a monolingual environment and had normal or corrected-to-normal vision. Participants

received an 8, 15 or 20 Euro compensation, depending on the distance travelled in order to

reach the place of testing (SISSA, Trieste, Italy, or the University of Ljubljana, Slovenia).

They all provided their informed consent to take part in the study before the beginning of

the experiment.

Materials

The stimuli set comprised 40 sentences, in which two nouns appeared one after the other,

separated by the conjunction in, and (e.g., ‘kolesar ni bil pozoren na avto in tovornjak in

je zato povzročil nesrečo’ ; ‘the cyclist was not paying attention to a car and a truck and

therefore caused an accident’). In our design, the first noun (avto, car, in the example) is the

prime word, while the second noun (tovornjak, truck, in the example) is the target word.

These sentences appeared in 4 different conditions, where primes and targets were (i)

related in meaning, and inflected in the same grammatical number (avto–tovornjak, (a)

car–(a) truck); (ii) related in meaning, but not inflected in the same grammatical num-

ber (avte–tovornjak, (some) cars–(a) truck); (iii) unrelated in meaning, and inflected in the

same grammatical number (lužo–tovornjak, (a) puddle–(a) truck); (iv) unrelated in mean-

ing, and not inflected in the same grammatical number (luže–tovornjak, (some) puddles–(a)

truck). Both the carrier sentences and the target words were kept identical across conditions;

only the prime varied, to determine morphological and/or semantic relatedness in a crossed,
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2-by–2 design.

While constructing the sentences, we took a series of measures to guarantee a fair assess-

ment of cross–word priming. First, the prime and the target word always appeared within

the same syntactic clause (Carroll and Slowiaczek, 1986; Morris and Folk, 1998). Second, as

anticipated above, primes and targets never shared the same orthographic suffix, and only

shared the same final letter in 9 cases (5.6% of the stimuli set), so as to rule out any substan-

tial contribution from form priming. As mentioned above, this is easily obtained in Slovenian

through the use of prime and target nouns with different gender (e.g., brisač-i, towels, and

ležalnik-a, deckchairs, are both dual nouns in the nominative case). Furthermore, target

words never appeared in either clause or sentence final position, and were never followed by a

comma—these conditions may in fact elicit wrap-up effects, with longer fixations depending

on syntactic and/or semantic integration (Warren et al., 2009). Finally, we also controlled

the position of the prime and the target word on the screen—they never appeared as the first

or the last words in a line.

Primes and target features are illustrated in Table 3.1. They were matched as closely as

possible for length and frequency. This latter was taken from the Slovenian corpus Gigafida.

Sentences were 12 to 20 words long (mean=15.6), and included 63 to 138 characters overall

(mean=92.3). The prime words came 19 to 62 characters into the sentence (mean=36.7). 25

sentences were displayed in two lines of text, whereas 15 occupied three lines of text on the

screen.

In order to unambiguously asses the cross-word priming effects and also to prevent an

excessive skipping of the target words, we made sure that these latter were not too predictable.

A cloze probability task was set up (Kutas and Hillyard, 1984) with all the sentences that

were then used in the experiment proper. A separate sample of 80 participants (F=54;
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Table 3.1: Frequency and length of our stimuli across conditions. We report means and
SDs. Frequency is taken from the Slovenian corpus Gigafida, log transformed, and based on
word form.

S+M+ S+M- S-M+ S-M- Target
prime prime prime prime

Frequency 1.46 (0.54) 1.35 (0.53) 1.34 (0.58) 1.36 (0.52) 1.32 (0.50)
Length 6.60 (2.10) 6.57 (2.09) 6.97 (2.11) 7.25 (2.32) 6.57 (2.04)

S+/-: semantically congruent/incongruent; M+/-: morphologically congruent/incongruent.

mean age=32.38; age range=20–65), none of whom took part in the eye tracking experiment,

were presented with the experimental sentences up to the pre–target word and were asked to

complete them with the first word that came to mind. Because of our design, each target was

anticipated by four different primes, in four otherwise identical sentences (e.g., Kolesar ni bil

pozoren na avto/avte/lužo/luže in tovornjak ...). To make sure that target predictability

was similar (and low) across conditions, all of these four sentences were tested in the Cloze

Probability task, using a Latin Square design (each participant was presented with only one

item in each sentence quadruplet, rotated across conditions). In the final stimuli set, no

target word has a cloze probability higher than .2, with means and SDs across conditions as

illustrated in Table 3.2.

Table 3.2: Mean (SD) cloze probability across conditions.

S+M+ S+M- S-M+ S-M-

Cloze probability .05 (.05) .06 (.07) .01 (.03) .01 (.03)

S+/-: semantically congruent/incongruent; M+/-: morphologically con-
gruent/incongruent.

We also tested the strength of the semantic relatedness between the target words and

their primes. A further separate sample of 21 participants (F=12; mean age=38; age

range=25–58), none of whom took part in the eye tracking experiment or the cloze proba-
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bility task, was asked to rate each prime–target pair for similarity in meaning on a 1-to-5

scale (1, not similar at all; 5, very similar). Because, again, each target was associated with

two different primes (primes were tested only in one morphological form here), participants

were rotated over conditions (related vs. unrelated) in a Latin Square design. The results

of this pre–test are illustrated in Figure 3.1, and show that semantically congruent primes

were rated as substantially more related to their targets than semantically incongruent ones,

consistently across targets (mean and SD are 3.38 and 0.54, respectively, for the congruent

condition; and 1.74 and 0.42 for the incongruent condition).
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Fig. 3.1: Semantic relatedness in our Congruent (left) and Incongruent (right) pairs. Grey
lines connect corresponding prime, those that were used with the same target.
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Procedure

Participants were calibrated with a standard 9-point grid. Calibration was automatically

checked with the fixation point before the beginning of each trial, and was repeated when

necessary.

Participants were instructed to read silently the sentences at their own pace. On roughly

30% of the trials, sentence reading was followed by a 2AFC comprehension question, to ensure

that participants were actually reading and understanding the sentences.

The trial timeline was as follows. A fixation point appeared on the screen for 250ms.

Then the full sentence was displayed on the screen, and remained visible until the participants

pressed the space bar, indicating that they have finished reading. This led to the presentation

of either the fixation point of the following trial, or the comprehension question.

In order to reduce eventual repetition effects, each participant was presented with each

sentence in only two out of the four experimental conditions, with a Latin Square design

rotation. Each session was divided in two blocks, with the same two sentences never being

part of the same block. To further minimize repetition effects, and also to reduce participants’

awareness of the goal and the structure of the experiment, each block also included 60 filler

sentences, which were not part of the experimental design and were not analyzed. The critical

sentences were arranged across blocks in such a way that each block included 10 sentences

per condition. Overall, each participant read a total of 200 sentences, in two separate blocks

of 100 each. The experiment lasted about 50 minutes.

Apparatus

Participants sat 56 cm from the computer screen where the stimuli were displayed. Their head

was stabilized through a chin rests. An SR Eyelink 1000+ was used to record participants’

eye movements, at a sampling rate of 1000 Hz. Eye movements were recorded from the
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dominant eye only.

Data analysis

Two interest areas were created for each sentence around the prime and the target words,

using SR Research Data Viewer (SR Research Ltd., Kanata, ON, Canada). Trials with

large gaze drifts were discarded.

Because we were interested in exploring the time course of the eventual cross–word prim-

ing, we analysed a number of target fixation metrics—first–of–many (FoM) fixation duration,

first fixation duration, single fixation duration, gaze duration and total looking time. More-

over, in order to check for potential parafoveal priming, we also analysed target skipping and

target–on–prime facilitation.

