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Abstract

We address the computation of the Loschmidt echo in interacting integrable spin chains after a quantum 
quench. We focus on the massless regime of the XXZ spin-1/2 chain and present exact results for the 
dynamical free energy (Loschmidt echo per site) for a special class of integrable initial states. For the first 
time we are able to observe and describe points of non-analyticities using exact methods, by following the 
Loschmidt echo up to large real times. The dynamical free energy is computed as the leading eigenvalue 
of an appropriate Quantum Transfer Matrix, and the non-analyticities arise from the level crossings of this 
matrix. Our exact results are expressed in terms of “excited-state” thermodynamic Bethe ansatz equations, 
whose solutions involve non-trivial Riemann surfaces. By evaluating our formulas, we provide explicit 
numerical results for the quench from the Néel state, and we determine the first few non-analytic points.
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1. Introduction

Despite their long history, in the past decade the theory of integrable models has witnessed 
a series of unexpected developments. Among these, the most prominent one is arguably the 
realization that analytic techniques from integrability, traditionally tailored for ground-state and 
thermal physics, provide powerful tools also out of equilibrium [1].

A simple but physically interesting protocol which has proven to be within the reach of inte-
grability has been the one of quantum quenches [2]: a system is prepared in some well-defined 
state |�0〉 and left to evolve unitarily with some Hamiltonian H . This problem has been exten-
sively studied in the past few years, since it represents an ideal and simplified setting for exploring 
several important questions of many-body physics out of equilibrium [3–7]. Among these, the 
problem of relaxation has represented a main motivation in the study of quantum quenches [8]: 
based on the knowledge of the initial state |�0〉, can we predict the local stationary properties of 
the system at large times?

A complete answer to this question has been obtained: while in the generic case the post-
quench stationary properties are thermal [8], in integrable systems they are locally captured by 
a Generalized Gibbs Ensemble (GGE) [9–16]. The latter is analogous to the Gibbs statistical 
ensemble, but it is constructed by taking into account, in addition to the Hamiltonian, all higher 
local and quasi-local conserved operators [17]. Besides this established conceptual picture, recent 
research has also provided us with quantitative means to make explicit predictions in concrete 
cases; a relevant example is the Quench Action approach [18,19], which allows us to compute, 
in several cases of interest, the stationary values of local correlations at large times [20–28].

A problem which has turned out to be much harder, from the analytical point of view, is the 
computation of the full real-time dynamics of local observables. Indeed, most of the work in this 
direction has been limited to the analysis of free systems [10,29–41], while only a few studies 
exist in the interacting case [20,42–52], mainly employing either semi-classical [51,52] or field 
theoretical methods [20,43–50]. Furthermore, despite the Quench Action approach provides a 
formal representation for the time evolution of local observables, it is usually overwhelmingly 
complicated to evaluate, and so far this task was carried out only in the case of interaction 
quenches in one-dimensional Bose gases [45].

Partly motivated by this problem, an analytic computation of the so-called Loschmidt echo 
in the XXZ Heisenberg chain was initiated in [53,54]. The latter is not a local quantity: it is 
defined as the squared absolute value of the overlap between evolved and initial states. However, 
it is of experimental relevance being accessible, for example, by nuclear magnetic resonance 
[55,56]. Most prominently, the Loschmidt echo is a central object in the study of dynamical 
phase transitions [57–81], and quantum revivals [82–86], and as such, it has received increasing 
attention over the past few years. Furthermore, the calculation of the Loschmidt echo represents 
an intermediate step towards the more ambitious goal of computing the time evolution of local 
observables [53,54].

A promising analytical approach to its computation was proposed in [53], which is based on 
the so called Quantum Transfer Matrix (QTM) formalism [87–89]. This method can be applied 
quite generally to an infinite family of initial integrable states, which have been introduced and 
studied in [90]. Building upon the results of [53], a full solution to the problem of computing 
the Loschmidt echo for imaginary time and arbitrary initial integrable states was presented in 
[54], while partial results were obtained for real times. In this work we complete the programme 
initiated in [54] and provide a full solution to the real-time problem, for which a significant 
amount of additional techniques has to be introduced.
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Differently from [53,54], in this work we will focus on quantum quenches to the gapless 
regime of the XXZ Hamiltonian. The reason to do this is two-fold: on the one hand, some tech-
nical simplifications occur, which allow us to reduce the amount of unnecessary complications. 
On the other hand, for the particular initial states considered, the Loschmidt echo displays, in the 
gapless regime, non-analytic points at relatively short times [67]; this allows us to show explicitly 
that our method is perfectly capable to capture them. Since we are only interested in presenting 
the general methods, we will focus uniquely on quenches from the Néel state, which has already 
served many times in the recent literature as a prototypical case of study [22,23,30,91]. We em-
phasize, however, that the method detailed in this work is general, applies for arbitrary values of 
the anisotropy, and can be carried out for arbitrary integrable states [90].

The organization of this work is as follows. In Sec. 2 we present the XXZ Hamiltonian and 
the quench protocol, while the QTM approach is reviewed in Sec. 3. We tackle the computation 
of the Loschmidt echo in Sec. 4, where the small-time dynamics is addressed: in this case, no 
additional complication arises with respect to imaginary times. The calculation of the Loschmidt 
echo for arbitrary time is presented in Sec. 5 and Sec. 6, where all the new analytic techniques are 
introduced. Explicit results for the quench from the Néel state are also reported and discussed. 
Finally, our conclusions are presented in Sec. 7. The most technical part of our work is consigned 
to the appendix.

2. Setup

2.1. The model

We consider the XXZ spin-1/2 chain

H = J

4

L∑
j=1

[
σx

j σ x
j+1 + σ

y
j σ

y
j+1 + �

(
σz

j σ z
j+1 − 1

)]
, (1)

where we take J > 0, while σα
j are the Pauli matrices. We assume periodic boundary conditions, 

σα
L+1 ≡ σα

1 , and take the length L to be an even integer. We indicate the associated Hilbert space 
as H = h1 ⊗ . . . ⊗ hL, where hj � C

2 is the local Hilbert space corresponding to the site j . In 
this work we focus on the gapless regime of the model

|�| = | cosγ | < 1 , (2)

with γ ∈ R. As a technical hypothesis, we restrict to the special case of anisotropies correspond-
ing to the so-called root of unity points, where γ is a rational multiple of π . We focus in particular 
on the simplest case

γ = 1

p + 1
π , (3)

where p > 1 is an integer number.

2.2. The quench protocol and the Loschmidt echo

In this work we are interested in quantum quenches from a special class of integrable initial 
states. These have been introduced and defined in [90] to be the states annihilated by all the 
local conserved operators of the Hamiltonian which are odd under space reflection. They include 
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two-site product states and matrix product states with arbitrary bond dimensions. In order to 
illustrate the main ideas, we will focus on the simplest example, the well-known Néel state

|N〉 = | ↓↑ . . . ↓↑〉 . (4)

From our derivation, detailed in the following, it will be clear that our approach could be directly 
applied more generally to all the integrable states defined in [90].

The Loschmidt echo, also called the return amplitude, is arguably the simplest quantity to 
compute after a quantum quench. Given the initial state |�0〉, it is defined as

L (t) =
∣∣∣〈�0|e−iH t |�0〉

∣∣∣2 , (5)

and is a measure of the probability of finding the system close to its initial configuration. For a 
global quench, L (t) decays exponentially with the volume L, and it is natural to introduce the 
Loschmidt echo per site

�(t) = [L (t)]1/L , (6)

or, alternatively, the return rate

r(t) = 1

L
logL (t) = log�(t) . (7)

For global quenches, the analytical computation of the Loschmidt echo is in general extremely 
hard, and most of the results in the literature are restricted to either free or conformal systems, 
and local quenches (see however [84] for an analytical computation starting from a domain wall 
state).

