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1 Introduction and results

The last couple of years saw the discovery of three-dimensional bosonization: infrared (IR)

dualities enjoyed by gauge theories with Chern-Simons interactions [1–22], similar in spirit

to the particle-vortex duality [23, 24] and to dualities with extended N ≥ 2 supersymmetry

studied for more than two decades [25–30].

In this paper we want to tackle the case of 3d minimal supersymmetry, namely N = 1

(see [31]), an interesting bridge between N = 0 and N ≥ 2 for many reasons.

With 3d N = 1 supersymmetry all supermultiplets (except for those containing con-

served currents) are long : there is no protected sector analogous to the chiral ring. More-

over, the interactions are not protected. This makes the analysis of N = 1 theories similar

to the N = 0 case, and the dualities quite powerful: usually for N ≥ 2 dualities, it is only

known how to map the protected operators to the dual theory. On the other hand if we

have an N = 1 duality and we know the mapping of a supermultiplet, we can, in principle,

deform the N = 1 duality to an N = 0 duality.

See [32–40] for earlier work on 3d N = 1 gauge theories and dualities.
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Let us also mention that there might be experimental realizations of (2+1)-dimensional

systems with low amount of supersymmetry. This is due to the phenomenon of emergent

supersymmetry [41–47]. Roughly speaking, if the massless matter of some model is super-

symmetric, then also the interactions at the infrared fixed point may be supersymmetric:

the renormalization group flow may land on the SUSY fixed point.

N = 1 SU(N) ↔ U(k) duality with gauge singlets. In this paper we focus on

3d N = 1 models with unitary gauge groups and fundamental flavors. We are interested

in a supersymmetric analog of the non-Abelian bosonization. Bosonization maps critical

scalars (i.e. with quartic φ4 interactions) to regular fermions. In a supersymmetric the-

ory, we expect critical scalars to be paired with critical fermions (i.e. with interactions

similar to Gross-Neveu-Yukawa models), and regular fermions to be paired with regular

scalars. A supersymmetric U(Nc) or SU(Nc) gauge theory with a matter multiplet Φ in

the fundamental representation does not admit interactions of the form φ4: the generic

superpotential W = |Φ|4 leads to interactions of the form φ6 + φ2ψψ, so we have regular

matter. In order to have an N = 1 duality mapping critical matter to regular matter, we

expect it is necessary to introduce additional fields, the simplest option being gauge-singlet

supermultiplets.

In the case of a single flavor, we introduce one gauge-singlet real superfield H and

propose the following duality:

U(k)N+ k
2
− 1

2
, N− 1

2

with 1 flavor Q

W = −1
4

(∑k
i=1QiQ

†
i

)2 ←→

SU(N)−k−N
2

+ 1
2

with 1 flavor P

and a gauge-singlet H

W = H
∑N

i=1 PiP
†
i −

1
3H

3 .

(1.1)

The sign of the superpotential on the left-hand side is important: the physics would be

different with the other sign. Notice that a parity transformation changes the sign of both

the Chern-Simons terms and the superpotential, while the relative sign remains unchanged.

On the right-hand side, one can redefine H → −H and change the overall sign of the

superpotential, while the relative sign between the two terms is important. On the U(k)

side we have regular matter, on the SU(N) side we have critical matter.

The “topological” global symmetry on the U(k) side is mapped to the baryonic sym-

metry of the SU(N) gauge theory. Accordingly, monopole operators are mapped to bary-

onic operators. This is similar to what happens in the non-supersymmetric bosonization

dualities.

As for the operators in the sector with vanishing global U(1) charge, our proposal is

the that the meson is mapped to the singlet:

QQ† ←→ H . (1.2)

This is analogous to the mapping in 4d N = 1 Seiberg duality [48] or 3d Aharony duali-

ties [27].1

1Notice however that here the operators QQ† and H are not protected by supersymmetry: they are long

supermultiplets.
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Deforming the two theories with a superpotential term mQQ† ↔ mH, the vacua

display an interesting behavior: for m ≤ 0 there is one vacuum, while for m > 0 there are

two isolated vacua.2 Each vacuum is gapped and hosts a certain topological sector. Since

the same vacuum structure and TQFTs appear on both sides of the duality, we have a first

consistency check of our proposal.

A non-trivial implication of the duality (1.1) and of (1.2) is that (QQ†)2 is mapped to

H2. Since (QQ†)2 is in the superpotential, in the IR it must be the case that the dimension

∆
[
(QQ†)2

]
IR
> 2, and so ∆

[ ∫
d2θ(QQ†)2

]
IR
> 3. In order for the duality to be correct,

then it must also be the case that on the SU(N) side ∆[H2]IR > 2. This is a somewhat

surprising statement, since H2 is a mass term, with ∆[H2]UV = 1.

In order to gain further insight, we performed a perturbative computation in the

ungauged model (cubic Wess-Zumino model) with superpotential

W = H

N∑
i=1

PiP
†
i −H

3 (1.3)

at two loops in the 4 − ε expansion (with Padé resummation). The result is that indeed

in the Wess-Zumino model ∆[H2]IR > 2 if N ≥ 1. Gauging the SU(N) or U(N) global

symmetry of the Wess-Zumino model, for large enough Chern-Simon level, does not spoil

the inequality ∆[H2]IR > 2. The fact that H2 is irrelevant in the IR is a consistency check

of our proposed duality, and justifies our choice of superpotential in (1.1) which does not

include an H2 term. We expect this picture and the duality (1.1) to be correct for any

N ≥ 1 and k ≥ 1.

There are related but different versions of the duality (1.1). One example3 is

U(k)−N− k
2

+ 1
2
,−N+ 1

2

with 1 flavor Q and a singlet H

W = H
∑k

i=1QiQ
†
i −

1
3H

3

←→
SU(N)k+N

2
− 1

2
with 1 flavor P

W = −1
4

(∑N
i=1 PiP

†
i

)2
.

(1.4)

This version is very similar to (1.1): the superpotential contains H3 but not H2 and upon

mass deforming the theories, there are two vacua merging into a single vacuum. Now on

the U(k) side we have critical matter, on the SU(N) side we have regular matter. The

duality (1.4) is expected to be valid for k ≥ 1 and N > 1.

However, (1.4) cannot be valid for N = 1: in this case the SU(N) side becomes a

free complex superfield, that displays enhanced N = 2 supersymmetry, has a non-trivial

moduli space of vacua and a different vacuum structure upon mass deformations (a single

vacuum for both signs of the mass). Our proposal in this case is4

U(k)− k+1
2
,− 1

2

with 1 flavor Q and a singlet H̃

W = H̃
∑k

i=1QiQ
†
i −

1
2H̃

2

←→ Free N = 2

chiral multiplet P .
(1.5)

2For N = 1 the structure is a bit different. We study the case N = 1 in detail in section 2.
3One can go from (1.1) to (the time reversal of) (1.4) either by gauging the global symmetry and

renaming k ↔ N , or by “flipping” the operators QQ† ↔ H in (1.1).
4Notice that for k = 1 the gauge theory U(1)− 1

2
displays explicit N = 2 supersymmetry, and we recover

the well-known N = 2 basic mirror symmetry.
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In this way one-loop effects balance the superpotential term H̃2 and allow a non-trivial

moduli space of vacua for the U(k) theory. Also the vacuum structure upon mass defor-

mations is the same.