Data were analyzed with R (R Development Core Team, 2008), using Rstudio (RStu-

dioTeam, 2016) and the lme4 package (Bates et al., 2015) for fitting (generalised) linear

mixed models. Model estimates and effect sizes were obtained using the package Effects

(Fox and Hong, 2009). Continuous dependent variables were all log transformed in order to

approximate a normal distribution and to achieve symmetrically distributed model residuals.

They were modelled as a function of semantic and morphological congruency, with subjects

and target words as random intercepts. Statistical significance was checked both for model

parameters and for predictors overall. Effects were checked for their dependence on outliers

following Baayen (2008)—models were re–run after excluding data points whose standardised

residuals were larger than 2.5 in absolute value. There were no effects that would be signifi-

cant only with (or without) outliers; reported here are the results of the models including all

data points.

All data and analysis scripts are available to the reader here.
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3.3 Results

All participants responded correctly to at least 95% of the comprehension questions (overall

mean=98%, SD=1.64%), which suggests that they performed the task appropriately and

understood the sentences very well. One participant was however excluded from the analysis

because of her/his abnormally long fixations—her/his grand average gaze duration on the

target words was 807.6ms, more than 300ms slower than the next slowest participant.

The overall descriptive statistics for the variables that we considered in the analyses are

reported in Table 3.3.

Table 3.3: Means (and standard deviations) across conditions for the
eye–tracking metrics that we considered in this study. Statistics are
reported in ms or as proportions (for skipping rate), and are based on
unaggregated data. Note: Skip, skipping rate; Prime, prime fixation
duration (which tracks target–on–prime effects); FoM, first–of–many
fixation duration; Single, single fixation duration; First, overall first
fixation duration; Gaze, gaze duration; TLT, total looking time; S+/-
, semantically congruent/incongruent; M+/-, morphologically congru-
ent/incongruent.

S+M+ S+M- S-M+ S-M-

Skip .066 (.249) .067 (.251) .048 (.214) .041 (.199)
Prime 391 (350) 417 (367) 414 (356) 395 (339)
FoM 228 (110) 232 (135) 238 (149) 235 (133)
Single 243 (145) 237 (126) 256 (150) 249 (145)
First 237 (134) 235 (129) 249 (149) 243 (140)
Gaze 312 (189) 319 (196) 345 (194) 334 (196)
TLT 441 (312) 453 (304) 558 (379) 534 (368)

Starting from the earliest time point where priming could be reasonably expected, we

checked whether target skipping might be influenced by the nature of the primes. Since the

decision to skip the target word must be made prior to the target being fixated, this type of
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priming would be based on parafoveal information. Our dataset displays a relatively small

number of target word skips (n=151), which amounts to ∼ 5% of all trials. There is a sig-

nificant effect of semantic congruency, F (1, 2687) = 4.05, p = .04 (the corresponding model

parameter is also very close to significance, z = 1.74, p = .08). 95% confidence intervals (CI)

for target skipping probablity are [.025 − .059] and [.015 − .039] for semantically congruent

and incongruent primes, respectively. Pointwise model predictions reveal that targets are

.014 more likely to be skipped if anticipated by a semantically related word. In contrast,

our data suggest no effect of morphological congruency, F (1, 2687) = .01, p = .92, nor any

interaction between semantic and morphological relatedness, F (1, 2687) = .21, p = .64. The

model predictions for each design cell are illustrated in Figure 3.2.

T
ar

g
et

 s
ki

p
p

in
g

 p
ro

b
ab

ili
ty

M- M+

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

Fig. 3.2: LMM estimates for proportions of target word skip. Error bars represent 95%
CIs. Note: ●/▲, semantically incongruent/congruent; M-/+, morphologically incongru-
ent/congruent.

We also assessed priming based on parafoveal information in the form of a target–on–prime

effect—essentially, we checked whether first–pass fixations on primes were shorter when the
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following target words were semantically and/or morphologically related2. This phenomenon

would belong to the class of the hotly debated Parafoveal–on–Foveal (PoF) effects (e.g., Hen-

derson and Ferreira, 1993; Inhoff et al., 2000; Just and Carpenter, 1983). Our data show no

suggestion of any semantic, F (1, 2549) = .03, p = .85, morphological, F (1, 2549) = .10, p = .75,

or interaction effect, F (1, 2549) = .10, p = .75.

First-of-many (FoM) fixation durations do not reveal any effect of semantic congruity,

F (1, 946) = .61, p = .43, morphological congruity, F (1, 946) = .01, p = .92, or interaction

between the two, F (1, 946) = .06, p = .80. The overall effect size is 5.9ms for semantic prim-

ing and .7ms for morphological priming. Figure 3.3a presents the model–based estimates for

FoM. Interestingly, the lack of priming is not due to the skipping of the prime words—this

only happened in 3.4% of the trials and, unsurprisingly, the model where these trials were

excluded yields exactly the same results (all p > .61).

The same pattern emerges in single fixation duration, and in the duration of first fixations

overall—no priming effect seems to emerge whatsoever in these metrics (all p > .20 and all

effect sizes are below < 6.9ms).

Gaze duration (GD), instead, reveals a solid semantic priming effect, F (1, 2535) = 5.12,

p = .02 (the corresponding model parameter is close to significance too, t(2535) =< 1.17,

p = .12), with no morphological priming, F (1, 2535) = .39, p = .53, nor interaction between

semantic and morphological congruity, F (1, 2535) = .36, p = .54. The estimated effect size is

18.6ms for semantic priming and 5.1ms for morphological priming. Figure 3.3b presents the

model–based estimates for the four design cells. When only trials where the prime was fixated

are taken into consideration, the semantic effect becomes even stronger, F (1, 2420) = 8.40,

2Please note that, because the experiment was not designed specifically for testing this effect, priming is
assessed across different targets here. Results should thus be taken with some caution.
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p = .004 (model parameter, z = 1.54, p = .06). The morphological effect and the interaction

between semantic and morphological relationships remains far from significance (all p > .47)

The same pattern emerges in the total viewing time—a solid semantic priming effect

emerges, F (1, 2535) = 17.63, p < .001 (model parameter, t(2535) = −2.50, p = .006), with

no morphological priming F (1, 2535) = .26, p = .6, nor interaction between semantic and

morphological congruity F (1, 2535) = .44, p = .5.
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Fig. 3.3: LMM estimates for FoM fixation durations (panel a) and GD (panel b) on the target
words. Error bars represent 95% CIs. Note: ●/▲, semantically incongruent/congruent; M-
/+, morphologically incongruent/congruent.
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3.4 Discussion

Building on similar previous paradigms and taking advantage of some handy features of the

Slovenian language, we investigated semantic and morphological cross–word priming during

natural sentence reading. Semantic facilitation emerged clearly, both in the skipping rate and

in relatively late indexes of target fixation. This effect was not modulated by morphological

agreement, nor we observed any morphological priming in the first place. Importantly, all

these results emerged in a very ecological, natural sentence reading paradigm, thus revealing

lexical dynamics as they likely emerge in our everyday reading experience. Moreover, these

data extends our theoretical knowledge by showing us what happens when the visual word

identification system is engaged with several words in a short amount time.

Our results confirm previous observations of cross–word semantic priming in natural sen-

tence reading (Camblin et al., 2007; Carroll and Slowiaczek, 1986). Importantly, the current

experiment allows to rule out word predictability in the sentence context as a source for this

priming. Despite target words were barely predictable, and not differently so after related

and unrelated primes, looking times were shorter on word N when word N-1 had a similar

meaning. We can thus attribute the observed effect to the residual activation in the lexical

system from word N-1 when a semantically related word N comes to the stage. This clearly

indicates that there is no cross–word reset in the lexical system during sentence reading.

