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We construct spectral triples on a class of particular inductive limits of matrix-valued
function algebras. In the special case of the Jiang-Su algebra, we employ a particular
AF-embedding. Published by AIP Publishing. https://doi.org/10.1063/1.5026311

I. INTRODUCTION

According to the noncommutative differential geometry program,2,3 both the topological and
the metric information on a noncommutative space can be fully encoded as a spectral triple on the
noncommutative algebra of coordinates on that space. Nowadays several noncommutative spectral
triples have been constructed, with only a partial unifying scheme emerging behind some families of
examples, e.g., quantum groups and their homogeneous spaces, like quantum spheres and quantum
projective spaces (see, e.g., Refs. 4, 5, and 8). Also some preservation properties with respect to the
product, inductive limits, or extensions of algebras have been investigated.

Most of these constructions are still awaiting, however, a proper analysis of properties such as
smoothness, dimension (summability), and other conditions selected by Connes. As a testing ground
for these and related matters as large as possible, a class of examples should be investigated, including
some important new algebras.

In Ref. 10, a general way to construct a spectral triple on arbitrary quasidiagonal C∗-algebras was
exhibited. However, in that case, one cannot expect summability. Instead, summability was obtained
in Ref. 1 for a certain inductive family of coverings, and p-summability with arbitrary p was obtained
for any AF-algebra through the construction in Ref. 6.

In the present paper, we elaborate a construction that extends the latter mentioned approach
to a wider class of particular inductive limits of matrix-valued function algebras whose connecting
morphisms have a certain peculiar form. In particular, this construction applies to the Jiang-Su algebra
Z (cf. Ref. 7), which was originally constructed in terms of an explicit particular inductive limit of
dimension drop algebras. The aim therein was to obtain an example of an infinite-dimensional stably
finite nuclear simple unital C∗-algebras with exactly one tracial state and with the same K-theory
of the complex numbers. The importance of the Jiang-Su algebra Z stems from the fact that under
some other hypothesis Z-stability entails classification in terms of the Elliott invariant, as proved in
Ref. 11.

The organization of the paper is the following: In Sec. II, we recall the definition of the Jiang-Su
algebra and construct a particular AF-embedding for it. In Secs. III and IV, we compute the image of
elements belonging to a dense subalgebra of the Jiang-Su algebra under the representation obtained
by composing the aforementioned AF-embedding with the representation appearing in Ref. 6. In
Sec. V, we use the above results to check that some of the Dirac operators considered in Ref. 6 give
rise to a spectral triple for the Jiang-Su algebra.

II. SPECTRAL TRIPLE ON THE JIANG-SU ALGEBRA

Let B = lim(Bi, φi,j) be a C∗-inductive limit of C∗-algebras, with B0 =C and where, for i > 0,
every Bi is a unital C∗-subalgebra of the algebra of continuous functions on the interval [0, 1] with
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values in Mni for some natural numbers ni such that ni divides ni+1. We assume that every Bi contains
a dense ∗-subalgebra of Lipschitz functions. Given i, l ∈N, the connecting morphism φi,i+l takes the
form

φi,i+l(f )= ui,i+l

*.....
,

f ◦ ξ i+l
i,1 ⊗ 1N i+l

i,1
0

. . .
0 f ◦ ξ i+l

i,ki+l
i

⊗ 1N i+l
i,ki+l

i

+/////
-

u∗i,i+l (1)

for some natural numbers ki+l
i , N i+l

i,1 , . . ., N i+l
i,ki+l

i

, a unitary ui,i+l ∈C([0, 1], Mni+l ), and some continuous

paths on the interval (i.e., continuous maps from [0, 1] to itself) ξ i+l
i,1 , . . . , ξ i+l

i,ki+l
i

satisfying

|ξ i+l
i,r (x) − ξ i+l

i,r (y)| ≤
1

2l
, for 1 ≤ r ≤ ki+l

i , x, y ∈ [0, 1] (2)

and such that the resulting ∗-homomorphism φi,i+l: Bi → Bi+l is injective.
In (1), we have identified, as is of common use, Mni+l with Mni ⊗ Mni+l/ni and for m ∈N, we

denote by 1m the m ×m-identity matrix; accordingly, for 1 ≤ r ≤ ki+l
i , we denote by f ◦ ξ i+l

i,r ⊗ 1N i+l
i,r

the

(N i,r ·ni)-dimensional matrix whose ni-dimensional diagonal entries are f ◦ξ i+l
i,r and the ni-dimensional

off-diagonal entries are 0.
Following a standard notation (see for example Ref. 7 Definition 2.1), we say that, given two

nonzero natural numbers p and q, the corresponding dimension drop algebra is the C∗-algebra,