An analytical approach was introduced in [53,54] in the gapped regime of the XXZ Hamilto-
nian, where an exact calculation was presented for the partition function

Z(w) = 〈�0|e−wH |�0〉 , w ∈C . (8)

In particular, the starting point of [54] was considering real values of w (imaginary time evolu-
tion), for which the exact solution for Z(w) was obtained in terms of analytic formulas. Subse-
quently, analytic continuation was performed to obtain the real-time evolution of the Loschmidt 
echo. This procedure was shown to provide the correct result only up to a finite time t∗. In 
this work we go beyond and present a complete derivation of the real-time Loschmidt echo, by 
considering complex values of the parameter w from the beginning.

In the next section, we review the Quantum Transfer matrix construction introduced in [53,
54], which can be carried out straightforwardly also in the massless regime of the Hamiltonian 
(1).

3. The Quantum Transfer Matrix approach

3.1. General idea

The idea behind the Quantum Transfer Matrix approach to the Loschmidt echo relies on in-
terpreting it as a particular boundary partition function; this is a natural identification which has 
been exploited many times in the literature [58,62–64,66,67,71–74,83]. Here, we only briefly 
review the main formulas for later reference, referring in particular to [54] for a detailed and 
pedagogical treatment.
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We start by introducing the building blocks of our algebraic construction, which is based on 
the so-called algebraic Bethe ansatz method [92]. The latter is a powerful set of techniques which 
allows us, among many other things, to analytically diagonalize the Hamiltonian (1). The central 
object is the R-matrix,

R12(u) =

⎛
⎜⎜⎜⎝

sin(u + γ )

sinu sinγ

sinγ sinu

sin(u + γ )

⎞
⎟⎟⎟⎠ , (9)

from which, one can define the transfer matrix

τ(u) = tr0
{
R0,L(u) . . .R0,1(u)

}
. (10)

By means of the identity [89]

τ(−β/2N)τ(−γ + β/2N)

sin(−β/2N + γ )2L
= 1 − 2β

JN sinγ
H + O

(
1

N2

)
, (11)

where γ is defined in (2), the subsequent action of transfer matrices can be interpreted as a 
discrete approximation to the unitary evolution, as it follows from the well-known Suzuki–Trotter 
decomposition

e−wH = lim
N→∞

(
1 − wH

N

)N

. (12)

Indeed, using (11), one has(
1 − wH

N

)N

�
[
τ(−βw/2N)τ(−γ + βw/2N)

]N
sin(−βw/2N + γ )2LN

, (13)

where we defined

βw = J

2
sin(γ )w . (14)

As we have already stressed, our approach to the computation of the partition function (8) applies 
to all integrable states introduced in [90]; these constitute a large family which include matrix 
product states of arbitrary bond dimension. For the sake of presentation, in the following we will 
however restrict to two-site product states of the form

|�0〉 = |ψ0〉 ⊗ . . . ⊗ |ψ0〉 . (15)

Following [54], it is straightforward to simplify the partition function (8) by means of the above 
identities. After a few steps which are not reported here, one obtains

〈�0|e−wH |�0〉 = lim
N→∞ tr

[
T L/2

]
, (16)

where we introduced the boundary quantum transfer matrix

T = 〈ψ0|T QTM(0) ⊗ T QTM(0)|ψ0〉[
sin(−β/2N + γ )

]4N
, (17)

and where T QTM(u) is the corresponding monodromy operator
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T QTM(u) = L2N,0(u − β/2N)L2N−1,0(u + β/2N − γ ) · · ·
· · · L2,0(u − β/2N)L1,0(u + β/2N − γ ) . (18)

In these formulas we have omitted the subscript w in βw .
Eq. (16) is the starting point for our derivation, along the lines of [54]. Assuming that the limits 

of large N and large L can be exchanged [54], Eq. (16) amounts to compute the w-dependent 
leading eigenvalue �0 of T ; indeed we have

〈�0|e−wH |�0〉 �
(

lim
N→∞�0

)L/2

. (19)

This problem has been completely solved in [54] for arbitrary choices of the state |ψ0〉 and 
w ∈ R. The idea is to relate the operator T to an integrable transfer matrix with open bound-
ary conditions, which can be analyzed by means of the so-called boundary algebraic Bethe 
ansatz [93–96]. The form of T explicitly depends on the initial state considered, and for generic 
integrable states [90] one needs to resort to the non-diagonal version of the latter [97–104], as 
explicitly worked out in [54]. In this work, to avoid unnecessary complications, we will restrict 
to initial states which only require us to deal with the simpler diagonal boundary algebraic Bethe 
ansatz. Furthermore, as repeatedly stressed, we will work in the gapless regime of the Hamil-
tonian (1), contrary to [54]. In the next section we will thus review the technical aspects of the 
boundary algebraic Bethe ansatz in the gapless case, referring the reader to the literature for a 
more comprehensive treatment [93–96].

3.2. The boundary algebraic Bethe ansatz

The central object of the boundary algebraic Bethe ansatz approach is the boundary transfer 
matrix

τB(u) = tr0{K+(u)T1(u)K−(u)T2(u)} , (20)

where

T1(u) = L2N(u) . . .L1(u) , (21)

Lj (u) = R0,j (u − ξj ) , (22)

T2(u) = R1,0(u + ξ1 − γ ) . . .R2N,0(u + ξ2N − γ ) . (23)

Here Rij (u) is the R-matrix introduced in (9). The inhomogeneities ξj are parameters which can 
be chosen arbitrarily, and the trace in (20) is performed over the auxiliary space h0 � C

2. The 
2 × 2 boundary matrices K±(u) have to be chosen to satisfy appropriate non-linear relations 
known as reflection equations [93]. In the diagonal case of interest in this work, the general 
solution to the latter reads

K±(u) = K(u ± γ /2, ξ±) (24)

K(u, ξ) =
(

sin (ξ + u) 0
0 sin(ξ − u)

)
.

To simplify the discussion, we restrict from the beginning to quantum quenches from the 
Néel state (4). On the one hand, it has already served many times in the recent literature as a 
prototypical case of study [22,23,30,91]; on the other hand, it is straightforward to apply the 
techniques introduced in the following to treat more general integrable states, so that this is by 
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no means a restrictive choice. Specifying the initial state to be the Néel state amounts to choosing 
|ψ0〉 = | ↑↓〉. Then, following [54], one can show that in this case one has

T = − 1

sin(−β/2N + γ )4N

1

sin2 γ
τB(0) , (25)

provided that the inhomogeneities and boundary parameters in τB(u) are chosen as

ξ2j+1 = β/2N , (26)

ξ2j = γ − β/2N , (27)

and

ξ± = ∓γ

2
. (28)

Eq. (25) is a key relation, which allows us to resort to integrability based methods to compute 
the Loschmidt echo. Indeed, the problem of computing the partition function (8) is reduced to 
finding the leading eigenvalue of the boundary transfer matrix (20), where the dependence on w
is encoded in the inhomogeneities (26) and (27).