Whether this means that neighbouring words are taken up by the system simultaneously

(Engbert et al., 2005; Snell et al., 2018b) or in rapid succession (Reichle et al., 2006), we

cannot tell based on these data. The former hypothesis, however, would open a very inter-

esting question—how does the lexical system keep track of information coming from different

words? This is a nice challenge for computational models of reading and eye movements,

which has only started to be taken up (see, for example, Snell et al., 2018b)
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The time course of this semantic priming effect is also interesting. Facilitation emerged

first in the skipping rate. This is perhaps not particularly surprising, given that the decision

of whether to skip word N must obviously come while word N-1 is fixated; thus, the fact that

information on word N-1 plays a role here is hardly unanticipated. But then, semantic prim-

ing did not emerge in earlier indexes of target fixation, such as FoM; and then ‘came back’ in

later measures, such as GD. This contrast between FoM and GD would suggest a qualitative

difference between the computations that determine overall first–pass looking time, which

would be sensitive to word N-1 meaning; and those behind the earlier decision of whether

to spend a second fixation on the foveal word, which would instead be independent of word

N-1 semantics. Whatever precise interpretation one adopts for this time course, one thing

is clear—it is not a matter of a mere activation decay for word N-1, or otherwise we would

have observed stronger priming in earlier eye tracking indexes. Rather, these data suggest

a dynamic, goal–specific cross–word processing in the lexical system during text reading,

which is another interesting challenge for general theories of eye movements and visual word

identification.

We were not able to observe any morphological priming instead. This better qualifies

the evidence provided by previous experiments (e.g., Paterson et al., 2011)—when semantics

and morphology are manipulated independently, the latter does not seem to give rise to

cross–word processing savings during sentence reading. These data would suggest a re–

interpretation of Paterson et al. (2011) results in terms of semantic similarity; ‘marshy’ would

prime ‘marsh’ because these words have close meanings, not because they are morphological

relatives. This would also explain the lack of any effect in opaque pairs like ‘secretary’ and

‘secret’ in the same experiment.

A note of caution is in order here, though. Especially in the individual word litera-
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ture, morphological priming is typically addressed though shared stems or affixes, that is, in

pairs like dealer–deal, or kindness–softness (e.g., Crepaldi et al., 2016; Marslen-Wilson, 2007;

Rastle et al., 2004). Here, instead, primes and targets shared an abstract morphological in-

flection, which was denoted by different affixal, orthographic realizations (e.g., avtomobil-a,

(two) cars, and mačk-i, (two) cats). This approach allows ruling out any orthographic (or

phonological) contribution to morphological effects, which is why we adopted it. However,

it may also justify the discrepancy between what we find here and the vast individual word

priming literature showing solid morphological facilitation (e.g., Feldman, 2000; Gonnerman

et al., 2007; Marslen-Wilson et al., 1994; Rastle et al., 2000).

Another very important insight brought about by cross–word priming is the stark contrast

between semantic and morphological processing during sentence reading. Not only semantic

facilitation emerges while morphological priming does not, but also we were unable to see any

interaction between the two players—the semantic effect was not affected by whether primes

and targets were inflected alike, nor the morphological effect was modulated by semantic

similarity. This may suggest that abstract morphological agreement is processed, at least

in part, outside of the (semantic) lexicon; and is reminiscent of theories supporting distinct

lexical–semantic and morphological systems (e.g., Mcbride-Chang et al., 2008; Ramirez et al.,

2014). Whatever theoretical interpretation one may want to adopt here however, these data

are quite clear in showing a more locally encapsulated morphological system, which seems to

prevent processing spillover between neighbouring words.

Finally, the cross–word semantic priming observed here in the skipping rate of the target

word joins the club of recent papers showing semantic information uptake in the parafovea

(e.g., Hohenstein and Kliegl, 2014; Schotter, 1996; Veldre and Andrews, 2016a,b). This adds

to a long–lasting debate, which has been a major battlecamp between serial and parallel
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models of eye movements during reading (e.g., Reichle et al., 1998). The data presented here

seem to favour the latter, as semantic processing of word N+1 would be difficult to justify

in the former camp (but see Schotter et al., 2014, for an argument in this direction).

In addition to providing theoretical insight, the data described in the present paper open

a few interesting questions, which the novel paradigm established here may help addressing.

First, an important next step would be to study cross–word priming with different types of

similarities between the prime and the target, such as case/gender agreement or orthographic

similarity. This latter in particular may prove particularly interesting. Individual word

priming suggests that orthographic overlap between the prime and the target may trigger

lexical competition (e.g., Crepaldi et al., 2016; Davis and Lupker, 2006), which asks the

question of whether we would see inhibitory cross–word priming between orthographically

similar words.

Another interesting issue is related to the distance between primes and targets. In our

sentences, they were only separated by a short, high-frequency conjunction word; and always

sat within the same coordinating phrase. How much lag is cross–word priming able to

overcome? And how would syntax play out here? We have observed that morphological

inflection does not seem to affect semantic facilitation during sentence reading; would it be

the same for perhaps more prominent morpho–syntactic factors such as phrase boundaries,

or word movement traces?
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4

Neural correlates of semantic and morphological priming

in natural sentence reading

4.1 Introduction

The science of reading and visual word identification has progressed enormously in the last

decades. However, our current understanding of reading seems to be divided between two

fields of research (Snell et al., 2018b): while the first one focuses on individual word processing

(e.g., Adelman et al., 2010; Forster and Veres, 1998; Marelli et al., 2015; Rastle et al., 2000;

Xu and Taft, 2014), the second one focuses on eye movement control in text reading (e.g.,

Engbert et al., 2005; Reichle et al., 1998).1 Despite the fact that both these fields importantly

advanced our knowledge, not all aspects of the reading process can be addressed while they

are kept in isolation. We addressed this issue in more detail in the previous chapter, where

we emphasized the importance of starting to bridge this gap.

However, this gap becomes even greater when moving from behavioural and eye movement

1There are of course some exceptions to this general trend, such as for example the recently released
model of eye movement during reading OB1-Reader (Snell et al., 2018b), and recent studies with simultaneous
recording of the EEG and eye tracking (e.g., Degno et al., 2018; Dimigen et al., 2011; Metzner et al., 2017).
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research to the study of the neural mechanisms of reading. Despite the fact that the past

years of technological advancement brought several tools that allow for the exploration of the

neural mechanisms during natural reading (e.g., Amsel, 2011; Dimigen et al., 2011; Ehinger

and Dimigen, 2018; Frömer et al., 2018; Smith and Kutas, 2015a,b), only a handful of natural

reading studies up to date have taken advantage of these opportunities (Degno et al., 2018;

Dimigen et al., 2011; Henderson et al., 2013; Kretzschmar et al., 2009, 2015; Metzner et al.,

2017).

In these natural reading studies, the EEG signal and the eye movements are simultane-

ously recorded (coregistration, henceforth), while the participants are allowed to freely and

spontaneously move their eyes as they process the presented text (Degno et al., 2018). With

this, coregistration allows to time-lock the EEG signal to specific eye movements, such as a

fixation on the target word of the presented text (Fixation-Related Potentials, FRPs). These

act as natural EEG events and provide an exquisite opportunity to explore neural correlates

under more natural reading conditions.

However, these studies are scarce at this point. Most of our current understanding of the

neural signatures of semantic and morphological processing thus comes from Event-Related

Potentials (ERPs) studies that are based on visual processing of individual words. Even

when sentences are involved, the paradigm typically presents one word at the time (Rapid

Serial Visual Presentation, RSVP), while the ERP components are locked to the onset of the

target word on the screen.