Z(p, q)= {f ∈C([0, 1], Mp ⊗ Mq) : f (0) ∈Mp ⊗ 1q, f (1) ∈ 1p ⊗ Mq}, (3)

and that it is called a prime dimension drop algebra if p and q are coprime.
The Jiang-Su algebra Z is an inductive limit of prime dimension drop algebras Z i satisfying a

certain universal property. We will use the original construction appearing in Ref. 7, where it was
proven that given pi, qi, ni = piqi defining the prime dimension drop algebra Z i B Z(pi, qi), there are
numbers N i+1

i,1 , N i+1
i,2 , and N i+1

i,3 such that ni+1 = (N i+1
i,1 + N i+1

i,2 + N i+1
i,3 )ni is equal to ni+1 = pi+1qi+1 for

some coprime numbers pi+1 and qi+1 and that there is a unitary ui,i+1 ∈C([0, 1], Mni+1 ) such that the
map

φi,i+1 : f 7→ ui,i+1

*...
,

f ◦ ξ i+1
i,1 ⊗ 1N i+1

i,1
0

f ◦ ξ i+1
i,2 ⊗ 1N i+1

i,2

0 f ◦ ξ i+1
i,3 ⊗ 1N i+1

i,3

+///
-

u∗i,i+1 (4)

from C([0, 1], Mni ) to C([0, 1], Mni+1 ) restricts to a ∗-homomorphism from Z i to Z i+1 for the paths
ξ i+1

i,1 (x)= x/2, ξ i+1
i,2 (x)= 1/2, and ξ i+1

i,3 (x)= (x + 1)/2. The Jiang-Su algebra is constructed as the induc-
tive limit of such prime dimension drop algebras, where the connecting morphisms are given by
composition of the morphisms just described.

As a consequence, given a natural number l, the connecting morphism Z i → Z i+l has the form
(1) for some natural numbers ki+l

i , N i+l
i,1 , . . ., N i+l

i,ki+l
i

, a unitary ui,i+l ∈C([0, 1], Mni+l ), and some paths

ξ i+l
i,1 , . . . , ξ i+l

i,ki+l
i

given by

ξ i+l
i (x)=

x + r

2l
, for 0 ≤ r ≤ 2l − 1 (5)

or

ξ i+l
i (x)=

s

2l
, for 1 ≤ s ≤ 2l − 1. (6)

It follows that the paths appearing in the connecting morphism φi,i+l satisfy Eq. (2), andZ belongs
to the class of inductive limit C∗-algebras we want to consider.

Note that, given B as above, after reindexing the sequence Bi, for example, sending i 7→ i2, we
can always suppose that the paths appearing in the connecting morphisms satisfy
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|ξ i+1
i,r (x) − ξ i+1

i,r (y)| ≤
1
2i

(7)

for any 1 ≤ r ≤ ki+1
i . This relation will be used for the Proof of Lemma 2.1.

Fix a sequence of natural numbers ni as above and consider the inductive limit
A = lim(Ai, φ◦i,j), where Ai =C([0, 1], Mni ) and the connecting morphisms φ◦i are constructed in
the same way as above, but they are considered as unital ∗-homomorphisms between the Ai’s. For
any i, l ∈N denoted by φ̃◦i,i+l : Ai→Ai+l, the ∗-homomorphism

φ̃◦i,i+l(f )=

*.....
,

f ◦ ξ i+l
i,1 ⊗ 1N i+l

i,1
0

. . .
0 f ◦ ξ i+l

i,ki+l
i

⊗ 1N i+l
i,ki+l

i

+/////
-

. (8)

Let ui be the unitary corresponding to the connecting morphism A1 → Ai (or B1 → Bi). For any
f ∈ Ai (or Bi), there is a unique f̃ ∈ Ai such that f = ui f̃ u∗i . In this way, the connecting morphisms take
the form

φ◦i,i+l(f )= ui,i+l φ̃
◦
i,i+l(f )u∗i,i+l = ui+l φ̃

◦
i,i+l(f̃ )u∗i+l. (9)

Let now M = lim(Mni ,ψi,j), where ψi,i+1(a)= a ⊗ 1ni+1/ni .