The diagonalization of the boundary transfer matrix (20) can be performed analytically within 
the framework of the boundary algebraic Bethe ansatz [93–96]. Note that for diagonal bound-
aries, the transfer matrix (20) commutes with the operator counting the number R of down spins. 
Then, the eigenstates of the open transfer matrix (20) are constructed in terms of a set of com-
plex numbers {λj }Rj=1, which are the so-called Bethe roots or rapidities. They are obtained as the 
solution of a non-linear set of equations (Bethe equations) [94], which in our case read[

sin(λj + β/2N − γ ) sin(λj − β/2N)

sin(λj − β/2N + γ ) sin(λj + β/2N)

]2N R∏
k �=j

sin(λj − λk + γ ) sin(λj + λk + γ )

sin(λj − λk − γ ) sin(λj + λk − γ )

× sin(λj − (ξ+ − γ /2)) sin(λj − (ξ− − γ /2))

sin(λj + (ξ+ − γ /2)) sin(λj + (ξ− − γ /2))
= 1 . (29)

Each set of rapidities λ ≡ {λj }Rj=1 associated with the different eigenstates uniquely specifies the 
corresponding eigenvalue τλ(u) of the boundary transfer matrix τB(u) in (20). First, given a set 
λ ≡ {λj }Rj=1, we introduce the doubled set

{λ̃k}2R
k=1 = {λk}Rk=1 ∪ {−λk}Rk=1 , (30)

so that the corresponding eigenvalue reads [94]

τλ(u) = ω1(u)φ(u + γ /2)
Q(u − γ )

Q(u)
+ ω2(u)φ(u − γ /2)

Q(u + γ )

Q(u)
, (31)

where we have defined

Q(u) ≡
2R∏
k=1

sin(u − λ̃k) , (32)

φ(u) ≡
2N∏
k=1

sin (u − γ /2 + ξk) sin (u + γ /2 − ξk) , (33)

ω1(u) = sin(2u + γ ) sin(u + ξ+ − γ /2) sin(u + ξ− − γ /2)
, (34)
sin(2u)
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ω2(u) = sin(2u − γ ) sin(u − ξ+ + γ /2) sin(u − ξ− + γ /2)

sin(2u)
. (35)

Eq. (31) is sometimes referred to as the T − Q relation [96]. We note that the Bethe equations 
(29) can be rewritten in terms of the functions introduced above as

ω2(λj )

ω1(λj )

Q(λj + γ )φ(λj − γ /2)

Q(λj − γ )φ(λj + γ /2)
= −1 . (36)

Eq. (31) provides a formal solution to the problem of diagonalizing the transfer matrix (10) for 
finite N .

From Eqs. (19) and (25) we see that our goal is to compute the leading eigenvalue in the limit 
N → ∞. Two main difficulties, accordingly, arise: the first one consists in the determination 
of the Bethe roots λ ≡ {λj }Rj=1 corresponding to the leading eigenvalue at finite N ; the second 
pertains the computation of the limit N → ∞ of the expression (31).

The configuration of Bethe roots depends on w [defined in (19)]. For each “time” w, eigenval-
ues which are close to each other might correspond to very different sets of rapidities; as w varies 
each set of Bethe roots also varies continuously. However, it might happen that two eigenvalues 
undergo a crossing: accordingly, the set of Bethe roots corresponding to the leading eigenvalue 
might change abruptly as w varies smoothly, which makes the computation of the Loschmidt 
echo non-trivial. It turns out that for w ∈ R no crossing occurs, and the Bethe roots associated 
with the leading eigenvalue have a similar qualitative behavior for all values of w ∈ R [53]. This 
is not the case for imaginary times w = it (t ∈ R), considered in this work. In order to set the 
stage, we will start in Sec. 4 by treating the case of small times t , where no crossing arises. This 
allows us to focus on a single eigenvalue, for which the configuration of Bethe roots is relatively 
simple. In Sec. 5 the same eigenvalue is computed for arbitrary values of t , for which the tech-
nical treatment becomes necessarily more sophisticated. Finally, for large times crossings arise, 
as it will be discussed in Sec. 6: in this case, our strategy will consist of computing, for each t , 
also higher eigenvalues of τB(u) and to follow their evolution continuously, keeping track of all 
the subsequent crossings.

4. The Loschmidt echo at small times

We set w = it in Eq. (8) with t ∈ R, and t sufficiently small. Following [54], we start with 
a preliminary numerical analysis at finite values of N of the eigenvalues of the boundary QTM 
(20), which can be obtained by exact diagonalization. It is found that for small values of t the 
leading eigenvalue of the boundary QTM is unique, with a finite gap with respect to the higher 
ones. Furthermore, it lies in the sector of zero magnetization, and therefore is associated with 
R = N Bethe roots. For small values of N , these can be identified numerically following a 
standard procedure, by comparing the formal T − Q relation (31) with explicit diagonalization 
of τB(u), as already done in [54]. An example of a configuration of Bethe roots for the leading 
eigenvalue of τB(u) is displayed in Fig. 1.

The Bethe roots do not arrange, in the limit N → ∞, according to a smooth rapidity distri-
bution function. In order to take the infinite-N limit, then, two routes can be followed. The first 
one consists in writing down a single nonlinear integral equation for an appropriate auxiliary 
function, as done in [53]. While this can be easily done for the Néel state, serious complications 
arise in the study of more general integrable states, corresponding to nondiagonal boundary con-
ditions [54]. Accordingly, in order to keep the discussion as general as possible, we will follow 
the second approach, detailed in [54], which is based on the so-called Y -system relations [105], 
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Fig. 1. Doubled set of Bethe roots {λ̃i }2N
i=1 associated with the leading eigenvalue of the boundary QTM in the complex-λ

plane, for 2N = 8, γ = π/3 and w = it = 1i. The x- and y-axes correspond to real and imaginary parts of the rapidities.

and for which no additional complication arises in the case of generic states. In the following 
subsections we will introduce the Y -system and review how the latter can be exploited to obtain 
directly the spectrum of the boundary QTM.

4.1. The Y -system

It is an established result that the boundary transfer matrix τB(u) can be used to build an 
infinite family of transfer matrices {tj (u)}∞j=0 via the so-called fusion procedure [106–108], in 
complete analogy with the well-known case of periodic boundary conditions [105]. In the fol-
lowing, we outline the aspects of this construction which are relevant for our work.

The fused transfer matrices tj (u) act on the same space as the transfer matrix τB(u) and form 
a commuting set of operators, namely[

tj (u), tk(w)
]= 0 , j, k = 0,1, . . . . (37)

They can be obtained recursively as

t0(u) = 1 ,

t1(u) = τB(u) ,

tj (u) = tj−1

(
u − γ

2

)
t1

(
u + (j − 1)

γ

2

)
− f

(
u + (j − 3)

γ

2

)
tj−2(u − γ ) , j ≥ 2 . (38)

Here f (u) is defined as

f (u − γ /2) = φ(u + γ )φ(u − γ )ω1(u + γ /2)ω2(u − γ /2) , (39)

where the functions φ(u), ω1(u) and ω2(u), are defined in (33), (34) and (35) respectively. Let 
us point out that the results presented in this paragraph hold for generic values of the inhomo-
geneities ξi and of the boundary spectral parameters ξ± (note that they can also be extended 
to the case of non-diagonal boundary reflection matrices [54]). Finally, from Eqs. (38) one can 
derive the relation

tj

(
u + γ

2

)
tj

(
u − γ

2

)
= tj+1(u)tj−1(u) + �j(u) , j ≥ 1 , (40)

where
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�j(u) =
j∏

k=1

f
[
u − (j + 2 − 2k)

γ

2

]
. (41)

The set of relations (40) is usually referred to as T -system. From the latter one can derive 
a new set of functional relations, the so-called Y -system, which is expressed in terms of the 
operators

Yj (u) = tj−1(u)tj+1(u)

�j (u)
, j ≥ 1 , (42)

with the choice Y0 ≡ 0. From this definition, and the T -system (40), the following Y -system is 
readily derived

Yj

(
u + γ

2

)
Yj

(
u − γ

2

)
= [

1 + Yj+1 (u)
] [

1 + Yj−1 (u)
]

. (43)

4.2. Truncation of the Y -system at the root of unity

In general, the Y -system (43) consists of an infinite number of functional relations. This is 
not an issue, as for practical purposes of numerical evaluation of the Loschmidt echo it can be 
truncated to a finite number nMAX of them, introducing an error which decreases rapidly as nMAX
is increased [54]. There exists, however, a particular case where an exact truncation takes place, 
and the infinite system is exactly equivalent to a finite one: namely when the parameter q = eiγ

is a root of unity. In this work we will restrict to this case, in order to reduce the number of 
unnecessary complications. As an additional simplification, we will impose another restriction 
to the values of γ , which we will choose to be of the form (3), with p > 1 integer. This makes 
the final form of the Y -system particularly simple. Generalization to the case γ = qπ/p, with 
q, p > 1 integers is possible, but will not be discussed here.