Neural signatures of semantic processing are well-explored within this paradigm. Seman-

tic processing is typically linked to the N400 ERP component, denoting a negative–going

deflection starting around 250ms and peaking around 400ms after the stimulus onset, with a

centro-posterior distribution (e.g., Federmeier, 2007; Hagoort, 2003; Kutas and Federmeier,

2000, 2011; Traxler and Gernsbacher, 2011). In semantic priming, N400 is larger (i.e., more
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negative–going), when the target word is preceded by semantically unrelated word, and

smaller (i.e.,more positive–going) when the target word is anticipated by a semantically re-

lated word (e.g., Kutas and Hillyard, 1984; Rugg, 1985).

However, while the N400 component is well-explored, its exact interpretation is controver-

sial. Traditionally, it has been interpreted either as an index of facilitated lexical access (e.g.,

Lau et al., 2009; Rugg, 1990), as an index of the access to the conceptual knowledge of a word

(e.g., Federmeier, 2007; Kutas and Federmeier, 2000), or as an index of postlexical processes,

such as the semantic context integration (e.g., Brown and Hagoort, 1993; Holcomb, 1993).

However, regardless of the theoretical viewpoint one may adopt, it remains indisputable that

the N400 provides information about the time course of the semantic processing, with its

onset indicating the time point of the initial access to the word meaning (Dimigen et al.,

2011).

Additionally, the N400 is also linked to morphological processing, despite the fact that the

neural mechanisms behind morphological processing are still not fully understood (Leminen

et al., 2018). The time course of morphologically complex word processing is namely assumed

to be reflected in the N400 and a preceding N250 component, which is thought to reflect

sublexical processing during visual word recognition (Holcomb and Grainger, 2006).

In priming paradigms, these components are generally larger when the target word is

preceded by a morphologically unrelated prime, and generally smaller when it is anticipated

by a morphologically related word (Holcomb and Grainger, 2006). This modulation has been

consistently reported with stem (e.g., hunter–HUNT) and repetition priming (e.g., hunt–

HUNT), both in masked (e.g., Holcomb and Grainger, 2006; Lavric et al., 2007; Morris et al.,

2008) and overt priming paradigms (e.g., Lavric et al., 2010; Smolka et al., 2015). But the

evidence is less consistent when it comes to inflectional morphological priming, which is most
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commonly addressed within the frame of regular and irregular inflection of English verbs.

Here, some studies observed the N400 modulation with regular verbs, but not with the irreg-

ular ones (e.g., Rodriguez-Fornells et al., 2002), while others observed the N400 modulation

both with regular and irregular verbs (in an auditory priming paradigm; Justus et al. (2011)).

Additionally, other studies observed the biphasic N250/N400 modulation, but only with reg-

ular verbs (e.g., Rastle et al., 2015), while others observed it with both regular and irregular

verbs (in masked priming paradigm; Morris and Stockall (2012).

Despite the fact that not all mechanisms are yet fully understood, the above ERP stud-

ies importantly advanced our current knowledge about the neural signatures of semantic

and morphological priming, as well as our understanding of language processing in general.

However, these well-established ERP paradigms importantly differ from the human natural

reading experience in a number of ways (e.g., Degno et al., 2018; Dimigen et al., 2011; Met-

zner et al., 2017). Firstly, in RSVP paradigms, isolated words are typically presented in the

middle of a screen, while the participants are instructed to fixate their gaze to the point

where they will be presented, and to avoid blinking. Not only is this instruction unnatural,

but it might also bring additional cognitive load, as the participants try to follow the given

instruction and become aware of their otherwise unconscious eye movements. This could

potentially have uncontrolled effects on the observed neural signatures. Further, each word

is presented on a screen for a predetermined amount of time (typically around 400ms), which

is significantly longer than the average time readers spend on a fixated word (with average

fixation lasting 200-250ms; e.g., Sereno and Rayner (2003)). This notably slows down the

reading speed, which could in turn have uncontrolled effects on the processing speed (Dimi-

gen et al., 2011). Another important difference lies in how each individual word is visually

processed to enter the reading system. In RSVP paradigms, the reader is forced to read each

word, in a strictly serial order. This contrasts with normal reading, during which readers
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freely determine not only how long each word will be fixated, but also which word will be

fixated next. We do not necessarily read in a strictly serial manner; some words are fixated

more than once, while others are skipped, and regressive saccades towards previously fixated

words are quite frequent (e.g., Dimigen et al., 2011). Finally, RSVP paradigms do not allow

for the preprocessing of the upcoming words in parafoveal vision, which is of course possible

(and quite used, actually) in normal reading (e.g., Degno et al., 2018; Dimigen et al., 2011).

All these differences make RSVP paradigms a vague approximation at best of the natu-

ral reading process, making it difficult, if not impossible, to establish to what extent RSVP

findings would apply to normal reading (Dimigen et al., 2011). It is thus not surprising that

the primary focus of the coregistration studies to date lies in the comparison between the

results of the RSVP/ERP and more natural reading/FRP paradigms.

On the one hand, these comparisons indicate that, to a certain extent, FRP components

are very similar to ERP components as obtained in RSVP paradigms. These similarities can

be observed in their polarity and scalp distribution (Dimigen et al., 2011; Kretzschmar et al.,

2009; Metzner et al., 2017), indicating that coregistration paradigms are feasible.

On the other hand, however, FRP components also importantly differ from ERP ones.

One such difference is in their time course. Namely, the FRP components appear to have

an earlier onset than typically observed in the RSVP paradigms (Dimigen et al., 2011; Kret-

zschmar et al., 2009; Metzner et al., 2017). The N400, for example, is traditionally marked as

starting at around 200-250ms, and peaking at around 400ms (e.g., Federmeier, 2007; Hagoort,

2003; Kutas and Federmeier, 2000). This latency was indeed also observed in coregistration

paradigms (e.g., Dimigen et al., 2011; Kretzschmar et al., 2009). But in parallel to it, a

weaker N400-like effect topographies were observed already as early as around 120ms after

the fixation onset (Dimigen et al., 2011; Metzner et al., 2017), indicating that the time line

of word recognition in normal reading may differ from the one typically observed in RSVP
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(Dimigen et al., 2011).

Another important difference comes from semantic and syntactic violation paradigms in

natural reading. These kinds of violation paradigms are among the most well–established

ERP paradigms, with semantic violations being associated with a modulation of the N400

amplitude (e.g., Federmeier, 2007; Hagoort, 2003; Kutas and Federmeier, 2000, 2011; Traxler

and Gernsbacher, 2011), while syntactic violations are typically associated with a modulation

of the P600 component (e.g., Carreiras, 2004; Friederici et al., 1993; Molinaro et al., 2011).

In contrast, a recent coregistration study revealed that in natural reading semantic violations

may also elicit a P600, while syntactic violations (when sentence final) also elicit an N400-like

effect (Metzner et al., 2017). Additionally, the study also revealed that regressions play an

important role in sentence processing, and are linked to P600. Namely, when the prediction

violation was detected, it either triggered the biphasic N400/P600 effect accompanied by a

regression, or the N400 effect, followed by sustained negativity (Metzner et al., 2017). With

this, the study suggested that in natural reading the language processing system uses at least

two different strategies to deal with confusing material—it can either fall back on the already

processed part to recruit additional information (as reflected by P600 and regressions), or it

tolerates the inconsistency (as reflected by N400 and sustained negativity in the absence of

regressions; Metzner et al. (2017)).

All coregistration studies available to date thus suggest that natural reading paradigms

indeed offer a more comprehensive picture of the neural signatures of reading, and speak up

to the importance of shifting towards more natural experimental setups.

New FRP studies with more ecologically valid paradigms are thus already starting to

emerge, but the number of these studies in natural reading is still scarce. It is thus not

surprising that at this point there are, to our knowledge, no coregistration studies that would

address either morphological or semantic priming in natural sentence reading, similarly to
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what we did in chapter 3.