Lemma 2.1. There is a ∗-isomorphism

α : A→M. (10)

Let γ ∈ (1, 2). A Lipschitz function f ∈ Ai with a Lipschitz constant Lf < γ
i is sent to

α(f )= lim
m→∞

ψ∞m (φ̃◦i,m(f̃ )(0)), (11)

where ψ∞m : Mnm→M denotes the natural embedding.

Proof. Define ∗-homomorphisms

αi : Ai→Mni+1 , (12)

f 7→ φ̃◦i (f̃ )(0) (13)

and
βi : Mni →Ai, (14)

a 7→ ui+1āu∗i+1, (15)

where ā ∈ Ai is the constant matrix-valued function taking value a ∈Mni . Let now γ ∈ (1, 2) and take
finite sets F i ⊂ Ai consisting of Lipschitz matrix-valued functions with a Lipschitz constant less than
γi and such that their union

⋃
iF i is dense in A. For any f ∈ F i and a ∈Mni , we have

αi ◦ βi(a)=ψi(a), (16)

‖ βi+1 ◦ αi(f ) − φ◦i,i+1(f )‖ <
γi

2i
. (17)

Hence the result follows by Ref. 9 Proposition 2.3.2. □

III. THE ORTHOGONAL DECOMPOSITION

Let H be the Hilbert space considered by Christensen and Antonescu in Ref. 6 corresponding to
the Gel’fand–Naimark–Segal (GNS)-representation induced by the unique trace τ on M. This trace
is given on the finite-dimensional approximants relative to the inductive limit construction by the
normalized trace on matrices. Following Ref. 6, we want to write H as an infinite direct sum of the
finite dimensional Hilbert spaces on which the Mni ’s are represented.

Let Hi =Mni

τ
and let v ∈Hi. We can consider v as a matrix of dimension ni, and for any j < i,

we can write v as a block matrix of the form
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v =

*.....
,

v
j,i
1,1 . . . v

j,i
1,li

j

...
. . .

...
v

j,i
li
j

. . . v
j,i
li
j ,l

i
j

+/////
-

, (18)

where li
j = ni/nj is the multiplicity of Mnj in Mni and the v j,i

k,l are the matrices in Mnj ; in particular, we
can apply the same procedure to these matrices by iteration. With this notation, the projection Pi,j

from Hi to Hj reads

Pi,j(v)=
1

li
j

li
j∑

k=1

v
j,i
k,k ∈Mnj . (19)

If j > 1, the projection Rj from Hj to the orthogonal complement of Hj−1 in Hj reads for w ∈Hj,

Rj(w)= (20)

*............
,

w
j−1,j
1,1 −

1
lj
j−1

∑li
i−1

k=1 w
j−1,j
k,k w

j−1,j
1,2 . . . w

j−1,j

1,lj
j−1

w
j−1,j
2,1 w

j−1,j
2,2 −

1
lj
j−1

∑li
i−1

k=1 w
j−1,j
k,k w

j−1,j

2,lj
j−1

...
. . .

...

w
j−1,j

lj
j−1,1

. . . w
j−1,j

lj
j−1,lj

j−1

− 1
lj
j−1

∑li
i−1

k=1 w
j−1,j
k,k

+////////////
-

.

Hence, if we denote by Kj =Hj 	 Hj−1 the orthogonal complement of Hj−1 in Hj, the projection
Qj :H→Kj, when applied to an element v ∈Hi, takes the form, for 1 ≤ s, t ≤ lj

j−1,

(Qj(v))j−1,j
s,t =




1
li
j

∑li
j

k=1(v j,i
k,k)j−1,j

s,s − 1
li
j−1

∑lj
j−1

t=1

∑li
j

k=1(v j,i
k,k)j−1,j

t,t , for s= t,

1
li
j

∑li
j

k=1(v j,i
k,k)j−1,j

s,t , for s, t,
(21)

where, with a slight abuse of notation, we identify the spaces Hi with their images in H and
correspondingly consider the projections Qj as operators from Hi to Kj.