Summing up, our proposal is the following: the dual of an N = 1 SU/U gauge theory

with regular matter (and hence no singlets) is a U/SU theory with critical matter (so

there are singlet fields). The superpotential term for the singlet fields is cubic. The only

exception is when the regular matter is actually free: then the qualitative structure is

different and there is a quadratic superpotential term for the singlet field on the dual side.

Further directions. As for the non-Abelian dualities, it would be nice to investigate

what happens outside their range of validity (especially in the generalized case with ar-

bitrary number of flavors Nf > 1 discussed in section 3.4), and study possible quantum

phases as in [16, 17].

It would also be interesting to study non-supersymmetric deformations and possibly

make contact with the bosonization dualities and/or the non-supersymmetric dualities with

bosons and fermions studied in [5, 20, 21]. From the mapping of low-lying operators in

terms of N = 1 superfields that we provide, it is possible to read off the mapping of non-

supersymmetric deformations. In particular notice that even if the top component of the

superfield H2 is an irrelevant SUSY deformation, the bottom component of H2 is a relevant

non-SUSY deformation.

In this paper we have analyzed the Wess-Zumino model (1.3) at two-loops in the

ε-expansion. It would be interesting to increase the precision,5 either going to higher loops

and possibly interpolating to a solvable 2d model [44, 45, 50], or employing the numerical

bootstrap [51–53].

The Abelian duality we discuss in section 2 has a simple Type IIB brane description à

la Hanany-Witten, involving a D3-brane stretching between an NS5-brane and the simplest

pq-web, or the S-dual configuration. The setup is similar to [32–36, 38]. It would be nice

to find a brane description also for the non-Abelian cases.

Finally, let us mention that the dualities of this paper might be useful to understand

walls and boundary conditions of 4d N = 1 SQCD [17, 38, 54, 55].

Organization of the paper. In section 2 we study in detail the Abelian case N = k = 1.

In this case the duality (1.1) relates N = 1 SQED with one flavor and a quartic superpo-

tential on one side, and a cubic Wess-Zumino model on the other side. The vacua form a

circle for m < 0, while there are two isolated vacua for m > 0. The duality (1.4) instead

becomes the well-known duality between N = 2 U(1) 1
2

SQED with one flavor and a free

chiral field. Both cases are parity-invariant, a symmetry which on the SQED side emerges

in the IR. We also find two additional U(1) ↔ U(1) dualities relating regular to critical

matter.

In section 3 we discuss the non-Abelian case. We present four different versions of the

duality, involving in various ways gauge groups SU(Nc) and U(Nc). The various dual pairs

5Critical exponents in certain Gross-Neveu-Yukawa models have recently been computed at four-loop

order in the ε-expansion [49].
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can be related to each other by gauging a U(1) global symmetry. Moreover, we state the

natural conjectures for number of flavors greater than one.

In appendix A we discuss some details of the perturbative computations for the cubic

N = 1 Wess-Zumino model. Appendix B provides the topological level-rank dualities in

N = 1 notation.

Note added. When this work was under completion, we received [56] which, among

other things, discusses 3d SU/U(N) N = 1 gauge theories with a fundamental flavor. The

dualities studied in [56] are similar to ours, but have different superpotential interactions

and do not involve gauge-singlet fields.

2 N = 1 SQED with Nf = 1 and its Wess-Zumino dual

In this section we discuss in detail the case N = k = 1 of the proposed dualities (1.1).

We use the 3d N = 1 superfields of [31], that in the spin-0 case expand as

A(θ) = a+ θλA + θ2FA . (2.1)

We use upper-case letters to denote the whole superfield and lower-case letters to denote

the bottom component. The Lagrangians have standard kinetic terms, and the interactions

are encoded in a real superpotential W =W(Ai).

One important remark is that d2θ is parity-odd. Therefore a gauge theory with zero

Chern-Simon level is parity invariant if it is possible to assign parity quantum numbers to

the matter superfields such that W is parity-odd.

2.1 Warm-up: the N = 2 duality

It is instructive to start with the basic N = 2 duality between the Chern-Simons gauge

theory U(1)1/2 with 1 flavor Q and a free chiral field P . Written in N = 1 notation this is

U(1) 1
2

with 1 flavor Q and a singlet Ψ

W = ΨQQ† − 1
2Ψ2

←→
Free complex superfield P

W = 0 .
(2.2)

Here Ψ is a real scalar superfield, that completes the N = 1 vector multiplet to the N = 2

vector multiplet. Note that one cannot integrate out the field Ψ, since the coefficient in

front of Ψ2 is not parametrically large with respect to the scale of the gauge coupling: it

is fixed in terms of the CS level.

The free complex superfield P has a U(1) symmetry that rotates it. This corresponds

to the magnetic (or topological) U(1)M symmetry on the left-hand side (l.h.s.). The right-

hand side (r.h.s.) is manifestly time-reversal invariant; instead on the l.h.s. time reversal

is an emergent symmetry in the infrared.

The operators, collected into superfields, are mapped according to{
M

Ψ

}
←→

{
P

PP †

}
. (2.3)
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Here M is the gauge-invariant supersymmetric monopole. We used that the bottom com-

ponent ψ of Ψ(θ) = ψ + θλΨ + θ2FΨ is in the same N = 2 supermultiplet as the magnetic

U(1)M current, and has dimension ∆[ψ] = 1. From the superpotential we can instead find

the top component of the superfield Ψ:

FΨ = qq† − ψ (2.4)

where q is the bottom component of Q(θ). Thus a particular linear combination of qq† and

ψ is a supersymmetry descendant of ψ, and has ∆[qq†−ψ] = 2. Another linear combination

— simply ψ — has ∆[ψ] = 1. We can now take the top component (2.4) and use it as the

bottom component of a new superfield. This allows us to write the map of superfields

QQ† −Ψ ←→ DαP D
αP † (2.5)

where Dα is the superderivative. This could be used to infer new relations between their

components, and so on.

Notice also that the duality implies the quantum relation

MM† = Ψ (2.6)

in the gauge theory.

SUSY deformations. The free complex superfield P has a single N = 1 relevant defor-

mation compatible with the U(1) symmetry: a superpotential mass term δW = mPP † with

m ∈ R. In N = 2 notation, this is a “real mass”. The quartic superpotential deformation

δW = 1
4αPP

†PP †, that gives a sextic potential V = α2|p|6, is marginally irrelevant.

Therefore, one interesting consequence of the duality is that, on the l.h.s. , the super-

potential deformations Ψ2 and QQ† are irrelevant (more precisely, marginally irrelevant

since ∆IR = 2) in the infrared CFT, even though they are clearly relevant in the ultraviolet

where they have ∆UV = 1. In other words, in the UV there are 3 relevant global-symmetry-

invariant deformations: Ψ,Ψ2, QQ†. In the IR only one of them (Ψ) is relevant.