For the values of γ in Eq. (3), an exact truncation of the Y -system takes place due to an 
additional relation between the fused transfer matrices tp+1 and tp−1, which can be traced back to 
the representation theory of the underlying quantum group Uq(sl2) with q = eiγ . Such a relation 
was originally observed for the periodic chain in [109] (see also [110,111]), and for general 
integrable open boundaries in [97,112]. Recasting the results of the latter in our notations, for the 
particular case of diagonal boundary reflection matrices, we find

tp+1(u) = �p(u)

�(u)2 tp−1(u) + 2 cosh(α(u))
�p(u)

�(u)
1 , (44)

where we have defined

�(u) = �̃(u)g(u) (45)

�̃(u) = (−1)2N+1 sin(2u)

sin(2u + 2γ )
φ
(
u − π

2

)

×
p−1∏
j=1

sin(2u + 2jγ )

sin(2u + (2j + 1)γ )

p−1∏
j=2

φ
(
u + jγ − π

2

)
(46)

g(u) =
∏ sin

[
(p + 1)

(
u + ξ + π

2

)]1/2

2p cos(u + ξ)

ξ=ξ+,ξ−
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× sin
[
(p + 1)

(
u − ξ + π

2

)]1/2

cos(u − ξ)
, (47)

α(u) = 1

2
ln

(
sin

[
(p + 1)

(
u + ξ+ + π

2

)]
sin

[
(p + 1)

(
u + ξ− + π

2

)]
sin

[
(p + 1)

(
u − ξ+ + π

2

)]
sin

[
(p + 1)

(
u − ξ− + π

2

)]
)

. (48)

Noticing now that

�p−1(u) = �
(
u + γ

2

)
�
(
u − γ

2

)
, (49)

making use of (44) and of the definitions (42), the following truncated Y -system can be obtained

Yj

(
u + γ

2

)
Yj

(
u − γ

2

)
= [

1 + Yj+1(u)
] [

1 + Yj−1(u)
]

, j = 1, . . . p − 1 , (50)

1 + Yp(u) = 1 + 2 cosh[α(u)]K(u) + K(u)2 , (51)

1 + Yp−1(α) = K
(
u + γ

2

)
K
(
u − γ

2

)
, (52)

where

K(u) = tp−1(u)

�(u)
. (53)

The Y -system can be further simplified once we impose the boundary parameters to take the 
values of interest in the present problem, namely ξ± = ∓γ /2, cf. Eq. (28). Indeed, in this case 
one has α(u) = 0, and consequently we obtain

Yj

(
u + γ

2

)
Yj

(
u − γ

2

)
= [

1 + Yj+1(u)
] [

1 + Yj−1(u)
]

, j = 1, . . . , p − 1 , (54)

1 + Yp(u) = [1 + K(u)]2 (55)

1 + Yp−1(u) = K
(
u + γ

2

)
K
(
u − γ

2

)
. (56)

We note that this form of the Y -system, which is particularly convenient from the computational 
point of view, holds whenever ξ+ = ξ− or ξ+ = −ξ−.

4.3. From the Y -system to the Loschmidt echo

The importance of the above construction for the computation of the Loschmidt echo is that 
it allows us to express the latter in terms of the solution of a system of non-linear equations; in 
turn, these can be easily evaluated numerically to yield the exact value in the infinite-N limit. 
The same idea was already exploited in [54], and is reviewed in the following.

First, from Eq. (37), we see that the operators Yj commute with one another, with the transfer 
matrices, and by construction with the global magnetization Sz (since we are restricting to diag-
onal boundary conditions). Accordingly, the set of functional relations (43) can be understood 
at the level of individual eigenvalues of the operators Yj(u). In the following, we indicate as 
yj (λ) the eigenvalue of Yj (iλ) (note that a rotation of π/2 in the complex plane of the argument 
of yj (λ) has been performed for convenience); we will refer to yj (λ) as the Y -functions. They 
satisfy the Y -system

yj

(
λ + i

γ

2

)
yj

(
λ − i

γ

2

)
= [1 + yj+1(λ)][1 + yj−1(λ)] , j = 1, . . . p − 1 , (57)

1 + yp(λ) = [1 + κ(λ)]2 , (58)

1 + yp−1(λ) = κ
(
λ + i

γ )
κ
(
λ − i

γ )
, (59)
2 2
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where κ(λ) denotes the eigenvalue of the operator K(iλ). It will be useful to know the asymptotic 
behavior of the Y -functions on Bethe states as λ → ±∞. First, we make use of the simple relation 
for the magnetization |Sz| of a given eigenstate in terms of the number R of the corresponding 
Bethe roots,

|Sz| = N − R . (60)

Then, from the T − Q relation (31), we can deduce

1 + y1(±∞) ∼ 4 cos2(2γ Sz) . (61)

Finally, the asymptotic behavior of the higher Y -functions yj , j ≥ 2, is easily obtained by recur-
sion using (54).

Following [54], we define the normalized boundary transfer matrix

T (λ) = − 1(
sinh

(
λ − i

β
2N

+ iγ
)

sinh
(
−λ − i

β
2N

+ iγ
))2N

τB(iλ)

N (λ)
, (62)

where

N (λ) = − sinh(λ + iγ ) sinh(λ − iγ ) − sinh(λ)2 , (63)

so that T (0) coincides with the operator T in Eq. (25). For each time t , we indicate with 
{�t

�(λ)}∞�=0 the set of eigenvalues of the corresponding operator T (λ) [the dependence on t
is through the parameter β , defined in (14)]. With each eigenvalue �t

�(λ), is associated a set of 

Y -functions {y(�)
j (λ)}pj=1, and the following relations can be derived [54]

1 + y
(�)
1 (λ) = (1 + ỹ1(λ))

⎛
⎝ sinh

(
λ + i

(
β

2N
− γ

2

))
sinh

(
λ − i

(
β

2N
− γ

2

))
sinh

(
λ + i

(
β

2N
+ γ

2

))
sinh

(
λ − i

(
β

2N
+ γ

2

))
⎞
⎠

2N

× �t
�

(
λ + i

γ

2

)
�t

�

(
λ − i

γ

2

)
, (64)

where

1 + ỹ1(λ) = N
(
λ + i

γ
2

)
N

(
λ − i

γ
2

)
χ(λ)

,

χ(λ) = sinh(2λ + 2iγ ) sinh(2λ − 2iγ )

sinh(2λ + iγ ) sinh(2λ − iγ )

× sinh
(
λ − i

γ

2

)2
sinh

(
λ + i

γ

2

)2
. (65)

Eq. (64) is a functional relation between the eigenvalue ��(λ) and the Y -function y(�)
1 (λ). In 

order to compute the former, and thus the Loschmidt echo (19), we need a final step, namely to 
cast the functional relations (57)–(59) and (64) into a set of integral equations. This programme 
will be followed explicitly in the next sections.
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4.4. Short-time dynamics

The procedure to cast the functional equations into integral ones is well-known in the liter-
ature (see e.g. [113]). We summarize it here, for convenience, referring to the literature, and in 
particular to our previous work [54], for a detailed explanation.