IV. THE COMMUTATORS

Taking i < n < m and v ∈Hm, f ∈ Ai. We want to find an explicit form for the ele-
ments Qn(φ̃◦i,m(f̃ )(0)v) and φ̃◦i,n(f̃ )(0)Qnv . To this end, we want to write φ̃◦i,m(f̃ ) as the composition

φ̃◦n,m ◦ φ̃
◦
n−1,n ◦ φ̃

◦
i,n−1(f̃ ).

Let ki
j be the amount of different paths appearing in the connecting morphism φj,i. If 1 ≤ j ≤ kn

n−1,

we denote by f̃ ◦ [ξn−1
i ] ◦ ξn

n−1,j = φ̃
◦
i,n−1(f̃ ) ◦ ξn

n−1,j the matrix-valued function

*.....
,

f̃ ◦ ξn−1
i,1 ◦ ξ

n
n−1,j ⊗ 1Nn−1

i,1
0

. . .

0 f̃ ◦ ξn−1
i,kn−1

i

◦ ξn
n−1,j ⊗ 1Nn−1

i,kn−1
i

+/////
-

, (22)

then we can write
φ̃◦i,n(f̃ )= φ̃◦n,n−1 ◦ φ̃

◦
i,n−1(f̃ )= (23)

*......
,

f̃ ◦ [ξn−1
i ] ◦ ξn

n−1,1 ⊗ 1Nn
n−1,1

0

. . .

0 f̃ ◦ [ξn−1
i ] ◦ ξn

n−1,kn
n−1
⊗ 1Nn

n−1,kn
n−1

+//////
-

. (24)
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For 1 ≤ s, ≤ ln
n−1, we denote by ξ̄n

n−1,s the path

ξ̄n
n−1,s =




ξn
n−1,1 for 1 ≤ s ≤Nn

n−1,1

ξn
n−1,2 for Nn

n−1,1 < s ≤Nn
n−1,1 + Nn

n−1,2

...

ξn
n−1,kn

n−1
for

∑kn
n−1−1

k=1 Nn
n−1,k < s ≤ ln

n−1

. (25)

Thus we obtain for 1 ≤ s, t ≤ ln
n−1,

(φ̃◦n−1,n ◦ φ̃
◦
i,n−1(f̃ )(0)Qnv)n−1,n

s,t = (26)

1
lm
n

lm
n∑

j=1

(
f̃ ◦

[
ξn−1

i

]
◦ ξ̄n

n−1,s

)
(0)

(
vn,m

j,j

)n−1,n

s,t
, for s, t (27)

and

1
lm
n

lm
n∑

j=1

(
f ◦

[
ξn−1

i

]
◦ ξ̄n

n−1,s

)
(0)*.

,

(
vn,m

j,j

)n−1,n

s,s
−

1
ln
n−1

ln
n−1∑

k=1

(
vn,m

j,j

)n−1,n

k,k

+/
-
, for s= t. (28)

In the same way, for 1 ≤ j ≤ lm
n , we can define paths

ξ̄n,j =




ξm
n,1 for 1 ≤ j ≤Nm

n,1

ξm
n,2 for Nm

n,1 < j ≤Nm
n,1 + Nm

n,2

...

ξm
n,km

n
for

∑km
n −1

k=1 Nm
n,k < j ≤ lm

n

(29)

and compute for 1 ≤ s, t ≤ ln
n−1,

(Qnφ̃
◦
i,m(f̃ )(0)v)n−1,n

s,t = (Qn(φ̃◦n,m ◦ φ̃
◦
n−1,n ◦ φ̃

◦
i,n−1)(f̃ )(0)v)n−1,n

s,t = (30)

1
lm
n

lm
n∑

j=1

(f̃ ◦ [ξn−1
i ] ◦ ξ̄n

n−1,s ◦ ξ̄
m
n,j)(0)(vn,m

j,j )n−1,n
s,t , for s, t (31)

and
1
lm
n

lm
n∑

j=1

[ (f̃ ◦ [ξn−1
i ] ◦ ξ̄n

n−1,s ◦ ξ̄
m
n,j)(0)(vn,m

j,j )n−1,n
s,s (32)

−
1

ln
n−1

ln
n−1∑

k=1

(f̃ ◦ [ξn−1
i ] ◦ ξ̄n

n−1,k ◦ ξ̄
m
n,j)(0)(vn,m

j,j )n−1,n
k,k ) ], for s= t. (33)