The relevant N = 1 deformation of the IR CFT, invariant under the global U(1)

symmetry, is thus

δW = mΨ ←→ δW = mPP † . (2.7)

As we said, this is actually the N = 2 preserving “real mass” deformation, and it breaks

parity invariance. The free theory of P has, obviously, a single gapped vacuum both for

m > 0 and m < 0.

Let us quickly analyze the phases on the SQED side. For m > 0 there is a vacuum

where ψ gets a positive VEV and Q gets positive mass. Integrating it out, the CS level

is shifted to U(1)1 and the quadratic superpotential term is shifted to −Ψ2 by a one-loop

effect. The F-term equation for the effective superpotential Weff = mΨ−Ψ2 is consistently

solved by ψ = m/2, q = 0 and the vacuum is gapped. For m < 0 there is a vacuum

where |q|2 = |m| and ψ = 0: the Higgs mechanism takes place and the vacuum is gapped.

Therefore the phases match.

– 6 –
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For m < 0 we could have considered the possibility that ψ gets a negative VEV

and Q gets negative mass. Integrating it out, the CS level is shifted to U(1)0 and the

quadratic superpotential term is shifted to zero by a one-loop effect. The F-term equation

for the effective superpotential Weff = mΨ does not allow for a VEV of ψ, leading to a

contradiction. Notice also that since P is a free field, PP † is a positive operator: if the

duality is correct, Ψ should not be able to get a negative VEV.

2.2 The basic N = 1 duality

From the N = 2 duality and exploiting the operator map (2.3), we can obtain a genuine

N = 1 duality. We “flip” the real N = 1 superfield Ψ ↔ PP † on both sides, i.e. we

introduce a parity-odd real superfield H and we couple it through the interactions

δW = H Ψ ←→ δW = H PP † (2.8)

with large coefficient. Notice that this deformation is relevant on both sides of the N = 2

duality.

On the l.h.s. both Ψ and H become massive and can be integrated out. This generates

quartic superpotential interactions for the flavor Q, and the coefficient will be renormalized

to a critical value. On the r.h.s. we obtain an interacting Wess-Zumino (WZ) model. No

symmetry prevents a superpotential term H3 to be generated by quantum effects. In this

way we obtain a new genuinely N = 1 duality

U(1) 1
2

with 1 flavor Q

W = −1
4QQ

†QQ†
←→

WZ model with P , H

W = HPP † − 1
3H

3 .
(2.9)

Here Q and P are complex superfields, while H is a real superfield. In the WZ model there

is also an extra gravitational coupling −CSg.

On the l.h.s. we tuned the term QQ† to zero. The coefficient −1
4 was chosen for

later convenience, but its sign is physical and important. The WZ model on the r.h.s. is

manifestly parity invariant (H is parity-odd). For this reason the terms H2 and PP † are

not generated. We tuned the term H to zero. Since we can redefine H → −H, only the

relative sign of the couplings in front of HPP † and H3 has physical meaning. Performing

loop computations in the ε-expansion, we will confirm that the term H3 is generated, and

we will see that HPP † and H3 have opposite sign at the RG fixed point.

The basic operator map is{
M

QQ†

}
←→

{
P

H

}
. (2.10)

Similarly to above, supersymmetry imposes some relations. We focus on the operators neu-

tral under the U(1) global symmetry. The top components of the fundamental superfields

on the r.h.s. are

FP = 2hp , FH = pp† − h2 . (2.11)

Thus the operator pp†−h2 is a supersymmetry descendant of h. Another linear combination

of pp† and h2, which we formally denote as pp† +̃ h2, is instead a superconformal primary.

(Moreover, a linear combination of hpp† and λPλP is a descendant of pp†.)

– 7 –
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On the l.h.s. of the duality we have

FQ = −q(qq†) . (2.12)

The θ2-component of the superfield QQ† is λQλQ + qF †Q + q†FQ. Hence one linear com-

bination of λQλQ and (qq†)2 is a descendant of qq†, while another combination, which we

formally denote as λQλQ +̃ (qq†)2, is a superconformal primary (the precise coefficients in

front of the two terms depend on the computation scheme used). We thus have one more

operator mapping:

λQλQ +̃ (qq†)2 ←→ pp† +̃ h2 , (2.13)

which can be upgraded to a map between supermultiplets:

DαQD
αQ† +̃ (QQ†)2 ←→ PP † +̃ H2 . (2.14)

SUSY deformations. From the last operator mapping, one crucial feature of our

proposed scenario follows. On the SQED side, we know that the primary operator

DαQD
αQ† +̃ (QQ†)2 becomes in the IR an irrelevant superpotential deformation, since it

already appears in the Lagrangian. So, if the duality is correct, it must be the case that

on the r.h.s. the operator Os = PP † +̃ H2 satisfies ∆[Os] ≥ 2 and is an irrelevant super-

potential deformation — even though ∆[Os]UV = 1 in the free UV theory. This feature is

very similar to what happens in the N = 2 duality studied above. In order to test this

proposal, we compute ∆[Os] in the ε-expansion in the next subsection.

Let us stress that it is essential, for the duality to work, to make sure that there are no

relevant deformations corresponding to the superpotential terms PP † and H2. The WZ

model on the r.h.s. is time-reversal invariant in the UV, therefore those deformations will

not be generated in any case along the RG flow. The theory on the l.h.s. , instead, develops

time-reversal invariance only in the IR. If the deformations PP † or H2 were relevant in

the IR, they would be naturally activated along the RG flow close to the IR and the SQED

theory on the l.h.s. could not hit the time-reversal invariant fixed point (one would need

extra tuning, which however is not available in the SQED theory in the UV because the

corresponding operators are irrelevant in the UV).

2.3 IR irrelevance of the“mass term” Os = |P |2 +̃ H2 in the ε-expansion

We consider the cubic Wess-Zumino model with N = 1 supersymmetry and superpotential

W =
g2

2
HPP † +

g3

6
H3 . (2.15)

Working in the 4−ε expansion, we have computed (following [45], see appendix A) the two-

loop beta-functions of this model. The numerical values of the couplings at the physically

sensible fixed point are

g2

4π
√
ε

= 0.38237 + 0.06895ε+O(ε2)

− g3

4π
√
ε

= 0.41439 + 0.07202ε+O(ε2) .
(2.16)

Notice in particular that the couplings in front of HPP † and H3 have opposite sign.

– 8 –
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The two-loop scaling dimensions of the elementary fields are

∆[H] = 1− 0.26793ε− 0.000028ε2 +O(ε3) 'Padé 0.732

∆[P ] = 1− 0.35379ε− 0.00258ε2 +O(ε3) 'Padé 0.644 .
(2.17)

On the right we quoted the Padé[1, 1] resummed value at ε = 1.

The quadratic operators in the symmetric-traceless representation of the O(2) = U(1)o
ZC2 global symmetry (where ZC2 is charge conjugation) have scaling dimension

∆[P 2] = 2− 0.41517ε− 0.00887ε2 +O(ε3) 'Padé 1.472 . (2.18)

There are two quadratic singlets under the O(2) global symmetry. One is g2PP
† + g3H

2:

this is a supersymmetry descendant of H therefore its scaling dimensions is ∆[H] + 1 at

the IR fixed point.