In order to write down the integral equations, one needs to take first the logarithmic derivative 
of both sides of Eqs. (57)–(59). Next, one performs a Fourier transform of both sides, obtaining 
a number of integrals along segments with non-zero imaginary parts. Finally, one moves the 
integration contours back to the real axis; in order to do so, one needs to take into account all 
the singularities of the logarithmic derivatives, which correspond to the zeros and poles of the 
functions yj (λ) and κ(λ) inside the so called physical strip. This is the region of the complex-λ
plane defined by

|�λ| ≤ γ

2
, −∞ < �λ < ∞ . (66)

After performing these steps, one is left with a set of equations of the form

∧

logyj = 1

2 coshkγ

⎡
⎣∧log

(
1 + yj+1

) +
∧

log
(
1 + yj−1

) ⎤⎦+ . . . , (67)

where the . . . denotes additional contributions coming from the poles and zeros of the functions 
yj (λ) and κ(λ). Here, the following notation for the Fourier transform has been used

f̂ (k) =
∞∫

−∞
dλeikλf (λ) , k ∈R , (68)

so that its inverse reads

f (λ) = 1

2π

∞∫
−∞

dk e−ikλf̂ (k) , λ ∈R . (69)

Eq. (67) can be transformed back to real space, yielding the desired set of non-linear integral 
equations.

As it is clear from the above discussion, the only piece of information needed in this calcula-
tion is the location of poles and zeros of the functions yj (λ) and κ(λ). It turns out that this can 
be determined analytically for small times, where no additional difficulty arises with respect to 
the case of imaginary-time evolution. Our analysis of the analytic structure is based on numer-
ical inspection at finite Trotter numbers N of the functions yj (λ) and κ(λ). These can always 
be obtained implementing the operators Yj(λ) and K(λ) for finite N . Numerical inspection for 
Trotter numbers up to 2N = 8 reveals the following analytic structure, which is found to be 
always present for small times t :

• y1 displays the following structure
– y1 has a zero of order 2 at λ = 0;
– y1 has poles at λ = ±i

γ
2 , of order 2 for p even, of order 1 for p odd;

– y1 has poles of order 2N at λ = ±i
(

γ
2 + β

2N

)
;

– y1 has zeros of order 2N at λ = ±i
(

γ − β
)

;
2 2N
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• for j ≥ 1, the only poles or zeros in the physical strip (except possible pairs at ±iγ /2) of yj , 
j ≥ 2, are a double zero at λ = 0 (resp. double pole) for j odd (resp. j even);

• the only poles or zeros of κ in the physical strip (except possible pairs at ±iγ /2) are a double 
pole at λ = 0 for p even.

Note that additional pairs of zeros or poles of the auxiliary functions yj (λ) and κ(λ) at ±iγ /2
do not give contributions to the integral equations and can be neglected.

Using the above information and the procedure outlined above, we obtain easily the integral 
equations corresponding to the functional relations (57)–(59). For p odd, we have

lny1 = s ∗ ln(1 + y2) − 2 ln

(
coth

πλ

2γ

)
− 2N ln

⎛
⎝cosh

(
πλ
γ

)
+ sin

(
πβ

2Nγ

)
cosh

(
πλ
γ

)
− sin

(
πβ

2Nγ

)
⎞
⎠ , (70)

lnyj = s ∗ ln(1 + yj−1) + s ∗ ln(1 + yj+1) + (−1)j 2 ln

(
coth

πλ

2γ

)
, 2 ≤ j ≤ p − 1 ,

(71)

lnκ = s ∗ ln(1 + yp−1) + 2 ln

(
coth

πλ

2γ

)
. (72)

Here we defined

s(λ) = 1

2γ cosh
(

πλ
γ

) , (73)

and introduced the convolution between two functions

[f ∗ g](λ) =
∞∫

−∞
dμf (λ − μ)g(μ) . (74)

Analogously, for p even, we obtain

lny1 = s ∗ ln(1 + y2) − 2 ln

(
coth

πλ

2γ

)
− 2N ln

⎛
⎝cosh

(
πλ
γ

)
+ sin

(
πβ

2Nγ

)
cosh

(
πλ
γ

)
− sin

(
πβ

2Nγ

)
⎞
⎠ , (75)

lnyj = s ∗ ln(1 + yj−1) + s ∗ ln(1 + yj+1) + (−1)j 2 ln

(
coth

πλ

2γ

)
, 2 ≤ j ≤ p − 1 ,

(76)

lnκ = s ∗ ln(1 + yp−1) . (77)

Similarly, from Eq. (64), one gets the following relation between �� and y1

ln�� = s ∗ ln

(
1 + y1

1 + ỹ1

)
− s ∗ ψN , (78)

where

ψN(λ) = 2N ln

⎛
⎝cosh(2λ) − cos

(
β
N

− γ
)

cosh(2λ) − cos
(

β + γ
)
⎞
⎠ . (79)
N
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Fig. 2. Density plot of |λ2κ(λ)|−1 in the complex-λ plane, obtained at different times from exact diagonalization at finite 
Trotter number 2N = 6. The figure corresponds to anisotropy � = 1/2. The white zones signal additional zeros of κ(λ). 
At a critical time t∗ located between 1 and 1.5, an additional pair of zeros enter the physical strip, whose boundaries are 
denoted by green dashed lines. (For interpretation of the colors in the figures, the reader is referred to the web version of 
this article.)

The equations above are exact at finite Trotter number N . It is straightforward to compute the 
Trotter limit using

lim
N→∞ 2N ln

⎛
⎝cosh

(
πλ
γ

)
+ sin

(
πβ

2Nγ

)
cosh

(
πλ
γ

)
− sin

(
πβ

2Nγ

)
⎞
⎠= 2πβ

cosh(πλ
γ

)γ
= iπt sinγ

cosh(πλ
γ

)γ
, (80)

lim
N→∞ 2N ln

⎛
⎝cosh(2λ) − cos

(
β
N

− γ
)

cosh(2λ) − cos
(

β
N

+ γ
)
⎞
⎠= 4β sinγ

cosγ − cosh 2λ
= 2it sin2 γ

cosγ − cosh 2λ
, (81)

where we set for convenience J = 1 in (14). The resulting equations can be solved numerically 
by iteration, and their validity holds until the analytical structure of the Y -functions remains as 
outlined above. Note that they are the same that one would obtain by analytic continuation of the 
imaginary-time result, namely for w ∈R. Indeed, it was already observed in [54] that the correct 
real-time Loschmidt echo could be derived in this way for small times.

It was already observed in [54], however, that these equations hold only up to a given time 
0 < t∗ < ∞, after which they do not provide anymore the correct prediction for the Loschmidt 
echo. In the following, we show explicitly that this is due to the fact that at t = t∗ additional zeros 
of the Y -functions enter the physical strip, and new source terms of the integral equations have 
to be considered. This allows us to go beyond the results of [54], and compute the Loschmidt 
echo for intermediate and large times.

5. Full time dependence of transfer matrix eigenvalues

The Y -system encoded in Eqs. (57)–(59) is valid at any time t . However, as we already 
stressed, the integral equations derived in the last section hold only up to a critical value t = t∗, 
when additional zeros and poles of the Y -functions enter the physical strip. This can be observed 
very clearly at finite Trotter number N from numerical implementation of the boundary QTM, 
as shown in Fig. 2.