Thus we can write the commutators

(Qn(φ̃◦i,m(f̃ )(0)v) − φ̃◦i,n(f̃ )(0)Qnv)n−1,n
s,t = (34)

1
lm
n

lm
n∑

j=1

(f̃ ◦ [ξn−1
i ] ◦ ξ̄n

n−1,s ◦ ξ̄
m
n,j − f̃ ◦ [ξn−1

i ] ◦ ξ̄n
n−1,s)(0)(vn,m

j,j )n−1,n
s,t , for s, t (35)

and
1
lm
n

lm
n∑

j=1

[ (f̃ ◦ [ξn−1
i ] ◦ ξ̄n

n−1,s ◦ ξ̄
m
n,j − f̃ ◦ [ξn−1

i ] ◦ ξ̄n
n−1,s)(0)(vn,m

j,j )n−1,n
s,t + (36)

1
ln
n−1

ln
n−1∑

k=1

(f̃ ◦ [ξn−1
i ] ◦ ξ̄n

n−1,s − f̃ ◦ [ξn−1
i ] ◦ ξ̄n

n−1,k ◦ ξ
m
n,j)(0)(vn,m

j,j )n−1,n
k,k ◦ ξ̄m

n,j ], for s= t. (37)
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Lemma 4.1. Let i < l < m ≤ k be natural numbers and let ξ l
i , ξ

m
l , ξk

l be paths on the interval
[0, 1] such that

|ξ l
i (x) − ξ l

i (y)| ≤
1

2l−i
, for any x, y ∈ [0, 1]. (38)

Then, given any n > 0 and any Lipschitz function in C([0, 1], Mn) with Lipschitz constant Lf , we
have

‖(f ◦ ξ l
i ◦ ξ

m
l )(0) − (f ◦ ξ l

i ◦ ξ
k
l )(0)‖ ≤

2iLf

2l
. (39)

Proof. This is a consequence of the fact that |ξ l
i (x) − ξ l

i (y)| ≤ 1
2l−i for every x, y ∈ [0, 1]. �

V. THE SPECTRAL TRIPLE

Note that if D =
∑

n αnQn for a certain sequence of real numbers {αn}, then the domain of
D, dom(D)= {v ∈H : {‖αnQnv ‖} ∈ l2(N)}, is left invariant under the action of any f ∈ A; thus, in
particular, for every f ∈ B, it makes sense to consider the (in general unbounded) operator [D, f ].

Moreover, it follows from the Hahn-Banach extension theorem that if T is an unbounded operator
on H whose domain contains the algebraic direct sum ⊕algKi and ‖TPn‖ is uniformly bounded on n,
then T extends (uniquely) to a bounded operator on the whole Hilbert space H.

Hence, to obtain boundedness of [D, f ], we want to compute estimates for ‖[D, f ]Pn‖ for
every n.

For every i ∈N, we will denote by LBi the subset of Bi consisting of Lipschitz functions with the
Lipschitz constant smaller than γi for some γ ∈ (1, 2). Observe that φ◦i,i+1 |LBi is a linear map sending
LBi into LBi+1 and that the algebraic direct limit

⋃
i LBi is a dense ∗-subalgebra of B.

Theorem 5.1. Let D =
∑

n αnQn, with {αn}, a diverging sequence of real numbers satisfying
α0 = 0, |αn| ≤ β(n�1) with β < 2 and n > 0. Then (

⋃
i LBi,H, D) is a spectral triple for B.

It is p-summable whenever the sequences of numbers {αi}, {ni} satisfy∑
i≥1

(1 + α2
i )−p/2(n2

i − n2
i−1)<∞ (40)

for some p > 0.

Proof. After reindexing i 7→ i2, the ∗-isomorphism α: A→M has the concrete description given
in Lemma 2.1, and we will suppose that the index set is already reindexed, if necessary. Thus we can
compose it with the GNS representation of M induced by the unique trace τ.