The other singlet operator is the superconformal primary Os. Its precise form in our

computation scheme and at two-loops is

Os =
(
1.845466 + 2.061069ε+O(ε2)

)
H2 + PP † . (2.19)

Its scaling dimension is

∆[Os] = 2 + 0.12448ε− 0.13902ε2 +O(ε3) 'Padé 2.058 . (2.20)

We see that ∆[Os] > 2, as required by our proposed duality.

On the other hand, ∆[P ],∆[P 2] < 2 so the two superpotential monopole deformations

M + M† and M2 + (M2)† (which break the U(1) topological symmetry completely and to

Z2, respectively) are relevant deformations in the IR CFT.6

2.4 Relevant deformations and vacua

Having established that there is only one deformation that preserves N = 1 supersymmetry

and the U(1) o ZC2 global symmetry, namely

m

2
QQ† ←→ mH , (2.21)

we now proceed to study the different phases that one obtains when turning on such a

deformation, in the two dual theories respectively. We find that for m > 0 there are two

isolated gapped vacua (corresponding to the broken IR time-reversal symmetry), while for

m < 0 there is an S1 Goldstone boson with a free fermion.7

As we will show below, it is convenient to keep track of counterterms for background

fields, in particular for a gauge field B that couples to the U(1) global symmetry and for

the metric. We use here the following notation for the various component fields. In the

6As described in [57] for gauge theories with N = 2 supersymmetry, it is nevertheless possible that the

theory N = 1 SQED with superpotential W = Mh + (Mh)† exists also for h > 2, even if it is not reachable

with an RG flow starting from SQED with no monopole superpotential. It would be nice to investigate this

issue further.
7Very similar arguments work in the non-Abelian case, that we study in section 3.
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SQED theory the fields are a complex supermultiplet Q = (q, ψ, FQ), the gauge field a

and the gaugino λ. In the WZ model there is a real supermultiplet H = (h, η, FH) and a

complex supermultiplet P = (p, χ, FP ). We recall that when integrating out a Majorana

fermion with negative mass we generate the gravitational coupling −CSg, and that U(1)1

is equivalent to −2CSg [10].

SQED side. We study the theory with superpotential

W =
m

2
Q†Q− 1

4
Q†QQ†Q . (2.22)

We also couple to the topological symmetry via the Lagrangian term 1
2πadB. The F-term is

FQ = q
(
m− |q|2

)
. (2.23)

This gives the following potential and fermionic interactions:

V = |q|2
(
m2 − 2m|q|2 + |q|4

)
Lψ2 =

(
m− 2|q|2

)
ψψ − 1

2

(
q2ψψc + c.c.

)
+
(
iqψλ+ c.c.

)
− λλ .

(2.24)

It is useful to write fermionic interactions in a real notation.8 Defining Q = Q1 + iQ2 in

terms of real superfields Qa, we find

Lψ2 =
(
m−3q2

1−q2
2

)
ψ1ψ1+

(
m−3q2

2−q2
1

)
ψ2ψ2−4q1q2ψ1ψ2+2

(
q1ψ2λ−q2ψ1λ

)
−λλ . (2.25)

Depending on the sign of m we find the following vacuum structure:

• m > 0. There are two vacua.

One vacuum is at q = 0 where Q has mass m. Integrating it out, we get N = 1 U(1)1

CS. Since the gaugino is a free fermion with negative mass, it can be integrated out

and we get U(1)1 CS. This is a trivial gapped vacuum. If we keep into account the

background counterterms, we have − 1
4πBdB − 3CSg.

The other vacuum is at |q|2 = m. The gauge symmetry is Higgsed, both ψ and λ

are massive, and we are left with a trivial gapped vacuum. More precisely, consider

q1 =
√
m and q2 = 0. We see that the radial superfield δQ1 has mass −2m, the

angular scalar q2 participates in the Higgs mechanism, the angular fermion ψ2 and

λ mix. The mass matrix is
( 0

√
m√

m −1

)
whose eigenvalues are

(
− 1 ±

√
1 + 4m

)
/2,

therefore one fermion has positive mass and one negative. We thus have −2CSg.

• m < 0. There is a vacuum at q = 0 where Q has mass −|m|. Integrating it out, we

get N = 1 U(1)0 SYM, i.e. a free massless fermion λ and an S1 free compact boson.

We also have −2CSg.

8Recall that Majorana fermions satisfy ψ
c

a = CγT
0ψ
∗
a = ψa. For Majorana fermions, ψχ = χψ.
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Wess-Zumino side. We study the deformed superpotential

W = mH +HPP † − 1

3
H3 . (2.26)

Recall that we also have an extra gravitational coupling −CSg. The superfield P has charge

1 under the background gauge field B. The F-terms are

FH = m+ |p|2 − h2 , FP = 2hp . (2.27)

They give potential and fermionic interactions

V =
(
m+ |p|2 − h2

)2
+ 4h2|p|2

Lψ2 = 2h
(
χχ− ηη

)
+ 2pχη + 2p†ηχ .

(2.28)

Using the real notation P = P1 + iP2, the fermionic interactions are

Lψ2 = 2h(χaχa − ηη) + 4paχaη (2.29)

with a = 1, 2. Depending on the sign of m we find the following vacua:9

• m > 0. There are two vacua at p = 0 and h = ∓
√
m, where P has mass ∓2

√
m.

Also H is massive, with mass ±2
√
m around its VEV. Integrating them out we are

left with two trivial gapped vacua.

Notice that the VEV for H breaks time-reversal symmetry, and the two vacua are

related by that symmetry. Taking into account background counterterms, the vacuum

with upper sign has − 1
4πBdB − 3CSg, the vacuum with lower sign has −2CSg.

• m < 0. There are vacua at |p|2 = |m| and h = 0. The global U(1) symmetry

that rotates P is spontaneously broken: we get a massless fermion and an S1 free

compact boson.

Using the real notation, we see that H mixes with the radial part of P around its

VEV, giving two modes of opposite mass ±2
√
|m|. When we integrate them out we

are left with −2CSg.

We see that the various phases perfectly match, including the counterterms for back-

ground fields.

2.5 Other Abelian dualities

We can produce other Abelian dualities employing a gauging procedure. On both sides of

the duality we add a CS term at level ` = 0, 1 or −1 for the background gauge field B, we

couple it to a new background field C and then make B dynamical (we rename it b). In

order to preserve N = 1 supersymmetry, we should also introduce a real fermion γ suitably

coupled to the theory.

9Notice that when we integrate out P with positive/negative mass, a negative/positive superpotential

term H2 is generated at one-loop. Because of the term H3, though, the effect is negligible at large VEVs.
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On the SQED side we have the Lagrangian terms

L ⊃ 1

4π
ada+

1

2π
adb+

`

4π
bdb− 1

2π
bdC − 1

2
λλ− 2λγ − ` γγ . (2.30)

Let us analyze the three cases in turn.

For ` = 0, the gauge field b can be integrated out setting a = C. Integrating out γ

sets λ = 0. We are left with an N = 2 chiral multiplet Q with charge 1 under C and a

background counterterm 1
4πCdC (we neglect here gravitational couplings). In this theory

the quartic superpotential interaction is marginally irrelevant and can be dropped.