However, when it comes to semantic priming in natural reading, there are a few pre-

vious FRP studies that can serve as a starting point. The first one among them did not

introduce a sentence reading paradigm, but rather addressed FRP–based semantic priming

in a word list reading task (Dimigen et al., 2012). To approximate the normal reading flow,

prime-target pairs were embedded into a list of nouns, which the participants read at their

own pace, from left to right. The results suggested an N400 modulation, with the unrelated,

related and identical prime-target pairs eliciting largest, intermediate, and smallest N400

amplitudes, respectively (Dimigen et al., 2012). Additional evidence for an N400 modulation

through semantic relatedness in natural reading was provided by another study. Despite

the fact that they primarily addressed the issue of predictability, Kretzschmar et al. (2009)

observed that the N400 component was the largest when an unpredictable word was also

semantically unrelated to the most expected word. Whether these findings would extend to

context-independent, cross-word semantic priming in natural sentence reading remains to be

explored.

In the present experiment, we build on the novel paradigm, previously presented in the

chapter 3. We explore whether, and to what extent, RSVP findings on semantic and mor-

phological priming apply to natural sentence reading. We simultaneously record EEG and

eye movements, in order to directly investigate the relationship between these latter and the

neural signatures typically associated with word identification and, more generally, written

language processing.

With this, we would like to contribute to a fairly new literature based on the simultaneous

recording of EEG and eye movements during natural sentence reading. As such, the current

project can only lean back on a very few previous coregistration studies available to date,

and is thus quite exploratory in nature. We present here some preliminary results, which we
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take to constitute a pilot study, aiming to establish the feasibility of our experimental setup,

data preprocessing, and data analysis.

4.2 Methods

Participants

14 right handed, native Slovenian speakers (F=8) took part in the study. Their mean age

and education was 30.2 (range=22–42) and 16.2 years (range=12–20), respectively. They all

grew up in a monolingual environment and had normal or corrected-to-normal vision. They

all provided their informed consent to take part in the study before the beginning of the

experiment, and received a 25 Euro compensation.

Materials

The stimuli set for this study was identical to the one used in the eye tracking study, presented

in chapter 3.

Procedure

The task, instructions, eye tracker calibration procedure, and the experiment structure were

identical to chapter 3 (see p. 56). The only difference was in the participants’ control of the

trial onset and offset via their fixations rather than button presses.

Sentence presentation was triggered by participants’ fixation of the fixation cross. A

complete sentence was than displayed, and remained visible until the participants fixated

another cross, located at the bottom centre of the screen. This led to the presentation of

either the drift correction fixation point of the following trial, or the comprehension question.
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Apparatus

For eye tracking, the apparatus was identical to chapter 3 (see p. 56).

The EEG signal was recorded with a standard 64-channel (BioSemi ActiveTwo) system,

at a sampling rate of 500 Hz. Additionally, 4 EOG channels were used to record the eye

movement related EEG signal.

Coregistration of eye movements and EEG signal

Following the procedure described in (Degno et al., 2018), the stimulus display computer

sent a message to the computer recording the eye movements, and a trigger to the computer

recording the EEG signal, to mark the beginning and end of the experiment and of each

trial. These triggers were used to establish an offline synchronization of the two recordings,

which was done in MATLAB, with the EYE-EEG extension (Dimigen et al., 2011) of the EEGLAB

toolbox (Dare and Shillcock, 2013).

Eye movement data preprocessing and analysis

Eye movement data were preprocessed and analyzed as in chapter 3 (see section Data Anal-

ysis, p. 74).

EEG data preprocessing

The EEG data preprocessing was performed in MATLAB, mainly through the toolbox EEGLAB

(Delorme and Makeig, 2004). Initially, the data were band-pass filtered with a high-pass filter

of .1 Hz and a low-pass filter of 30 Hz. Eye movement data were imported and synchronized,

using the EEGLAB extension EYE-EEG (Dimigen et al., 2011). Continuous data was then

segmented. The segments were time-locked to fixation onsets and included 0.1s before and
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0.5s after fixation onset. Noisy channels were rejected, using the EEGLAB’s pop rejchan

function (Delorme and Makeig, 2004) which combines three different methods: (1) Kurtosis

treshold (set to 4σ); (2) joint probability treshold (set to 4σ); and (3) abnormal spectra

(checked between 1 and 30 Hz, with a threshold of 3σ). Trials with extreme values (±300µV )

were rejected before the eye tracker-supported Independent Component Analysis (ICA) was

performed in order to identify the ocular artifacts. The independent components associated

with ocular artifacts were identified and rejected using the EYE-EEG extension (Dimigen et al.,

2011). EYE-EEG picks independent components that shared temporal covariance higher than

.7 with eye movements, and mark them as oculomotor artifacts (Plöchl et al., 2012). Further,

trials containing extreme values (±200 µV ) and probability (4σ) were rejected. Data were

then re-referenced to the average of all the scalp electrodes. The missing channels were

interpolated before the data were divided into conditions, and baseline corrected to the

200ms before the fixation onset. Finally, the trials of all participants were concatenated for

each condition.

EEG data analysis

EEG data statistical testing was performed through the nonparametric clustering method

(Bullmore et al., 1999), as implemented in the Fieldtrip lite (Oostenveld et al., 2011)

EEGLAB (Delorme and Makeig, 2004) toolbox for EEG/MEG analysis. This method offers a

straightforward solution to the Multiple Comparisons problem. It builds on the fact that since

EEG data has a spatio-temporal structure, real effects should occur over multiple temporally

and spatially adjacent electrodes and time points (Groppe et al., 2011). As such, it offers

two important advantages over parametric methods. It profits from the spatio-temporal

structure of the EEG signal to effectively reduce the number of comparisons performed, and

it does not require to make strong assumptions about the distribution of the data (Maris and

Oostenveld, 2007).
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Included were all scalp electrodes and all time points for a time window of 500ms, starting

at the fixation onset. Further, data permutation with 5000 iterations was performed. On

each iteration, the conditions were statistically compared via nonparametric permutation t

test for each channel-time pair. The temporally and spatially adjacent t values that had

p values < .05 were clustered together, forming candidate clusters. Then, a cluster-level

statistic were calculated by summing the t values within each cluster. The significance of the

candidate clusters was assessed via nonparametric permutation test, in which the conditions

were randomly shuffled and cluster-level t values were calculated in the same manner as

before. This step was repeated 5000 times, and on each iteration, the most extreme cluster-

level t value was used to create a null distribution. The significance of the observed candidate

clusters was than calculated as the proportion of expected t values under the null hypothesis

that were more extreme than the observed ones.

4.3 Results

Behavioural results

All participants responded correctly to at least 89% of the comprehension questions (over-

all mean=96%, SD=1.99%), which suggests that they understood the sentences well and

performed the task appropriately.

Eye movement results

Despite the small sample of participants included in this pilot study, we observe very similar

results to those reported in chapter 3.

At this point there is no suggestion of any statistically significant effect in either skipping

rates or GD (all p > .2). The observed pattern, though, resembles remarkably the data
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that emerged in the eye tracking–only experiment—target words are skipped more often and

GD are shorter when they are anticipated by a semantically related word. The descriptive

statistics for these variables are reported in table 4.1.

TVT was the most strongly significant measure in eye tracking only study, and also reveals

results that are very similar to the previously observed ones. Here, a solid semantic priming

effect emerges already with this small sample size, F (1, 1136) = 12.22, p < .001 (model

parameter, t(1136) = −2.07, p = .02). No effect of morphological priming, F (1, 1136) = 1.15,

p = .28, nor interaction between semantic and morphological congruity, F (1, 1136) = .32,

p = .57, are observed, instead. Table 4.1 presents the descriptive statistics for this variable.