Let l, m ∈N and v ∈Hl. Denote by βHl,m :Hl→Hm and βHl,∞ :Hl→H the connecting isometries.
Note that for i ∈N and f ∈ LBi the action of f on v reads

lim
m→∞

βHm,∞φ̃
◦
i,m(f̃ )(0)βHl,mv , (41)

where we use the convention that βHm,∞φ̃
◦
i,m(f̃ )(0)βHl,m(v)= βHl,∞φ̃

◦
i,l(f̃ )(0)v for max{i, m} ≤ l and

βHm,∞φ̃
◦
i,m(f̃ )(0)βHl,mv = β

H
i,∞ f̃ (0)βHl,iv for max{m, l} ≤ i.

Thus we can write

‖Qnf v − fQnv ‖ = ‖ β
H,∞
n Qn lim

m→∞
φ̃◦i,m(f̃ )(0)βHl,mv − lim

m→∞
βHm,∞φ̃

◦
i,m(f̃ )(0)βHn,mQnv ‖. (42)

Since the sequence βHm,∞φ̃
◦
i,m(f )(0)βHl,mv converges, there is an M such that

‖ βHk,∞φ̃
◦
i,k(f̃ )(0)βHl,kv − lim

m→∞
βHm,∞φ̃

◦
i,m(f̃ )(0)βHl,mv ‖ ≤

1

2(n−1)
, (43)

for any k ≥ M. Moreover, by Lemma 4.1 and the discussion preceding it,

‖
[
βHn,m φ̃

◦
i,n

(
f̃
)
(0) − φ̃◦i,m

(
f̃
)
(0)βHn,m

]
Qnv ‖

= ‖(βHn,m f̃ ◦ [ξn
i ](0) − f̃ ◦ [ξn

i ] ◦ [ξm
n ](0)βHn,m)Qnv ‖ ≤

2iLf

2(n−1)
(44)
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for m > n and

‖Qnφ̃
◦
i,M (f̃ )(0)βHl,Mv − φ̃

◦
i,n(f̃ )(0)Qn β

H
l,Mv ‖ ≤

2iLf

2(n−1)
. (45)

We can suppose M > n and obtain

‖ βHn,∞Qn lim
m→∞

βHm,∞φ̃
◦
i,m(f̃ )(0)βHl,mv − lim

m→∞
βHm,∞φ̃

◦
i,m(f̃ )(0)βHn,mQnv ‖

≤ ‖ βHn,∞Qn[βHM,∞φ̃
◦
i,M (f̃ )(0)βHl,Mv − lim

m→∞
βHm,∞φ̃

◦
i,m(f̃ )(0)βHl,mv]‖

+ ‖Qnφ̃
◦
i,M (f̃ )(0)βHl,Mv − φ̃

◦
i,n(f̃ )(0)Qn β

H
l,Mv ‖

+ ‖ lim
m→∞

βHm,∞[βHn,m φ̃
◦
i,n(f̃ )(0) − φ̃◦i,m(f̃ )(0)βHn,m]Qn β

H
l,Mv ‖

≤
1 + 2i+1Lf

2(n−1)
. (46)

Thus we obtain

‖[αnQn, f ]Pm‖ ≤
|αn |(1 + 2i+1Lf )

2(n−1)
≤ (1 + 2i+1Lf )(β/2)(n−1). (47)

Hence

‖[D, f ]‖ ≤ ‖[
i∑

n=1

αnQn, f ‖ + ‖
∑
n>i

αnQn, f ]‖

≤ 2‖f ‖
i∑

n=1

|αn | + (1 + 2i+1Lf )
∑
n>i

(β/2)(n−1) <∞

(48)

and [D, f ] extends to a bounded operator.
Moreover D has a compact resolvent since it has a discrete spectrum and its eigenvalues have

finite multiplicity. Suppose we have sequences {αi}, {ni} and a real number p > 0 as in the statement.
Then

Tr((1 + D2)−p/2)= 1 +
∑
i≥1

(1 + α2
i )−p/2(n2

i − n2
i−1)<∞. (49)

�
As the final comment, we observe that by looking at the growth of the dimensions ni of the matrix

algebras appearing in the original construction of the Jiang-Su algebra (cfr. Ref. 7), it is clear that
(40) cannot be satisfied for any choice of a sequence {αi} defining a Dirac operator as in Theorem
5.1 and any p > 0; hence the spectral triples exhibited above are not p-summable in this case. Also,
with the help of Stirling formula, it can be seen that Tr exp(�D2) diverges and thus the θ-summability
does not hold either.
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