For ` = 1, the gauge field b can be integrated out, together with a massive fermionic

eigenmode. We are left with

L ⊃ 1

2π
adC − 1

4π
CdC . (2.31)

The new theory has gauge group U(1)−1/2.

For ` = −1, the gauge field b can be integrated out, leaving a bare CS level 2, together

with a massive fermionic eigenmode. We are left with

L ⊃ 2

4π
ada− 1

2π
adC +

1

4π
CdC . (2.32)

The new theory has gauge group U(1)3/2.

On the WZ side we have the Lagrangian terms

L ⊃ `

4π
bdb− 1

2π
bdC −

(
`− 1

2

)
γγ + i

(
pψγ + c.c.

)
. (2.33)

This is an Abelian gauge theory coupled to P and H.

We thus find three new dualities.

• The case ` = 0 leads to

Free complex field Q

W = 0
←→

U(1)− 1
2

with 1 flavor P and a singlet H

W = HPP † + 1
2H

2 .
(2.34)

On the l.h.s. we dropped the quartic superpotential since it is marginally irrelevant.

On the r.h.s. , instead, we have used that in this particular case the superpotential

deformation H2 is relevant while H3 becomes irrelevant. Indeed, the r.h.s. is the

N = 2 SQED theory with one flavor. In this theory we know that H2 is turned on

at the fixed point, and we know that H3 is irrelevant there. The gauging procedure

allows then to go back from the N = 1 duality to the N = 2 duality.

• In the case ` = 1 we find

U(1)− 1
2

with 1 flavor Q

W = −1
4QQ

†QQ†
←→

U(1) 1
2

with 1 flavor P and singlet H

W = HPP † − 1
3H

3 .
(2.35)

The theory on the left is not the time-reversal of (2.9) because the CS level has

opposite sign, but not the superpotential term. The duality suggests that the the-

ory on the l.h.s. has an N = 1 fixed point, besides the N = 2 fixed point. Even
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though both the N = 2 (with W = HPP † − 1
2H

2) and the N = 1 fixed point (with

W = HPP † − 1
3H

3) are reachable from the same free UV model, let us emphasize

that there are no N = 1 RG flows going from one IR fixed point to the other one.

The phases of the two theories can be analyzed as before. For m > 0 there is a

gapped vacuum and an S1 worth of vacua (parameterized by a Goldstone boson and

with a free fermion). For m < 0 there is a unique gapped vacuum.

• In the case ` = −1 we find

U(1) 3
2

with 1 flavor Q

W = −1
4QQ

†QQ†
←→

U(1)− 3
2

with 1 flavor P and singlet H

W = HPP † − 1
3H

3 .
(2.36)

The phases are as follows. For m > 0 there is a trivial gapped vacuum and a gapped

vacuum with a topological theory U(1)2
∼= U(1)−2. For m < 0 there is a trivial

gapped vacuum.

3 Non-Abelian dualities

We propose that the Abelian N = 1 dualities of the previous section generalize to non-

Abelian dualities. The four families of non-Abelian dualities are related by the gauging

procedure described in section 2.5.

3.1 SU/U duality

The first family, that we call SU/U and generalizes (2.34), is as follows. Theory A is

SU(N)k+N
2
− 1

2
with 1 flavor Q

W = −1
4Q
†QQ†Q ,

(3.1)

while Theory B is

U(k)−N− k
2

+ 1
2
,−N+ 1

2
with 1 flavor P and a real singlet H

W = HP †P − 1
3H

3 .
(3.2)

We consider this duality in the range N ≥ 2, k ≥ 1 (outside this range, it might still be

possible to make sense of the duality along the lines of [16, 17]). The global symmetry is

O(2) = U(1) o ZC2 , where the second factor is charge conjugation.

In Theory B we can perform a field redefinition H → H + const. to remove a possible

term P †P from the superpotential; we always assume we have removed such a term. Next,

the absence of a superpotential term H2 is justified as follows. We start from the Wess-

Zumino model with k complex and 1 real superfield, W = HP †P − 1
3H

3. In appendix A we

show that for any k > 0, the singlet quadratic operator of the form Os = P †P +̃ H2 has

∆[Os] > 2. Gauging the global U(k) symmetry with a large enough Chern-Simons level

will not spoil the relation ∆[Os] > 2. So, for large enough Chern-Simons level, the correct

superpotential does not contain the term H2.
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Finally, we have performed a tuning to zero of the mass term Q†Q in Theory A and

of the linear term H in Theory B. Those represent the only N = 1 relevant deformation,

identified on the two sides of the duality:

δW =
m

2
Q†Q ←→ δW = mH . (3.3)

We study the resulting phases below.

The case N = 1 is special, because Theory A is a free N = 2 chiral multiplet Q. In

this case, the duality suggests that in Theory B — because of the particularly small CS

level — the superpotential term H2 is relevant and present in the theory. We propose that

Theory B is
U(k)− k+1

2
,− 1

2
with 1 flavor P and a real singlet H

W = HP †P + 1
2H

2
(3.4)

while Theory A is as in (3.1) with N = 1 and k ≥ 1. For k = 1 this is the N = 2 U(1)− 1
2

gauge theory with one chiral field discussed in section 2.1 and in (2.34). For k > 1 the

theories are N = 1.

Relevant deformations and vacua. Let us compare the behavior of the two theories

under the relevant deformation.

In Theory A (for N ≥ 2) we take the deformed superpotential

W =
m

2
Q†Q− 1

4
Q†QQ†Q . (3.5)

The F-term is FQ = q
(
m− |q|2

)
. One finds the following vacuum structure:

• For m > 0 there are two vacua.

One vacuum is at q = 0 where Q has mass m. Integrating it out we get the topological

theory

N = 1 SU(N)k+N
2

∼= SU(N)k .

We have indicated both the N = 1 and the standard N = 0 notation. In the N = 1

notation, the gaugino, a real fermion in the adjoint representation, is included in the

theory. The gaugino is massive due to the Chern-Simons interaction, integrating it

out the Chern-Simons level is shifted (see [58] and appendix B).

The other vacuum is at |q|2 = m, where the gauge symmetry is broken and the radial

mode is massive. The breaking SU(N)→ SU(N −1) eats 2N −1 real bosonic modes,

while the real radial mode is massive, therefore all modes of q are massive. Taking

q =
(√
m , 0, . . . , 0

)
and analyzing the quadratic fermionic action, one finds that the

modes ψ1 and λ11 acquire a mass, which does not affect the CS level of the unbroken

group. The modes ψa and λ1a (a 6= 1) give two modes of opposite mass, therefore

the bare CS level of the unbroken gauge group is shifted by −1 (such a bare level was

k +N) while the effective CS level is not shifted. Therefore we are left with

N = 1 SU(N − 1)k+N
2
− 1

2

∼= SU(N − 1)k .
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• For m < 0 there is a single vacuum at q = 0 where Q has mass −|m|. Integrating it

out we get

N = 1 SU(N)k+N
2
−1

∼= SU(N)k−1 (for k ≥ 1) .

For k = 1 this is a trivial gapped vacuum.