Table 4.1: Means (and standard deviations) across conditions for the
eye–tracking metrics that we considered in this study. Statistics are
reported in ms or as proportions (for skipping rate), and are based on
unaggregated data. Note: Skip, skipping rate; Gaze, gaze duration;
TLT, total looking time; S+/-, semantically congruent/incongruent;
M+/-, morphologically congruent/incongruent.

S+M+ S+M- S-M+ S-M-

Skip .064 (.245) .073 (.260) .036 (.188) .064 (.245)
Gaze 291 (145) 311 (157) 316 (158) 325 (195)
TLT 362 (262) 370 (199) 464 (344) 459 (356)

EEG results

First, we compared semantically related (S+) to semantically unrelated (S-) conditions, col-

lapsed across morphological congruency (M+M-). Unrelated primes generated a parietal

negative deflection starting around 90ms, and reaching a maximum at around 150ms after

the onset of fixation on the target word (Figure 4.1a). The observed difference does not

reach significance at this point (g = −1.45, 95%CI = [−2.52,−.37], p = .18). However, the

effect size and the 95% confidence intervals do suggest that this component could denote a

real effect once more participants will be tested. The same indication comes from the single
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subject analysis, which shows that the effect is going in the same direction for most of the

subjects (Figure 4.1a, bottom left).

The comparison between semantically related and unrelated conditions also reveals an-

other negative deflection, starting at a later time point, around 250ms, and reaching a maxi-

mum at around 400ms after the fixation onset (Figure 4.1b). The observed difference does not

reach statistical significance either at this point (g = −1.04, 95%CI = [−1.78,−.28], p = .24);

but again, the effect size, the 95% confidence interval and the single subject analysis (Figure

4.1b, bottom left) also indicate that this effect may be solid enough to reach significance in

the full sample.

Similarly, we compared morphologically related (M+) to morphologically unrelated (M-)

conditions, collapsed across semantic congruency (S+S-). Unlike the semantic effects, mor-

phological congruency does not indicate any difference between targets in the related and

unrelated conditions (Figure 4.2). None of the classic morphological EEG signatures is close

to significance (all p > .40). Based on the scalp distribution and time course of the effect

that is the closest to significance (g = −0.82, 95%CI = [−1.56,−.07], p = .40), we think that

even this component is more likely noise rather than a real effect that would show up once

appropriate statistical power is applied.

Further, we also analyzed the modulation of semantically related condition by morpholog-

ical congruency. Compared to the S+M+ condition, S+M- targets elicit a parietal negative

deflection, starting around 100ms, and reaching a maximum around 180ms after fixation on-

set (Figure 4.3). The observed difference does not reach significance at this point (g = −1.33,

95%CI = [−2.32,−.35], p = .18), but again, the effect size, the 95% confidence interval and

the single subject analysis (Figure 4.3, bottom left) would suggest that this component could

denote a real effect once a full sample of participants will be tested.
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Fig. 4.1: Grand average FRPs for the first (a) and the second cluster (b) closest to signif-
icance. FRPs are time-locked to the fixation onset on the target word (solid vertical line),
in response to the semantically related (blue) and unrelated (red) prime word. Error bars
denote 1 SEM. The horizontal grey lines delimit the time window of interest, that is, the
time points that were considered in the cluster analysis. The Horizontal black lines denote
the time windows where at least one cluster got close to significance; the top left topoplot
represents this cluster scalp distribution. The bottom left graph shows the strength of the
statistical evidence for that cluster across participants.
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Fig. 4.2: Grand average FRPs, time-locked to the fixation onset on the target word (solid
vertical line), in response to the morphologically related (blue) and unrelated (red) prime
word. Error bars denote 1 SEM. The horizontal grey line delimits the time window of
interest, that is, the time points that were considered in the cluster analysis. The Horizontal
black line denotes the time windows where at least one cluster got close to significance; the
top left topoplot represents this cluster scalp distribution. The bottom left graph shows the
strength of the statistical evidence for that cluster across participants.

4.4 Discussion

Building on the paradigm established in our previous study (chapter 3), we presented here a

natural sentence reading study, in which the subjects simply read for comprehension, while

their eye movements and EEG data were simultaneously recorded. This enabled us to time-

lock the EEG data to the fixation onset on the target words, which allowed us to gauge

semantic and morphological cross-word priming in the scalp electrophysiology. We presented

here the results of a pilot study, whose main aim was to establish the validity of our experi-

mental design, data preprocessing and data analysis steps.
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Fig. 4.3: Grand average FRPs, time-locked to the fixation onset on the target word (solid
vertical line), in response to the semantically related/morphologically related (blue) and
semantically related/morphologically unrelated (red) prime word. Error bars denote 1 SEM.
The horizontal grey line delimits the time window of interest, that is, the time points that
were considered in the cluster analysis. The Horizontal black line denotes the time windows
where at least one cluster got close to significance; the top left topoplot represents this cluster
scalp distribution. The bottom left graph shows the strength of the statistical evidence for
that cluster across participants.

Due to the small sample size, no significant effect was observed at this point. This was

hardly unanticipated. However, relying on estimated effect sizes, confidence intervals, cross–

participants analyses, and the time–space characteristics of the clusters of electrodes that

got closest to significance, we think we were able to identify a few results that may reflect

solid effects, which would likely reach full statistical significance once an appropriately large

sample of participants will be tested.

Semantically unrelated primes, compared to related words, seem to yield two negative

deflections that reached the maximum at around 150ms and 390ms after the fixation onset.
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Based on its polarity, scalp distribution and sensitivity to semantic priming, we believe

that the first component may be related to what we would classically refer to as N400.

If that is indeed the case, its time course is different from what is traditionally reported

in RSVP paradigms (e.g., Federmeier, 2007; Hagoort, 2003; Kutas and Federmeier, 2000).

This earlier onset, however, is not unexpected—similar time course shifts of the N400 effects

in natural reading have also been reported in other coregistration studies (Dimigen et al.,

2011; Kretzschmar et al., 2009; Metzner et al., 2017). Given that parafoveal preview is

surely a benefit of natural reading, and is absent in RSVP paradigms, this earlier onset may

not be that surprising—parafoveal processing may in fact kick off visual word identification

quite before target fixation (Degno et al., 2018; Dimigen et al., 2011; Metzner et al., 2017).

An additional reason for the earlier onset of the FRP components could be that saccades

are self-initiated in natural reading. The time window in which the saccade is prepared

and executed could also act as a processing foreperiod, during which readers optimize their

temporal preparation, which in turn enhances their postsaccadic processing (Dimigen et al.,

2011).

Interestingly, the second deflection does yield a latency within the range of the tradition-

ally observed N400 effect. While its polarity and sensitivity to semantic priming would also

suggest a connection between this later component and the classic N400, its scalp distribution

seems to be more posterior.

Overall, these effects are similar to what was reported by (Dimigen et al., 2011) in a

previous natural reading study that explored the predictability effect. In response to unpre-

dictable words in the given context, the authors observed an earlier N400-like topography

which emerged already between 120 and 160ms after the fixation onset, and was followed

by a later negative-going component with an onset around 200-250ms and a peak at 384ms

after the fixation onset. The authors connected both these components to the N400, with the
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first component indicating its early onset under natural reading conditions (Dimigen et al.,

2011). Whether or not our observations could be interpreted similarly, it is difficult to say

at this point in our research. Yet, we do think that the characteristics of the first compo-

nent indicate that at least this FRP might reflect an early-onset N400-like effect. If that

is the case, our results would provide additional evidence for the modulation of the N400

component through semantic priming, with the component being the largest when the target

is anticipated by semantically unrelated word, as observed in the ERP/RSVP studies (e.g.,

Kutas and Hillyard, 1984; Rugg, 1985). Importantly, this modulation was observed under

natural reading conditions and, as such, revealed the lexical dynamics and their time course

as they likely emerge in our everyday reading experience.