Importantly, we found that the position of the additional zeros and poles for t > t∗ can not 
be determined analytically. In order to overcome this issue, we employ a procedure which was 
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initially introduced within the framework of the so-called excited-state thermodynamic Bethe 
ansatz (TBA). The kinds of techniques that we will employ were first introduced in the context 
of thermal physics in one-dimensional solvable models [114,115] and integrable quantum field 
theories [116,117], and will be illustrated in the following.

For simplicity, we consider the case p = 2, for which the Y -system reads

y1

(
λ + iγ

2

)
y1

(
λ − iγ

2

)
= [1 + κ(λ)]2 , (82)

κ

(
λ + iγ

2

)
κ

(
λ − iγ

2

)
= 1 + y1(λ) . (83)

From numerical inspection, we see that no additional poles enter the physical strip, and only 
zeros of the Y -functions appear, which always come in pairs of opposite value. Suppose that 
additional zeros of κ(λ) enter the physical strip for a given time t . The contributions of zeros 
and poles are clearly additive, so we can consider a single pair of zeros ±δ(κ). Note that we label 
arbitrarily one of them δ(κ) and the other −δ(κ). Define in the following

I(κ)
δ = Im

[
δ(κ)

]
. (84)

Up to a global constant, applying the usual trick of integration in the complex plane we get the 
following term in the r.h.s. of (67)

−
∞∫

−∞
dk

sinh
(
kγ /2 + sign

[
I(κ)

δ

]
ikδ(k)

)
k cosh(kγ /2)

e−ikλ . (85)

This could be integrated to give

−
∞∫

−∞
dk

sinh
(
kγ /2 + sign

[
I(κ)

δ

]
ikδ(k)

)
k cosh(kγ /2)

e−ikλ

= −2πi sign
[
I(κ)

δ

]{
L
[(

δ(κ) − isign
[
I(κ)

δ

]
γ /2

)
− λ

]
+ L

[(
δ(κ) − isign

[
I(κ)

δ

]
γ /2

)
+ λ

]}
, (86)

where

L(u) = 1

π
arctan

[
tanh

(
3λ

2

)]
. (87)

Note that (86) is symmetric under δ(κ) → −δ(κ), as it should be.
The calculations for additional zeros of y1(λ) are exactly the same. One should only pay 

attention to the fact that now zeros of y1 are of order 2: if this was not the case, the function 
1 + κ(u) would display a point of non-analyticity. Again, up to a global additive constant, we get 
the additional term

−4πi sign
[
I(y)

δ

]{
L
[(

δ(y) − isign
[
I(y)

δ

]
γ /2

)
− λ

]
+ L

[(
δ(y) − isign

[
I(y)

δ

]
γ /2

)
+ λ

]}
. (88)

We can collect these calculations and provide the final result for the integral equations in the 
presence of additional zeros. Suppose that y1(λ) and κ(λ) have respectively ny and nκ additional 
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Fig. 3. Trajectories of the additional zeros of κ(λ) in the physical strip, associated with the leading eigenvalue �t
0 at small 

times. The figure corresponds to anisotropy � = 1/2, for which two auxiliary functions y1(λ) and κ(λ) are introduced, 
satisfying the Y -system in Eqs. (82) and (83). Subfigure (a): the plots correspond to the trajectory of the first additional 
zero of κ(λ) from t � 1.25 (at which it enters the physical strip) to t � 7.2. Subfigure (b): the plots correspond to the 
trajectory of the second additional zero of κ(λ) from t � 4.39 (at which it enters the physical strip) to t � 7.2. Arrows 
show the direction of the trajectories.

zeros in the physical strip; then, in the Trotter limit N → ∞, we obtain the following set of TBA 
equations

lny1(λ) = −2πi sin(γ )ts(λ) − 2 ln

(
coth

3λ

2

)
+ 2

ny∑
j=1

G
(
λ, δ

(y)
j

)
+ 2s ∗ ln(1 + κ) + logC1 , (89)

lnκ(λ) = 2 ln

(
coth

3λ

2

)
+

nκ∑
j=1

G
(
λ, δ

(κ)
j

)
+ s ∗ ln(1 + y1) + logC2 , (90)

where

G(λ, δ) = −2πi sign [Im δ]
{
L
[
(δ − isign [Im δ]γ /2) − λ

]
+ L

[
(δ − isign [Im δ]γ /2) + λ

]}
, (91)

while C1 and C2 are two constants which should be fixed for the particular eigenvalue investi-
gated. Indeed, noticing that limλ→∞ G(λ, δ) = 0, and defining

y1(∞) = lim
λ→∞y1(λ) , (92)

κ(∞) = lim
λ→∞κ(λ) , (93)

we obtain from Eq. (61)

C1 = y1(∞)

1 + κ(∞)
, (94)

C2 = κ2(∞)

1 + y1(∞)
. (95)

In the same way, the equation for the eigenvalue of the transfer matrix has to be modified in the 
presence of additional zeros as
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Fig. 4. Time-evolution of the logarithm of the eigenvalue �t
0(0), which is the leading one at short times. The two plots 

correspond to different values of the anisotropy. In the figures, we explicitly indicated the number of additional zeros of 
κ(λ) entering the physical strip for each time interval (no additional zeros of y1(λ) are seen to appear).

ln�(λ) =
nκ∑

j=1

G
(
λ, δ

(κ)
j

)
+ s ∗ ln

(
1 + y1

1 + ỹ1

)
− s ∗ ψN . (96)

Since the values of the zeros {δ(y/κ)
j } are not known analytically, they need to be determined 

self-consistently. In particular, using the Y -system relations, they are immediately seen to satisfy

y1

(
δ
(κ)
j ± i

γ

2

)
= −1 , (97)

κ
(
δ
(y)
j ± i

γ

2

)
= −1 . (98)

These equations complement those in (89) and (90), and finally allow us to compute the real-time 
evolution of a given eigenvalue �t

�(λ). In order to obtain explicit numerical results, one can 
proceed as follows. First, one starts with an initial guess on the position of the additional zeros 
and poles {δ(y/κ)

j }. Using this guess, one solves the integral equations (89) and (90), yielding an 
approximation for y1(λ) and κ(λ). Next, employing the latter, one solves Eqs. (97) and (98) for 
{δ(y/κ)

j }, which serve as an improved guess for the next iteration.
The additional zeros follow non-trivial trajectories in the physical strip, as displayed in Fig. 3. 

Furthermore, their number can also vary in time. In Fig. 4 we display the leading eigenvalue �t
0

for different values of the anisotropy as a function of time. In each plot, we also specify the num-
ber of additional singularities which enter the physical strip, and which have to be consistently 
determined from Eqs. (97), Eqs. (98).

From the numerical point of view, there is an additional non-trivial complication. Indeed, the 
driving term in Eq. (89) is imaginary and one needs to be careful with the determination of the 
branch of the logarithm. In fact, in order to obtain a continuous solution to these equations, one 
can not avoid to consider the logarithm as a function defined on a multi-sheeted Riemann surface. 
Accordingly, yj (λ) and κ(λ) need to be thought of as functions taking value in this surface. For 
completeness, a detailed discussion on this issue is reported in Appendix A, together with other 
technical aspects of the numerical solution to the non-linear integral equations.

6. The full spectrum of the Quantum Transfer Matrix

In the last sections, we have solved the problem of computing a single eigenvalue of the 
boundary transfer matrix for real times. In particular, we have followed the evolution of the eigen-
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Table 1
Additional zeros [inside the physical strip (66)] associated with the first leading eigenvalues of the boundary QTM in the 
zero magnetization sector, at time t = 0.7 and for p = 2. The multiplicity of zeros, when different from 1, is indicated 
by brackets. The last column is obtained from the self-consistent solution to Eqs. (97) and (98).