In Theory B (for N ≥ 2) we take the deformed superpotential

W = mH +HP †P − 1

3
H3 . (3.6)

The F-terms are FH = m + |p|2 − h2 and FP = 2hp. One finds the following vacuum

structure:

• For m > 0 there are two vacua at p = 0 and h = ∓
√
m, where P has mass ∓2

√
m.

Also H is massive, with mass ±2
√
m around its VEV. Integrating them out, in the

vacuum with upper sign we get

N = 1 U(k)−N− k
2
,−N

∼= U(k)−N ,

while in the vacuum with lower sign we get

N = 1 U(k)−N− k
2

+1,−N+1
∼= U(k)−N+1 .

• For m < 0 there is a vacuum at |p|2 = |m| and h = 0, where the gauge symmetry

is broken and the radial mode of p is massive. The singlet H mixes with the radial

part of P around its VEV, giving two modes of opposite masses ±2
√
|m|. Since χa

and λ1a (a 6= 1) give two modes of opposite mass, we are left with10

N = 1 U
(
k − 1

)
−N− k

2
+ 1

2
,−N

∼= U(k − 1)−N .

In all cases we find a perfect match between the two descriptions.

For N = 1, Theory A is a freeN = 2 chiral multiplet. Under both positive and negative

mass deformation, it gives a trivial gapped vacuum. The analysis of deformations of Theory

B in (3.4) requires to keep into account the one-loop effects, as we did in section 2.1. For

m > 0, h gets negative VEV, P acquires negative mass and integrating it out one gets a

shift δW = 1
2H

2. This leads to U(k)−1 CS theory, which has a trivial gapped vacuum.

For m < 0, we only find the Higgsed vacuum |p|2 = |m| leading to U(k − 1)−1 CS theory

with a trivial gapped vacuum. The classical vacuum where h gets a positive VEV is lifted

quantum mechanically, because of the one-loop shift δW = −1
2H

2.

Let us mention that, if we consider a theory as in (3.1) but with opposite sign of the

superpotential, i.e. W = 1
4Q
†QQ†Q, then its vacuum structure is reproduced by a theory

as in (3.2) but with superpotential W = HP †P + α
2H

2 (with large positive α) i.e. with

quadratic rather than cubic term in H. Then H could be integrated out leading to a theory

with no singlets and superpotential W = − 1
2αP

†PP †P .

10The shift in the level k′ is only apparent: if we write U(n)k,k+mn we see that m is not shifted.
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3.2 U/SU duality

The second family, that we call U/SU and generalizes (2.9), is

U(N)k+N
2
− 1

2
, k− 1

2
with 1 Q

W = −1
4Q
†QQ†Q

←→
SU(k)−N− k

2
+ 1

2
with 1 P and H

W = HP †P − 1
3H

3 .
(3.7)

We consider this duality in the range N, k ≥ 1. The case k = 1 is special because the r.h.s.

becomes the WZ model that we have studied in section 2.

Relevant deformations and vacua. Theory A (on the l.h.s.) has the following vacuum

structure:

• For m > 0 there are two vacua. In the vacuum at q = 0 the field Q has mass m.

Integrating it out gives the topological theory U(N)k.

In the Higgsed vacuum at |q|2 = m we are left with U(N − 1)k.

Notice that for k = 1 both gapped vacua are trivial, and for N = 1 the second gapped

vacuum is trivial.

• For m < 0, in the vacuum at q = 0 the field Q has mass −|m|. Integrating it out

gives N = 1 U(N)k+N
2
−1,k−1 CS theory. For k > 1 this is the topological U(N)k−1

CS theory, while for k = 1 this is an S1 free scalar together with a free fermion.

Theory B (on the r.h.s.) has the following vacuum structure:

• For m > 0 there are two vacua at h = ∓
√
m where P has mass ∓2

√
m and H is

massive as well. Integrating them out, in the vacuum with upper sign we get SU(k)−N
while in the vacuum with lower sign we get SU(k)−N+1.

• For m < 0 there is a Higgsed vacuum at |p|2 = |m|, leading to SU(k−1)−N for k > 1.

When k = 1, the global symmetry is broken and we get an S1 Goldstone boson with

a free fermion instead.

The two descriptions match.

3.3 U/U duality

The third and fourth families, that we call U/U and generalize (2.35) and (2.36), are

U(N)k+N
2
− 1

2
, k− 1

2
±N with 1 Q

W = −1
4Q
†QQ†Q

←→
U(k)−N− k

2
+ 1

2
,−N+ 1

2
∓k with 1 P and H

W = HP †P − 1
3H

3 .
(3.8)

We consider these dualities in the range N, k ≥ 1.
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Relevant deformations and vacua. Theory A (on the l.h.s.) has the following vacuum

structure:

• For m > 0 there are two vacua. In the vacuum at q = 0 the field Q has mass m.

Integrating it out gives the topological theory U(N)k,k±N .

In the Higgsed vacuum at |q|2 = m we are left with U(N − 1)k,k±(N−1).

There are some special cases: when the second level is 0 we get an S1 free scalar and

a free fermion.

• For m < 0, in the vacuum at q = 0 the field Q has mass −|m|. Integrating it out

gives N = 1 U(N)k+N
2
−1,k−1±N CS theory. This is the topological U(N)k−1,k−1±N

CS theory.

Theory B (on the r.h.s.) has the following vacuum structure:

• For m > 0 there are two vacua at h = ∓
√
m where P has mass ∓2

√
m and H

is massive as well. Integrating them out, in the vacuum with upper sign we get

U(k)−N,−N±k while in the vacuum with lower sign we get U(k)−N+1,−N+1∓k.

• For m < 0 there is a Higgsed vacuum at |p|2 = |m|, leading to U(k− 1)−N,−N∓(k−1).

The two descriptions match.

3.4 Generalization to Nf > 1

Our proposed dualities admit a natural generalization to the case with more than one

flavor. Even if a detailed analysis of this case is beyond the scope of the present paper, let

us state the conjecture and make a few comments. There are four families of dualities: the

SU/U duality

SU(N)
k+N

2
−
Nf
2

with Nf flavors Qi

W = −|Q|4
←→

U(k)
−N− k

2
+
Nf
2
,−N+

Nf
2

with Nf flavors Pj , N
2
f singlets Hij

W = H|P |2 −H3 ,

(3.9)

the U/SU duality

U(N)
k+N

2
−
Nf
2
, k−

Nf
2

with Nf flavors Qi

W = −|Q|4
←→

SU(k)
−N− k

2
+
Nf
2

with Nf flavors Pj , N
2
f singlets Hij

W = H|P |2 −H3 ,

(3.10)

and the two U/U dualities

U(N)
k+N

2
−
Nf
2
, k−

Nf
2
±N

with Nf flavors Qi

W = −|Q|4
←→

U(k)
−N− k

2
+
Nf
2
,−N+

Nf
2
∓k

with Nf flavors Pj , N
2
f singlets Hij

W = H|P |2 −H3 .