In contrast, and similarly to what we observed in chapter 3, our data does not reveal any

effect of morphological priming. This would suggest that sharing an abstract morphological

inflection, at least when denoted by distinct orthographic (suffixal) realizations, does not

modulate any of the components traditionally linked with morphological processing.

However, despite the lack of morphological priming, our results do suggest that morpho-

logical agreement modulates semantic priming. Namely, semantic effect seems to be affected

by whether primes and targets are inflected alike. In fact, different inflections seem to elicit

a negative-going component, which arises around 100ms and peaks around 180ms after the

fixation onset. The time course and polarity of this effect are very similar to the character-

istics of our first described component, observed with semantic priming. However, its scalp

distribution does not reflect a similar topography, but rather a more posterior-right distribu-

tion. As such, this observed deflection cannot yet be clearly defined, but its characteristics

may become clearer once the power of the study will increase.

This indication of potential morphological modulation of semantic priming is perhaps

surprising, considering we did not observe such modulation in the eye tracking study (chap-
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ter 3). At this point, it is difficult to speculate about the reasons for this difference between

the fixation durations and FRPs. Considering the fact that this discrepancy results from

data from two separate experiments, one of which is under-powered, it is of course possible

that the observed negative deflection will no longer be observed once the power of the study

will be increased. The fact that at this point this FRP cannot be related any known ERP

component in RSVP studies, may indicate towards this direction. If, however, this difference

persist after the power of the study is increased, it could indicate that eye movements and

FRP measures are not equally sensitive to morphological agreement. This could suggest that

the two measures are not driven by shared underlying processes.
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5

General discussion and conclusion

Indisputably, the last decades have witnessed an enormous progress in our understanding of

the cognitive and neural mechanisms that support reading and visual word identification. We

now know a great deal about how letters are identified to allow lexical access (e.g. Adelman

et al., 2010; Davis et al., 2014; Grainger, 2008), how word representations interact in the

human lexicon (e.g., Davis and Lupker, 2006; Forster and Veres, 1998), how meaning is

extracted from these lexical dynamics (e.g Marelli et al., 2015; Meteyard et al., 2012), and

how word morphology informs these processes (e.g Amenta and Crepaldi, 2012; Rastle et al.,

2000; Xu and Taft, 2014).

Taking into account the fact that morphologically complex words represent a large pro-

portion of words in most of the world’s languages, and that they are the primary means

for lexical productivity (Rastle, 2011), it is perhaps not surprising that the identification of

morphologically complex words has attracted quite some attention in the psycholinguistic

research. There is now broad consensus that complex words are processed through their

constituent morphemes (Rastle, 2011). The most influential body of evidence in support of

this tenet arguably comes from stem priming—when a target word is anticipated by a prime

that share its stem, its processing is greatly facilitated, resulting in faster reaction times,
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reading times, and reduced N400 ERP component in lexical decision, eye tracking, and EEG

paradigms, respectively.

Despite a rather substantial body of evidence on stem priming, not much is known about

affix priming. An overview of the past literature has confirmed that other types of morphemes

are rather underinvestigated. This is particularly true for inflectional morphemes, which were

addressed by only a handful of studies, which also yielded conflicting evidence.

We tackled this underinvestigated topic in chapter 2, where we took advantage of the rich

inflectional system of Slovenian to conduct two masked priming experiments. In the first

one, we paired target words (e.g., SESTRAM ) with nonword primes with either a shared

stem (e.g., sestrov), a shared inflectional suffix (e.g., kolesam), or no morpheme at all. In

the second one, we additionally introduced a condition where primes shared both a stem

and a suffix (e.g., sestram). Our design allowed us to not only examine the existence of

stem and/or suffix priming effect (Experiment 1), but, importantly, to directly compare

the potential facilitation from the two different types of morphemes in the processing of an

inflected word (Experiment 2). This comparison is particularly interesting, since stems and

inflectional suffixes convey different kind of information.

The results of two masked priming lexical decision tasks suggested a solid effect of stem

priming, while no effect of inflectional morpheme was found. Additionally, stem and suffix

priming don’t seem to interact; there is no additional advantage coming from sharing an affix

when a prime and a target also share their stem.

Previous research suggests that (derivational) suffixes do play an active role in the pro-

cessing of morphologically complex words (e.g. Crepaldi et al., 2016; Duñabeitia et al., 2008).

Alongside the evidence in support of prefix priming (e.g., Anderson, 1992; Chateau et al.,

2002; Reid and Marslen-Wilson, 2003), these findings were taken as sufficient evidence in

support of the existence of a more general affix priming effect, indicating that all affixes play

an active role in complex word identification. Here, we show that this might not be the
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case—inflectional suffixes, which carry morpho-syntactic information, do not seem to play

such a role, at least in an inflectionally rich language like Slovene. Some evidence for the lack

of inflectional priming was already available, but it was difficult to hold strong conclusions

based on these data (Smolik, 2010; VanWagenen and Pertsova, 2014). Here, instead, we

provide rather neat evidence, we believe, for this account.

While it is indisputable that experiments on isolated words importantly advanced our

knowledge on word processing, it is also evident that they address language processing in a

very limited linguistic context, and typically also under fairly unnatural task conditions (e.g.,

lexical decision task). As such, they substantially differ from the reading experience in which

humans routinely engage in on an everyday basis. This issue was taken up in the second part

of my thesis, where we investigated lexical identification in the context of sentence reading

for comprehension.

More specifically, we tried to connect models of eye movement during sentence reading

with models of the visual identification of isolated words. Recently, studies aiming to bridge

this gap have started to emerge (Snell et al., 2018b); the experiments described in chapter 3

and chapter 4 follow very much in the same spirit. Our focus was on post-orthographic

levels of lexical identification, so that we explored how lexical–semantic and morphological

processing are affected by the engagement of the visual word identification system with

multiple words in very rapid secession, as they occur under natural reading conditions. To

this end, we investigated the phenomenon of cross-word priming during natural sentence

reading. In the first study, participants simply read sentences for comprehension, while

their eye movements were tracked. The sentences were presented on the screen in their full

length, and remained visible until the participants indicated that they had completed their

reading. Importantly, the critical sentences included two nouns, which appeared next to

each other, separated by the conjunction ‘and’. The first noun was the prime word, while
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the second noun was the target word. Sentences appeared in four conditions, in which the

target word remained constant, while the prime word was manipulated to be semantically

and/or morphologically related to the target. Importantly, the experiment was conducted in

Slovenian. This has brought two crucial advantages for our design: (i) Slovenian does not

use determiners, which avoids any morphological cue on the upcoming noun. Primes and

targets thus sat alone in the coordinating phrase (e.g., miza in stol, ‘a table and a chair’).

(ii) Slovenian is inflectionally rich. The nouns can thus be inflected in the same way (i.e.,

in number and in case), but have orthographically different suffixes (e.g., avtomobil-i, ‘cars’,

plural, nominative; and učiteljic-e, ‘teachers’, plural, nominative. This allowed us to rule out

any orthographic contribution to the morphological priming.

We found that words were skipped more when they were preceded in the sentence by

semantically related primes. Also, cross-word semantic priming manifested itself in later (e.g.,

gaze duration), but not in earlier (e.g., first-of-many fixations) indexes of eye movement on the

target words. We also found that semantic priming was not modulated by the morphological

agreement between primes and targets; and that morphological agreement did not yield

any priming per se. These results point to independent lexical-semantic and morphological

processing during sentence reading, and suggest cross-word reset for the latter, but not for

the former.