2N = 6 2N = 8 N → ∞
level 1

level 2 κ κ κ

±(0.252536 + 0.301549i) ±(0.252163 + 0.303160i) ±(0.25167 + 0.30521i)

±(0.009101 − 0.107342i) ±(0.008594 − 0.110679i) ±(0.007978 − 0.11492i)

level 3 κ κ κ

±(0.254856 + 0.233405i) ±(0.254385 + 0.232024i) ±(0.253737 + 0.230304i)

±(0.013347 + 0.072526i) ±(0.012880 + 0.077114i) ±(0.0123037 + 0.0828667i)

y1 y1 y1
±(0.034283 − 0.500868i)[2] ±(0.035795 − 0.499081i)[2] ±(0.038054 − 0.496957i)[2]

level 4 κ κ κ

±(0.258274 + 0.273484i) ±(0.257894 + 0.276841i) ±(0.257327 + 0.280913i)

±(0.003950 − 0.034612i) ±(0.003278 − 0.042546i) ±(0.0026001 − 0.052087i)

value �t
0 which at t = 0 is the leading one. As we have already mentioned, however, a crossing 

of eigenvalues will in general occur after a certain time t̄: for t > t̄ the eigenvalue �t
0 will not be 

the leading one anymore.
As it should be clear from our discussion in the previous sections, the Bethe ansatz method 

allows us to follow the dynamic of a single eigenvalue continuously, starting from a given time t . 
Ideally, then, one should compute for a given time the full spectrum of the transfer matrix, so 
that one could keep track of each crossing of the eigenvalues at later times. One can summarize 
the procedure to do so, as follows:

• diagonalize the transfer matrix at finite Trotter number;
• for each excitation, find the location of the additional zeros of the functions yj and κ ;
• use these as an input for the “excited-state” TBA procedure described in the previous section.

Let us follow these steps in detail for the first few leading states at time t = 0.7. While the 
procedure works in principle for states with arbitrary values of the magnetization Sz, the leading 
QTM eigenvalue always appears to lie in the sector Sz = 0 and we will therefore restrict to the 
latter in what follows. The time t = 0.7 lies prior to any crossing, and the leading eigenstate 
is that studied in the previous section. The next to leading states are characterized by a set of 
additional zeros in the physical strip, which we sum up in Table 1.

The location of these additional zeros is quite stable upon increasing N , and can be reliably 
used as an input for the iterative scheme described in Sec. 5. The resulting eigenvalues are plotted 
in Fig. 5. Importantly, these allow us to observe a first crossing between the levels 1 and 2 at time 
t � 3.05, yielding a first point of non-analyticity of the Loschmidt echo.

In order to observe crossings at later times, one could in principle follow the same approach 
for further excited states. However, it turns out that this is not convenient, as the states involved 
in crossings at later times are found to lie rather deep in the spectrum of the relevant boundary 
transfer matrix for t = 0.7, and are therefore difficult to identify systematically. Accordingly, we 
proceed in a more pragmatic way. In particular, we study the boundary QTM spectrum as a func-
tion of t for finite sizes 2N = 6, 8, 10, and identify the states such that the associated eigenvalues 
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Fig. 5. Time evolution of the spectrum of the boundary QTM in the sector of zero magnetization. The plot corresponds 
to anisotropy � = 1/2. The eigenvalues labeled with j = 1, . . . , 4 correspond to the first 4 ones at time t = 0.7. The 
eigenvalues labeled with e1 and e2 are involved in the crossings arising at later times. Their analytical structure is 
identified at t = 4, for which they can be easily studied numerically as they do not lie too deep into the spectrum of the 
boundary QTM.

become the leading one within a finite given time window. In this way we managed to identify 
the states involved in two subsequent crossings, for which we characterized the additional zeros 
at a time t = 4. Next, we solve the resulting integral equations to arbitrary times. The final result 
of this procedure is shown in Fig. 5.

By selecting at each time the leading eigenvalue, one is left with the final exact result for the 
return rate, and hence the Loschmidt echo per site. This is shown in Fig. 6, for different values of 
the anisotropy. Our results were tested against iTEBD simulations [118], and calculations from 
exact diagonalization at finite system size, displaying perfect agreement. As time is increased fur-
ther, several additional points of non-analyticities are expected to arise; these should correspond 
to eigenvalues lying deeper and deeper in the spectrum at smaller time. This is in fact a limitation 
of our method, as these states become increasingly difficult to track in the spectrum of the QTM 
at finite N . In order to tackle arbitrary time and, in particular, the problem of the asymptotics, it 
would be much more satisfactory to have at hand a set of integral equations incorporating in a 
self-consistent way the analytical properties of the leading eigenvalue throughout its crossings. 
While we have not been able to achieve this goal at present, we hope to return to these issues in 
future works.

Before closing this section, we point out a rather remarkable feature that we have observed, 
namely that all of the crossings involving the leading eigenvalue seem to coincide exactly with a 
change in the analytic structure of the y and κ functions. For instance, precisely at the location 
of the first crossing between the levels 1 and 2, the number of additional pairs of zeros of κ for 
the level 1 changes from zero to 1. We were not able to provide a theoretical justification for this 
phenomenon, and at this stage we report it as a simple observation.

7. Conclusion

We addressed the computation of the Loschmidt echo in the XXZ spin-1/2 chain, for a special 
class of integrable initial states [90]. By employing a QTM approach, we have provided an an-
alytic solution at real times, completing the programme initiated in [53,54]. Within our method, 
the Loschmidt echo is obtained from the leading eigenvalue of an appropriate boundary QTM. 
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Fig. 6. Exact return rate as a function of time, as computed using the techniques detailed in Sec. 5 and 6. The plots cor-
respond to anisotropies � = 1/2 and � = 1/

√
2. The points of non-analyticities are explicitly highlighted with arrows, 

and correspond to crossings of the eigenvalues of the boundary transfer matrix, cf. Fig. 5. Different colors correspond to 
the fact that the return rate is determined by different eigenvalues which become the leading ones at different times.

As the time increases, crossings occur giving rise to points of non-analyticity, which are fully 
captured by our techniques.

Although our approach could be in principle used to study the full spectrum of the boundary 
QTM, one is practically limited in the number of eigenvalues which can be computed. This 
results in a limitation in the time interval which can be considered: indeed, as time increases, 
more and more crossings are expected, and a very large number of eigenvalues should be taken 
into account. In particular, using our method, we do not have access to the regime of infinite 
times, and the study of the asymptotic behavior of the Loschmidt echo remains an interesting 
open question to be investigated.

Our calculations show that TBA techniques, traditionally tailored for thermal physics, can 
be successfully used to obtain explicit analytic results also for real-time dynamics. Hence, our 
approach constitutes a promising direction towards the ambitious goal of computing the time 
evolution of local observables after a quantum quench. Applications of the techniques employed 
in this work to this very important question are currently under investigation.
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Appendix A. The Riemann sheet TBA

We wish to illustrate the numerical solution to the TBA equations (89) and (90) for t ∈ R. In 
order to do this, we consider the explicit case of the leading eigenvalue of the transfer matrix. 
For t sufficiently small, there are no additional zeros; the TBA equations then read

lny1 = −2πit sin(γ )s(λ) − 2 ln

(
coth

3λ
)

+ 2s ∗ ln(1 + κ) , (A.1)

2
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lnκ = 2 ln

(
coth

3λ

2

)
+ s ∗ ln(1 + y1) . (A.2)

It is convenient to employ the parametrization

y1(λ) = ρy(λ)eiϕy(λ) , (A.3)

κ(λ) = ρκ(λ)eiϕκ (λ) . (A.4)

Furthermore, for reasons that will be clear later, it is convenient to introduce also the following 
parametrization

1 + κ(λ) = Rκ(λ)ei�κ(λ) , (A.5)

1 + y1(λ) = Ry(λ)ei�y(λ) . (A.6)

All the functions ρy(λ), Ry(λ), ϕy(λ), �y(λ), are real for real values of λ. The integral equations 
above can be rewritten as

lnρy = 2s ∗ lnRκ − ln

(
coth2 3λ

2

)
, (A.7)

ϕy = −2π sin(γ )t s(λ) + 2s ∗ �κ , (A.8)

lnρκ = s ∗ lnRy + ln

(
coth2 3λ

2

)
, (A.9)

ϕκ = s ∗ �y . (A.10)

The system above consists of 4 equations with 8 unknown functions, so it can not be solved 
unless additional constraints are imposed. Indeed, the functions Rκ/y(λ) and �κ/y(λ) are not 
independent from ρκ/y(λ) and φκ/y(λ). However, we argue that the dependence is non-trivial 
and in general “non-local”: in order to obtain �κ/y for a given λ it is not enough to know the 
value taken by functions ρκ/y and φκ/y at the same λ, but additional, non-local information 
should be provided.