(3.11)
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On both sides, the flavors are in the (complex) fundamental representation, while the Nf

singlets are real. The global symmetry is U(Nf )/ZN o ZC2 , where the second factor is

charge conjugation. The singlets Hij transform in the adjoint plus singlet representation

of the global SU(Nf ) symmetry factor, and the superpotentials are more complicated than

in the Nf = 1 case. On the l.h.s. there are two possible terms (that we have schematically

indicated by |Q|4):

Wr.h.s. = −
(

TrQ†Q
)2 − TrQ†QQ†Q . (3.12)

On the r.h.s. there are, in principle, five possible terms (that we have schematically indi-

cated by H|P |2 −H3):

Wl.h.s. = TrHP †P + TrH TrP †P −
(

TrH
)3 − TrH TrH2 − TrH3 . (3.13)

We do not know the precise form of the superpotential nor the structure of the infrared

fixed points of the two theories.

The dualities are expected to hold when Nc ≥ Nf on both sides, so we need N ≥ Nf

and k ≥ Nf . Outside this ranges there might be interesting quantum phases. We leave

these issues to future work.

Acknowledgments

We are grateful to Sara Pasquetti for useful discussions. This work is supported in part by

the MIUR-SIR grant RBSI1471GJ “Quantum Field Theories at Strong Coupling: Exact

Computations and Applications”. S.B. is partly supported by the INFN Research Projects

GAST and ST&FI. Part of this project was completed at the workshop “Superconformal

Field Theories in 6 and Lower Dimensions” at the Tsinghua Sanya International Mathe-

matics Forum.

A Cubic N = 1 Wess-Zumino models in the ε-expansion

We want to study perturbatively the cubic Wess-Zumino model with Lagrangian

L =

∫
d2θ

(
−1

2

∑L

i=0
DαΦiD

αΦi +W(Φi)

)
. (A.1)

Here W(Φi) is a cubic real function of the real superfields Φi(x, θ):

W =
1

6
gijk ΦiΦjΦk . (A.2)

Each real superfield Φ expands as

Φ(θ) = φ+ θλ+ θ2FΦ (A.3)

where φ is a real scalar, λ is a real (Majorana) fermion, and F is an auxiliary field.

One obstacle that we find in the study N = 1 theories in the ε-expansion is that in 4d

minimal fermions contain two copies of 3d real fermions. So the 4d loop computations in the
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literature do not directly provide the results for real N = 1 superfields. One way around

this obstacle is the following [45]. This strategy should work for any 3d Gross-Neveu-

Yukawa model with two-component Majorana fermions λ and interacting Lagrangian∑
i

(∂iW)2 +
∑
ij

∂i∂jW λiλj . (A.4)

We replace each λi with a tower of 4p fields λiα (where p is an arbitrary integer) and modify

the fermionic part of the previous Lagrangian as follows:∑
i

(∂iW)2 +
∑
ij

∂i∂jW
4p∑
α=1

λiαλ
j
α . (A.5)

We do not change the number of scalars nor the quartic scalar interactions. At this point

we combine the 4p λ’s into p complex Dirac four-component fermions. We obtain a Gross-

Neveu-Yukawa model with global symmetry SU(p) that exists for any d ≤ 4. At d = 3

the global symmetry enhances to SO(4p). For this extended model we can use the existing

results for loop computations present in the literature. They are the β-functions of the

quartic and Yukawa couplings, and also the scaling dimensions of the fields φi, λi and

φiφj . At some point in the computation we can set p = 1/4 and infer the results for our

3d real fermions, hence for our cubic Wess-Zumino model of interest. This strategy was

implemented in [45].

A.1 From GNY to WZ models

Let us start from an N = 1 WZ model with L superfields Φi, i.e. a GNY model with L

real scalars φi and L Majorana fermions ψi with Lagrangian

L =
1

2
(∂µφi)

2 + ψ̄i/∂ψi + φiψ̄jΓi;jkψk +
1

4!
gijklφiφjφkφl . (A.6)

We take all the couplings Γi;jk and gijkl to be real. Organizing the Yukawa couplings Γi;jk
into L matrices Γi of dimension L×L, the tree level plus one-loop β-functions for the Γi’s

are given in eq. (7.2) of [59]:

βΓi = −ε
2

Γi +
1

2(4π)2

∑
a

(
ΓaΓaΓi + ΓiΓaΓa + 4ΓaΓiΓa + 4Γa Tr(ΓaΓi)

)
. (A.7)

The scaling dimension of the fundamental fields in the Wess-Zumino model are reported in

eq. (A.3) of [45] and in eq. (7.2) of [59]. At one-loop the mixing matrices for the fermions

and the scalars are:

γψ =
1

2(4π)2

∑
a

Γ2
a , γφ,ij =

1

2(4π)2
4 Tr(ΓiΓj) . (A.8)

The scaling dimension of the scalar bilinears is taken from eqs. (A.4) and (A.5) of [45]: the

mixing matrix for the operators quadratic in the fundamental scalars, namely φiφj with

φkφl (i ≤ j, k ≤ l), is

γij,kl = γφ,ik δjl + γφ,jl δik +
1

(4π)2
gijkl (2− δkl) (A.9)

(no sum over k and l in the last term).
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Using (A.5) with p = 1/4, it is easy to express the cubic and quartic GNY

coupling in (A.6) in terms of the couplings gijk appearing in the WZ superpotential

W = 1
6 gijk ΦiΦjΦk. We get

Γi;jk = ∂i∂j∂kW = gijk

gijkl = ∂i∂j∂k∂l
∑
a

(∂aW)2 = 2
∑
a

(
gijagkla + gikagjla + gilagjka

)
.

(A.10)

We can now rewrite the perturbative results (A.7), (A.8) and (A.9) in terms of the couplings

gijk. The β-functions for the couplings gijk of the WZ model are extracted from (A.7), and

using that gijk is totally symmetric they simplify to11

βgijk = −ε
2
gijk +

1

32π2

∑
abc

[(
gijagkbc + gikagjbc + gjkagibc

)
gabc + 4giabgjbcgkac

]
. (A.11)

Notice that this is totally symmetric in ijk.

As expected, the two formulas in (A.8) become equal in the SUSY case:

γΦ;ij =
1

2(4π)2
giabgjab (A.12)

The scaling dimension of the bilinears (A.9) read

γΦ2;ij,kl =
1

2(4π)2
(giabgkabδjl + gjabglabδik + 2(gijagkla + gikagjla + gilagjka)(2− δkl))

(A.13)

A.2 Our specific O(K) Wess-Zumino model

Our interest in this paper lies in the following cubic Wess-Zumino model,12 with two

independent couplings:

W =
g2

2
Φ0

K∑
i=1

Φ2
i +

g3

6
Φ3

0 . (A.14)

The global symmetries are O(K) and parity, which forbid other cubic terms Φ3
i>0 and

Φi>0Φ2
0 to be generated. Under parity the Φi’s are even and Φ0 is odd. Notice also that

only the relative sign between g2 and g3 is physical; we will find that g2 and g3 have opposite

sign at the IR fixed point.

In terms of the two SUSY couplings g2, g3, the beta-functions (A.11) at one-loop are

βg3 = −ε
2
g3 +

1

2(4π)2

(
7g3

3 + 3Kg3g
2
2 + 4Kg3

2

)
βg2 = −ε

2
g2 +

g2

2(4π)2

(
g2

3 + 4g3g2 + (K + 8)g2
2

)
.