With this, our results confirmed previous observations of cross-word priming effect in

natural sentence reading (Camblin et al., 2007; Carroll and Slowiaczek, 1986). However,

unlike in previous work, our study design allowed us to rule out word predictability in the

sentence context as a potential source of the observed priming. On the other hand, the lack

of morphological priming effect in our experiment suggest a reinterpretation of the previously

observed morphological cross-word priming in natural sentence reading, where the authors

assigned the observed priming effect to the fact that the prime and the target (e.g., marshy-

MARSH) were morphologically related (Paterson et al., 2011). In the light of our study, it
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could be argued that their observed effect emerged due to the semantic similarity between

them, rather than due to their morphological relatedness.

However, a note of caution is in order here. In the isolated word literature, morpholog-

ical priming is typically addressed through shared stems or affixes (e.g., kind–KINDNESS).

Instead, in our experiment, primes and targets shared an abstract morphological inflection,

denoted by different orthographic realization (e.g., avta, ‘cars’, dual, nominative–MAC̆KI,

‘cats’, dual, nominative). While this conveniently allowed us to rule out any orthographic

contribution to the morphological effect, it may also be the source of the discrepancy between

our findings and the previous literature (mostly on individual word processing) suggesting

the presence of the morphological facilitation (e.g. Gonnerman et al., 2007; Marslen-Wilson

et al., 1994; Rastle et al., 2000).

From a slightly different perspective, making a transition from the study of words in

isolation towards more natural reading paradigms is relevant also in investigating event-

related brain potentials (ERPs; e.g., Kutas and Hillyard (1980); Rugg (1985). Here, sentence

reading paradigms are not uncommon; but sentences are typically presented one word at a

time, each word being presented for a fixed duration (i.e., Rapid Serial Visual Presentation,

RSVP). While there’s surely good reasons for this form of presentation (eye movements, an

inevitable part of free reading, generate potentials that contaminate the EEG data), RSVP

importantly differs from natural reading in several ways (chapter 4). Despite this fact, RSVP

research assumes that reading processes and comprehension are not greatly affected by the

highly constrained reading conditions (Metzner et al., 2017). But recent studies suggest that

this might not be the case—while some studies demonstrate that the inability to regress

towards earlier parts of the text compromises comprehension (e.g., Schotter et al., 2014),

other coregistration studies indicate that word recognition in normal reading importantly

differs from that typically observed in RSVP (chapter 4) (Degno et al., 2018; Dimigen et al.,
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2012, 2011; Kretzschmar et al., 2009; Metzner et al., 2017).

Chapter 4 in this thesis is an extension of the experiment described in chapter 3, where eye

movements are tracked together with EEG in a Fixation Related Potentials (FRPs) study.

We explored whether, and to what extent, RSVP findings on semantic and morphological

priming would keep under more natural reading conditions.

We presented here the results of our pilot study, based on an initial sample of 14 individ-

uals. The main aim was to establish the validity of our setup, data preprocessing and data

analysis—overcoming the challenges of a simultaneous recording of eye movements and EEG

under natural reading conditions has proven non–trivial.

Given the small sample on which we reported in this thesis, none of the observed effects

reached significance at this point. Nevertheless, we observed potentially interesting FRPs

in response to semantic priming—targets preceded by semantically unrelated primes elicited

two negative going deflections, starting at around 90ms and 250ms, and reaching their peak

at around 150ms and 400ms after the fixation onset, respectively. The early component’s

scalp distribution, polarity, and sensitivity to semantic priming do resemble what is classically

reported as N400. Importantly, if the observed deflection would indeed turn out to be a solid

effect once appropriate statistical power is applied, its time course would be very similar to

the previously observed N400-like effect in natural reading coregistration studies (Dimigen

et al., 2011; Kretzschmar et al., 2009)1. The onset of this N400-like effects is typically earlier

than in RSVP paradigms, and so is in our data (chapter 4). Our study would thus provide

additional evidence in support of the difference between the timeline of word recognition in

normal reading and in RSVP paradigms (Dimigen et al., 2011).

On the other hand, we did not observe any effect of morphological priming at this point.

However, it is worth noting that, contrary to what we observed in the eye tracking study,

morphological relationship does further modulate semantic priming—semantically primed

1Note however, that these studies examined the effect of predictability in sentence context, not lexically–
based semantic priming.
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targets showed a (weaker) negative going deflection in response to the morphologically unre-

lated prime-target pairs, with an onset around 100ms and the peak around 180ms after the

fixation onset. Interestingly, this FRP cannot be traced back to any known ERP component

in RSVP studies at this point.

The potential lack of morphological priming is not entirely surprising. Despite the fact

that some of the previous ERP/RSVP studies did observe a morphological modulation of

two components, N250 and N400 (Holcomb and Grainger, 2006; Lavric et al., 2007; Smolka

et al., 2015), this effect is not consistently reported, particularly in connection to inflectional

morphemes (e.g., Justus et al., 2011; Rastle et al., 2015; Rodriguez-Fornells et al., 2002).

Additionally, as already mentioned above, primes and targets shared an abstract morpho-

logical inflection in our experiment, denoted by different orthographic realizations. To our

knowledge, no previous RSVP or natural reading study addressed this type of morphological

priming. However, the same lack of this kind of priming was observed in our previous, eye

tracking study, suggesting a cross-word reset for morphological processing during sentence

reading (chapter 3).

In summary, the work presented in this thesis builds on the characteristics of a heavily

inflected language in order to better qualify the role of morphology in the visual recognition

of complex words. As indicated above, this has been one of the most widely studied topics

in psycholinguistics. The past four decades have brought to life numerous theories of visual

word identification, which place different emphasis on the relative role of stems and affixes

(Grainger and Beyersmann, 2017). Yet, the role of affixes is not yet fully understood. While

some attention has been given to prefixes and derivational suffixes, the role of inflectional

suffixes in complex word processing remains largely underinvestigated.

In the present thesis, we took to this issue in three different studies. Their overall results

indicate that inflectional morphemes behave differently from stems and derivational mor-
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phemes in complex word recognition. This finding is particularly surprising in the light of

previous research on affix priming. Namely, since it has been suggested that both prefixes

and derivational suffixes play an active role in the visual identification of complex words (e.g.

Chateau et al., 2002; Crepaldi et al., 2016; Dominguez et al., 2010; Duñabeitia et al., 2008),

it could be assumed that these findings would be generalized to any kind of affix (Crepaldi

et al., 2016). Yet, our results indicate that this might not be the case. A possible reason

for this discrepancy between derivational and inflectional morphemes might lie in the na-

ture of the information they carry. From this perspective, derivational morphemes, which

typically carry lexical information, are more similar to stem morphemes than to inflectional

morphemes, which only provide morpho-syntactic information.

Overall, our results suggest that inflectional morphological agreement is, at least partially,

processed outside of the semantic lexicon; which is reminiscent of the theories supporting dis-

tinct lexical–semantic and morphologcal systems (e.g., Mcbride-Chang et al., 2008; Ramirez

et al., 2014). Importantly, these results are not only observed in single word processing, but

also in word processing during natural sentence reading. This indicates that the observed

discrepancy between the role of morphemes with morpho-syntactic information and the ones

with lexical information persists also when the visual word identification system deals with

multiple words in a very rapid succession.

In conclusion, we believe that the present thesis provides an important contribution to-

wards a more comprehensive understanding of reading and visual word identification. How-

ever, more research is of course needed before any strong claims can be made. For example,

in our work, we focused only on inflectional morphemes. Thus, any comparison between

different types of morphemes can only be made cross–linguistically at the moment. Further,

in the single word research, we focused on the role of shared inflectional suffix, while in the

sentence reading studies we focused on the role of shared abstract morphological inflection,

denoted by different orthographic realization. How would the latter translate to single word
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processing? And how would the former behave within sentences? With this, our work also

opens a few interesting questions, which the novel paradigms, established in this thesis, might

help to address in the future research.
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