To understand this better, we consider a very simple example. Suppose we assign the functions

ϕ(λ) = 2πλ , ρy(λ) = λ . (A.11)

As λ varies, one can follow the evolution of 1 + y1(λ), and compute Ry(λ) and �y(λ) [defined 
in (A.6)] accordingly. Note that if we do this naively, for example choosing

�y(λ) = log (1 + y1(λ)) , (A.12)

with a fixed branch cut for the logarithm (for example (−∞, 0]), we obtain a discontinuous 
function �y(λ): a discontinuity arises every time 1 + y1(λ) crosses the branch cut (−∞, 0]. On 
the other hand, we assume that the correct solutions to (A.7)–(A.10) are regular functions, so that 
no discontinuity should arise.

In order to obtain continuous solutions Ry(λ), �y(λ), we introduce an infinitely sheeted Rie-
mann surface, with a branch cut on the semi-infinite line (−∞, 0]. Then, we follow the curve 
1 + y1(λ) on such a Riemann surface, and compute Ry(λ) and �y(λ) accordingly. This strategy 
is displayed in Fig. A.1. In subfigures (a) we plot the projection of the curve 1 +y1(λ) on a single 
sheet of the Riemann surface, as λ is increased from λ = 0 to λ = 2. By following the curve, one 
can compute continuous functions �y(λ) and Ry(λ) which satisfy (A.6). In subfigures (b) and 
(c) we report the functions �y(λ), Ry(λ) computed in this was.
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Fig. A.1. Evolution (as a function of λ) of different curves corresponding to (A.11). In subfigure (a) we plot the projection 
of the curve 1 + y1(λ) on a single sheet of the Riemann surface, as λ is increased from λ = 0 to λ = 2. In subfigures 
(b) and (c) we report the functions �y(λ), Ry(λ) which are computed by following the evolution of 1 + y1(λ) as λ
increases.

Fig. A.2. Evolution (as a function of λ) of different curves corresponding to (A.13). In subfigure (a) we plot the projection 
of the curve 1 + y1(λ) on a single sheet of the Riemann surface, as λ is increased from λ = 0 to λ = 2. In subfigures 
(b) and (c) we report the functions �y(λ), Ry(λ) which are computed by following the evolution of 1 + y1(λ) as λ
increases.

To see that the value of �y(λ) does not uniquely depend on the value of ρy and ϕy computed 
in λ, consider a different curve

ϕ̃y(λ) = 2πλ , ρ̃y(λ) = 1 + 1

2
λ . (A.13)

Once again, as λ varies we obtain a curve in the infinitely sheeted Riemann surface corresponding 
to 1 + y1(λ). Its projection on a single Riemann sheet is reported in subfigure (a) of Fig. A.2, 
while the corresponding continuous functions �y(λ) and ρy(λ) are displayed in subfigures (b)

and (c). Importantly, we see that

ϕy(λ = 2) = ϕ̃y(λ = 2) = 4π , (A.14)

ρy(λ = 2) = ρ̃y(λ = 2) = 2 . (A.15)

However, we have

�y(λ = 2) = 2π , (A.16)

�̃y(λ = 2) = 4π . (A.17)

From this discussion it follows that, in order to find regular solutions of the system 
(A.7)–(A.10), one needs to take explicitly into account an infinitely-sheeted Riemann surface. 
In practice, we use the following numerical scheme:
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Fig. A.3. Evolution (as a function of λ) of the actual solution to the Eqs. (A.7)–(A.10). In each subfigure we plot the 
projection of 1 + y1(λ) on a single sheet, as λ is increased from λ = −10 to λ = 0. The plots correspond to increasing 
times: t = 0.7, 2, 3.5, 5.

(i) Initialize the values of Rκ/y and �κ,y .
(ii) Compute directly the value of ρy and ϕy from (A.7)–(A.10).

(iii) Given the functions ρκ/y(λ) and ϕκ,y(λ), compute Ry/κ(λ) and �y/κ following the curve 
1 + y1(λ) on the multi-sheeted Riemann surface.

(iv) Repeat steps (ii) and (iii) until convergence is reached.

The most delicate step in this scheme is (iii), but can nevertheless be implemented numerically. 
We now discuss results for the solution to (A.7)–(A.10).

We report in Fig. A.3 numerical data for the solution to Eqs. (A.7)–(A.10) correspond-
ing to four different times. In particular, subfigures (a), (b), (c), and (d) correspond to times 
t = 0.7, 2, 3.5, 5. In each subfigure, we report the curve 1 + y1(λ) obtained by increasing the 
parameter λ from λ = −10 to λ = 0. We see that for small times (t = 0.7) the curve 1 + y1(λ)

lies entirely in one single Riemann sheet, and a solution to Eqs. (A.7)–(A.10) is straightforward. 
As time increases, the same curve eventually enters a new Riemann sheet. For example, for t = 2
[subfigure (b)] the curve crosses the branch cut (−∞, 0] once, and enters into a new Riemann 
sheet. We see that, as the curve 1 + y1(λ) in general wraps around the origin several times, it is 
not possible to choose a branch cut of the logarithm such that the latter lives on a single Riemann 
sheet, and necessarily a multi-sheeted surface has to be introduced. This could also be seen from 
Fig. A.4, where we plot the functions �y(λ) and Ry(λ) at time t = 5.
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Fig. A.4. Solutions �y(λ) and Ry(λ) to the Eqs. (A.7)–(A.10) for t = 5.

It is important to note that at each time such that the curve 1 + y1(λ) enters a new Riemann 
sheet, a new zero of κ appears in the physical strip, and hence an additional driving term has to 
be included in the equations. For example, in the particular case of the plot reported in subfigure 
(b) of Fig. A.3 the integral equations become

lnρy = 2s ∗ lnRκ − ln

(
coth2 3λ

2

)
+Re

[
G
(
λ, δ(y)

)]
, (A.18)

ϕy = −2π sin(γ )t s(λ) + 2s ∗ �κ + Im

[
G
(
λ, δ(y)

)]
, (A.19)

lnρκ = s ∗ lnRy + ln

(
coth2 3λ

2

)
, (A.20)

ϕκ = s ∗ �y , (A.21)

where G(λ, δ(k)) is given in (91), while δ(k) has to be computed self-consistently by solving 
Eq. (98).

Note that the numerical iteration to compute the position of the additional zeros is rather 
stable and efficient, especially when an initial reasonable guess is given. In fact, it only becomes 
delicate in correspondence of those times for which a new zero enters the physical strip and 
a new contribution has to be taken into account; in these cases, care must be taken to follow 
continuously the solution as time is increased slowly, and to provide an accurate initial guess for 
the position of the additional zeros.
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