(A.15)

11Setting p = 1
4

gives a factor 1
4

to traces of Γ’s, and so cancels the factor 4 in the last term of (A.7).
12A similar model, but with N = 2 supersymmetry, was studied in [60]. It was found that the coupling g3

flows to 0 at the IR fixed point, leading to accidental IR symmetries. In our case with N = 1 supersymmetry

we find that both g2 and g3 are non-vanishing at the IR fixed point. Even starting with g3 = 0 in the UV,

the term Φ3
0 is generated in the IR.
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K = 0 K = 1 K = 2 K = 4 K = 6 K = 10 K = 20 K = 50
g2

4π
√
ε

1/
√

6 0.382 0.340 0.308 0.264 0.203 0.136

− g3
4π
√
ε

1/
√

7 1/
√

6 0.414 0.407 0.393 0.364 0.311 0.233

∆[Φ0] 4/7 2/3 0.732 0.814 0.862 0.914 0.961 0.990

∆[Φi] 2/3 0.646 0.616 0.595 0.570 0.541 0.518

∆[Osing] 11/7 2 2.124 2.236 2.275 2.285 2.243 2.151

∆[Os.t.] 5/3 1.585 1.463 1.380 1.278 1.165 1.074

Table 1. The Wess-Zumino model W = g2
2 Φ0

∑K
i=1 Φ2

i + g3
6 Φ3

0 at one-loop: coupling constants

at the IR fixed point and scaling dimensions of the elementary and quadratic operators. We are

interested in even K > 0, but we also consider the cases K = 0 and K = 1 in order to compare

with existing results in the literature. In the cases K = 0, 1 the solution of the β function equations

admit a simple analytic expression, while for K ≥ 2 we report the numerical solution.

The scaling dimension of the fundamental fields (A.12) at one-loop they are:

∆[Φ0] =
2− ε

2
+
g2

3 +Kg2
2

2(4π)2
, ∆[Φi] =

2− ε
2

+
2g2

2

2(4π)2
. (A.16)

The (K+1)(K+2)
2 quadratic operators transform in the vector, symmetric traceless (Os.t.)

and two singlet representations of SO(K).

The operators Φ0Φi transform as a vector of SO(K), so they do not mix with the other

quadratic operators. Using (A.13), at one-loop their scaling dimension is given by

∆[Φ0Φi] = 2− ε+
g2

3 + (K + 10)g2
2 + 4g2g3

2(4π)2
. (A.17)

Notice that, upon using βg2 = 0, the relation ∆[Φ0Φi] = ∆[Φi] + 1 is satisfied. This is

consistent with the fact that Φ0Φi is a SUSY descendant of Φi at the fixed point.

We write down the mixing matrix for the K + 1 operators Φ2
0,Φ

2
1,Φ

2
2, . . ., at one-loop:

∆[Φ2
0,Φ

2
i ] = (2− ε)IK+1 +

+
1

(4π)2


Kg2

2 + 4g2
3 g2(2g2+g3) g2(2g2+g3) g2(2g2+g3) . . .

g2(2g2+g3) 5g2
2 g2

2 g2
2 . . .

g2(2g2+g3) g2
2 5g2

2 g2
2 . . .

g2(2g2+g3) g2
2 g2

2 5g2
2 . . .

...
...

...
...

. . .

 (A.18)

From its eigenvalues we can read off the scaling dimensions of the singlet operator

Osing ' Φ2
0 +

∑
Φ2
i (at one-loop), the singlet g2Φ2

0 + g3
∑

Φ2
i (which is a SUSY descen-

dant of Φ0), and the symmetric traceless operator Os.t.. We report the one-loop results for

many values of K in table 1.
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A.3 Some comments about two-loops

We wrote down the one loop formulas, the two-loop formulas can be obtained starting

from the appendix of [45].13 We don’t write them down because they are long and unillu-

minating. Using those formulas we obtained the two-loop results for the O(2) WZ model

(eq. (A.14), K = 2) reported in the main text. We can also compare with existing results

in the literature for (A.14) at K = 0, 1. In both cases our two loop results agree with the

formulas in the literature.

K = 0. This case is dubbed the supersymmetric Ising model, W = Φ3
0. The scaling

dimension at two loops is

∆[Φ0] = 1− 3

7
ε+

1

49
ε2 +O(ε3) (A.19)

in good agreement with the numerical bootstrap results of [61] ∆ ' 0.582. Since φ2
0 is a

descendant of φ0, it follows ∆[Φ2
0] = ∆[Φ0] + 1.

K = 1. In this case the model has emergent N = 2 supersymmetry, at the critical

point g2 = −g3 (we checked this statement at two-loops), so the theory is the N = 2 Φ3

Wess-zumino model, with Φ = Φ0 + iΦ1:

W = g3

(
−1

2
Φ0Φ2

1 +
1

6
Φ3

0

)
=
g3

12
(Φ0 + iΦ1)3 + c.c. . (A.20)

The scaling dimensions of the elementary fields are one-loop exact: ∆[Φ0] = ∆[Φ1] = 2
3 .

Then Os.t. is a SUSY descendant so ∆[Os.t.] = 5
3 . On the other hand, the operator

Osing = Φ2
0 + Φ2

1 ' ΦΦ† gets corrections beyond one-loop:

∆[Osing] = 2− 1

3
ε2 +

1 + 12ζ(3)

18
ε3 +O(ε4) . (A.21)

Its precise scaling dimension is ' 1.91 (obtained by resuming three or four loops in the

ε-expansion [44, 45, 50] or by numerical bootstrap [51–53]).

B Level-rank dualities in N = 1 notation

First of all we need the following general facts. SU(N)k requires k ∈ Z. If we integrate out

a (real) fermion in the adjoint representation, we shift k by ±N
2 . Therefore

N = 1 SU(N)k requires k − N

2
∈ Z . (B.1)

We have

N = 1 SU(N)k
mλ−−→

SU(N)k+N
2

for mλ > 0

SU(N)k−N
2

for mλ < 0 .
(B.2)

13In the appendix of [45] there is a typo in the two-loop Yukawa couplings beta function. The correct

expression appears in eq. (7.2) of [59].
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In our conventions, the sign of the fermion mass at the N = 1 point is opposite to the

sign of k.

The theory U(N)k,k′ requires k = k′ mod N . We can write

U(N)k, k+MN =
SU(N)k ×U(1)MN2

ZN
M ∈ Z . (B.3)

When integrating out a (real) fermion in the adjoint representation, we shift k by ±N
2

while k′ does not shift. Therefore

N = 1 U(N)k,k′ requires k − N

2
∈ Z and k′ = k − N

2
mod N . (B.4)

In particular k′ cannot be equal to k.

We recall the level-rank dualities of spin-TQFTs:

SU(N)k ←→ U(k)−N

U(N)k,k±N ←→ U(k)−N,−N∓k
(B.5)

for N > 0, k > 0. Assuming N, k positive, we can write the following N = 1 level-rank

dualities:
N = 1 SU(N)k+N

2
←→ N = 1 U(k)−N− k

2
,−N

N = 1 U(N)k+N
2
, k±N ←→ N = 1 U(k)−N− k

2
,−N∓k .

(B.6)

All these dualities are valid for N, k > 0.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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